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Abstract
Spices and other food products have been permanently susceptible to adulteration, affecting safety and acceptability when

commercialized. A relevant alternative to detect contaminants in food products is to couple near-infrared spectroscopy

(NIR) with chemometrics. Among the most accurate chemometric techniques employed to analyze food products, partial

least squares regression (PLSR) combines features from and generalizes principal component analysis (PCA) to create

compact and accurate models. Other techniques inspired in the human brain, such as multilayer perceptron, the long short-

term memory (LSTM) models, and other approaches based on deep learning, take advantage of the high complexity of

weights and neurons to train models based on large amounts of data. In this paper, a methodology is proposed to evaluate

chemometric tools to estimate the percentage of adulterants in paprika powder using NIR spectroscopy, and three

approaches are proposed and compared showing different performances. According to the methodology, the paprika

samples were dried and separated into pericarp, peduncle, and seed cake. The resulting elements were finely milled, sieved,

and mixed into 21 different combinations with a different percentage of each. Spectral profiles were used to train PLSR,

multilayer perceptron, and regression models based on LSTM networks. The models were compared following a k-fold

cross-validation strategy. Results showed that PLSR presented the highest R2 ¼ 0:978 for peduncle adulterant estimation,

and the lowest RMSE ¼ 6:24. In particular, when seed cake powder was used as an adulterant, the PLSR approach showed

the highest R2 ¼ 0:981, and the lowest RMSE ¼ 5:806. The RPD values were higher than 2.000 for all models that use the

peduncle as an adulterant and only for models bound to the PLSR in the adulterated samples with pressed seed cake. In

summary, the best predictions were obtained using PLSR models, providing evidence of the feasibility of using NIR

spectra to estimate the percentage of adulterants in paprika powder.
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1 Introduction

Adulteration is a growing concern that impacts enterprises,

producers, consumers, and the economy in general [1].

Estimated losses due to adulteration of products are higher

than USD$250 billion, and in the food industry, the losses

exceed USD$49 billion in adulterated products [2]. Adul-

teration includes the replacement of the original material

with lower-cost products, defective material, or residues of

the same or different plants, harmful substances, or syn-

thetic products that do not meet official standards. Food

adulteration may be either intentional (direct) aiming to

obtain a financial profit or unintentional (indirect) due to a

defective production process. In any case, food adulteration

represents fraud and therefore constitutes an illegal practice

[3].

Among the food products susceptible to adulteration,

spices and condiments are high-valued products with an

international market, and are widely used as flavorings and

food and beverage coloring [4]. Regarding the spices

market, between 2014 and 2015, the US FDA (Food and

Drug Administration) reported more than 20 adulteration

cases in condiments and food spices, causing their with-

drawal from the market due to latent danger to consumers

[5, 6]. The previous studies have identified cassava, corn

starch, and wheat as frequent adulterants in powdered

condiments that include garlic, ginger, onion, black pepper,

cumin, and seasonings in general. As an example, recent
Extended author information available on the last page of the article
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studies have identified starch as the main adulterant used in

black pepper (up to 50% of dry weight) [7]. Cheaper

adulterants are added to obtain an economic benefit by

diluting more valuable ingredients, at the expense of con-

sumers’ health [5, 7].

Among the most popular spices, paprika (Capsicum

annuum var. Longum) is a Native American spice that is

currently cultivated throughout the world. Originally, the

paprika powder was obtained from the pericarp of the fruit

to be used as food coloring, seasoning, and flavoring.

Currently, oleoresin is also extracted from this fruit to be

used as a natural dye in the food, poultry, dairy, feed,

canning, bakery, and cosmetic industries, among others [8].

Paprika oleoresin is characterized by its high content of

vitamin C and carotenoids, b-carotene, b-cryptoxanthin,
capsanthin, capsorubin, violaxanthin, and other carotenoids

that are the pigments responsible for their characteristic

colors, while capsaicinoids are the spicy compounds pre-

sent in the fruit [9, 10].

According to Guillen et al. [11], the anatomical parts of

the Capsicum annuum fruit are the peduncle, pericarp,

seed, and placenta. The main part used to obtain the

powdered dye should be the pericarp, and it is commonly

adulterated with the addition of other parts of the same fruit

(e.g., peduncle, seed, and placenta) to reduce production

costs [4]. Furthermore, the fraudulent addition of other

materials that are not considered food additives has been

identified, for example, lead oxide and synthetic dyes [12].

Such illicit actions generate exorbitant profits for those

who practice them and represent a significant threat to the

health of consumers [3, 4]. The health hazard that repre-

sents an impure food product, encourages the adoption of

robust strategies to detect fraudulent adulteration.

Numerous techniques have been developed to detect and

estimate adulteration that vary depending on the product,

the method employed to measure discriminative properties,

and the techniques employed to analyze samples. Table 1

presents some examples of popular adulteration detection

methods.

Among the techniques mentioned in Table 1, spec-

troscopy in general, but especially near-infrared spec-

troscopy (NIRS), is attracting interest due to the advantages

that include low cost, simplicity, non-destructive mea-

surements, and quickness [4, 17]. NIRS measures the

molecular vibrations of target products by light quanta

absorption, which generates a signature of the spectral

profile (‘‘fingerprint’’) that is reproducible, is distinct for

different raw materials, and, in many cases, can be

employed to determine the purity or the level of adulter-

ation in food products [2]. Putting it differently, molecular

vibrations are related to the conformation, structure,

molecular interactions, and chemical bonds of materials,

measuring chemical bonds based on overtones and com-

bination bands of specific functional groups [29, 30]. The

previous studies report the usefulness of NIRS to ensure

effective food supply surveillance and its ability to reduce

or detect food forgery or adulteration, mainly in the spec-

tral range between 780 and 2500 nm (4000 and 14 000

cm�1) [2, 19, 20, 31].

On the opposite, NIRS presents some drawbacks, e.g.,

the wide absorption band, weak absorption peaks, serious

multicollinearity, and, in some cases, the geometry of the

fruits, presenting distinct reflection artifacts [32]. To

address these problems, chemometric techniques are

commonly employed to extract information using tools

inherited from signal and image processing (e.g., pre-pro-

cessing before creating a model), the extraction or selection

of variables, and, finally, modeling the relationship

between the input variables and the properties to be mea-

sured [33]. Likewise, it is well known that for a better

practical effect, it is necessary to select wavelengths and

use pre-processing methods to remove non-informative

variables, producing that way simpler and more accurate

models [34–37]. Some of the most popular and efficient

models in NIRS are principal component regression (PCR)

and partial least squares regression (PLSR) [38]; addi-

tionally, the nonlinearity of neural networks is commonly

advantageous for certain problems [39]. In fact, due to the

high dimensionality and spatial complexity of the matrices

extracted from food products using NIRS, in certain

applications, it is important to use tools to extract nonlinear

Fig. 1 Paprika chili parts used in the study
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information and self-organizing methods commonly pro-

vide efficient solutions.

Relevant examples of chemometric models to deal with

nonlinearities are the neural network approaches, such as

well-known multilayer perceptron, and the recurrent neural

networks (RNN) [40]. In particular, among the RNN

models, the long short-term memory (LSTM) networks

preserve information from the previous states in hidden

layers and use it in the prediction and classification pro-

cesses [41]. Initially developed for speech recognition,

LSTM networks have aroused great interest due to their

potential for applications in spectrum discrimination [42].

The combination of RNN and spectral profiles has allowed

addressing various tasks related to food, such as the pre-

diction of storage time in black tea [43], the quantification

of Clostridium sporogenes spores in food products [44],

and the detection of moisture levels in individual corn

seeds [45], among others.

In this paper, a methodology is proposed for the eval-

uation of chemometric techniques that employ NIRS to

estimate the percentage of two common adulterants in

Paprika powder, e.g., peduncle or seeds. Additionally, three

of the most popular chemometric techniques were com-

pared using the proposed methodology, demonstrating that

NIR spectroscopy can be employed to detect adulterants

that are part of the ground red peppers used to produce

Paprika powder. Finally, the experiments provide evidence

of the feasibility of using partial least squares regression,

multilayer perceptron, and LSTM networks to estimate the

percentage of adulteration in Paprika powder.

2 Materials and methods

2.1 Raw material

A local spice producer provided a sample composed of

whole mature (Paprika) ground red peppers. The sample

was cleaned, and all fruits with visual defects on the sur-

face were removed. The resulting materials were stored in

plastic bags, hermetically sealed and in dark conditions, to

reduce the possibility of damage from moisture or light.

2.2 Experimental methodology

The experimental methodology performed in the present

study is shown in Fig. 2 and detailed in subsequent sub-

sections. In general, samples were prepared to measure

separately the target product (pericarp) and adulterants

(pedicel or peduncle, and seeds cake). Then, NIR spectra

profiles were extracted, and a standard pre-treatment was

applied to measurements. Models were built from such

samples, and performance metrics were computed for

comparison.

2.3 Sample preparation

Eleven kilograms of Paprika ground peppers were dried in

dark conditions, and at 60 �C, for 30 days, until 10%

moisture was obtained. The fruits were then divided into

pericarp, seeds, and peduncle, removing all the placenta

from the previously separated parts.

The pericarp and peduncle were milled, using a hammer

mill company SRL at 1450 RPM, and sieved with a 4-mm

ASTM sieve. The seeds were passed through the oil

Table 1 Common techniques to detect and estimate adulteration in food products

Method Technique Sample Application References

Physical Macroscopic analysis Herbal drugs Authentication [13]

Microscopic analysis Dietary supplements Authentication [14]

Tandem mass spectrometry Spices and herbs Adulteration [15]

Spectroscopy and Spices, herbs, and fruits Adulteration [16]

Chemometrics [4, 17–22]

Goat milk powder Adulterant [23]

Analytical Chromatography Spices and herbs Authentication [4]

Electrophoretic Herbal medicines Authentication [24]

[4]

Biotechnological DNA differentiation Chinese medicinal stuffs Identification [25]

Spices and herbs Authentication [4]

Immunological ELISA test Panax species Identification [26]

Chinese medicinal plant Authentication [27]

Biosensor Nanotechnology Spices and herbal products Authentication [28]
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extraction process, the oil was separated, and the seed cake

was milled similarly to the pericarp and peduncle. The

powder produced for each subproduct was stored sepa-

rately in hermetically sealed plastic bags and maintained

under dark conditions.

2.4 Adulteration of samples

Different treatments are prepared as shown in Table 2,

where the target pericarp powder was adulterated with

peduncle and seeds cake in different percentages. In both

cases, adulterated samples were made using an ultra-turrax

model IKA T25, at 4500 rpm per 1 min.

2.5 NIRS profiles extraction

The different treatments, consisting of a pericarp, a

peduncle, and a seed, were measured in 30 repetitions each,

obtaining a total of 630 samples. The spectral profile was

determined for each of the 630 measurements.

The measurement of each sample followed the

methodology reported by Yoplac et al. [33]. In this study, a

Unity Scientific NIR spectrometer (SpectraStar 2500XL,

USA) was used, equipped with a tungsten halogen lamp as

a light source and an InGaAs detector (Indium–Gallium–

Fig. 2 Experimental procedure

to evaluate the paprika

adulterant prediction models

Table 2 Experimental treatment for each sample case

Part Treatments

1 2 3 4 5 6 7 8 9 10

Pericarp 100 80 80 60 60 60 40 40 40 40

Peduncle 0 20 0 40 20 0 60 40 20 0

Seeds

cake

0 0 20 0 20 40 0 20 40 60

Part Treatments

11 12 13 14 15 16 17 18 19 20 21

Pericarp 20 20 20 20 20 0 0 0 0 0 0

Peduncle 80 60 40 20 0 100 80 60 40 20 0

Seeds cake 0 20 40 60 80 0 20 40 60 80 100

The 21 treatments are sequentially numbered, and the rest of the quantities represent the percentage of each component (pericarp, peduncle, and seeds cake)
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Arsenic) in the range of 1100 and 2500 nm, with a reso-

lution of 1 nm.

Measurements were made in reflectance mode applied

directly to mixtures without pre-treatment or manipulation,

using a quartz cuvette of 3:5 cm internal diameter and

1:0 cm thick, to which 3:2 g� 0:3g of the sample was

added.

2.6 Pre-treatment

As reported in the publications by [39, 46], in most cases,

extracted spectral profiles contain noise and variability due

to capture conditions, and spectral enhancements are

required to clean up the profiles, such as spectral smooth-

ing, centering, and normalization.

In this process, the following combinations of standard

pre-treatments were applied:

• Smoothing. The spectra were smoothed using a second-

order Savitzky–Golay filter with eleven frames accord-

ing to Eq. (1):

x0 ¼ 1

N

Xn

k¼1

CkðxkÞ; ð1Þ

where x0 is the smoothed profile; x is the original

spectra; C is the coefficient; k is the wavelength in

analysis; and N is an integer number of convolutions.

• Centering and normalization. The distribution of sam-

ples is centered and normalized according to Eq. (2), to

reduce the variation in the baseline due to the dispersion

of light.

x0k ¼
xk � �x

Sx;k
; ð2Þ

where x, x0 are the original and corrected profiles,

respectively; k is the wavelength to be analyzed; and

Sx;k is the standard deviation of the profiles at a specific

wavelength.

2.7 Models training

The models were trained by implementing functions and

routines in the mathematical software MATLAB-2022a;

dividing this stage into the two steps detailed in

Sects. 2.7.1 and 2.7.2.

2.7.1 Full models training

Using the profiles corrected in the previous stage, we

proceeded to train adulteration–prediction models; for one

or two adulterants at a time. The models implemented

included the following:

• Partial least squares regression (PLSR). This is one of

the most widely used methods to predict food properties

by coupling them to hyperspectral images, an example

of which includes vibrational spectrometry [39, 47].

PLSR transforms an input matrix X, in our case with

dimensions ½m� n�, where m is the number of obser-

vations, and n is the number of wavelengths. The output

vector Y, which contains the percentage of adulterant

quality, is obtained by decomposition. Decompose X

and Y, by projection, into new directions with the

constraint that the decomposition must describe the

change of both variables as much as possible. After the

decomposition of the variables, a regression step is

performed in which the decomposed X and Y are used to

calculate a regression model called the full model [48],

see Eq. (3).

Fig. 3 Architecture of the multilayer perceptron employed in

experiments

Fig. 4 Structure for the RNN-LSTM regression model
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Y ¼ b:X þ e; ð3Þ

where X and Y are the input and output variables, b is

the vector of regression coefficients, and e is the error.

For the implementation of this model, the PLS toolbox

of MATLAB was used.

• Multilayer perceptron (MLP). This type of supervised

learning network is widely used for prediction and

classification, which is generally composed of three

layers [39]. The input layer receives the intensity

values, which employing a transfer function are

distributed to the processing elements (neurons) of the

second layer or hidden layer. Commonly, in the second

layer, the values that were entered are transformed by a

nonlinear sigmoid transfer function, propagating them

to the third layer or output layer. The prediction results

are obtained at the output layer [49]. The architecture of

the multilayer perceptron is depicted in Fig. 3

• Recurrent neural network (RNN)-based regression. The

regression model based on recurrent networks used long

short-term memory (LSTM) networks. Following the

pyramidal principle proposed by Vázquez et al. in [39],

a model of an input layer with i entering neurons, an

LSTM layer with j neurons units, a fully connected

layer, and a regression layer, this network structure is

illustrated in Fig. 4. The training was carried out using

the stochastic gradient descent with momentum

(SGDM) algorithm, calculating the gradients in the

weights and adjusting them to minimize the loss

function, in 600 epochs at a learning rate (LearnRate

= 0.005). The training was carried out 30 times in a k-

fold (K ¼ 5) cross-validation strategy, and its results

were stored on each occasion to later proceed to the

calculation of metrics.

2.7.2 Model optimization

According to Blanco and Villarroya [29], the analytical

information contained in the wide and often overlapping

bands in the NIR spectrum is hardly selective. For this

reason, it is important to choose relevant bands in actual

chemometric applications. In this sense, relevant variables

were determined.

This step starts with selecting the relevant variables;

although there are a wide number of methods for this

experiment, the b coefficient method was used. b coeffi-

cient is based on the ability of the variables to contribute to

the PLSR regression model, defined by their coefficients b
and following the strategy applied by [48]. Consequently,

the result of this stage is a new spectral profile, named

trimmed profiles, which contains only the intensity values

for the relevant variables.

Finally, the models were optimized according to the

work of [33, 39], and new models were [48] trained with

the optimized trimmed profiles.

2.8 Models comparison

The different models were tested using a k-fold cross-val-

idation strategy with k ¼ 5. Then, in the same way as

[3, 33, 39], the root-mean-square error (RMSEcv), the

coefficient of determination (R2
cv), and the ratio of perfor-

mance to deviation (RPDcv) were computed. These statis-

tical metrics are defined in Eqs. (4)–(6).

Fig. 5 Spectral profiles for a the whole sample including repetition

and b average sample profiles for each paprika part (e.g., peduncle,

pericarp, and seed cake)
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RMSEcv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � ŷiÞ2
s

; ð4Þ

R2
cv ¼

Pn
i¼1ðŷi � yiÞ2Pn
i¼1ðŷi � �yÞ2

; ð5Þ

RPDcv ¼
SD

RMSEcv

; ð6Þ

where ŷi and yi are the percentages of adulteration values of

the i th sample for prediction and reference, respectively; n

is the number of samples; and SD is the standard deviation

of Y. The sub-index cv makes reference that the statistical

measure was computed following the cross-validation

strategy.

3 Results and discussion

3.1 NIR spectra profile

Figure 5a shows all spectra profiles collected from the

different samples, including distinct treatments and repe-

titions; a direct relation between wavelength and absor-

bance was observed. In Fig. 5b, the differences between

the mean spectral profiles of the materials used are

observed, showing that the peaks of the three spectral

profiles appear at similar locations. The difference between

the average profiles is the average level of absorbance

between the pericarp, peduncle, and seed cake. The peri-

carp spectral profiles present higher absorbance levels,

followed by the peduncle, and the seed cake profile with

the lowest absorbance. Similarly, nine picks are common in

all parts around wavebands 1205, 1460, 1725, 1761, 1930,

2100, 2303, 2351, and 2485 nm. Among these peaks, the

first five are related to the absorbance bands in the overtone

region, and the remaining four are in the combining region.

The absorption peaks at 1460 and 1930 nm are related to

–OH stretch and –OH stretch/deformation wavebands

combination, respectively, those mainly due to the pres-

ence of water in the samples. The peak at 2100 nm is

observed to be within the waveband of –NH deformation,

associated with the presence of proteins and/or peptides;

this same peak at 2100 nm is within the range of C–O and

O–H stretching combination, related to the presence of

carbohydrates. The peaks 1205, 1725, and 1761 nm are

observed to be within the ranges of –CH2 and –CH3

stretch, related to the presence of lipids. Finally, the peaks

2303, 2352, and 2485 nm correspond to the wavebands of

methylene and –CH stretch, related to the presence of

lipids [50].

The absorption bands of capsicum composition can be

analyzed and identified by their spectral behavior; when

mixed with other components, such as water, carbohy-

drates, proteins, and lipid content, the characteristics may

change. This observation is supported by research papers,

such as [3], which evaluate the adulteration of spices using

NIR to detect spectra that can increase or decrease

depending on the variation in composition. Research arti-

cles such as [11] evaluate the pericarp and the non-edible

portion (seeds, placenta, and interlocular septum) of two

capsicum varieties, finding differences in the amounts of

capsaicin and dihydrocapsaicin. These differences may

explain the variations in spectra in the NIR range observed

in our study. This, coupled with the highly sensitive nature

of NIR spectroscopy, gives it the potential to differentiate

mixtures, but also the potential to detect differences

between varieties. Studies like [9], that use HPLC, show

the variations in the carotenoid composition in capsicum

varieties that can be determined using NIRS.

Whereas the spectral differences can be attributed to the

composition of the mix, there are no specific functional

Fig. 6 Evaluation of the PLSR-based models for adulterant prediction
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groups that qualitatively differentiate the capsicum samples

without an appropriate statistical multivariate analysis.

3.2 Models building

3.3 Partial least square regressions

Figure 6 shows the results of the analysis after the appli-

cation of the PLSR model to predict the different per-

centages of combinations of adulterated pericarp seed with

peduncle and seed cake. In Fig. 6a and b, the regression of

the adulterated pericarp powder with different percentages

of the peduncle using all the wavelengths of the NIR

spectrometer. On the other hand, the more relevant wave-

lengths used to generate the optimized PLSR model are

shown in Fig. 6c and d. Finally, the real against the

estimated levels of adulteration are shown in Fig. 6e and f,

when different adulterants are added to the mixture, but

optimizing PLSR.

Regarding the most relevant wavelengths, those in the

range between 1600 and 2000 nm stand out, being the most

prominent absorption bands at 1725 nm and 1761 nm,

which are related to the C=O functional group. Similar

wavelengths have already been documented and linked to

capsaicin and other capsaicinoids [10]. Partitioning the full

spectrum to reduce random noise and computational

complexity while extracting the available information to

enhance the model’s capacity is a recommended practice

for achieving better prediction models [34].

3.4 Multilayer perceptron models

On the other hand, Fig. 7 shows the results of multilayer

perceptron models, both the complete and optimized

models, to predict the adulteration with the adulterants in

pericarp powder; Fig. 7a–d for peduncle adulteration, and

Fig. 7b–d when seed cake is used.
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Fig. 7 Multilayer perceptron models for adulterants prediction

Fig. 8 LSTM models for adulterants prediction

Fig. 9 Models’ metrics for adulterants prediction
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3.5 Long short-term memory-based models

Finally, Fig. 8a and b shows the results of the regression

model based on recurring neural networks, using the LSTM

network. Results in Fig. 8a and b show the predictions of the

powder of adulterated pericarp with stalk and seed cake.

The significance of comparing learning methods lies in

the fact that each product exhibits different behaviors. In

our case, when evaluating capsicum, where capsaicin and

dihydrocapsaicin are the predominant compounds, we must

not overlook the presence of other compounds that should

be considered during the evaluation. Compounds such as

colorants have been documented in these capsicum vari-

eties [10], generating the need for prediction models to be

tailored specifically to each model.

3.6 Models comparison

Predictive model results that full and optimized spectra

profiles differences explain the feasibility of the NIRS to

identify how adulterated pericarp powder with peduncle

and seed cake are; then, Fig. 9 shows the box plot of each

of the five analyzed models using the statistical metrics.

According to Fig. 9a and b, the prediction models obtained

R2 higher than 0.96 or 0.90 for the content of the peduncle

or seed cake, respectively. The prediction of the peduncle

content showed a lower adjustment; mainly when relevant

variables were used. Furthermore, fully optimized PLSR

models present lower variability in R2 compared to neural

network-based models (Fig. 9a and b).

Evaluating RMSE of the PLSR optimized models, it

obtained the lowest values for both prediction of the

adulterant percentage, for peduncle powder (6.23) and seed

cake (5.76); therefore, this model showed greater precision

in the calibration set and classification. In the same way,

Fig. 9c and d shows that the variability of the RMSE in

neural network-based models PML and LSTM, respec-

tively, was comparatively higher.

Finally, Fig. 9e and f RPD values showed all models

could be considered reliable (RPD[ 2); this wasmainly true

for PLSR models. However, this metric, which assesses the

extent of error estimation compared to the standard devia-

tion, exhibits significant variation for neural network-based

models, which leads to the conclusion that models based on

neural networks may not fit properly in these experimental

settings. Other studies that evaluated models like those used

here found that RMSE values were better when using neural

networks; this occurs when working with samples with high

humidity, such as corn [45], or with dry samples containing

different active compounds, such as tea [43].

The optimized PLSR model showed the best predictive

indicators in the study; this coincides with those reported

by [19] in their study of dry goods, [6] in onion powder.

Both studies affirm that combining NIR with appropriate

multivariate analysis can produce reliable results. These

findings emphasize the need to create specific models for

each product, considering the unique composition of the

product under analysis. In the case of the Capsicum genus,

the generation of capsaicin and dihydrocapsaicin oleoresins

is specific to the pericarp, with the shape and composition

differing in the peduncle and seeds, which could be the

reason for differentiation in the NIR spectra.

4 Conclusions

In this paper, the feasibility of the estimation of the level of

adulterant was studied in paprika powder. In the compar-

ison, the proposed methodology was evaluated based on

adulterated pericarp powder mixed with peduncle and seed

cake powders using NIRS in conjunction with PLSR and

neural network-based models. The most significant wave-

lengths for adulterant estimation were found within the

range of 1600–2000 nm, with absorption bands at 1725 nm

and 1761 nm. The aforementioned ranges are related to the

functional group C=O, which is the most notable. In gen-

eral, the predictive models based on PLSR outperformed

the predictive methods based on neural networks, all of

which have values R2 higher than 0.95. However, based on

RMSE and RPD values, optimized PLSR was shown to be

the most effective among all predictive models. In con-

clusion, NIR spectrometry can be used to estimate the level

of adulteration in paprika powder, when adulterants include

peduncle or seed cake powder, and the highest performance

was achieved by coupling it to PLSR when compared to

models based on neuronal networks.

Further research may include the exploration of auto-

matic methods for wavelength selection, to automate the

whole process. It also may be interesting to explore other

more sophisticated algorithms that involve higher dimen-

sional representations of knowledge, at the expense of

higher computational resources. Finally, it is still to be

considered the application of the proposed methodology to

different food products, which may include garlic, ginger,

onion, black pepper, and other seasonings.
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(2020) Fast quantitative detection of black pepper and cumin

adulterations by near-infrared spectroscopy and multivariate

modeling. Food Control 107:106802. https://doi.org/10.1016/j.

foodcont.2019.106802

4. Sasikumar B, Swetha VP, Parvathy VA, Sheeja TE (2016) 22 -

advances in adulteration and authenticity testing of herbs and

spices. In: Downey G (ed) Advances in food authenticity testing.

Woodhead Publishing, Sawston, pp 585–624. https://doi.org/10.

1016/B978-0-08-100220-9.00022-9

5. Lee S, Lohumi S, Lim H, Gotoh T, Cho B, Kim M, Lee S (2015)

Development of a detection method for adulterated onion powder

using Raman spectroscopy. J Fac Agric Kyushu Univ

60(1):151–156. https://doi.org/10.5109/1526312

6. Lohumi S, Lee S, Lee MW, Kim Mo C, Bae H, Cho B (2014)

Detection of starch adulteration in onion powder by ft-nir and ft-

ir spectroscopy. J Agric Food Chem 62(38):9246–9251. https://

doi.org/10.1021/jf500574m

7. Wilde A, Haughey S, Galvin-King P, Elliott C (2019) The fea-

sibility of applying nir and ft-ir fingerprinting to detect adulter-

ation in black pepper. Food Control 100:1–7. https://doi.org/10.

1016/j.foodcont.2018.12.039
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regression method for near-infrared spectroscopic evaluation of

articular cartilage. Appl Spectrosc 71(10):2253–2262. https://doi.

org/10.1177/0003702817726766

39. Vásquez N, Magán C, Oblitas J, Chuquizuta T, Avila-George H,

Castro W (2018) Comparison between artificial neural network

and partial least squares regression models for hardness modeling

during the ripening process of swiss-type cheese using spectral

profiles. J Food Eng 219:8–15. https://doi.org/10.1016/j.jfoodeng.

2017.09.008

40. Wu L, Liu Z, Bera T, Ding H, Langley DA, Jenkins-Barnes A,

Furlanello C, Maggio V, Tong W, Xu J (2019) A deep learning

model to recognize food contaminating beetle species based on

elytra fragments. Comput Electron Agric 166:105002

41. Chen C, Yang B, Si R, Chen C, Chen F, Gao R, Li Y, Tang J, Lv

X (2021) Fast detection of cumin and fennel using NIR spec-

troscopy combined with deep learning algorithms. Optik

242:167080. https://doi.org/10.1016/j.ijleo.2021.167080

42. Pang L, Wang L, Yuan P, Yan L, Yang Q, Xiao J (2021) Fea-

sibility study on identifying seed viability of Sophora japonica
with optimized deep neural network and hyperspectral imaging.

Comput Electron Agric 190:106426. https://doi.org/10.1016/j.

compag.2021.106426

43. Hong Z, Zhang C, Kong D, Qi Z, He Y (2021) Identification of

storage years of black tea using near-infrared hyperspectral

imaging with deep learning methods. Infrared Phys Technol

114:103666. https://doi.org/10.1016/j.infrared.2021.103666

44. Soni A, Al-Sarayreh M, Reis MM, Brightwell G (2021) Hyper-

spectral imaging and deep learning for quantification of

clostridium sporogenes spores in food products using 1d-convo-

lutional neural networks and random forest model. Food Res Int

147:110577. https://doi.org/10.1016/j.foodres.2021.110577

45. Zhang L, Zhang Q, Wu J, Liu Y, Yu L, Chen Y (2022) Moisture

detection of single corn seed based on hyperspectral imaging and

deep learning. Infrared Phys Technol 125:104279. https://doi.org/

10.1016/j.infrared.2022.104279

46. ElMasry G, Nakauchi S (2016) Image analysis operations applied

to hyperspectral images for non-invasive sensing of food quality-

a comprehensive review. Biosyst Eng 142:53–82. https://doi.org/

10.1016/j.biosystemseng.2015.11.009

47. Castro W, Oblitas J, Rojas EE, Avila-George H (2020) partial

least square regression for food analysis: basis and example. In:

Mathematical and statistical applications in food engineering,

pp 141–160

48. Agudelo-Cuartas C, Granda-Restrepo D, Sobral PJ, Castro W

(2021) Determination of mechanical properties of whey protein

films during accelerated aging: application of ftir profiles and

chemometric tools. J Food Process Eng 44(5):13477

49. Dai Q, Cheng J-H, Sun D-W, Pu H, Zeng X-A, Xiong Z (2015)

Potential of visible/near-infrared hyperspectral imaging for rapid

detection of freshness in unfrozen and frozen prawns. J Food Eng

149:97–104. https://doi.org/10.1016/j.jfoodeng.2014.10.001

50. Wehling RL (2010) 23 - infrared spectroscopy. In: Nielsen SS

(ed) Food analysis. Aspen Publishers, Gaithersburg, pp 407–419.

https://doi.org/10.1007/978-1-4419-1478-1_23

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Authors and Affiliations

Wilson Castro1 • Jimy Oblitas2 • Luis Nuñez1 • Ives Yoplac3 • Himer Avila-George4 • Miguel De-la-Torre4

& Miguel De-la-Torre

miguel.dgomora@academicos.udg.mx

Wilson Castro

wcastro@unf.edu.pe

Jimy Oblitas

jimyoblitas@unc.edu.pe

Luis Nuñez

lnunez@unf.edu.pe

Ives Yoplac

ives.yoplac@untrm.edu.pe

Himer Avila-George

himer.avila@academicos.udg.mx

1 Facultad de Ingenierı́a de Industrias Alimentarias y

Biotecnologı́a, Universidad Nacional de Frontera, Av. San

Hilarión No. 101, Sullana 20103, Piura, Peru

2 Facultad de Ingenierı́-a, Universidad Privada del Norte, Vı́-a

Evitamiento s/n, Cajamarca 06002, Cajamarca, Peru

3 Laboratorio de Nutrición Animal y Bromatologı́-a de

Alimentos, Facultad de Ingenierı́-a Zootecnista,

Agronegocios y Biotecnologı́-a, Universidad Nacional

Toribio Rodrı́-guez de Mendoza de Amazonas, Calle Higos

Urco NO 350, Chachapoyas 01001, Chachapoyas, Peru

4 Departamento de Ciencias Computacionales e Ingenierı́-as,

Universidad de Guadalajara, Carretera Guadalajara-Ameca

km 45.5, 46600 Ameca, Jalisco, Mexico

Neural Computing and Applications (2024) 36:14263–14273 14273

123

https://doi.org/10.1016/j.heliyon.2019.e02122
https://doi.org/10.1016/S1872-2040(16)60928-3
https://doi.org/10.1002/cem.1266
https://doi.org/10.1016/j.talanta.2011.09.016
https://doi.org/10.1016/j.saa.2021.120815
https://doi.org/10.1016/j.saa.2021.120815
https://doi.org/10.1177/0003702817726766
https://doi.org/10.1177/0003702817726766
https://doi.org/10.1016/j.jfoodeng.2017.09.008
https://doi.org/10.1016/j.jfoodeng.2017.09.008
https://doi.org/10.1016/j.ijleo.2021.167080
https://doi.org/10.1016/j.compag.2021.106426
https://doi.org/10.1016/j.compag.2021.106426
https://doi.org/10.1016/j.infrared.2021.103666
https://doi.org/10.1016/j.foodres.2021.110577
https://doi.org/10.1016/j.infrared.2022.104279
https://doi.org/10.1016/j.infrared.2022.104279
https://doi.org/10.1016/j.biosystemseng.2015.11.009
https://doi.org/10.1016/j.biosystemseng.2015.11.009
https://doi.org/10.1016/j.jfoodeng.2014.10.001
https://doi.org/10.1007/978-1-4419-1478-1_23
http://orcid.org/0000-0002-0937-5656

	Adulterant estimation in paprika powder using deep learning and chemometrics through near-infrared spectroscopy
	Abstract
	Introduction
	Materials and methods
	Raw material
	Experimental methodology
	Sample preparation
	Adulteration of samples
	NIRS profiles extraction
	Pre-treatment
	Models training
	Full models training
	Model optimization

	Models comparison

	Results and discussion
	NIR spectra profile
	Models building
	Partial least square regressions
	Multilayer perceptron models
	Long short-term memory-based models
	Models comparison

	Conclusions
	Data availability
	References




