
ORIGINAL ARTICLE

Leveraging intent–entity relationships to enhance semantic accuracy
in NLU models

Romina Soledad Albornoz-De Luise1 • Miguel Arevalillo-Herráez1 • Yuyan Wu1
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Abstract
Natural Language Understanding (NLU) components are used in Dialog Systems (DS) to perform intent detection and

entity extraction. In this work, we introduce a technique that exploits the inherent relationships between intents and entities

to enhance the performance of NLU systems. The proposed method involves the utilization of a carefully crafted set of

rules that formally express these relationships. By utilizing these rules, we effectively address inconsistencies within the

NLU output, leading to improved accuracy and reliability. We implemented the proposed method using the Rasa

framework as an NLU component and used our own conversational dataset AWPS to evaluate the improvement. Then, we

validated the results in other three commonly used datasets: ATIS, SNIPS, and NLU-Benchmark. The experimental results

show that the proposed method has a positive impact on the semantic accuracy metric, reaching an improvement of 12.6%

in AWPS when training with a small amount of data. Furthermore, the practical application of the proposed method can

easily be extended to other Task-Oriented Dialog Systems (T-ODS) to boost their performance and enhance user

satisfaction.

Keywords Natural language understanding � Semantic accuracy � Task-oriented dialog systems � Conversational agents �
Intent detection � Slot filling

1 Introduction

As Dialog Systems (DS) gain popularity, it becomes

increasingly important to enhance their performance. Task-

Oriented Dialog Systems (T-ODS) are a kind of DS that

aim to assist users in completing specific tasks across

diverse domains [1], such as e-commerce, help desk or

customer care, website navigation, personalized service,

and training or education [2, 3]. These systems play a

valuable role in real-world scenarios, facilitating tasks like

restaurant booking, weather queries, flight booking, traffic

information, technical problem solving, and providing

access to educational material, among other functionalities.

In T-ODS, more structured conversations and advanced

reasoning abilities are required to dynamically generate

knowledge presented to the user. The ability to accurately

understand users’ requirements is a crucial aspect of these

systems. This involves using Natural Language Under-

standing (NLU) techniques to understand and extract rel-

evant information from text, enabling effective

communication with humans.

Intent detection and entity extraction are two crucial

tasks for NLU systems. Intent detection involves deter-

mining the purpose or goal behind a user’s input, while

entity extraction (also known as slot filling) involves

extracting and organizing specific pieces of information

into predefined entity categories or slots. Traditionally,

these tasks have been handled independently [4]. However,

they suffered from error propagation. To address this

problem, researchers began to solve the two tasks jointly

[5–7]. Results showed that there is a strong interdepen-

dency between the intent and the entities, as the specific
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miguel.arevalillo@uv.es

Yuyan Wu

yuyan.wu@uv.es
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entities present within a sentence are greatly influenced by

the underlying intent of that sentence. Other recent studies

have focused on enhancing NLU performance by improv-

ing the internal architecture [8], deploying new models for

different domains and varying amounts of labeled data

[9–12] and refining prediction stages by, e.g., detecting

examples that have been misclassified, handling out-of-

distribution examples [13], and reducing the error rate

[14, 15].

To assess the performance of an NLU component, Exact

Match Accuracy (EMA) is frequently employed, which

measures the proportion of sentences in which both the

intent and all entities are predicted correctly. A low EMA

means an inaccurate identification of the entities and intent

conveyed in the user’s message. This, in turn, can lead to

misunderstandings and incorrect responses, negatively

impacting the user’s experience and impairing the system’s

ability to perform its intended tasks. To boost performance

and enhance user satisfaction, these systems can incorpo-

rate an extra validation check to ensure the accuracy of the

message and generate an appropriate response. This vali-

dation step prevents the system from solely relying on the

output of the NLU component.

In this work, our contribution is the development of a post-

processing technique designed to enhance the EMA of NLU

components by using a new paradigm that leverages knowl-

edge injected by domain experts. This technique identifies

inconsistencies in the system’s predictions and rectifies them

by searching for the most probable intent that aligns with the

detected entities. This is done by combining the ranking of

intents returned by the NLU system with a set of manually

crafted rules. The proposed approach can be seamlessly used

with any existing model that simultaneously predicts a

ranking of intents and a set of entities. Its effectiveness has

been evaluated by using the Rasa toolkit to deploy a repre-

sentative example of an NLU component, taking advantage of

its availability as an open-source tool. The validation of the

proposed approach relies mainly on the AWPS dataset, due to

its unique attributes and relevance to our research. However,

our method has also been evaluated using other widely

employed datasets for NLU in T-ODS, including ATIS,

SNIPS, and NLU-Benchmark. The results indicated that

implementing our method led to an increase in the EMA,

demonstrating its effectiveness in improving the accuracy of

these types of DS.

To provide a comprehensive understanding of our

research, the remainder of the paper has been organized as

follows. Section 2 provides background information on the

problem and explains why this research is important and

relevant. Section 3 presents the proposed method to check

and attempt to correct any incorrect predictions and also

provides a detailed explanation of its operation and pur-

pose. Section 4 explains the datasets used in the

experiments and describes the experimental setting

employed to test the trained models. Section 5 provides an

analysis of the results, including some high-level obser-

vations. Finally, Sect. 6 summarizes the main findings of

the study and suggests possible directions for future

research.

2 Background and related work

Our goal is to present a post-processing approach to

enhance NLU prediction within T-ODS in the educational

domain. Accordingly, the first subsection offers a general

overview of T-ODS. Subsequently, we explore various

approaches for enhancing NLU predictions, and finally, we

describe an specific T-ODS in the educational domain,

which is the main focus of our enhancement.

2.1 Task-oriented dialog systems

Task-oriented dialog systems are a branch of dialog sys-

tems that are designed to help users to accomplish a certain

task such making restaurant reservations or providing

assistance to users. Unlike open-domain DS or chat-bots

that prioritize user engagement [16] and allow for more

generic conversations such as chit-chat, these systems

focus on achieving specific tasks within one or multiple

domains [17]. They are typically built on top of a struc-

tured ontology, which defines the domain knowledge nec-

essary for carrying out these tasks [18].

T-ODS have the potential to play a significant role in a

wide range of domains, enhancing human interaction with

technology. In educational contexts, intelligent tutoring sys-

tems have integrated this technology to help students learn by

engaging in natural language conversations. For example,

AutoTutor [19] is a pedagogical agent that simulates the

dialog and strategies of a human tutor and uses natural lan-

guage to interact with learners. Another example is the math

problem-solving DS [20, 21] that was integrated into the ITS

called Hypergraph-Based Problem Solver (HBPS) [22–24].

The commercial sector widely employs T-ODS for various

purposes, such as assisting customers with purchase-related

tasks with online shopping [25] or for airline ticket booking

[26]. In the tourism domain, similar systems help users to

complete a travel plan [27], while in healthcare T-ODS like

Watson Health [28] support patient diagnosis and provide

links to access medical literature. However, challenges

remain in areas such as effective communication, efficiency,

security, and privacy.

In general, T-ODS contain three main components,

namely NLU, Dialog Manager (DM) and Natural Lan-

guage Generation (NLG). The NLU component generates a
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representation of the user’s input which can be used by the

other components of the system; the DM keeps track of the

dialog history and runs dialog strategies; and the NLG

module generates natural language responses based on the

system’s actions. The workflow of a T-ODS is illustrated in

Fig. 1. As depicted, user inputs received through the GUI

are sent to the NLU component to extract the intent and

entities from the sentence. The extracted information is

then used by other components to construct an appropriate

response. It is important to note that errors in intent and

entity detection can propagate to other components and

impact the overall performance of the system.

Existing methods for developing NLU can be catego-

rized into four classes: rule-based, statistical, machine

learning techniques and hybrid methods [29, 30]. Rule-

based approaches involve creating a set of handcrafted IF

... THEN rules, which are used to allow reasoning by

inference. The preconditions of such rules may be triggered

by the context or state of the dialog or the user’s input via

pattern matching [30–35]. Statistical methods base their

processing on a mathematical analysis of the text corpora.

Many T-ODS developed to date in this category rely on

topic modeling and combine a Bag of Words representation

with Latent Semantic Analysis (LSA) to analyze the con-

ceptual similarity of the input utterance to a set of repre-

sentative training inputs [36, 37]. Machine learning

approaches, such as supervised learning and deep learning,

have gained popularity in NLU. These techniques involve

training models on annotated data to learn patterns and

make predictions. In the context of NLU, these models

automatically extract one or more possible interpretations

from a single input [38, 39]. Moreover, the use of NLU

services or frameworks, such as DialogFlow1, Amazon

Lex2, IBM Watson3, and Rasa4, support the construction of

these systems. Two common tasks performed by NLU

services are intent detection and entity extraction [40].

These methods are designed to accurately identify the

intent and entities within sentences, enabling them to carry

out specific tasks with high accuracy. The primary goal of this

work is to enhance the exact match accuracy, which considers

both tasks simultaneously, during a post-processing stage

designed to be universally adaptable to any model.

2.2 Approaches for enhancing NLU prediction

Recent studies have focused on enhancing performance

through the deployment of deep learningmethods and hybrid

approaches [41, 42]. Many neural network architectures

have been applied for intent detection and entity extraction in

various domains [27, 41, 43–47], using different amounts of

labeled data [9, 11, 12]. For instance, [8] proposed a model

that combines different neural network architectures with

regular expression rules to encode domain knowledge. They

also used a pre-trained language model to generate contex-

tual representations of user sentences.

Also, some efforts have been made to refine different

stages of the prediction process. One such stage involves

detecting examples that are misclassified. For example, [13]

used softmax prediction probabilities to detect whether an

example is misclassified or belongs to an out-of-distribution

category, which refers to a different distribution from the

training data. In [14], authors proposed a selective classifier

with a confidence estimator to address this problem. Their

approach involves a simple error regularization trick that

allows the classifier to abstain from making predictions on

low-confidence examples, aiming to reduce the error rate

and enhance selective prediction performance. In [15], the

authors proposed training a confidence estimator that

assigns higher scores to correctly predicted instances, by

annotating a held-out dataset conditioned on the model’s

predictive correctness. The annotated dataset is then used to

train a calibrator, which serves as the confidence estimator

for selective prediction. These collective efforts aim to

advance the performance and capabilities of NLU models,

ultimately enabling more accurate and robust NLU. Our

work seeks to build upon these advancements by

Fig. 1 The main components

and workflow of a T-ODS

1 https://dialogflow.com/.
2 https://aws.amazon.com/lex/.
3 https://www.ibm.com/watson/.
4 https://rasa.com/.
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implementing a unique post-processing approach that

accounts for the intricate relationships between intents and

entities. This strategy diverges from the conventional

approaches of design new models or utilizing and inte-

grating different neural network architectures to enhance

the various stages of the prediction process.

2.3 A particular T-ODS in the educational
domain

In previous studies [20, 21, 48, 49], the Rasa open-source

framework [50] was utilized to develop NLU models that

interact with an existing intelligent tutoring system called

HBPS [22–24]. This system focuses entirely on the trans-

lation stage of the algebraic/arithmetic word problem-

solving process and adopts an unguided approach that does

not impose any restrictions on the solution path. HBPS is

able to check the validity of user entries, provide aids that

are consistent with the student’s reasoning, and simulta-

neously monitor multiple alternative solution paths.

The T-ODS in HBPS use the NLU Rasa service to

extract the intent from the user utterances received through

the Graphical User Interface (GUI). The prediction model’s

output is then forwarded to other components for further

processing and used to construct an appropriate response

[20]. Despite the high performance exhibited by the Dual

Intent and Entity Transformer (DIET) [43] in intent

detection and entity extraction, there is still potential for

enhancing classification results. This improvement can be

achieved by taking into careful consideration the inter-

dependencies that exist between intents and entities. This

analysis can help identifying invalid intent detections or

reinforce decisions made by the NLU component.

Our goal is to develop a robust and effective approach to

enhance the exact match accuracy of T-ODS. This involves

systematically verifying the output of NLU prediction

models and employing an intent corrector while considering

the inter-dependencies between intents and entities. By

incorporating this algorithm,we can prevent the system from

solely relying on the NLU component’s output and mitigate

the propagation of errors to other system components. The

adoption of this approach aims to promote a seamless and

intuitive interaction experience for users, leading to

improved overall system performance, effectiveness, and

better communication between users and the system.

3 Proposed method

Let’s assume a NLU system that considers a set of m

intents and r entity types. Given an utterance

S ¼ s1; s2; . . .; sn½ �, which represents a sequence of words or
tokens of length n. Intent detection is defined as a

classification task over utterances, where the system has to

assign the correct intent label yIi from a set of predefined

intent classes yI ¼ fyI1; yI2; :::; yImg to the whole utterance S.

On the other hand, entity extraction can be considered a

token-level sequence tagging problem, where the system

has to assign a corresponding entity label yEj 2
yE1 ; y

E
2 ; . . .; y

E
r

� �
to each token sj of the utterance.

In most conversational systems, there is a strong cor-

relation between the intent and the entities, which can be

expressed in terms of the number of entities of each type

that may appear with a particular intent. When a system

encounters difficulties in comprehending a legitimate

request, it may be due to inaccurate detection of intent,

entity extraction, or both occurring simultaneously. If the

system incorrectly identifies the user’s intent, it may

respond inappropriately or fail to execute the desired

action. Similarly, errors in entity extraction can lead to

misunderstandings about the specific details of the request.

These inaccuracies can significantly impact the effective-

ness of the conversational system, leading to user frustra-

tion and potential failure to meet their needs. Ensuring

simultaneous accuracy in both intent detection and entity

extraction is crucial for the efficient processing of requests

and their correct fulfillment by conversational systems.

Figure 2 shows a typical output of an NLU component,

which includes the user utterance, the identified entities,

the predicted intent, and an intent ranking. The proposed

method carefully examines this information to determine

whether the identified intent and entities are compatible. If

they are, the response is forwarded to the other components

for further processing. However, if a discrepancy is

detected, the method thoroughly iterates through the intent

ranking to determine the most appropriate intent that aligns

with the extracted entities. If none of the intents yield a

correct prediction, the method returns a ‘‘nlu_fallback’’

response so that the conversational system can prompt the

user for further clarification or adopt an alternative strategy

to address the situation. In practice, we do not need to

consider the entire ranking of intents as, in our experience,

considering lengths above half the number of intents has

rarely benefited the EMA. Instead, considering intents that

were initially judged as highly unlikely implies a higher

processing time and often leads to a wrong interpretation of

the user message.

The proposed approach involves comparing a prediction

against a list of valid combinations, by using the predicted

intent along with the number of entities of each type that

are present in the NLU response. To effectively make this

comparison we use an internal vector representation,

modeling both valid combinations and the content of an

NLU response by using a vector p0; p1; . . .; pr½ � of size

r þ 1. This representation uses two dictionaries to encode
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intents and entities using numerical values. The intent

dictionary, DI ¼ fyI1 : 1; . . .; yIm : mg, maps each of the m

intents to a numerical value. Likewise, the entities dic-

tionary, DE ¼ fyE1 : 1; . . .; yEr : rg, links each of the r pre-

defined entities to a unique number.

At design time, all valid combinations are specified as a

set of vectors P ¼ fP1; . . .;Png. A single intent may be

associated with multiple vectors in set P. Each vector Pi

represents a potentially valid combination and encodes the

number of instances for each entity type that could be

associated with one particular intent. The first component

of each vector Pi takes the value associated with the intent

in the dictionary DI . The subsequent components indicate

the number of instances of each entity type that would

make a response be judged as valid, arranged according to

the sequence defined in the dictionary DE. A -1 value can

be used to specify that the number of entities of that type is

irrelevant and does not affect the validity of the response.

At inference time, the NLU response is transformed into

a response vector PR in the same format as the vectors in P.

Again, the first element of the vector PR indicates the index

of the intent as stored in DI . The rest of the elements refer

to the number of instances of each entity type that appear in

the response, in the same order as in the vectors in P. The

vector PR is then compared against the vectors in the set P,

and the response is considered consistent only if it matches

at least one of the vectors in P. A vector PR is considered to

match a vector Pi 2 P if they store identical values in all

positions, except for those marked with - 1 in vector Pi.

To provide a more comprehensive understanding of the

proposed method, we provide two illustrative examples

within the context of the HBPS dialog system. Table 1

shows the most frequent intents in this T-ODS, along with

how many instances of each entity type should appear

when an utterance is classified under each intent. When

several rows are specified for the same intent, the output is

considered consistent as long as it matches one of them.

The remaining 17 intents considered in this system are all

expected to appear with no entities.

In HBPS, the dictionaries DI for intents and DE for

entities are defined as specified as follows, where ellipses

have been used for brevity reasons to replace some intents

that do not accept entities of any kind.

DI ¼ f ‘‘affirm’’ : 1;

. . .;

‘‘define letter’’ : 5;

‘‘define letter missing description’’ : 6;

. . .;

‘‘equation’’ : 10;

‘‘equivalence’’ : 11;

‘‘expression’’ : 12;

‘‘get letter meaning’’ : 13;

. . .;

‘‘number’’ : 20;

. . .;

‘‘quantity description’’ : 22;

. . .;

‘‘word operation’’ : 25g;

DE ¼ f‘‘description’’ : 1;
‘‘equation’’ : 2;

‘‘expression’’ : 3;

‘‘number’’ : 4;

‘‘variable’’ : 5g:

Fig. 2 Output of the NLU component given an utterance U
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These dictionaries are used to generate the set P of valid

combinations of intents and entities, which is shown in

Table 2.

Consider the scenario where the system interprets the

user’s utterance ‘‘x = age of Anna‘‘ as the intent ‘‘define

letter,’’ recognizing the entities [variable: x] and [descrip-

tion: age of Anna]. In this case, the response would be

encoded as PR ¼ 5; 1; 0; 0; 0; 1½ �. The first component

indicates that the predicted intent, ‘‘define letter,‘‘ corre-

sponds to index 5 in the intent dictionary. The second

component and last components indicate that the output

contains one entity of type ‘‘description’’ and another of

type ‘‘letter.’’ The remaining components represent the

count of entities of types ‘‘equation,‘‘ ‘‘expression,’’ and

‘‘number,‘‘ respectively, all of which are zero in this case.

This vector matches vector P5 in Table 2, therefore clas-

sifying the NLU output as valid.

As an example of an inconsistent scenario, let’s consider

a user who sends the message ‘‘Andrea is 9x.’’ The system

generates a vector representation for this input as

PR ¼ 5; 1; 0; 1; 0; 0½ �, indicating that the system detects the

intent ‘‘define letter’’, with the entities [description:

Andrea] and [expression: 9x]. This encoded representation

of the answer does not match any entry in P. Hence, we can

infer that the system misidentified the user’s input as fall-

ing under the ‘‘define letter‘‘ intent. To address this mis-

classification, the method replaces the intent encoding with

that of the next one in the ranking. For the sake of our

example, let’s assume is ‘‘expression.’’ This replacement

results in an updated vector representation of

PR ¼ 12; 1; 0; 1; 0; 0½ �. As this new vector successfully

matches P16, the method corrects the prediction by sub-

stituting the original intent, ‘‘define letter,‘‘ with the intent

‘‘expression.’’ This corrected prediction is then sent to the

system for further processing.

We shall note that the proposed approach is only able to

correct potential mistakes in the identification of the intent,

but is not able to address potential errors in entity extrac-

tion. The entity list originally returned by the NLU system

is always left untouched, meaning that the proposed

method neither positively nor negatively affects metrics

that focus exclusively on the extracted entities, such as the

F1 score for entity extraction. Rather, the method is

designed to improve exact match accuracy by ensuring that

the chosen intent aligns with the entities identified.

4 Experimental evaluation

4.1 Datasets

To evaluate the effectiveness of the proposed method, we

conducted a series of experiments on our dataset AWPS, as

well as on three other publicly available datasets, namely

ATIS, SNIPS, and NLU-Benchmark. The major charac-

teristics of all 4 datasets employed in the evaluation are

described below.

4.1.1 AWPS

The Algebraic Word Problem Solving Dataset [20] con-

tains annotations of intents and entities. It includes

Table 1 Intents with Entities: Details of potentially valid combinations of intents and entities in HBPS

Intent Total samples Entity

Description Equation Expression Number Letter

Define letter 1199 1 0 0 0 1

Define letter missing description 148 1 0 0 0 0

Equation 848 0 1 0 0 0

Equivalence 0 0 0 1 1

0 0 1 1 0

475 0 0 2 0 0

0 0 0 0 2

0 0 1 0 1

Expression 1 958 1 0 1 0 0

0 0 1 0 0

Get letter meaning 107 0 0 0 0 1

Number 629 0 0 0 1 0

1 0 0 1 0

Quantity description 664 1 0 0 0 0
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examples like ‘‘y represents the number of basketball stu-

dents’’ labeled with the intent ‘‘define letter’’, and the

entities [variable: y] and [description: number of basketball

students]. The dataset consists of 6 293 training and 1 973

test utterances that cover various resolution steps of alge-

braic math word problems. These steps include defining

letters, equations, and expressions, as well as seeking help

or guidance, and more. In total, the dataset includes 25

different intents and 5 different entity types.

4.1.2 ATIS

The ATIS [51] dataset comprises transcripts of audio

recordings of people making flight reservations and has

been extensively studied over the years. The dataset used

for our experiments includes 4 978 training and 893 test

utterances, each annotated with intents and entities. For

example, the phrase ‘‘how many airports does oakland

have‘‘ is labeled with the intent ‘‘atis_quantity’’ and the

entity [city_name: oakland]. The ATIS training set contains

21 intents and 79 entities.

4.1.3 SNIPS

The SNIPS dataset is collected from the Snips personal

voice assistant [52]. This dataset includes 13 784 training

utterances and 700 test utterances. Like ATIS, the SNIPS

dataset used is annotated with intents and entities. For

example, the phrase ‘‘play music from 1996‘‘ is labeled

with the intent ‘‘PlayMusic’’ and the entity [year: 1996]. It

comprises 7 intents and 39 entities.

4.1.4 NLU-Benchmark dataset

The NLU-Benchmark dataset [53] consists of 25 716

utterances. This dataset has annotations for intents and

entities. As an example, the phrase ‘‘is there any alarm after

five am‘‘ is labeled with the intent ‘‘alarm_query’’ and the

entity [time: five am]. This dataset consists of 10-folds,

each with its own train and test sets. The train and test sets

for each fold contain 9960 and 1076 utterances, respec-

tively. Overall, there are 64 intents and 54 entity types

present in the dataset.

4.2 Experiments on AWPS dataset

To replicate the performance level demonstrated in the

study described in [20], we followed the same training

approach outlined in that paper. Specifically, we used the

‘‘No Unigrams‘‘ pipeline and trained our models using

Rasa version 3.6.0. During training, the ranking length

parameter was set to 0, to ensure that the model considered

all possible intents and provided accurate responses in

various situations.

We created 10 different models using the training corpus

C1, progressively increasing the train set with samples that

were not included in the previous model. For each new

model, 10% of the corpus data were added, until using the

entire repository. We repeated this process 10 times (10-

folds). The results reported are the ones obtained for the

1973 sentences contained in the test corpus C2, reserving

10% of the train data for validation in all cases.

4.3 Experiments on ATIS and SNIPS

To achieve a performance level similar to that demon-

strated in the study by [43], we followed the training

Table 2 Set of vectors P, expressing admitted combinations of intent

and entities

Vector index Vector components

P1 [1, 0, 0, 0, 0, 0]

P2 [2, 0, 0, 0, 0, 0]

P3 [3, 0, 0, 0, 0, 0]

P4 [4, 0, 0, 0, 0, 0]

P5 [5, 1, 0, 0, 0, 1]

P6 [6, 1, 0, 0, 0, 0]

P7 [7, 0, 0, 0, 0, 0]

P8 [8, 0, 0, 0, 0, 0]

P9 [9, 0, 0, 0, 0, 0]

P10 [10, 0, 1, 0, 0, 0]

P11 [11, 0, 0, 0, 1, 1]

P12 [11, 0, 0, 1, 1, 0]

P13 [11, 0, 0, 2, 0, 0]

P14 [11, 0, 0, 0, 0, 2]

P15 [11, 0, 0, 1, 0, 1]

P16 [12, 1, 0, 1, 0, 0]

P17 [12, 0, 0, 1, 0, 0]

P18 [13, 0, 0, 0, 0, 1]

P19 [14, 0, 0, 0, 0, 0]

P20 [15, 0, 0, 0, 0, 0]

P21 [16, 0, 0, 0, 0, 0]

P22 [17, 0, 0, 0, 0, 0]

P23 [18, 0, 0, 0, 0, 0]

P24 [19, 0, 0, 0, 0, 0]

P25 [20, 0, 0, 0, 1, 0]

P26 [20, 1, 0, 0, 1, 0]

P27 [21, 0, 0, 0, 0, 0]

P28 [22, 1, 0, 0, 0, 0]

P29 [23, 0, 0, 0, 0, 0]

P30 [24, 0, 0, 0, 0, 0]

P31 [25, 0, 0, 0, 0, 0]
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approach detailed in their paper. Specifically, we used the

‘‘sparse�’’ pipeline and trained our models using Rasa

version 1.8.0. For each dataset, we employed 10-folds.

Each fold comprised its own train set of either 4978 or

13784 utterances, and a corresponding test set of either 893

or 700, respectively. Within each fold, we created 10 dif-

ferent models using the original training datasets, pro-

gressively adding 10% more train data for each new model

until the entire repository was utilized. The newly added

samples were not included in the previous model.

Throughout the model-building process, care was taken to

maintain a consistent distribution of utterances from each

intent in every fold.

4.4 Experiments on NLU-Benchmark dataset

In our study, we attempted to replicate the highest level of

performance shown in [53]. However, due to the unavail-

ability of PolyAI’s ConveRT models, we were unable to

reproduce their original experiment. As an alternative, we

focused on reproducing the results using the pipeline

named as ‘‘sparse-GloVe-mask-loss’’ in their paper and

trained our models using Rasa version 1.8.0. For each fold,

we utilized a separate train set consisting of 9960 samples

and a test set containing 1076 samples. In order to explore

the model’s performance across different amounts of

training data, we generated 10 distinct models for each

fold. With each new model, we gradually increased the size

of the training data by 10% until we utilized the entire

repository. It is important to note that the newly added

samples were not included in the previous model to

maintain consistency. Throughout the training process, we

ensured that the distribution of utterances from each intent

remained consistent across all folds. This approach allowed

us to have a balanced representation of intents in each fold,

ensuring that the models were trained and evaluated on

similar intent distributions.

4.5 Evaluation metrics of NLU performance

Several metrics can be employed to evaluate the perfor-

mance of different tasks in NLU models. Precision, recall,

and F-measure are commonly used metrics that assess the

quality of the model’s predictions. For a given class Ci,

let’s denote the number of samples that were correctly

classified as members of this class as TPi (true positives);

the number of samples that were incorrectly assigned to the

class as FPi (false positives); the number of correctly

classified samples into a class other than Ci as TNi (true

negatives); and the number of samples of class Ci that were

assigned to a different class as FNi (false negatives).

Assuming K different classes, the micro-average precision

measure is defined as

Precision ¼
PK

i¼1 TPi
PK

i¼1 TPi þ
PK

i¼1 FPi

and the micro-average recall measure is defined as

Recall ¼
PK

i¼1 TPi
PK

i¼1 TPi þ
PK

i¼1 FNi

The micro-averaged F1 score is a widely accepted

evaluation measure that provides a good compromise

between the two metrics and is computed as:

F1 ¼
2 � Precision � Recall
Precisionþ Recall

To comprehensively assess a model’s performance in both

intent detection and entity extraction tasks, the EMA

metric is a commonly accepted metric. EMA is also known

as overall accuracy or sentence-level semantic accuracy

and measures the number of sentences where both the

intent and all slots are predicted correctly, divided by the

total number of sentences. It provides a comprehensive

assessment of the NLU model’s performance in both tasks

simultaneously and hence evaluates the overall effective-

ness of the model.

4.6 Designed rules

In order to define the rules for the AWPS dataset, we fol-

lowed a manual approach that involved domain experts

carefully crafting each rule. These experts conducted a

detailed analysis of the dataset, ensuring that specific rules

were formulated to cover all possible valid combinations of

intents and entity counts, as shown in Table 2. This manual

rule-creation process resulted in rules that were highly

precise and relevant to the unique characteristics of the

dataset.

On the other hand, for the ATIS, SNIPS, and NLU-

Benchmark datasets, we opted for an automated rule gen-

eration process. To accomplish this, we developed a

Python code solution that leveraged regular expressions

applied to the labeled dataset. This code extracted an initial

set of rules by identifying patterns related to intents and

entity counts within the samples. To ensure the efficiency

and consistency of rule generation for these datasets, we

incorporated an additional step in the automated process

focused on eliminating duplicate rules.

5 Results

In this section, we present an evaluation of the effective-

ness of the proposed method in improving the model’s

performance by utilizing the EMA metric. In particular, we
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assess the impact of the proposed method by comparing the

model’s performance before and after applying the pro-

posed method.

For each dataset and percentage of training data (ranging

from 10% to 100%), we trained ten models and constructed

two average EMA curves. One curve represents the aver-

age performance without the proposed method, while the

other illustrates the average performance when using the

proposed technique. These two curves allow us to observe

the impact of the proposed method on the models’ EMA,

across different datasets and varying amounts of training

data.

In addition to the EMA metric, we also applied the

Wilcoxon test, a nonparametric statistical test, to compare

two groups of samples. This test is especially useful for

small sample sizes or non-normally distributed data. By

conducting the Wilcoxon test, we can determine whether

the addition of the proposed method has a significant effect

on the model’s performance. A p value below a pre-defined

threshold, typically 0.05, indicates a statistically significant

difference in performance.

Table 3 presents an analysis of how performance varies

as the size of the training set grows. In this table, the micro-

average F1 scores for both intent classification and entity

extraction for each dataset are shown as a function of the

percentage of training data used to build the model. Each

dataset is presented in a different row, while each column

represents different percentages of the total available

training data. Both the average and standard deviation for

10 runs are provided.

5.1 Results on AWPS

To analyze the impact of the proposed method, we con-

ducted the described experiments on the AWPS dataset.

Figure 4a provides a comparison of the average EMA,

clearly showing the positive effect associated with using

the proposed method. The x-axis denotes the percentage of

training data used, while the y-axis represents the EMA on

the test set. It can be easily observed that the average EMA

values are higher when utilizing the proposed method,

across all percentages of training data.

The highest average EMA was achieved when models

were trained with 100% of the training data, regardless of

whether the proposed method was applied or not. When the

proposed method was applied, the average EMA was

89.26%, reaching a maximum of 90.97% in one of the runs.

Notably, there is no overlap between the curves, indicating

a clear difference in EMA when the proposed method was

used. Furthermore, greater variability in EMA is observed

when only 10% of the data was used for training. More-

over, there is a distinct relationship between how accu-

rately models identify intents and entities, as shown by

their micro-average F1 scores, and their success in making

Table 3 Micro-average F1 scores for intent classification and entity extraction as the size of the training set grows

Training data percentage

Intents Entities Intents Entities Intents Entities Intents Entities Intents Entities

10% 20% 30% 40% 50%

ATIS 87.36 ±

0.46

71.17 ±

1.77

90.40 ±

0.89

81.31 ±

2.44

92.53 ±

0.95

90.23 ±

1.77

94.13 ±

0.74

93.06 ±

0.45

94.07 ±

0.92

93.64 ±

0.32

NLU 81.67 ±

0.96

68.74 ±

1.85

86.81 ±

0.81

73.76 ±

0.88

89.08 ±

0.47

75.71 ±

0.88

89.71 ±

0.93

77.61 ±

1.21

90.60 ±

0.60

78.29 ±

1.24

AWPS 83.45 ±

4.06

93.05 ±

1.03

89.01 ±

1.72

94.63 ±

0.75

93.46 ±

0.91

95.19 ±

0.76

94.46 ±

0.84

96.04 ±

0.26

94.71 ±

1.27

96.14 ±

0.86

SNIPS 96.80 ±

0.51

82.68 ±

1.14

96.78 ±

0.36

88.87 ±

0.53

97.14 ±

0.42

91.49 ±

0.57

97.28 ±

0.36

92.62 ±

0.55

97.17 ±

0.30

93.49 ±

0.42

60% 70% 80% 90% 100%

ATIS 95.39 ±

0.45

94.02 ±

0.62

95.95 ±

0.40

94.79 ±

0.24

96.08 ±

0.53

94.92 ±

0.26

96.65 ±

0.42

95.02 ±

0.23

96.46 ±

0.53

95.12 ±

0.26

NLU 91.19 ±

0.81

79.53 ±

1.15

91.38 ±

0.71

80.12 ±

0.64

91.68 ±

0.62

80.85 ±

0.86

91.95 ±

0.50

80.51 ±

0.81

92.06 ±

0.78

81.03 ±

0.82

AWPS 95.07 ±

0.54

96.74 ±

0.59

95.21 ±

0.90

97.03 ±

0.50

95.67 ±

0.62

97.35 ±

0.27

95.78 ±

0.45

97.23 ±

0.38

96.21 ±

0.57

97.27 ±

0.97

SNIPS 97.41 ±

0.59

94.30 ±

0.53

97.55 ±

0.43

94.48 ±

0.44

97.50 ±

0.28

94.74 ±

0.39

97.42 ±

0.46

95.00 ±

0.32

97.74 ±

0.33

95.41 ±

0.37
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completely correct predictions for this combined task,

especially when utilizing the full training dataset. Table 3

confirms this, indicating that the highest average micro-

average F1 scores for intents are achieved when models are

trained with 100% of the training data, followed by the

second-highest scores in entity recognition.

To determine the significance of the difference in EMA

distributions, we performed Wilcoxon tests for each per-

centage. The tests aimed to show that the EMA data

without using the method are lower than when applying the

method. With a p value�0.0009 for all tests, indicating a

very low probability of obtaining such extreme test statis-

tics, we reject the null hypothesis and conclude that the

EMA without using the method is lower than when

applying the method.

To further evaluate the impact of the proposed method,

we selected the model trained with 10% of train set for

Fold 2, which exhibited the greatest difference in EMA

with and without implementing the method. By applying

our method to the predictions of this model, we observed

an improvement of 12.6% in the EMA.

Figure 3 presents a histogram analyzing the distribution

of the correct intent position within the ranking for incor-

rect predictions. The red color is used to represent cases in

which the list of entities returned was incorrect. The yellow

bars indicate cases where intents were corrected by the

proposed method. Finally, the green color represents cases

in which the method could not repair the original

prediction.

Out of 1973 sentences, the trained NLU model accu-

rately recognized all entities, including words not belong-

ing to any entity, in 1417 sentences. Among these, 1144

sentences had both the intent and entities predicted cor-

rectly. By implementing our proposed method, we were

able to improve the EMA by correcting the intent in 249

sentences. These cases are represented by the yellow bars

in Fig. 3 and brought the total number of correctly iden-

tified intents and entities to 1393, rising the EMA to 70.6%.

It can be observed that, for misclassified instances, the

most frequent ranking position for the correct intent is the

second. When the correct intent was at this position and the

entities had been correctly identified, our method demon-

strated a 99.14% success rate at correcting the intent.

Table 4 provides a summary of the 249 intents corrected

by the method, along with the corresponding number of

sentences for each specific replacement. We can observe

that the majority of incorrect classifications (71 intents)

were initially classified as ‘‘quantity description’’ intent,

even though these utterances do have an entity of type

‘‘variable’’. Therefore, the method can correct these pre-

diction intents based on the established rules.

When considering only cases where entities were cor-

rectly extracted, our method missed only 24 sentences in

achieving the highest attainable performance. Out of these

24 sentences, all true intents did not admit any entities. The

true intents were ‘‘out of scope,‘‘ ‘‘insult,’’ ‘‘greet,‘‘ and

‘‘affirm.’’ Mostly, these intents were incorrectly predicted

as another intent that did not either admit associated enti-

ties. Therefore, our method considered these predictions as

Fig. 3 Distribution of correct intent label in intent ranking for incorrectly predicted intents
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correct although they were, in fact, incorrect. In the

remaining cases, an intent that required one or more enti-

ties was predicted. In these cases, the method recognized

the prediction as invalid and selected the highest-ranked

intent that allowed for the absence of entities, but this

intent did not match the true intent.

5.2 Results on ATIS, SNIPS and NLU-Benchmark
datasets

As with AWPS, Fig. 4 shows a comparison of the average

EMA when using and when not using the proposed

method. This comparison is shown for the ATIS, SNIPS,

and NLU-Benchmark datasets, in Fig. 4b–d, respectively.

In Fig. 4b and c, a greater improvement of the average

EMA can be observed as the percentage of training data

increases. Figure 4c reveals only a minimal improvement

when the training data percentage is less than 40%. How-

ever, as the training percentage increases, the average

EMA when using the method consistently outperforms the

average EMA when the method was not applied. For the

NLU-Benchmark dataset, Fig. 4d shows that the average

EMA is higher across all percentages of training data used,

compared to not applying the proposed method. In addi-

tion, all p values for the Wilcoxon tests conducted on each

percentage of training data and for each dataset were

consistently below 0.05, providing statistical evidence of a

significant difference due to the use of the proposed

method. We can hence safely conclude that the proposed

method is an effective technique to improve the EMA of

models, as it results in better model performance.

6 Conclusions and future work

In this work, we have proposed a simple and effective

approach to enhance the EMA of NLU models for T-ODS

with relatively low computational cost. The method applies

consistency rules to correct invalid outputs that fail to meet

the consistency criteria, by iteratively exploring combina-

tions that satisfy a set of constraints specified by using a

vector representation. We validated this methodology on

AWPS, ATIS, SNIPS, and NLU datasets, demonstrating its

effectiveness in improving model performance

However, we shall acknowledge certain limitations

associated with the proposed approach. A primary concern

is the complexity of the crafted rules, which is heavily

influenced by the quantity of entities and intents. As the

number increases, the design of rules becomes progres-

sively more challenging. The specification of the set P of

valid combinations of intents and entities involves a con-

siderable amount of time and requires updating when the

underlying data changes or when the model needs to be

retrained to incorporate new intents or entities. We are

currently working on alternative less rigid representations

that ease the specification of valid intent/entity combina-

tions and provide higher flexibility. In future work, we

shall explore the use of proportional logic and/or fuzzy

rules to ease the construction of the required specification

and simplify compatibility evaluation at inference time.

As T-ODS continue to advance and become more

prevalent, it becomes increasingly important to focus not

only on accuracy but also on their usability and user

experience. In this regard, we shall mention the usability

implications of producing a ‘‘nlu_fallback’’ response,

requiring asking the user to provide a revised input. The re-

prompt indicates a failure to provide the expected answer

Table 4 Summary of corrected

intents
Incorrect intent Corrected intent Number of sentences

Quantity description Define letter 71

Equivalence Define letter 43

Equation Expression 41

Get letter meaning Define letter 26

Number Define letter 18

Equivalence Expression 13

Multiple intents at once Expression 10

Quantity description Expression 8

Multiple intents at once Define letter 7

Expression Define letter 5

Number Expression 4

Define letter Expression 2

Equation Define letter 1
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to the user but can be considered a minor problem, despite

that it prevents the system from providing the service. On

the other hand, a more significant negative effect would be

caused by responding to an utterance assuming a different

intent, as this can mislead or confuse the user and diminish

the agent’s value. The length of the ranking considered

plays a fundamental role in addressing this matter, and an

effort should be made to set an optimum value that leads to

an adequate balance between avoiding frequent re-prompts

and incorrect replacements.
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