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Abstract
Most current multi-modal summarization methods follow a cascaded manner, where an off-the-shelf object detector is first

used to extract visual features. After that, these visual features are fused with language representations for the decoder to

generate the text summary. However, the cascaded way employs separate encoders for different modalities, which makes it

hard to learn the joint vision and language representation. In addition, they also ignore the semantics alignment between

paragraphs and images for multi-modal summarization tasks, which are crucial to a precise summary. To tackle these

issues, in this paper, we propose ViL-Sum to jointly model paragraph-level Vision-Language Semantic Alignment and

Multi-Modal Summarization. Our ViL-Sum contains two components for better learning multi-modal semantics and aims

to align them. The first one is a joint multi-modal encoder. The other one is two well-designed tasks for multi-task learning,

including image reordering and image selection. Specifically, the joint multi-modal encoder converts images into visual

embeddings and attaches them with text embedding as the input of the encoder. The reordering task guides the model to

learn paragraph-level semantic alignment, and the selection task guides the model to select summary-related images in the

final summary. Experimental results show that our proposed ViL-Sum outperforms current state-of-the-art methods on

most automatic and manual evaluation metrics. In further analysis, we find that two well-designed tasks and a joint multi-

modal encoder can effectively guide the model to learn reasonable paragraph-image and summary-image relations.

Keywords Multi-modal summarization � Semantic alignment � Multi-task learning

1 Introduction

The dramatic increase in multi-modal data (including text,

image, audio, and video) on the Internet makes research on

multi-modal summarization necessary. Multi-modal sum-

marization aims to generate a condensed summary, which

can cover salient information from one or more modalities

inputs [1, 2]. Different from traditional pure text summary;

Zhu et al. [3] points out that generated summaries with

both text and images can effectively improve the quality of

generated summary and increase the satisfaction of users.

The information of different modalities is complementary

and verifiable to each other. Utilizing multi-modal infor-

mation helps the model better locate key content and

generate better summaries. Intuitively, people can grasp

key information easier from multiple modalities than only

from the text. This task is defined as multi-modal sum-

marization with multi-modal outputs (MSMO). Figure 1

shows an example of this task, which gets text and images
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as input and generates one summary with two selected

images.

Recent single-modal summarization models always

employ an encoder–decoder framework with transformers

structure [4, 5]. Existing multi-modal models always add

separate encoders for different modalities into the single-

modal encoder–decoder framework [2, 3, 6–10]. We show

the widely used structure of them in Fig. 2a, b. The rep-

resentation of different modalities is obtained separately

from single-modal encoders, which leads to the model

cannot effectively capture the interaction between them.

Recently, some works have paid attention to how to

enhance image text interaction [9, 11] by adding interactive

modules or auxiliary tasks.

However, previous works ignore the paragraph-level

vision-language semantic alignment, where an example is

shown in Fig. 1. The vision-language semantic refers to the

meaning conveyed by vision and language. Alignment

refers to establishing correspondence between vision and

language that share the same meaning. The semantics of

each paragraph is highly corresponding to the image on the

left. There exists a semantic correspondence between

images and paragraphs. If a model can reorder the images

based on the semantic meaning of the paragraphs, it indi-

cates that the model comprehends and aligns the semantic

features of both the images and the text. Besides, visual-

language joint encoding is not well-applied for multi-

modal summarization tasks, which has been proven

effective on many multi-modal natural language under-

standing (NLU) tasks (e.g., Visual Question Answering)

[12–16].

To improve these deficiencies, in this paper, we propose

the Vision-Language Summarization model ViL-Sum with

a universal transformer-based encoder–decoder structure.

The core of ViL-Sum is a joint multi-modal encoder with

two well-designed tasks, image reordering, and image

selection, which aims to guide the model to learn better

vision-language representations and capture the alignment

of paragraph-level vision-language semantics. Specifically,

we use a backbone (e.g., ViT [17]) to convert images into

visual token embeddings and concatenate them with doc-

ument token embeddings as the input of the joint multi-

modal encoder. The ViL-Sum structure with the joint

multi-modal encoder is shown in Fig. 2c. To model para-

graph-level vision-language semantic alignment, we pro-

pose a simple but effective image reordering task. It forces

the model to reorder shuffled input images, which guides

the model to learn the corresponding relation between

paragraphs and images. To further enhance vision-lan-

guage representation, we also train ViL-Sum with an image

selection task, which selects several summary-related

images as part of the multi-modal summary. We follow [9]

Fig. 1 An example for explaining the semantic alignment between images and paragraphs in the document. ‘‘...’’ means some content is omitted.

Each image is aligned to the paragraph at right
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of using image caption to construct pseudo-labels. Finally,

we train ViL-Sum with text summary generation, image

selection, and image reordering tasks in a multi-task

manner.

Experiments show that our ViL-Sum with multi-task

training can outperform baselines by a wide margin. And

further analysis demonstrates that the improvement is

exactly from the joint modeling and multi-task training.

However, the caption of the image is not always available.

So, the image selection task is not generalization for all

datasets. It is deserved to mention that if we remove the

image selection task, our proposed multi-modal encoder

and the image reordering task still help the model beat all

comparison models.

Our contributions can be summarized as follows:

• We propose a novel vision-language Summarization

(ViL-Sum) model, which can jointly encode images and

text to capture their interrelation.

• We propose two auxiliary tasks and employ multi-task

learning to guide the model to learn the paragraph-level

vision and language semantic alignment.

• Our model outperforms all current state-of-the-art

methods on most automatic and manual evaluation

metrics. And in further analysis, we find that the

improvement is exactly from the paragraph-level

semantic alignment modeling and multi-task training.

2 Related work

2.1 Single-modal summarization

Recently, text summarization models have achieved

remarkable performance with the development of pre-

trained language models. Liu and Lapata [18] first apply

the pre-trained language model BERT [19] to summariza-

tion tasks. They add several transformers as the decoder to

the BERT encoder and then train them with different

learning rates. Their work outperforms all traditionally

trained neural models. Pegasus [4] and BART [5] are two

fully pre-trained models for summarization generation with

well-designed self-supervised tasks. Their appearance

provides powerful base models for summarization and

totally changed the research paradigm in the summariza-

tion task. After that, more and more summarization works

begin to focus on pre-trained language models, including

supervised and unsupervised methods [20–26].

2.2 Vision-language representation

Large-scale Transformers-based [27] vision and language

representation models [5, 19, 28] have achieve state-of-the-

art results on many Natural Language Processing (NLP)

tasks. They first pre-trained on a large-scale corpus with

self-supervised tasks and then fine-tuned on specific

downstream tasks. Most existing vision and language pre-

Fig. 2 Multi-modal

summarization models with

different encoder structures
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training (VLP) models [29–34] adopt two different enco-

ders to model vision and language separately, which

extracts visual features by an object detection model and

then, combines the derived object-centric representation of

the image and text. Recently, large-scale vision and lan-

guage representation learning has tried to jointly encode

different modalities with the same encoder and achieve

promising improvements [12–16, 35–37]. Their success

proves the joint modeling of different modalities is prac-

ticable. Besides, multi-task learning is effective in vision-

Language representation; they perform joint training

diverse tasks for better investigating relationships between

vision and language [31, 38, 39].

2.3 Multi-modal summarization

Different from single-modal text summarization, multi-

modal summarization is a task to generate a condensed

summary to cover the primary information from multime-

dia data. One of the most significant characteristics of this

task is it is not only based on text information, but can also

employ rich visual information from images, audio, and

videos. Multi-modal summarization tasks can be divided

into two types with different outputs: single-modal output

[1, 6, 7] and multi-modal output [3, 9, 11, 40]. Compared

with single-modal output, a multi-modal output summary

can increase users-satisfaction [3] and first proposes a

large-scale Multi-modal Summarization with Multi-modal

Output (MSMO) dataset. To tackle the gap between

training and testing in the MSMO task, Zhu et al. [9]

propose two methods to obtain pseudo image labels and

train the model with multi-modal optimization objectives.

Zhang et al. [41] propose to integrate extractive and

abstractive summaries and adopt knowledge distillation

with a vision and language pre-training model. Zhang

et al. [42] propose a location-aware approach to further

leverage the image location information. Jiang et al. [43]

introduce a cross-modal alignment mechanism by exploit-

ing pseudo image captions to bridge the cross-modal

semantic gap. Inspired by MSMO, Li et al. [44] propose

the task of video-based Multi-modal Summarization with

Multi-modal Output (VMSMO) and a Dual-Interaction-

based Multi-modal Summarizer (DIMS) model, including a

local conditional self-attention mechanism and a global-

attention mechanism to model and summarize multi-modal

input.

However, previous works all obtain vision-language

representation via separate encoders for different modali-

ties, which has been proved weaker than joint representa-

tion in vision-language representation learning research

[15, 16]. Besides, they ignored the special paragraph-level

semantic alignment between different modalities. In this

paper, we proposed a novel vision-language summarization

ViL-Sum model with a multi-task learning framework to

tackle these issues.

3 Methodology

We show the main architecture of our ViL-Sum model in

Fig. 3. Firstly, we employ a backbone network as the

image tokenizer to convert images into visual token

embeddings in Fig. 3a. Then, text embeddings and visual

token embeddings are concatenated as the input of the main

encoder–decoder framework in Fig. 3b. Finally, we train

the ViL-Sum model in a multi-task manner. In the fol-

lowing sections, we will first introduce vision-language

joint representation. Then, we will describe the details of

multi-task learning.

3.1 Vision-language joint representation

First of all, we formalize the input and output of our ViL-

Sum as (D, I) and ðS; ISÞ, where D ¼ ft1; t2; . . .; tTg refers

to the sequence of tokens from the input document, I ¼
fimg0; img1; . . .; imgMg refers to the sequence of input

images from the input document, S ¼ ft1; t2; . . .g refers to

the sequence of tokens from gold text summary, and IS ¼
fimg1; img2; . . .; imgKg refers to K selected images for the

multi-modal summary.

3.1.1 Document embeddings

Each document is firstly converted into the sequence of

tokens ft1; t2; . . .; tTg, and then, two special tokens

‘‘hsi’’and ‘‘hnsi’’are added to represent the start and end of

the document. After that, we map each token into vector

representation ED ¼ festart; e1; . . .; eT ; eendg with text

embedding layer.

3.1.2 Image embeddings

Different from previous methods, which extract many

image features via existing object detection models. We

employ ViT [17] as the backbone, which split each image

into several patches and then encode them. The details of

the image tokenizer are shown in Fig. 3b.

Firstly, we reshape image img 2 RH�W�C into a

sequence of flattened 2D patches fimgp 2 RN�ðP2�CÞgNp¼1,

where (H, W) are the resolution of the original image, C is

the number of channels; (P, P) are the resolution of each

image patch, and N ¼ HW=P2 is the resulting number of

patches. Then, we can obtain a sequence of image patches

fimgpgNp¼1 as the input of the image tokenizer.
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Secondly, the patches are linearly projected to patch

embeddings ep ¼ E � img
p
i , where E 2 RðP2�DÞ�C. We also

add a special token ‘‘[class]’’ with learnable embedding e0.

Then, attaching position embeddings and patch embed-

dings as input Z0 for the image encoder to retain positional

information of images:

Z0 ¼ ½e0i ; e1i ; . . .; eNi � þ Epos ð1Þ

where Z0;Epos 2 RðNþ1Þ�D, Epos is position embeddings.

Finally, we employ the pre-trained ViT with L encoder

layers as the backbone to encode these patches of each

image. This backbone also can be replaced by any other

encoders (e.g., linear projection layer).

Z‘þ1 ¼ EncoderLayerðZ‘Þ; ‘ ¼ 1; 2; . . .; L ð2Þ

The global max-pooling of output vectors is obtained as the

visual token embedding of image imgi:

vi ¼ MaxPoolingðZLÞ ð3Þ

where vi 2 RD. Through the image tokenizer, we can

convert the sequence of input images into a sequence of

visual token embeddings Ev ¼ fvigMi¼1.

3.1.3 Multi-modal encoder

The input of the multi-modal encoder is the concatenation

of visual token embeddings Ev and token embeddings ED.

We can formalize the input as H0 ¼ fEv;EDg and then,

encode visual and text embeddings with 12 transformer

blocks. Finally, we can obtain vision-language represen-

tation HL from the last layer output of this encoder.

HL ¼ fhv1 ; . . .; hvM ; hstart; h1; . . .; hendg ð4Þ

The vision and language semantics interact with the self-

attention mechanism of the transformer structure during the

encoding process.

3.2 Visual-enhanced summary generation

The vision-language representations HL from the previous

multi-modal encoder contain multi-modal features of input

text and images. After encoding, we feed the representa-

tions HL into the decoder to generate a text summary. The

target of the summary generation task is to minimize the

negative log-likelihood of the reference y tokens as given

input document D and images I via updating model

parameters h. The loss function of the summary generation

task is as follows:

LGEN
h ¼ �

Xjyj

j¼1

logPhðyjjy\j;D; IÞ ð5Þ

Different from single-modal summarization tasks, this

optimization target also depends on the features from input

images I, which enhance the final summary generation.

Fig. 3 The overall framework of our proposed ViL-Sum model. a Is the detail of the ViT-based image tokenizer. b Is the encoder–decoder

framework with multi-task learning
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3.3 Images reordering

To align the paragraphs and images from the input, in this

section, we introduce a simple yet effective task, image

reordering, to guide the model to learn semantic alignment.

Specifically, we shuffle the order of input images and then,

force the ViL-Sum model to predict the original order of

input images with a classification head:

yi ¼ PðposiÞ ¼ softmaxðW � hvi þ bÞ ð6Þ

where all input images share one classification head. To

train the classification layer, the model computes loss and

minimizes the objective function:

LIR
h ¼ 1

M

XM

i¼1

XC

c¼1

�ŷic log yic ð7Þ

where C is the number of categories, depending on the

number of input images. We set C ¼ 10. If the number of

input images is greater than 10, we only keep the first 10

images as input images.

3.4 Images selection

We also train our ViL-Sum with multi-modal output ref-

erence following [9]. To build pseudo image selection

labels of training data, we employ similarity between

image caption and gold summary to select top-K images as

labels ŷ (K is empirically set as 3). The similarity is the

average of ROUGE-1, ROUGE-2, and ROUGE-L scores.

The probability to select each image is as follows:

yi ¼ PðimgiÞ ¼ rðW � hvi þ bÞ ð8Þ

The loss function of the image selection task is as follows:

LIS
h ¼ 1

M

XM

i¼1

�½ŷi log yi þ ð1� ŷiÞ logð1� yiÞ� ð9Þ

3.5 Enhanced by multi-task learning

We train our ViL-Sum with a text summary generation task

and two well-designed auxiliary tasks in a multi-task

manner, which are used to enhance vision-language rep-

resentation and paragraph-level semantic alignment. In

previous sections, we have introduced the details of them.

Finally, ViL-Sum is trained with three tasks: summary

generation, image selection, and image reordering, jointly

by simultaneously minimizing three loss functions as

follows:

LTOTAL
h ¼ LGENh þ LISh þ LIRh ð10Þ

It is deserved to mention that the caption of the image is

not always available. So, the image selection task is not

generalization for all datasets. If we remove the image

selection task, we can select images by measuring the

similarity between generated summary and vector repre-

sentations of images. Our proposed multi-modal encoder

and the image reordering task still help the model achieve

excellent performance.

4 Experimental setup

4.1 Dataset

We employ the MSMO dataset [3] to evaluate the effec-

tiveness of our proposed ViL-Sum. MSMO dataset is a

large-scale dataset for the Multi-modal Summarization

with Multi-modal Output tasks. Each example in the

dataset is a triplet (document, images, summary), which

contains more than one image in each example. This

dataset contains online news articles (723 tokens on aver-

age) paired with multiple image caption pairs (6.58 images

on average) and multi-sentence summaries (70 tokens on

average). For test data, based on text reference, at most,

three images are annotated to produce a multi-modal ref-

erence by humans. The detailed statistical information of

the MSMO dataset is shown in Table 1.

4.2 Baseline models

We report the existing multi-modal summarization meth-

ods (ATG, ATL, HAN, GR) [3], MMR [45] and MOFRRdec
[9] using multiple metrics. We also report the result of

PGC [46], which is a single-modal summarization model.

To prove the effectiveness of our proposed joint repre-

sentation and multi-task learning, we mainly compare with

BART-base [5] model and a reproduced two-stream model

BART-cross which has the same structure with MOFRRdec
and replace GRU and VGG19 [47] with BART and ViT

[17], respectively. To be fair, we mainly compare our

Table 1 Statistical information of MSMO dataset

Train Valid Test

#Documents 293,965 10,355 10,261

#AvgTokens (D) 721 766 731

#AvgTokens (S) 70 70 72

#Images 1,928,356 68,520 71,509

#AvgImgs 6.56 6.62 6.97

D refers to the input document. S refers to the summary
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model with BART-base and BART-cross due to previous

methods did not employ pre-trained models. The details of

these models are as follows:

• PGC is the BiGRU-based pointer-generator network

that allows both copying words from the input text and

generating words from a fixed vocabulary.

• ATG is based on the PGC model. It fuses static visual

features from VGG19 with text features after the

BiGRU encoder. Besides, ATG selects final images by

the visual-text attention weight.

• ATL replaces the image global features of ATG with

local features (multiple pooling features), which select

images by measuring the sum of visual attention

distribution over the local patch features of each image.

• HAN is based on the ATL model and adds a hierarchical

attention mechanism. This attention mechanism first

attends to the image patches to get the intermediate

vectors to represent images and then, attends to these

vectors to get the visual context vector.

• GR is an extractive method that employs LexRank [48]

to rank captions of images and select images based on

the rank score. The text summary of it is generated by

the PGC model.

• MMR is a unified unsupervised graph-based framework

for multi-modal summarization that can cover both

single-modal output summarization and multi-modal

output summarization. According to specific require-

ments, there are three models: generic multi-modal

ranking, modal-dominated multimodal ranking, and

non-redundant text-image multi-modal ranking. MMR�

is the corresponding MMR model that truncates the

input text to 10 sentences.

• MOF RR
dec is based on ATG model. This model first

constructs pseudo-labels of image selection for the final

summary. Specifically, it employs the ROUGE score to

measure the relevance of image caption and summary

text.

• UniMS is a unified multi-modal summarization frame-

work that integrates extractive and abstractive sum-

maries and adopts knowledge distillation to improve

image selection.

• LAMS investigates image locations for multi-modal

summarization via a stack of multi-modal fusion block

and formulates the high-order interactions among

images and texts.

• SITA proposes a novel coarse-to-fine image text align-

ment mechanism to identify the most relevant sentence

of each image and applies a cross-modal retrieval

model to retrieve reference caption for an image from

the golden summary.

• BART-base is a pre-trained seq2seq generation model,

which achieved promising results in many generations

of NLP tasks, especially on text summarization. We

employ this model to confirm visual features’ contri-

bution to a summary generation.

• BART-cross is a BART-based model with the same

model structure as previous ATG, ATL, HAN, GR, and

MOFRRdec. It first encodes images with ViT and then,

fuses text representation from the BART encoder

output. The fusion of image and text representations

employs cross-attention like the ATG model. This is the

main comparison model.

For a fair comparison, we construct this BART-cross

model to prove the effectiveness of joint multi-modal

encoder and multi-task training in our ViL-Sum. Because

our ViL-Sum without multi-task training only changes the

encoding mechanism from separate encoders to the joint

multi-modal encoder.

4.3 Implementation details

We train our model for 10 epochs on 8xV100 GPUs using

Adam [49] with b1 ¼ 0:9, b2 ¼ 0:99, a batch size of 64.

We also use a linear learning rate warm-up with 1000

steps. The weight-decay is set as 10�4. The model is ini-

tialized with ViT-B/16 and BART-base parameters. The

max length of input images and tokens is 10 and 512,

respectively. For the image tokenizer, we employ the same

setting with ViT-b/16 in [17]. During testing, we generate

the summary with a beam size of 3, and the minimum and

maximum decoding lengths are set as 15 and 150

separately.

4.4 Evaluation metrics

We evaluate the pictorial summary with the MMAE metric

[3].1

MMAE consists of three sub-metrics: ROUGE score

(ROUGE-L), Image Precision (IP), and Image Text Rele-

vance (MAXsim). ROUGE [50] score can measure the

salience of text in generated summary, which is widely

used for measuring summarization systems. The image

precision can measure the salience of selected images and

is computed as Eq. (11).

IP ¼ jrefimg \ recimgj
jrecimgj

ð11Þ

where refimg and recimg denote reference images and rec-

ommended images by MSMO systems, respectively.

MAXsim can measure the relevance between selected

1 Comment: [9] also proposes a MMAE? to better evaluate MSMO

task. However, the author did not release their MR model, which is

the core component of their MMAE?. We find that the performance

of MMAE and MMAE? is very closer and consistent.
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images and generated text summary, which trains an image

text retrieval [51] model with max-margin loss to evaluate

Image Text relevance. Finally, Zhu et al. [3] choose the

linear regression results of 3 metrics as MMAE with

human judgments and the weight for ROUGE-L, MAXsim,

and IP is 1.641, 0.854, 0.806, respectively; the intercept is

1.978.

We report the results of ROUGE-1/2/L, MAXsim, IP,

and MMAE of each model to comprehensively measure

their performance. The results of our model are all the

averages of three different checkpoints.

5 Results

5.1 Overall performance

The main results of all models are shown in Table 2.

Previous baseline models in block 1 are based on the

pointer network with BiGRU. Models in block 2 are our

Table 2 The main results of all

comparison models on different

metrics

Model ROUGE-

1

ROUGE-

2

ROUGE-

L

MAXsim IP MMAE

1 PGC [46] 41.11 18.31 37.74 – – –

ATG [3] 40.63 18.12 37.53 25.82 59.28 3.35

ATL [3] 40.86 18.27 37.75 13.26 62.44 3.26

HAN [3] 40.82 18.30 37.70 12.22 61.83 3.25

GR [3] 37.13 15.03 30.21 26.60 61.70 3.20

MMR [45] 39.22 15.46 – – – –

MMR� [45] 41.72 17.33 – – – –

MOFRRdec [9] 41.20 18.33 37.80 26.38 65.45 3.37

UniMS [41] 42.94 20.50 40.96 29.72 69.38 –

LAMS [42] 43.07 20.28 39.34 – – –

SITA [43] 43.64 20.53 41.03 33.47 76.41 -

2 BART-base 43.75 20.70 40.66 – – –

BART-cross 43.67 20.65 40.65 30.25 65.98 3.45

ViL-Sum 44.29* 20.96* 41.34 32.17 66.27 3.48

ViL-Sum?SEL 44.20 20.90 41.22 34.47 68.18 3.51

ViL-Sum?REO 44.21 20.98 41.20 34.35 69.03 3.52

ViL-

Sum?SEL,REO

44.16 20.88 41.21 34.52* 71.73 3.55*

Bold values indicate the best results of existing methods and our method

Significant improvements are marked with *(t-test, p\0:05)

Table 3 Comparison of text summary results on ROUGE scores

between multi-modal models and their single-modal models

Model ROUGE-1 ROUGE-2 ROUGE-L

PGC 41.11 18.31 37.74

ATL 40.86 18.27 37.75

MOFRRdec 41.20 18.33 37.80

BART 41.83 19.83 39.74

UniMS 42.94 20.50 40.96

BERTSum 41.51 19.43 38.85

SITA 43.64 20.53 41.03

BART-base 43.75 20.70 40.66

ViL-Sum 44.29 20.96 41.34

Bold values indicate the best results of existing methods and our

method

Table 4 Results evaluated by

human annotators
Systems Human score

BART-base 3.29

BART-cross 3.46

ViL-Sum (best) 3.78

Reference 4.02

Bold values indicate the best

results of existing methods and

our method

Table 5 Results of ViL-Sum under different numbers K of images

K ROUGE-

L

MAXsim IP MMAE

1 40.97 34.63 70.94 3.54

2 41.12 34.33 70.40 3.53

3 41.21 34.52 71.73 3.55

4 41.08 34.49 70.61 3.53

Bold values indicate the best results of existing methods and our

method
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implementation based on the BART-base model. SEL

means selection task and REO means reordering task. All

reported results of ours are the average of 3 different

checkpoints.

We can see that compared with the baselines, our ViL-

Sum gains significant improvement on most metrics, and

ViL-Sum?selection reordering achieves the best compre-

hensive performance except IP. SITA gains a notable im-

provement on IP metric. It trains a cross-modal retrieval

model to retrieve reference caption for image and provides

supervision signal, which is very beneficial for image

selection and the image text alignment. Nevertheless, our

ViL-Sum still outperforms SITA on other metrics. Com-

pared with BART-cross, we can see that the joint repre-

sentation and multi-task training both bring satisfactory

improvement, which proved the effectiveness of our pro-

posed methods. Interestingly, the introduction of image

features hurts the performance of all single-modal sum-

marization models, especially BiGRU-based models.

To further demonstrate that visual information indeed

benefits text summary generation, we compare four groups

of multi-modal models with the single-modal models on

which they are base, as shown in Table 3. The single-

modal models are above the dashed line, and the multi-

modal models based on them are below the dashed line. In

the first group, the multi-modal model (ATL and MOFRRdec)

are not superior to the single-modal model (PGC). These

works concluded that long documents already contain

enough information and that too many images would

introduce noise for summary generation. On the contrary,

the other three groups of results show that the multi-modal

models have achieved performance improvements com-

pared with the single-modal models. The results indicate

that introducing and exploiting image information effec-

tively can improve text summarization generation.

5.2 Performance of joint representation

Firstly, we can see that the performance of ATG, ATL,

HAN, and GR all hurt ROUGE scores by simply intro-

ducing images as independent visual features. Through the

multi-modal objective optimization, MOFRRdec has a signifi-

cant improvement on IP and does not decrease the quality

of generated text summary. This situation proves that

modeling vision and language information independently

did not bring in the revenue for text summary generation.

The results of BART-cross, which also introduces images

as independent features, also have lower ROUGE scores

than BART-base. This situation proves again the previous

conclusion.

Different from previous performance on ROUGE score,

our ViL-Sum with joint vision-language representation

obtains better ROUGE scores, and the Image Precision (IP)

and MAXsim both have a significant improvement. This

demonstrates that using the joint multi-modal encoder to

obtain vision-language representation is better than using

separate encoders with cross-attention to fuse multi-modal

features.

5.3 Performance of multi-task learning

The result of ViL-Sum without multi-task learning has

achieved good performance and is better thanBART-cross. In

this section, we will analyze the influence of our proposed

multi-task learning. From the results, we can see that the

introduction of image selection and reordering bring a slight

decrease in ROUGE scores. Meanwhile, the IP and MAXsim

scores increase significantly, which makes the overall score

MMAE better than ViL-Sum without multi-task training.

We report the ablation study results of two auxiliary

tasks in the second block of Table 2. From the results, we

can see that image selection and reordering both can bring

improvement in IP and MAXsim scores. The combination

of two tasks can push the overall score MMAE higher. The

comparison of these models demonstrates that the intro-

duction of multi-task learning exactly improved the vision-

language representation and semantic alignment, which is

reflected in the improvement of the multi-modal metrics:

IP, MAXsim and MMAE.

6 Discussion

6.1 Human evaluation

We randomly sample 100 examples from the test set to

conduct the human evaluation. The multi-modal summary

of golden reference, BART-base, BART-cross, and our

ViL-Sum (best) is evaluated by three human annotators.

Each annotator will score each example with a rating scale

from 1 (worst) to 5 (best). Table 4 shows the average

scores from three annotators (t-test, p\0:05). We can see

that annotators tend to give the multi-modal summary from

BART-cross and our ViL-Sum higher scores. In addition,

our ViL-Sum outperforms two strong baselines by a wide

margin and is close to the references. It is noteworthy that

Table 6 Results of ViL-Sum with different image tokenizers

ROUGE-L MAXsim IP MMAE

ViT 41.21 34.52 71.73 3.55

Linear 40.18 33.89 70.44 3.51

Vision 41.10 34.28 71.04 3.54

Bold values indicate the best results of existing methods and our

method
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our work shows a higher improvement in human evaluation

compared with the improvement in metrics. This reflects

the gap between human evaluation and metrics.

6.2 Impact of different numbers of images

Table 5 depicts the experimental results of our model

performance varying with different K (the number of

selected summary-related images at the final summary).

Since the golden reference in the test set contains three

images, the consistency between training and test makes

the model perform best when K is 3. Overall, our model is

not very sensitive with K. With different K, our ViL-Sum

all achieve excellent performance, which proves our

method can identify the real importance images from

multi-modal inputs. Besides, we guess the image selection

of the MSMO dataset is simple due to the data from the

news.

6.3 Impact of different image tokenizer

To further evaluate the effectiveness of joint modeling and

multi-task learning, we replace the backbone of the image

tokenizer to observe the performance of ViL-Sum. We

replace the ViT backbone with Linear Layer and an image

tokenizer from Vision Transformer [52]. Both of them have

much smaller parameters than the ViT backbone. Specifi-

cally, linear is the simple version of ViT which replaces the

transformer image encoder with a simple linear layer to

map the images into visual token embeddings. Vision is an

image tokenizer from Vision Transformer [52], which can

convert one image into several visual token embeddings.

Table 6 reports the results of them. We can see that the ViT

exactly provides better visual features than the other two

backbones. However, the performance does not drop

sharply with the replacement of the image tokenizer. This

proves that Our proposed two strategies are robust and the

ViL-Sum is flexible with different image tokenizers.

6.4 Case study and relevance visualization

We select one typical example from the test set and visu-

alize the relevance of (1) summary sentences and selected

images; (2) selected paragraphs and images; (3) all tokens

and images in Figs. 4 and 5. Each color block means a

cosine similarity between the image and text object. The

darker color refers to a higher similarity in the heatmap.

With our proposed methods, the generated summary con-

tains high-quality summary with three related images as

shown in Fig. 4a. From different relevant visualizations,

we can see that our ViL-Sum can effectively align the

semantic representation of summary sentences and selected

images as shown in Fig. 4b. The input images can be

aligned with paragraphs by training with image reordering

bFig. 4 Example from the test set with the generated multi-modal

summary. a Is the full example. b, d are heatmaps that show the

relevance of the summary and selected images. c, e are heatmaps that

show the relevance of selected paragraphs and images. Each color

block means cosine similarity between the image and text object. The

darker color refers to higher similarity (colour figure online)

Fig. 5 The heatmap shows the

relevance of all input tokens and

images. The darker color refers

to higher similarity (colour

figure online)
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as shown in Fig. 4c. By comparing Fig. 4b, d, as well as

Fig. 4c, e, we can observe that ViL-Sum surpasses BART-

cross in paragraph-level vision-language semantic align-

ment, primarily attributed to the incorporation of multi-

tasking learning.

We also report the heatmap of all input tokens and

images in Fig. 5, which is consistent with Fig. 4b, c. This

case proves that the multi-task training really helps ViL-

Sum learn reasonable relations between images and input

paragraphs.

7 Conclusion

In this paper, we propose a novel Vision-Language Sum-

marization (ViL-Sum) model, which can enhance the

vision-language representation and the paragraph-level

semantics alignment through multi-task training and joint

modeling. A multi-modal encoder jointly encodes images

and text to capture their interrelation. The reordering task

and image selection task guide the model to learn para-

graph-level vision and language semantic alignment. Our

ViL-Sum achieves new state-of-the-art results on most

automatic and manual evaluation metrics. Further analysis

demonstrates that the improvement is from the joint multi-

modal encoder and multi-task training.

In human evaluation, we have observed a gap between

human evaluation and metrics. Introducing more appro-

priate evaluation metrics contribute to the development of

multi-modal summarization. Besides, we only use the

MSMO dataset due to the lack of other datasets. Our pro-

posed image reordering task is straightforward yet effec-

tive, we will extend our method to more scenarios (e.g.,

vision-language pre-training models) and modalities (e.g.,

audio and video) in the future. Furthermore, we plan to

generalize our method to other multi-modal tasks, such as

multi-modal question answering.
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