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Abstract
Scene recognition has been the foundation of research in computer vision fields. Because scene images typically are

composed of specific regions distributed in some layout, so modeling layouts of various scenes is a key clue for scene

recognition. Existing methods usually require an additional stream to detect regions for subsequent modeling, which

accumulate errors and may miss important information. Meanwhile, they use manual features to model relations between

regions, which weakens the representation ability of layouts. In this paper, we propose a single-stream adaptive scene

layout modeling approach based on a layout modeling module (LMM), which constructs layouts without additional

detection streams and adaptively captures the relations to take advantage of graph attention network. LMM is directly

concatenated to a convolutional neural network, where each pixel of the activation maps of the last convolutional layer is

defined as a region that is the initial input node of the LMM. LMM first models the layout of each region, and then uses all

regions with layout information to model the entire scene. Layout relations are encoded as edges, which are automatically

analyzed according to region co-occurrence and relative position. Our work can be understood as optimizing features of the

activation maps from a scene layout modeling perspective for scene recognition. Experimental results on MIT67, SUN397,

and Places365 show that our single-stream model achieves competitive performance.

Keywords Scene recognition � Scene layout � Convolutional neural network � Graph attention network

1 Introduction

Scene recognition has become one of the most challenging

problems in computer vision and can be applied to many

fields, such as AI cameras [1] and robot navigation [2].

Unlike object-level images, scene-level images typically

consist of a variety of regions with different distributions.

Researchers have been committed to exploring the scene

layout for scene recognition. The existing scene layout

modeling method is a two-step process, as shown in

Fig. 1a, first using the region detection stream to detect the

region and then modeling the layout between regions to
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represent the scene. In the first stage, some [3–5] use off-

the-shelf object detection networks or semantic segmenta-

tion models. Because scene-level images are not annotated

in detail, only the models trained on other datasets can be

used. Once the detection results are unsatisfactory, the

accumulated error will affect the final accuracy. Others

[6, 7] utilize the clustering or region proposal methods to

extract discriminating regions directly on feature maps.

Since they need to filter candidate boxes to ease compu-

tational pressure when modeling, it’s easy to miss other

potentially important information. In the second stage,

some methods based on recurrent neural networks, such as

RNN-based [5, 8, 9] and LSTM-based [4, 7], learn the

spatial dependencies between image regions. But their

spatial layouts transmit context from a specified direction,

lacking global information interaction. For this purpose,

Some approaches [3, 6] take advantage of the graph

propagation mechanism to analyze the global layout.

However, they all need to manually design relation features

(e.g., geometric and morphological relations), which makes

it difficult to represent diverse spatial layouts robustly.

To mitigate the drawback mentioned above, a single-

stream adaptive scene layout modeling method is proposed,

which does not add any other streams to detect regions and

adaptively explores relations between regions to assist the

implementation of scene layout modeling. In detail, we

forcibly define each pixel of the last convolutional layer as

the initial graph node. The reason for using this fixed

approach to obtain regions is mainly inspired by the ability

of pre-trained Places-CNNs [10] that can captures the

significant semantics of each pixel [11]. However, the pre-

trained Places-CNNs only perform global average pooling

(GAP) [12] to get final scene features. GAP can be

understood as a non-discriminatory analysis of region co-

occurrence without their layouts. Therefore, following this

idea, we design a layout modeling module (LMM) that

adaptively analyzes the importance of each region in the

scene according to the layout. LMM mainly builds a graph

attention model, which first models the context of each

initial node, and then uses the optimized nodes to build the

entire scene layout. Note that unlike methods [3, 6] their

node relations (i.e., edges of the graph) are adaptively

obtained using their semantics and position. Our method is

straightforward but works surprisingly well. We evaluate

our single-stream model on three benchmark databases,

MIT67 [13], SUN397 [14], and Places365 [10]. Our single-

stream method outperforms the detector-based scene layout

methods and achieves highly competitive results compared

to other multi-stream models, with accuracy of 88.58% on

MIT67 and 74.32% on SUN397. Moreover, our model

achieves 56.53% Top-1 accuracy when extended to Pla-

ces365, one of the largest datasets.

Our main contributions are summarized as follows:

• A single-stream adaptive scene layout modeling

approach is proposed to construct the layout directly

on the activation maps without additional object

detection streams.

• Based on graph attention networks, a layout modeling

module (LMM) is introduced to model each region’s

layout and the entire scene adaptively without needing

manual relational features.

• Extensive experimental results on three datasets with

different difficulties demonstrate the superiority and

generalization of our method. Our model is intelligible

in structure and impressive in results.

Fig. 1 A comparison of

a double-stream manual scene

layout modeling pipeline and

b our single-stream adaptive

scene layout modeling pipeline.

Our method removes the

additional region detection

process and operates directly on

the activation maps. At the same

time, adaptive layout modeling

is carried out on each region,

and important regions are

selected to represent the scene
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2 Related works

Scene recognition is an important research topic in the field

of computer vision. In recent years, the powerful repre-

sentation ability of convolutional neural networks (CNNs)

[15–19] has dramatically improved the accuracy of scene

recognition. But due to complex layouts such as multi-

object, multi-scale, and multi-position information in scene

images, these models [17–19] that are initially applied to

natural image classification are not comfortable when

directly processing this task. Therefore, the researchers

[20–37] are keener to use CNNs as feature extractors, then

encode the features to represent complex scenes. For

example, some researchers combine CNNs with VLAD

[21, 26] or Fisher Vector (FV) [27, 28] to generate scene

features. Yee et al. [32] use spatial pyramid pooling to

address the challenge of objects at different scene scales.

Some studies [20, 22–25, 35, 36] consider that features

from a single model cannot adequately represent the scene.

Wang et al. [24] use two CNNs and input images of dif-

ferent resolutions to capture information at different coarse

and fine scales. In [23], the important features extracted

from the object-centric CNNs and scene-centric CNNs are

selected based on a correlative context gating module. Sun

et al. [25] propose a comprehensive representation by

fusing information on object semantics, global appearance,

and contextual appearance from three CNNs. Meanwhile,

Xie et al. [20] make full use of the advantages of ViT [38]

and CNNs to explore discriminative features. Despite their

high performance, they mainly stack as many features as

possible based on multiple scales or multiple models and

do not explore the essence of recognizing the scene, that is,

understanding the distribution of objects in the scene.

To improve performance, some methods [39–42] pro-

pose to represent the scene in terms of the co-occurrence of

objects. Zhou et al. [40] generate a Bayesian object rela-

tions matrix to model the scene structure based on the

object information obtained by the scene parsing algorithm

[43]. Pereira et al. [41] utilizes YOLOv3 [44] to detect

objects in the scene, encoding their categories and numbers

as the scene layout. Although they take a step towards

exploring the scene’s layout, they only explore the co-oc-

currence relations between objects and lack their position

modeling. Some earlier works [4, 5, 7–9] attempted to

model the spatial layout of a scene using recurrent neural

networks. To represent the scene, Zuo et al. [8] use RNN to

obtain spatial modeling information in four directions (left,

right, top, bottom). In [9], four directions (i.e., top-left to

bottom-right, bottom-right to top-left, bottom-left to top-

right, and top-right to bottom-left) are updated. Although

they designed multiple directions for information flows,

they could not interact with information globally. In order

to compensate for this shortcoming, approaches [3, 6]

represent the scene as a graph model, of which nodes as

regions and edges represent the relations between regions.

In [3], the segmentation network (i.e., DeeplabV2 [45] pre-

trained on the COCO-stuff [46]) is used to obtain amor-

phous regions firstly. Then the context relations between

regions are explored from geometric and morphological

aspects. Chen et al. [6] chooses a clustering way to find the

most representative regions in the candidate regions

detected by an adaptive threshold on the feature maps. In

addition to manual geometric relations, semantic relations

have also been added. At present, if only relying on the

features of a single model, the graph model-based methods
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Fig. 2 The architecture of our approach consists of two modules. All region features are extracted using a pre-trained CNN model in the region

extraction module. Then, let them adaptively model the layouts of the region and the scene in the layout modeling module
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outperform the state-of-the-art methods, which also shows

that scene layout is very important for scene recognition.

Therefore, instead of using additional detection streams,

our proposed method directly performs layout modeling on

the feature maps, which alleviates the information omission

and error accumulation caused by the detection streams. At

the same time, the regions defined on the feature maps

adaptively model the layout without manual features based

on the graph attention network [47].

3 Our approach

Our single-stream adaptive scene layout modeling

approach consists of a region extraction module and a

graph modeling module. The framework of our model is

shown in Fig. 2.

3.1 Region extraction module

Each scene often contains multiple regions, so it is nec-

essary to extract the regions in the scene before modeling

the layout. Unlike previous works that use region detectors

[3] or clustering on the activation maps [6], our approach

returns to simplicity, that is, directly defining the activation

maps as a region maps. This operation is inspired by the

work of Zhou et al. [11] which demonstrates that the CNN

pre-trained on [48] can perform both scene recognition and

region localization in a single forward-pass, without ever

having been explicitly taught the notion of regions.

In practice, given an image, we feed it into a pre-trained

CNN to extract the activation maps A A 2 RH�W�C
� �

from

the last convolutional layer. Based on the same assumption

of [11], we define each pixel on the activation maps as a

region and flatten the activation maps by the channel

dimension. Now, we obtain the region set

M ¼ m1;m2; . . .;mnf g, where mi is the i-th pixel which

represents the i-th region, and n ¼ H �W ¼ jMj is the

number of the region. We denote X ¼ x1; x2; . . .; xn½ �>2
Rn�d as the feature matrix of region M where xi is the

feature vector of mi, and d ¼ C is the dimension of region

feature.

3.2 Graph modeling module

To explore the scene layout, we propose to propagate

context by a graph model. Let G ¼ ðV; EÞ denote a graph

where node set V ¼ v1; v2; . . .; vnf g and E is edge set

between V. We define H ¼ h1; h2; . . .; hn½ �>2 Rn�d is the

feature matrix with d-dimension node feature where hi is

defined as the representation of node vi. Typically, modern

graph neural networks (GNNs) follow a learning schema

that iteratively updates the representation of a node by

aggregating representations of its first or higher-order

neighbors. For basic GNN layers, the general ‘‘message-

passing’’ architecture is employed for the information

aggregation:

Hðlþ1Þ ¼ F HðlÞ;A
� �

; ð1Þ

where HðlÞ ¼ h
ðlÞ
1 ; h

ðlÞ
2 ; . . .; h

ðlÞ
n

h i>
denotes the feature

matrix H at the l-th step in the GNN, Hðlþ1Þ is the updated

feature matrix, A represents the adjacency matrix (i.e. edge

relations) that captures the importance between nodes, and

F is defined as ‘‘message-passing’’ function using A. In this

paper, we obtain the adjacency matrix A based on graph

attention mechanism using semantics and position. The

following will use the l-th step as an example to illustrate

how to obtain the adjacency matrix A.

3.2.1 Node representation

Objects with the same semantics may be distributed in

multiple positions in a scene. In order to distinguish them,

we need to add position information. Effortlessly, the

coding of each region position in our method is much

simpler than [3, 6], which uses the bounding boxes of each

detected regions to get the position, we directly take

advantage of the inherent position information of image

convolution features. We perform standard learnable 1D
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Fig. 3 Flowchart of Attention aggregation. The attention aggregation

implements the importance analysis between regions in the region

layout modeling and the discriminative feature aggregation in the

scene layout modeling
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position embeddings for their positions. Let PE ¼
p1; p2; . . .; pn½ �>2 Rn�d is the embedding feature matrix,

where pi 2 Rd is the embedding features of i-th position in

the activation maps.

We combine semantics and position to capture the im-

portance between regions by the graph. First, we define

region set M as node set V. Then, the position features are

embedded into semantic node features to generate the

initial node feature matrix Hð0Þ and it can be formulated as:

Hð0Þ ¼ X þ PE; ð2Þ

3.2.2 Region layout modeling

Now, we have represented the region nodes. We perform

attention aggregation for each region node to model their

layouts between regions and adaptively obtain relations

with other regions, details are shown in Fig. 3. Specifically,

to obtain sufficient expressive power to transform input

features, one learnable linear transformation is required.

Note that before this operation we perform a layer nor-

malization to constrain the features to an approximate

distribution range:

H0ðlÞ ¼ LayerNorm HðlÞ
� �

: ð3Þ

The features of input node V is projected by three

matrices W
ðlÞ
Q 2 Rd�dK , W

ðlÞ
K 2 Rd�dK and W

ðlÞ
V 2 Rd�dV .

For simplicity of illustration, we consider the single-head

self-attention and let dK ¼ dV ¼ d. The extension to the

multi-head attention is standard and straightforward. Then,

we sequentially calculate the importance of each node j 2
V to node i:

e
ðlÞ
ij ¼

h
0ðlÞ
i W

ðlÞ
Q

� �
h
0ðlÞ
j W

ðlÞ
K

� �T

ffiffiffiffiffiffi
dK

p : ð4Þ

To make importance e
ðlÞ
ij easily comparable across different

nodes, we normalize them across all of j using the softmax

function:

aðlÞij ¼ softmax e
ðlÞ
ij

� �
¼

exp e
ðlÞ
ij

� �

P
k2V exp e

ðlÞ
ik

� � ; ð5Þ

where aðlÞij is (i, j)-element of adjacency matrix A at the l-th

step in the GNN.

Once obtained, the normalized attention weights aðlÞij are

used to aggregate the corresponding node to the output

node bias h
0ðlþ1Þ
i by a linear combination of their features.

This process can be formalized as:

h
0ðlþ1Þ
i ¼

X

j2V
aðlÞij h

0ðlÞ
j W

ðlÞ
V

� �
 !

: ð6Þ

The above is a process of single-head attention. To enhance

the representational power, we find extending our mecha-

nism to employ multi-head attention to be beneficial [49].

In detail, N independent attention mechanisms execute the

transformation of Eq. (6), and then their features are con-

catenated, resulting in the following bias feature

representation:

h
0ðlþ1Þ
i ¼ kNn¼1

X

j2V
anij

� �ðlÞ
h
0ðlÞ
j Wn

V

� �ðlÞ� �
 !

: ð7Þ

Because feature nodes need to be updated iteratively, we

keep the input and output feature dimensions consistent.

That is to say, the number of heads N depends on the

projection dimension of the projection matrix, i.e., dv ¼ d
N.

Finally, add the residual structure [18] to get the output

node features of the l-th step:

hðlþ1Þ ¼ hðlÞ þ h
0ðlþ1Þ
j : ð8Þ

3.2.3 Scene layout modeling

So far, we have obtained region nodes with layout infor-

mation HðLÞ ¼ h
ðLÞ
1 ; h

ðLÞ
2 ; . . .; h

ðLÞ
n

h i>
, where L is the last

step of region layout modeling. Since we encode all the

information in the scene into nodes, there may be unim-

portant or even negative nodes. Therefore, our method

adaptively selects important regions in the scene layout

modeling. Specifically, we add a global prior node v0

representing the whole image to aggregate important nodes

and weaken others. To generate the global prior node, we

perform global average pooling (GAP) on the activation

maps from the last convolutional layer and define its fea-

ture as h0 2 Rd . As a result, the node set V and feature

matrix HðLÞ are updated to v0; v1; v2; . . .; vnf g and

h0; h
ðLÞ
1 ; h

ðLÞ
2 ; . . .; h

ðLÞ
n

h i>
2 Rðnþ1Þ�d, respectively. Then,

attention aggregation is utilized again on the global prior

node to select important node features. Finally, we perform

layer normalization on the aggregated global prior nodes to

accelerate convergence and feed them into one layer fully

connected network to predict the scene category. To

demonstrate the effectiveness of the global prior node, we

apply average pooling on HðLÞ in ablation experiments to

generate the scene representation as a d-dimensions vector.
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4 Experiments

In this section, we evaluate the effectiveness of our method

on three well-known and publicly available datasets,

MIT67 [13], SUN397 [14], and Places365 [10].

4.1 Datasets

MIT67 Dataset [13]. It contains 67 classes of a wide

variety of indoor environments and 15,620 images. There

are at least 100 images per category. According to the

standard evaluation protocol, we set 80 images for training

and 20 images for evaluation.

SUN397 Dataset [14]. It is a larger scene dataset, which

comprises around 108,754 images from 397 scene cate-

gories. Each category has at least 100 different numbers of

images. 50 training images and 50 validation images per

class are used to evaluate the competing methods following

the commonly used evaluation protocol.

Table 1 Comparison with state-

of-the-art methods on MIT67

and SUN397 (%)

Methods # of models # of Scales Resolutions MIT67 SUN397

MFA-FS [28] 2 3 (96, 128, 160) 87.23 71.06

MFAFVNet [27] 2 3 (96, 128, 160) 87.97 72.0

MFAFSNet [33] 2 3 (96, 128, 160) 88.05 72.43

EMFS [34] 3 4 224 86.90 72.60

SDO [37] 2 9 – 86.76 73.21

ChAM [22] 2 1 224 87.1 74.04

Attribute-CNN [50] 1 2 (224, 448) 88.06 74.12

DL-CNN [51] 1 2 – 86.43 70.13

Places365-VGG [10] 1 1 224 76.53 63.24

Places205-VGG [48] 1 1 224 79.76 61.99

Places365-ResNet [10] 1 1 224 82.84 68.89

LSO-VLADNet [21] 1 1 448 81.70 61.60

ARG [3] 1 1 448 88.13 73.58

M2M BiLSTM [7] 1 1 – 88.25 71.81

LGN [6] 1 1 448 88.06 74.06

Places365-VGG [10] 1 1 512 79.70 64.12

Places205-VGG [48] 1 1 512 79.78 62.57

Places365-ResNet [10] 1 1 512 84.63 69.84

Ours 1 1 224 84.78 73.11

Ours 1 1 384 87.74 74.32

Ours 1 1 448 88.36 74.14

Ours 1 1 512 88.58 73.96

The best results are in bold

Table 2 Comparison with state-of-the-art methods on Place365 (%)

Methods Resolutions Top-1 Top-5

Essence [52] 224 55.21 80.42

Places365-VGG [10] 224 55.24 84.91

Places365-ResNet [10] 224 54.74 85.08

ChAM [22] 224 56.51 86.00

LGN [6] 224 56.50 86.24

Our 224 56.53 86.39

The best results are in bold

Table 3 Effect of different image resolutions on MIT67

Resolutions Factors Baseline Ours Acc. Gains

224 � 224 #params 23.65M 48.82M 1.94

GFLOPs 4.13 5.17

Acc. (%) 82.84 84.78

384 � 384 #params 23.65M 48.82M 3.78

GFLOPs 12.14 15.17

Acc. (%) 83.96 87.74

448 � 448 #params 23.65M 48.82M 2.61

GFLOPs 16.53 20.65

Acc. (%) 85.75 88.30

512 � 512 #params 23.65M 48.82M 3.95

GFLOPs 21.59 26.97

Acc. (%) 84.63 88.59

We evaluate the classification accuracy, and report the model size and

the computational complexity
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Places365 Dataset [10]. It is explicitly designed for

scene recognition, which has two training subsets, Pla-

ces365-Standard and Places365-challenge. In this paper,

we choose Places365-Standard as the training set, which

consists of around 1.8 million training images and 365

scene categories. The validation set of Places365-Standard

contains 100 images per category. Both top-1 and top-5

accuracy are reported as the evaluation metric.

4.2 Implementation details

In our comparative experiment, we use ResNet50 [18] pre-

trained on places365 [10] as the backbone. Since image

resolution also affects accuracy, we select multiple com-

mon resolutions f224 � 224; 384 � 384; 448 � 448; 512 �
512g for a fair comparison. We randomly crop and resize

to the corresponding size and random horizontal flipping

during the training. In the testing, we first resize the image

to f256 � 256; 416 � 416; 480 � 480; 544 � 544g and then

crop the center to

f224 � 224; 384 � 384; 448 � 448; 512 � 512g. Note that

this is the 1-crop test method on MIT67 [13] and SUN397

[14]. The standard 10-crops test method is agreed upon on

Places365 [10] and an evaluation measurement is the

average classification accuracy of 10-crops. The batch sizes

of f224 � 224; 384 � 384; 448 � 448; 512 � 512g are

f128; 60; 32; 32g. The initial learning rates are set to 10�3,

10�3 and 10�4 for MIT67, SUN397, and Places365,

respectively. The minimum learning rate is 10�5. We train

our models end-to-end for 40 epochs using the SGD opti-

mizer with CosineAnnealingLR to adjust the learning rate.

To avoid overfitting, one GNN layer is used in the region

layout modeling. The number of attention heads is 8.

4.3 Comparison with state-of-the-art methods

In this subsection, we conduct extensive experiments on

three datasets to compare the performance with state-of-

the-art methods.

We compare the results with advanced methods on

MIT67 and SUN397 in Table 1. From Table 1, we see that

the methods [3, 6, 7] based on scene layout modeling

achieve higher accuracy than other methods. This also

proves that scene recognition from the perspective of scene

layout is feasible and effective. At the same time, because

our method reduces the loss of information during region

extraction and improves the ability to express relations, our

method obtains better accuracy than other layout methods

[3, 6, 7]. Various multi-model, multi-scale combination

methods are also reported in Table 1, but our single-stream

model still outperforms them. Because the region infor-

mation at a 224 � 224 resolution may disappear with

multiple downsampling, which results in a lack of critical

region information when subsequently modeling the lay-

out, the accuracy of our method is reduced at a resolution

of 224 � 224. When the resolution is increased, the

advantages of layout modeling become apparent. For a fair

comparison, we also implement some typical methods

(Places205-VGG [48], Places365-VGG [10], and Pla-

ces365-ResNet [10]) at 512 � 512 resolution. It can be

clearly seen that the accuracy of our method is still higher

than the typical methods, which proves the effectiveness

and competitiveness of our method.

We also demonstrated the effectiveness of our approach

at Places365. For a fair comparison, we only execute

models at resolutions of 224 � 224, and the results are

shown in Table 2. As seen from Table 2, our single-stream

adaptive modeling method can achieve a Top-1 accuracy of

56.53%. Compared to the baseline Places365-ResNet [10],

our model can gain a 1.79% improvement of Top1 accu-

racy, proving our proposed method’s effectiveness.

4.4 Ablation study

In this subsection, we conduct ablation studies on MIT67 to

better understand our method’s effects. Unless specified,

the resolution is set to 512 � 512.

4.4.1 Analysis of different resolutions

We know that the number of region nodes depends on the

size of the activation maps. We perform some detailed

experiments to explore the impact of image resolution on

our model performance. We take the resolutions of f224 �
224; 384 � 384; 448 � 448; 512 � 512g for experiments,

and results illustrated in Table 3. The results show that the

Table 4 Complexity and robustness analysis of our model

Datasets Factors Baseline Ours Acc. Gains

MIT67 [13] #params 23.65M 48.82M 1.94

GFLOPs 4.13 5.17

Acc (%) 82.84 84.78

SUN3977 [14] #params 24.32M 49.50M 4.05

GFLOPs 4.13 5.17

Acc (%) 69.06 73.11

Places365 [10] #params 24.26M 49.43M 1.79

GFLOPs 4.13 5.17

Acc (%) 54.74 56.53

The resolution is set to 224 � 224. The accuracy, the model size and

the computational complexity on MIT67, SUN39, and Places365 are

reported
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accuracy of our method gradually improves as the resolu-

tion increases. Moreover, our gain also increases, indicat-

ing that as the information in the scene increases, our

advantages of layout modeling gradually become apparent.

As seen from Table 3, when the resolution is 512 � 512,

the accuracy of the baseline decreases, indicating that

although more information is obtained, the interference

information will increase accordingly. In contrast, our

adaptive layout modeling method can eliminate some noisy

information.

4.4.2 Complexity and robustness analysis of our model

To analyze the complexity and robustness of our model, we

compare our model with the baseline (ResNet50 pre-

trained on Places365 [10]) in terms of the accuracy, the

model size and the computational complexity on three

benchmark datasets, as shown in Table 4. We set the res-

olution to 224 � 224. The results in Table 4 show that our

method performs well on MIT67 [13], SUN397 [14], and

Places365 [10] datasets and brings 1.94%, 4.05% and

1.79% gains, respectively. The improved classification

accuracies on all three datasets with different styles and

different number of images demonstrate the excellent

generalization and robustness of our method. In addition,

our method increases about 1.04 GFLOPs (at a resolution

of 224 � 224) and 25 M parameters to the baseline, which

is acceptable compared to multi-model and multi-scale

methods. We also show the model size and computational

complexity at different resolutions in Table 3. Our method

only increases about 5 GFLOPs when the resolution is

512 � 512.

4.4.3 Impact of the region detection performance

Scene images usually consist of many regions in some

layout. Accurately detecting regions is required to model

the final scene. In our approach, each pixel on the activa-

tion maps obtained from the visual backbone is treated as a

Table 5 Effect of different

modules on MIT67
Backbone Region layout modeling Scene layout modeling #params GFLOPs Acc. (%)

Semantics Position Prior node Average

U – – - U 23.65M 21.59 84.63

U – – U – 36.24M 23.74 87.46

U U – U – 48.82M 26.97 88.28

U – U U – 48.82M 26.97 87.84

U U U U – 48.82M 26.97 88.58

U U U – U 36.24M 24.81 87.69

We evaluate the classification accuracy, and report the model size and the computational complexity

Table 6 Impact of the region detection performance on MIT67

Region Detectors AP #params GFLOPs Acc. (%)

Faster-RCNN [53] 37.4 48.82M 26.97 78.21

Mask-RCNN [54] 38.2 48.82M 26.97 78.51

DETR [55] 39.9 48.82M 26.97 79.03

RetinaNet [56] 39.5 48.82M 26.97 79.10

De-DETR [57] 47.0 48.82M 26.97 80.89

DINO [58] 49.0 48.82M 26.97 81.10

We evaluate the classification accuracy, and report the model size and

the computational complexity

Table 7 Effect of the number of heads on MIT67

Number of heads #params GFLOPs Accuracy (%)

1 48.82M 26.97 88.13

2 48.82M 26.97 88.21

8 48.82M 26.97 88.58

16 48.82M 26.97 88.28

The accuracy, the model size and the computational complexity are

reported

Table 8 Effect of the number of GNN layers on MIT67

Number of layers #params GFLOPs Accuracy (%)

1 48.82M 26.97 88.58

2 61.41M 30.20 87.83

3 74.00M 33.42 87.59

The accuracy, the model size and the computational complexity are

reported
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region, and the regions are implicitly modeled for final

scene modeling. Our final scene modeling is most relevant

to visual backbone detection performance. To analyze the

impact of differences in region detection performance on

the final scene modeling, we use the visual backbone

(ResNet50 [18]) as our region extractor, fine-tuned in dif-

ferent object detectors. The impact of different detection

performance of visual backbones for final scene modeling

are shown in Table 6. As the performance of the region

detectors improves from 37.4 AP to 49.0 AP, the classifi-

cation accuracy also increases from 78.21 to 81.10%. This

suggests that different region detection performance lar-

gely influences the final scene modeling. Thus, it is critical

that the visual backbone accurately detects the regions for

the final scene modeling.

4.4.4 Effect of different modules

We analyze the contribution of each module and their

different implementations to the model performance, and

Table 5 shows the results. Compared with the baseline

(Backbone ? GAP), each proposed modules contributes to

the accuracy improvement. As you can see from Table 5,

the performance improves after adding region layout

modeling. Meanwhile, position information brings a gain

of 0.3%, indicating that the position is also a clue to

identify the scene. However, the gain decreases when the

relations of regions are adapted only by position, which

also proves that the scene layout needs the combination of

semantics and position. In scene layout modeling, the

method based on the global prior node adaptively selects

discriminative regions, which can reduce interference

information (Table 6).

4.4.5 Effect of the multi-head attention

The multi-head attention mechanism in Transformer brings

performance improvement to NLP tasks. We also conduct

experimental analysis, and Table 7 presents the results. The

experimental results show that increasing the number of

attention head can bring gain, but it will reach saturation

when it rises to a certain threshold. In our method, the

optimal number of attention head is 8. In addition, the

multi-head attention can improve accuracy without

increasing the parameters and computational complexity.

4.4.6 Effect of the multi-layer GNN

When performing GNN aggregation, the number of layers

is generally set to 2 or 3. Because too many layers will

cause each node to aggregate its neighbors multiple times,

the features of all nodes will become similar. The indi-

vidual characteristics of each node cannot be distinguished.

To this end, we evaluate models with different numbers of

layers, and the results are shown in Table 8. When the

number of GNN layers increases, the parameters and

Class Bedroom

Input 

Baseline

Our

Closet Poolinside Operating RoomKitchen Mall

Laundromat Galley Airport Terminal

Fig. 4 Visualization of method concerns. The ground truth about the

scene class of the image is on top of the image. The first row shows

the input image. The second row shows the class activation map

(CAM). The third row shows the attention regions of the global prior

node in our method (the redder the color, the more attention)
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computational complexity also increase, but the accuracy

does not improve. In fact, the number of nodes that need to

be operated in our model is small, and only one GNN layer

is required to complete the adaptive aggregation.

4.4.7 Visualization of methods

We visualized the respective concerns of our method and

baseline Places365-ResNet50 [10] in Fig. 4. The focus of

the baseline is demonstrated by the class activation map

(CAM). Our approach is to average the attention weights of

the global prior node. Obviously, the baseline’s focus is

local, while our method’s focus is more global and pri-

marily distributed in semantic regions related to scene

categories. Fortunately, we comprehensively consider the

global information, correcting the shortcoming of the

baseline that only focuses on local information, such as the

mistake of recognizing ‘‘kitchen’’ as ‘‘laundromat’’ due to

only focusing on ‘‘washing machine.’’ For example, when

recognizing ‘‘operating room’’ and ‘‘shopping mall,’’ we

paid more attention to ‘‘surgical instruments’’ and ‘‘shop-

ping mall billboards,’’ respectively.

5 Conclusion

In this paper, we propose a single-stream adaptive scene

layout modeling method for scene recognition. Our method

does not require additional streams to detect regions and

can directly process the activation maps as regions. Based

on the graph attention network, the scene layout is built,

where the attention mechanism is used to adaptively cap-

ture the relations between regions. This mechanism auto-

matically analyzes the importance of regions based on

semantics and position, which can improve the ability to

express relations. Comprehensive experiments on MIT67,

SUN397, and Places365 have demonstrated the effective-

ness and generalization of our method for scene recogni-

tion. We also hope that our method will be helpful to other

scholars.

In the future, we will consider combining multi-scale

information from different convolutional layers. From the

experimental results, the performance is low when the

resolution is poor, because the effective information is

easily filtered out by multiple pooling. While high-resolu-

tion performance is excellent, the computational cost is still

a lot of pressure at current levels. Therefore, we can

explore how to discover more region information at low

resolutions to help build more accurate scene layouts.

Data availability MIT67 dataset [13] is available at http://web.mit.

edu/torralba/www/indoor.html, SUN397 dataset [14] is available at

https://vision.princeton.edu/projects/2010/SUN/, and Places365 data-

set [10] is available at http://places2.csail.mit.edu/index.html.
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