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Abstract
This study aims to achieve the densest possible state of soil for constructing dams and roads. This requires assessing the

compaction characteristics, Optimum Moisture Content (OMC), and Maximum Dry Density (MDD) to determine the soil’s

suitability for earthworks. However, this process is resource-intensive and time-consuming. To streamline the assessment,

the study incorporates six parameters: gravel (G), sand (S), fine (F) contents, plastic limit (PL), liquid limit (LL), and

plasticity index (PI). Four different models are used to predict compaction characteristics: artificial neural network (ANN),

nonlinear regression (NLR), linear regression (LR), and multilinear regression (MLR). The study utilized a substantial

dataset of 2162 entries, considering various soil gradation and plasticity properties as input variables. To evaluate the

models’ effectiveness, several statistical measures, including coefficient of determination (R2), scatter index (SI), root

mean squared error (RMSE), mean absolute error (MAE), a20-index, and Objective (OBJ) value, were employed. The

ANN model outperformed other models in predicting OMC, with RMSE, MAE, OBJ, SI, a20-index, and R2 values of 3.51,

2.31, 4.26, 0.202, 0.7, and 0.92%, respectively. However, for predicting MDD, the ANN model had the highest R2 value

(R2 = 0.87), but the minimum RMSE (1.01), MAE (0.8), a20-index (0.998), and OBJ (1.07) were obtained from the MLR

and LR models. Furthermore, sensitivity analyses revealed that the plastic limit significantly influences the OMC, while the

gravel content plays a dominant role in predicting MDD.
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1 Introduction

Soil compaction is critical in geotechnical engineering,

particularly in construction projects like roads and

embankments. Accurate prediction of the Maximum Dry

Density (MDD) and Optimum Moisture Content (OMC) is

essential to achieve the desired level of compaction. In

recent years, researchers have increasingly turned to soft

computing models and artificial neural networks (ANN) to

improve the accuracy of such predictions. This literature

review provides an overview of the existing research in this

field.

Soil compaction plays a vital role in geotechnical

engineering by enhancing the mechanical properties of soil.

Proper compaction ensures structural integrity and prevents

settlement and instability [18].

Historically, compaction characteristics were predicted

using empirical and semi-empirical methods, such as the

Proctor test. These methods, while practical, often lack the
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accuracy and flexibility required for various soil types and

conditions [57].

Soft computing models, including artificial neural net-

works (ANN), fuzzy logic, and genetic algorithms, have

gained popularity for predicting soil compaction charac-

teristics. These models can handle complex, non-linear

relationships within large datasets [116].

ANN is a popular choice for predicting soil properties

due to its ability to learn from data and adapt to various soil

types. Studies have successfully applied ANN to predict

MDD and OMC from soil index properties [83].

Previous research has shown that the accuracy of pre-

dictions is highly dependent on the selection of input

parameters. Parameters like gravel (G), sand (S), plastic

limit (PL), liquid limit (LL), and plasticity index (PI) have

been identified as significant predictors of compaction

characteristics.

Researchers often evaluate the performance of pre-

dictive models using various statistical metrics, includ-

ing R-squared (R2), root mean squared error (RMSE),

mean absolute error (MAE), and scatter index (SI).

These metrics help assess the accuracy and reliability of

the models.

Recent studies have focused on enhancing the efficiency

and accuracy of predictive models. Some have incorpo-

rated advanced optimization techniques and ensemble

modeling to improve results.

The choice of an appropriate model is essential and

varies based on the specific application. ANN may per-

form well in some cases, while linear or multilinear

regression models may be more suitable in others.

Understanding each model’s strengths and limitations is

crucial.

Accurate predictions of MDD and OMC from soil index

properties have practical implications in geotechnical

engineering, enabling engineers to optimize construction

processes, reduce costs, and enhance the quality and

durability of infrastructure projects. There are several

methods to stabilize soils. One of the most significant

methods to densify the soil is compaction. Soil compaction

results in the decrease of the voids between soil particles.

Consequently, soil shear strength observably increases

along with the declining compressibility and pearmeability

of the soil [33]. To determine both compaction character-

istics, Maximum Dry Density (MDD) and Optimum

Moisture Content(OMC), in the laboratory, either the

Standard Proctor (SP) or Modified Proctor (MP) methods

are used [26].

To assess the suitability of a soil for an earthwork, the

compaction characteristics of the soil must be identified.

For an earthwork project, large quantities of soil are

necessitated. Obtaining the massive volume with a desired

compaction characteristic from a single borrow source

might be tedious and time-consuming. Compaction char-

acteristics must be obtained from a laboratory compaction

test to determine the suitability of soils collected from

various borrows sources. Nevertheless, for laboratory

compaction tests, sufficient effort and time are required.

Consequently, for any such project, the suitability of the

required soils is preliminarily assessed by establishing

correlations between the compaction characteristics and

simple physical properties obtained through simple index

tests [104]. There have been several attempts to determine

the compaction characteristics indirectly. For this reason,

several correlations have been developed to estimate the

compaction characteristics through soil index properties

[7, 23, 28, 31, 44, 51, 52, 89, 104, 117] and because of soil

fractions [45, 99]. Some studies indicated that an individual

input parameter could not sufficiently predict the com-

paction characteristics. Therefore, multiple linear regres-

sion (MLR) models were utilized to predict the compaction

characteristics considering different basic soil parameters

[9, 24, 26, 45, 49, 67, 98]. In addition to this, the machine

learning technique was used in some other studies to

develop more accurate correlations [48, 79, 101, 110]. An

early study employing artificial neural networks (ANN) by

Shook and Fang [97] to predict the soil compaction char-

acteristics indicated that the ANN technique outperforms

the traditional statistical models, and a reliable prediction

can be attained. Further, Sivrikaya and Soycan [100] uti-

lized the ANNs for estimating the compaction character-

istics of 108 fine-grained soil samples.

Sivrikaya [98] performed the multilinear regression

model (MLR) to predict the compaction characteristics of

fine-grained soils from soil index properties and soil gra-

dations. The considered input parameters were combina-

tions of gravel content (G), sand content (S), fine-grained

content (F), plasticity index (PI), liquid limit (LL), and

plastic limit (PL). The study concluded that the compaction

characteristics could correlate with Plastic limit well

compared to other index properties. [31] employed differ-

ent techniques: simple—multiple analysis and artificial

neural networks to forecast the compaction characteristics

based on the soil gradations. The study highlights that

reliable correlations (R2 = 0.70–0.95) for preliminary

design can be achieved from both techniques. Furthermore,

[67] developed multiple regression analysis models for

experimental data collected from 110 sandy soils to predict

the compaction characteristics in terms of the uniformity

coefficient (Cu) and Compaction Energy (CE). Considering

the liquid limit (LL), the plasticity index (PI), and com-

paction energy (CE). Tenpe and Kaur [108] Investigated

artificial neural network (ANN) modeling performance for

forecasting compaction parameters based on soil index

properties. Moreover, Omar et al. [77] utilized advanced

mathematical models and an innovative solution to predict
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the compaction characteristics of fine-grained soils from

numerous physical properties. In this study, multiple linear

regression (MLR), artificial neural networks (ANNs), and

support vector regression (SVR) are employed. In addition,

Farooq et al. [26] utilized a multiple regression model to

forecast the optimum moisture content. Also, Saikia et al.

[89] developed a set of regression models for predicting the

compaction characteristics concerning the consistency

limits.

In their study, Karimpour-Fard et al. [53] utilized arti-

ficial neural networks (ANNs) and multilinear regression

(MLR) techniques across 728 datasets to develop predic-

tive models for compaction characteristics. These models

were designed to estimate compaction characteristics based

on soil type, grain size distribution (including LL, PL), and

specific gravity at varying energy levels. Their findings

emphasized the significant impact of fine content on

compaction characteristics compared to other factors.

Additionally, they underscored the potential advantages of

MLR models in predicting compaction characteristics

despite the greater effectiveness of ANN models, attribut-

ing this to the inherent ‘‘black box’’ nature of ANN models.

Taking into account input parameters such as compaction

energy and plastic limit, these models were evaluated.

A novel application of artificial neural network (ANN)

was utilized in a recent study Verma and Kumar [110] to

estimate fine-grained soil’s modified Proctor compaction

parameters. From a highway construction work site, from

532 in situ soil samples, several geotechnical parameters

were obtained from the laboratory testing. Besides the

index properties test, modified Proctor compaction tests

were conducted on the collected soil samples. Python

V3.7.9 platform was adopted to write the ANN algorithm

code for the analysis. Such useful geotechnical parameters

as gravel (%), sand (%), fine content (FC), and percent

material retained on 2.0 mm (R2.0 mm), 0.425 mm

(R0.425 mm), and 0.075 mm (R0.075 mm), coarse sand

(CS), medium sand (MS), fine sand (FS), liquid limit (LL),

plastic limit (PL), and plasticity index (PI) were considered

as input parameters. Verma and Kumar [111] focused on

developing a multi-layer perceptron neural network model

to predict the modified compaction characteristics of coarse

and fine-grained soils. Similarly, the Python V3.7.9 plat-

form was adopted to write artificial neural network (ANN)

algorithm code. One hundred seventy-nine datasets of

coarse-grained and 69 datasets of fine-grained soils are

examined, considering gravel (%), sand (%), FC (%), LL

(%), PL (%), PI (%) as input parameters to predict the

modified compaction characteristics. In the developed

models, the high correlation coefficient (R was obtained; as

the value was more than 0.80 and 0.90 for coarse-grained

and fine-grained soil respectively.

In the context of existing literature, various statistical

and machine learning models were employed to forecast

compaction characteristics based on diverse soil properties,

primarily for assessing soil suitability in earthworks. Sta-

tistical models offer ease of use, delivering output predic-

tions in equations that can prove valuable for practical field

applications. On the other hand, machine learning models

excel in processing substantial datasets and identifying

nuanced trends and patterns that might elude human per-

ception. Machine learning algorithms exhibit exceptional

capability in handling complex, multi-dimensional, and

multifaceted data, even in dynamically changing and

uncertain conditions, as demonstrated by studies conducted

by Mahmood et al. [61], Piro et al. [82], Abdalla and

Mohammed [2], and Hama Ali [34]. These models have

been employed in a few research studies to predict com-

paction characteristics.

Furthermore, in rare studies, large quantities of data

covering soil index properties and particle—size were

considered. In this work, a large volume of the dataset

(2162 datasets) has been compiled from previous studies.

Four different models of Linear Regression, Nonlinear

Regression (NL), Multilinear Regression (ML), and Arti-

ficial Neural Network (ANN) have also been utilized to

predict the compaction characteristics (OMC, MDD) con-

cerning soil index properties and soil particle—sizes. In

addition to predicting the compaction characteristics, this

work evaluates the performance of the utilized models.

1.1 Related studies

Using various modeling techniques, the literature review

provides valuable insights into predicting soil compaction

characteristics, specifically the Maximum Dry Density

(MDD) and Optimum Moisture Content (OMC). Below are

the essential findings and trends observed in the related

studies: soil compaction is a critical aspect of geotechnical

engineering, ensuring the structural integrity of construc-

tion projects such as roads and embankments. Accurate

predictions of MDD and OMC are essential for achieving

the desired level of compaction. Researchers have

increasingly turned to soft computing models, including

Artificial Neural Networks (ANN), to improve the accu-

racy of predictions. These models are valued for handling

complex, non-linear relationships within large datasets.

Traditional methods, such as the Proctor test, were histor-

ically used for predicting compaction characteristics.

However, these methods often lack accuracy and flexibility

across different soil types and conditions.The accuracy of

predictions depends significantly on the selection of input

parameters. Parameters like gravel content, sand content,

plastic limit, liquid limit, and plasticity index have been

identified as significant predictors of compaction
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characteristics. Researchers employ various statistical

metrics, including R-squared (R2), root mean squared error

(RMSE), mean absolute error (MAE), and scatter index

(SI), to evaluate the performance of predictive models.

These metrics help assess the accuracy and reliability of the

models. Recent studies have focused on enhancing the

efficiency and accuracy of predictive models. Some have

incorporated advanced optimization techniques and

ensemble modeling to improve results. Choosing the

appropriate model is essential and depends on the specific

application. While ANN performs well in some cases,

linear or multilinear regression models may be more suit-

able in others. Understanding the strengths and limitations

of each model is crucial. Accurate predictions of MDD and

OMC from soil index properties have practical implica-

tions in geotechnical engineering, allowing engineers to

optimize construction processes, reduce costs, and enhance

the quality and durability of infrastructure projects. Some

studies have employed machine learning techniques, such

as ANNs, to predict soil compaction characteristics, with

promising results regarding model performance and accu-

racy. Large datasets and model evaluation: the work under

review stands out for its use of a large dataset (2162

datasets) and for applying four different models, including

ANN, to predict compaction characteristics. The study not

only predicts these characteristics but also rigorously

evaluates the performance of the utilized models. Com-

parison of soft computing models and statistical models:

the literature reveals a trend of comparing soft computing

models (e.g., ANN) with traditional statistical models (e.g.,

linear regression) to determine which one offers better

predictive capabilities for soil compaction characteristics.

Several studies have indicated that relying on a single input

parameter is insufficient for accurate predictions. Hence,

models that consider multiple basic soil properties, espe-

cially those related to particle size distribution and con-

sistency limits, have been developed and found to provide

more reliable predictions. In summary, the reviewed liter-

ature emphasizes the importance of accurate predictions of

MDD and OMC for soil compaction in geotechnical

engineering. Soft computing models, particularly ANNs,

have shown promise in improving the accuracy of predic-

tions. The choice of input parameters, model evaluation

metrics, and the practical implications of these predictions

are significant considerations. Additionally, recent studies

have incorporated advanced techniques to enhance the

efficiency and accuracy of predictive models. The field is

continually evolving, with an increasing focus on har-

nessing the potential of machine learning and large datasets

for more precise predictions.

2 Scope of the work

In light of the literature, an individual input parameter is

unlikely to be applicable to predict the compaction char-

acteristics of different soil types. Therefore, numerous

datasets from the literature were compiled to develop

models to predict the compaction characteristics of soil by

including simple soil properties such as the G, S, F, LL,

PL%, and PI%. Subsequently, four different models were

developed. This enables evaluating the models’ perfor-

mance and the identification of the effects of various soil

properties. Consequently, the datasets in two groups of

training and testing are examined in the models to reach the

main objectives of the study:

(i) The influence of the physical soil properties on the

compaction characteristics will be investigated. The

input parameter with the most influential role in

measuring the value of the OMC and MDD will be

assigned from a sensitivity analysis.

(ii) Concerning the statistical evaluation tools, the

model outperforming the prediction of the com-

paction characteristics of soil from basic soil

properties will be determined and compared with

the other models.

The major contributions and novelty in this work can be

summarized as follows:

Multi-parameter approach: the study’s innovation lies in

adopting a multi-parameter approach to predict the

compaction characteristics of soils. Instead of relying

on a single input parameter, it incorporates six different

parameters: gravel (G), sand (S), fine content (F), plastic

limit (PL), liquid limit (LL), and plasticity index (PI).

This approach recognizes that a single parameter may

not be universally applicable across different soil types,

and therefore, a more comprehensive set of input

variables is considered.

Model Diversity: The work employs four distinct

models: artificial neural network (ANN), nonlinear

regression (NLR), linear regression (LR), and multilinear

regression (MLR) models. This diversity in modeling

techniques allows for a robust assessment of each

model’s predictive capabilities and performance, thus

ensuring a comprehensive evaluation of the data.

Extensive dataset compilation: to support the develop-

ment of these models, a comprehensive dataset of 2162

entries is compiled, encompassing various soil gradation

and plasticity properties as input variables. This dataset’s

size and comprehensiveness contribute to the reliability

and generalizability of the models.

Statistical evaluation tools: the study employs a range of

statistical evaluation tools, including the coefficient of
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determination (R2), scatter index (SI), root mean squared

error (RMSE), mean absolute error (MAE), a20-index,

and Objective (OBJ) value. These tools provide a

thorough assessment of the models’ performance and

ability to predict compaction characteristics accurately.

Identification of influential parameters: through sensitiv-

ity analyses, the study identifies the specific input

parameter with the most significant influence on mea-

suring the values of Optimum Moisture Content (OMC)

and Maximum Dry Density (MDD). This insight can be

crucial for understanding the key factors affecting soil

compaction characteristics.

Comparative analysis: the research develops these mod-

els and rigorously compares their performance. It

concludes that the ANN model excels in forecasting

OMC, while for MDD prediction, the MLR and LR

models outperform the ANN model. This comparative

analysis aids in selecting the most appropriate model for

specific applications also, Given the study’s objective to

streamline the assessment of soil compaction character-

istics for constructing dams and roads, along with the use

of multiple parameters and models, a novel method

could involve the following approaches:

Hybrid model integration: combine the strengths of

different models to improve prediction accuracy. For

instance, a hybrid model that integrates the advantages of

artificial neural networks (ANN) in capturing complex

relationships with the interpretability of linear regression

(LR) or multilinear regression (MLR) could be devel-

oped. This hybrid model could potentially enhance

predictions by leveraging the ANN’s ability to capture

nonlinear patterns and the interpretability of LR/MLR

for a better understanding of the impact of individual

parameters.

Feature selection techniques: utilize advanced feature

selection methods to identify the most influential

parameters. Techniques like recursive feature elimina-

tion, feature importance ranking from tree-based models,

or Lasso regularization can help narrow down the most

critical parameters affecting soil compaction character-

istics. This could streamline the assessment process by

focusing on key parameters and reducing resource

consumption.

Ensemble learning: implement ensemble techniques such

as bagging, boosting, or stacking to combine predictions

from multiple models. Ensemble methods often lead to

better generalization and robustness by leveraging the

strengths of different models. This approach could

enhance prediction accuracy for Optimum Moisture

Content (OMC) and Maximum Dry Density (MDD).

Sensitivity analysis optimization: utilize sensitivity anal-

ysis to identify influential parameters and optimize the

assessment process. By understanding the impact of

different parameters on OMC and MDD, the study can

propose specific guidelines or thresholds that indicate

when certain parameters have a significant effect. This

could help streamline decision-making in soil com-

paction assessments.

Automated Data Processing: Implement automation in

data processing and model selection. Leveraging

machine learning pipelines or frameworks can streamline

data preprocessing, feature engineering, model training,

and evaluation, reducing the time and resources needed

for analysis.

Combining the strengths of different modeling tech-

niques, optimizing parameter selection, leveraging

ensemble methods, and automating processes can stream-

line the assessment of soil compaction characteristics,

making it more efficient and less resource-intensive while

maintaining or improving prediction accuracy.

2.1 Components in the block diagram

• Input data: this represents the dataset containing soil

properties such as Gravel (G), Sand (S), Fine content

(F), plastic limit (PL), liquid limit (LL), and plasticity

index (PI).

• Preprocessing module: this stage involves data clean-

ing, normalization, and feature scaling to prepare the

input data for modeling.

• Modeling phase:

• LR model: linear regression model based on soil

physical properties.

• NLR model: nonlinear regression model.

• MLR model: multilinear regression model.

• ANN model: artificial neural network model.

• Evaluation and comparison: this part includes the

assessment of model performance using various metrics

like R-squared (R2), Root Mean Squared Error

(RMSE), Mean Absolute Error (MAE), Scatter Index

(SI), and Objective (OBJ) values.

• Results and analysis: this section interprets and ana-

lyzes the model outputs, compares predictions, and

identifies influential parameters for OMC and MDD.

• Sensitivity analysis module: this component pinpoints

the significant parameters affecting OMC and MDD

predictions.

• Conclusion and recommendations: this stage presents

conclusions drawn from the analysis, recommendations

for model selection, and potential areas for further

research.
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3 Methodology

Overall, 2162 datasets from the literature were gathered.

The data were randomly mixed and divided into two

groups: training datasets and testing datasets. The training

datasets comprised 70% of the dataset, while 30% was for

the testing ones. The training data groups were used to

develop the models. The foremost objective of the models

was to predict the standard Proctor compaction character-

istics (OMC and MDD). Then, using the testing data, the

models were evaluated. Table 1 includes the number of

used data from different studies and ranges of the input

parameters: gravel content (G %), sand content (S %), fine

content (F %), liquid limit (LL %), plastic limit (PL %) and

plasticity index (PI %).

Further, in the table, the ranges of the measured values

of optimum moisture content (OMC %) and maximum dry

density (MDD kN/m3) are contained within, compared

with the predicted values obtained from the models. These

input parameters are used to develop the models and the

actual values of output parameters. The procedure of the

work is illustrated in a flowchart in Fig. 1 and summarized

as:

In total, 2162 datasets were compiled from the available

literature. These datasets were randomly combined and

then divided into two sets: one for training the models,

consisting of 70% of the data, and the other for testing the

models, which accounted for the remaining 30%. The

primary aim of these models was to forecast the standard

Proctor compaction characteristics, specifically the Opti-

mum Moisture Content (OMC) and Maximum Dry Density

(MDD). Subsequently, the models’ performance was

assessed using the testing data. Table 1 presents the

quantity of data sourced from various studies and the

ranges of the input parameters, including gravel content (G

%), sand content (S %), fine content (F %), liquid limit (LL

%), plastic limit (PL %), and plasticity index (PI %).

Furthermore, Table 1 provides a rangeds of measured

values of OMC (%) and MDD (kN/m3), with which the

obtained values from the models will be compared later.

These input parameters are the foundation for model

development, while the actual output parameter values are

also included. The workflow of the study is visually rep-

resented in Fig. 1 and can be summarized as follows:

Stage 1: Collecting data.

Stage2: Correlating input and output parameters.

Stage 3: Splitting data into two groups: 70% training and

30% testing.

Stage 4: Developing different models.

Stage 5: Evaluating the performance of the models.

4 Correlation between soil index properties
and compaction parameters

The illustration demonstrates the validity of the connection

between input parameters and compaction characteristics.

Each input parameter was graphically depicted and scru-

tinized concerning OMC and MDD. Figure 2 presents a

matrix plot elucidates the link between input parameters

and compaction characteristics. The figures unmistakably

reveal that, except for the correlation between PL and

OMC, with an R-value of 0.82 (as shown in Fig. 3), there

are generally insufficient correlations between compaction

characteristics and the input parameters. This particular

correlation can be considered robust but may apply pri-

marily to fine-grained soil. In other words, PL may not

accurately represent the soil’s true properties for soils

where the percentages of G (gravel) and S (sand) dominate.

Moreover, it is worth noting that some types of purely

coarse-grained soil may not possess a plastic limit (PL) at

all.

Additionally, Fig. 4 illustrates the typical distribution of

OMC and MDD. Moreover, Table 2 presents various

statistics, including minimum, maximum, mean, standard

deviation, skewness, kurtosis, and variance. In the context

of kurtosis, a strongly negative value suggests shorter tails

compared to a normal distribution, while a positive value

indicates longer tails. As for the skewness parameter, a

negative value signifies an extended left tail, while a pos-

itive value signifies an extended right tail.

5 Modeling

In the above figures, each parameter of G, S, F, LL PL, and

PI is connected to the OMC and MDD so that a direct

relationship between these parameters can be developed to

predict the compaction characteristics from one of these

parameters. However, because the R2 value is extremely

low, a reliable direct correlation between the compaction

characteristics and the input parameters cannot be attained,

following the statistical analysis and Figs. 2, 3 and 4.

Therefore, four separate models are developed considering

the influence of soil gradation and index properties to

overcome this shortcoming and establish a reliable corre-

lation to forecast OMC and MDD from the input

parameters.

In this work, the models are utilized to predict the OMC

and MDD, and each model’s performance is evaluated

according to the original data. The following evaluation

criteria are used to evaluate and compare the performance

of the four models: For a model to be scientifically accu-

rate, there should be a minor percentage error between
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Table 1 The range and the number of the used datasets

Authors Data ranges

No.

data

Gravel

(%)

Sand (%) Fines (%) LL (%) PL (%) PI (%) OMC

(%)

MDD (kN/

m3)

Shook and Fang [96] 59 0–11.8 17–90.5 8.0–81 23.5–34 10.3–18 9.1–18 9.5–15.5 17.3–20.8

Ring et al. [88] 10 0–0 0–50 50–100 24–72 15–37 2.0–40 14–31 14–18.7

Johnson and Sallberg [50] 51 0–0 5.0–94 6.0–100 16–76 16–107 0–45 6.6–32 9.9–21.3

Felt [27] 6 0–0 8.0–81 19–92 26–58 19–25 4.0–36 10–20.8 15.9–20.1

Harris [37] 296 0–26 0–62 38–100 17–111 7.0–42 1.0–80 8.9–41 12–20.4

Hopkins [41] 7 0–7.7 4.7–24 71–91 14.5–61 1.0–27 1.0–34 13.5–24 15.1–18.7

Ramiah et al. [86] 16 0–0 8.4–67.8 32.2–91.6 26.6–72.6 10.5–38.1 13.4–39.4 14.8–33 12.7–18.1

Wesley [114] 27 0–0 2.0–86 14–98 44–213 33–167 2.0–58 20–160 4.4–14

Horz [43] 5 0–27.5 2.5–66.1 6.4–97.5 18–61 13–21 5.0–41 8.7–23.2 15.5–19.8

Wang and Huang [112] 57 0–20 0–100 0–100 24–495 10.0–47 2–449 8–32.5 12.6–20.8

Foreman and Daniel [30] 3 0–0 0–18 82–100 48–56 14–31 23–42 18.1–31.5 13.6–16.8

Sridharan et al. [105] 15 0–0 5.0–60 40–95 43–123 22–50 21–100 20.4–49 10.2–16

Al-Khafaji [5] 88 0–0 1.0–52 48–99 18–66 12–29 6.0–39 9.0–26 14.6–20.3

Benson and Trast [14] 13 0–8 6.0–48 52–94 24–70 12.0–32 11.0–46 10–24 15.4–20.4

Mohammad et al. [65] 8 0–0 0–100 0–100 19–93 12.0–29 4.0–64 8.9–27.7 14.2–19.4

Burroughs [17] 7 0–0 5.0–94 6.0–95 16–67 16–27 0–40 7–20.9 15.3–21.4

Albrecht and Benson [6] 8 43–94 18–67 7.0–35 11.0–46 9.0–21 15.5–20.6

Gurtug and Sridharan [33] 5 0–0 1–13 87–99 28.2–98 21.1–40 7.1–58 18.6–32 12.5–16.9

Miller et al. [64] 4 0–29 0–56 44–98 16–83 9–23 7.0–60 9.0–29.1 14.7–20

David Suits et al. [20] 3 0–0 2.0–56 44–98 16–81 9–26 7.0–55 9–25 15.3–20.5

Luczak-Wilamowska [59] 5 0–0 7.0–87 13–93 20.6–48.6 16.9–21.3 2–27.3 11.1–23.3 18.1–20.2

Sridharan and Nagaraj [104] 10 0–0 0–36.5 63.5–100 37–73.5 18–51.9 9.5–37.9 16.2–44.4 11.1–17.9

Daita et al. [19] 9 0–0 10.0–50 50–90 24–48 15–21 9.0–29 12.5–20.5 16.2–19.1

Bellezza and Fratalocchi

[13]

15 0–0 0–79 21–100 31–102 18.5–39 7.0–63 11.0–29 13.5–18.8

Olmez [75] 107 0–97 1.0–79 1.0–49 17–83 8.0–43 5.0–40 6.0–32 12.7–22.6

Horpibulsuk et al. [42] 9 0–13.3 0–44.3 55.7–100 39.7–256.3 6.1–48.2 17.2–217.1 15.6–33.8 12.8–17.6

Sivrikaya [98] 44 0–41 1–49.0 41–99 28–74 12–39 12–46 13–40 11.3–18.8

Hong [40] 92 0–11 0–46 53–100 25–48 13–29 10.0–24 10.0–22 14.7–19.9

Liang et al. [58] 2 5.3–5.9 25.3–38.4 56.3–68.8 27.8–30.8 8–12.4 18.4–19.8 14.2–16.5 17.69–17.74

Gunaydin [31] 126 0.1–67.1 15.5–71.3 13–83.3 23.1–56.8 13.7–29.8 7.4–33.3 7.6–26 14–20.5

Sawangsuriya et al. [92] 7 0–3.9 3.1–59 41–96.4 26–85 14–33 9.0–52 13.5–27.5 14.4–18.5

Demiralay and Guresinli

[21]

43 0–0 15–67 33–85 20.8–58.8 14–38.2 4.7–36.2 12.8–32.4 13–18.8

Yildirim and Gunaydin

(2011)

124 0–78 0.9–49 10–99.1 20–89 11.0–43 3.0–52 7.2–40.2 11.9–21.4

Bera and Ghosh [15] 5 0–0 0.9–19.6 80.4–99.1 30.8–213.3 17.1–44.5 10.3–168.8 15.4–30.1 12.9–17.5

Berney et al. [16] 7 0–52.8 4.9–92 3.1–95.1 15–73 12–24 3.0–49 6.8–24.6 13.5–21.4

Nerea [70] 130 0–35 0.9–47 34–99.1 24–106 15–46 6.0–71 14–42 10.9–19.4

Sotelo [103] 5 0–65.5 2.7–71.9 4.3–97.3 22–86 11.0–33 9.0–53 5.7–25.9 15–23.1

Isik and Ozden [47] 200 0–80 10.0–96 1.0–85 24.8–58.3 15.4–26.6 10.7–37.4 6.2–19.7 16.4–22.1

Ramasubbarao and Sankar

[85]

25 0–24 0–40.1 52–100 24.6–94 11.9–36 8.3–58 12.3–35.4 12.3–18.1

Ibrahim [46] 4 0–0 17–24 76–83 38.3–46.4 18.7–21.2 17.9–27 17–17.8 15.8–16.8

Sathawara and Patel [91] 40 0–24 8.0–81 13–92 18–47 12–30 10–29 8.0–19 15.8–21.1

Mejias-Santiago et al. [63] 16 0–41.3 2.5–92 3.1–97.5 21–109 10.0–72 8.0–49 8.0–62 8.7–20.2

Abasi [1] 26 0–0 0–32 68–100 22.5–70 18–31 1.5–42 15–25.7 14.5–18.1
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Table 1 (continued)

Authors Data ranges

No.

data

Gravel

(%)

Sand (%) Fines (%) LL (%) PL (%) PI (%) OMC

(%)

MDD (kN/

m3)

Kolay and Baser [55] 8 0–0 24.2–80.2 19.8–75.8 30–61.6 16.7–32.5 6.5–32.6 9.8–23.7 14.9–21.5

Ören [78] 9 0–0 3.4–35.1 64.9–96.6 33.4–92.4 17.5–42.3 15.9–50.1 20–36.3 11.8–16.2

Raju et al. [84] 5 0.2–18.5 8.2–63.2 18.3–91.6 30–56 15–20 10.0–41 9–16 17.2–18.4

Talukdar [107] 16 0–4.7 13.4–36.5 58.8–83.2 28.5–36.8 20.2–29 6.1–8.5 14.2–15.8 15.9–17.4

Shirur and Hiremath [95] 20 0–9 22–89 4.0–77 22–66 13–40 10.0–35 10.5–26 14.2–22.6

Wells [113] 43 0–64 2.5–94.4 3.1–97.5 15–109 10.0–72 3.0–53 7.6–27.3 13.5–22.2

Dway and Thant [25] 6 0–0 7.7–22.2 77.8–92.3 41–70.1 16–21.5 25–48.8 18.5–20.6 16.3–17.1

Ng et al. [72] 9 0–26 8–46 34–91 41–53 26–34 15–19 13.5–24 14.7–17.4

Nagaraj et al. [68] 42 0–2 2–80 20–98 24–115 17.4–45.3 3.7–75.6 9.5–36.8 12.6–18.3

Mujtaba [66] 120 0–5 49–100 0–47 18–22 15–18 4–4 11–18 14.8–19.5

Korde and Yadav [56] 8 0–0 0.8–50.4 49.6–99.2 28.9–73 18.1–32 6.2–41 10.9–24.4 16–20

Nesamatha and Arumairaj

[71]

20 0–20.3 4.5–43.9 35.9–95 29–77.8 18.2–30 10–55.5 12.0–30 14–19.1

Kaushal and Guleria [54] 3 0–0 9–17.7 41.5–82.3 38.2–48.7 18.2–26.6 20–22.1 17.2–19.6 16.4–18.8

Parkoh [80] 168 0.6–52 11–86.5 8–83.4 19–64 9.5–39.2 0.7–41 8.8–24.5 16.1–24.3

Hussain [45] 52 0–0 7.6–71.6 28.4–92.4 33.8–87.5 15.4–32.3 16.5–55.2 14–24 15.2–20

Winta [115] 124 0.4–5.2 11–34.1 41–97.7 31–50 19–37 3–25.4 15–35 11.9–18.3

Ahmed et al. [4] 3 0–0 3.0–6.0 94–97 38–40 13–14 24–26 13.1–13.5 14.1–15.8

Ali and Fakhraldin [8] 5 0–6.3 76.8–93.6 4.8–23.2 21–29 11.0–15 10.0–14 8.6–13.2 17.5–19

Setiawan [94] 30 0–73.2 1.2–100 0–98.8 20.5–61.4 15.5–41.2 1.9–28.1 12.8–31.8 6.6–18.4

Han and Vanapalli [36] 3 0–0 3–28 72–97 19.6–48 13.6–22 6–26 13.5–23 16.2–19.2

[89] 40 0–1.1 1.5–47 53–98.5 20.4–56.2 10–29.9 3.9–28.4 14.5–31 13.8–18.9

Zhang and Frederick [117] 13 0–0 0–0 100–100 30.5–328.2 19.7–33.5 10.8–294.7 17.5–38.4 11.7–16.6

Tsegaye et al. [109] 56 0.3–9.3 0.6–27.4 68.7–96.7 45–97 22–41 22–58 15.5–37 12.3–17.3

Bekele [12] 31 0–75.8 1.4–8.5 16–99.6 51–106 24–43 21–73 26.3–41 11.7–14.8

Mazari and Nazarian [62] 5 0–8 3.0–73 27–97 23–86 11.0–33 12.0–53 9.4–25.9 15.1–19.6

Sen and Pal [93] 7 0–0 6.6–56.5 43.5–93.4 23–41.7 14.9–24.7 5.4–17 14–22.1 13.9–18

Karakan and Demir [52] 20 0–0 0–66.4 33.6–100 27.5–158.2 18.3–66.5 4.1–91.8 17.5–47.2 11–16.1

Adeoye et al. [3] 4 1–7 41–58 40–52 35–50 19.2–27.5 15.8–26.6 16.5–23.5 15.8–16.9

Taha et al. [106] 6 0–0 32.5–56.6 43.4–67.5 37.8–87.2 17.7–28 17–69 14.8–24.8 14.4–18.1

Saran [90] 13 0–0 3.6–18.9 81.1–96.4 27.3–61.4 19.6–29 7.3–33 16.5–24.5 14.6–17.7

Soltani et al. [102] 4 0–0 1.0–31 69–99 44–78 18–28 22–57 16–25 14.6–16.4

Ratnam and Prasad [87] 8 1.2–9.2 14.9–63.5 35.4–78.7 33–81 17–25 8.0–60 14–17 17.9–19.5

Pillai and Vinod [81] 25 0–0 0–60 40–100 23–227 14.7–39.7 4.0–47 12–29 13.2–18.5

Ogbuchukwu et al. [74] 8 0–2.9 5.2–37 62.1–94.8 63.1–77.4 29.3–37.7 33.6–46.5 17.7–27 13.7–17.2

Hussain and Atalar [44] 8 0–0 17.7–67.8 32.3–82.3 43.2–76.8 18–25.7 22.9–51.1 15.5–22.5 15.6–19.3

Arshid and Kamal [10] 15 0–4.8 2–25.3 72.7–96.4 25.5–33.6 16.7–20.6 7.4–16.1 11.8–15.6 17.9–18.9

Machado et al. [60] 17 0–9 28–82 17–72 25–91 15–41 10.0–50 10.4–29.6 13.8–19.2

Di Sante [22] 7 0–3 1–16 84–99 40–63 20–30 18–37 16–21 16–18.2

Fondjo et al. [29] 15 1.1–16.1 15.9–44 49.5–83 40.3–78.9 17.8–25.3 19.2–56.7 17.2–27.8 15.7–19.6

Hassan et al. [38] 30 0–7 7.0–26 72–93 27–32.3 17–22.6 4.9–12.4 11–13 18.9–19.6

Nagaraju et al. [69] 10 0–25 35–61 20–58 23–42 18–23 5–19 8.3–18 17.3–20

Nwaiwu and Mezie [73] 20 0–8 56.4–80.2 19.8–40.7 20.9–51.3 8.6–32.6 6.5–21 11.2–17.5 16.8–19.5
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observed and predicted data (higher a20 – index) and a

higher R2 value with a lower RMSE, Objective (OBJ),

MAE, and SI values (Figs. 5, 6, 7, 8, 9, 10, 11, 12).

Complexity analysis of Multiple Linear Regression

(MLR) is relatively straightforward compared to more

complex models like neural networks. MLR is a simple,

linear modeling technique to establish relationships

between dependent and multiple independent variables.

Here are the key aspects to consider when analyzing the

complexity of an MLR model:

Input Parameters Output Parameters

G, S, F, LL, PL, PI OMC, MDD

Data Analysis

Data Splitting

70% Training, 30% Testing

Modeling

LR 

NLR 

MLR

ANN

Data Collection 

Evaluation of Developed Models

R2, RMSE, MAE, a20-index, OBJ, SI

Sensitivity Analysis

R2, RMSE, MAE,

Fig. 1 The procedure of the

study by a flow chart diagram
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5.1 Model complexity

MLR models are linear, assuming a linear relationship

between the dependent and independent variables. This

simplicity contributes to low model complexity.

The complexity of MLR, LR, and NLR models increa-

ses with the number of independent variables (features)

included in the model. Adding more components can lead

to a more complex model.

Fig. 2 Matrix Plot between the input parameters and the compaction characteristics
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Each independent variable has a coefficient (weight)

associated with it in an MLR model. The number of

independent variables determines the total number of

parameters in the model. As the number of independent

variables grows, so does the number of model parameters.

MLR, LR, and NLR can become more complex if

interactions (cross-product terms) or higher-order terms

(quadratic or cubic terms) are included in the model. These

additions increase the number of parameters and model

complexity.

Increasing model complexity by adding more features or

terms can lead to overfitting. Overfitting occurs when the

model fits the noise in the data rather than the underlying

patterns. Complexity should be carefully balanced to avoid

overfitting. Proper variable selection is crucial to managing

complexity. Including irrelevant or redundant variables can

increase model complexity without improving predictive

accuracy.

G 

(%) 

S 

(%) 

F 

(%) 

LL 

(%) 

PL 

(%) 

PI 

(%) 

OMC 

(%) 
MDD 

(kN/m3)

G (%) 1 

S (%) 0.08 1.00

F (%) -0.65 -0.81 1.00

LL (%) -0.08 -0.21 0.21 1.00

PL (%) -0.19 -0.24 0.30 0.49 1.00

PI (%) -0.04 -0.17 0.16 0.97 0.29 1.00

OMC 

(%) 
-0.31 -0.36 0.46 0.40 0.82 0.22 1.00

MDD 
(kN/m3)

0.45 0.41 -0.58 -0.40 -0.71 -0.26 -0.85 1 

Fig. 3 Correlation Matrix

between input and output

parameter
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Fig. 4 Normal distribution of

the compaction characteristics
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Techniques like L1 (Lasso) and L2 (Ridge) regulariza-

tion can be applied to penalize large coefficient values to

control model complexity and reduce overfitting.

Simplicity in an MLR model can enhance its inter-

pretability. Complex models with numerous variables and

interactions can be challenging to interpret.

MLR models are computationally efficient and require

minimal memory and processing power resources, making

them suitable for large datasets.

Model complexity should be balanced with model per-

formance. Evaluation metrics like R-squared (R2), adjusted

R-squared, and RMSE can help assess model fit and

complexity.

Multiple Linear Regression is a relatively simple and

interpretable modeling technique. Its complexity primarily

depends on the number of features and the inclusion of

interactions or higher-order terms. Proper variable selec-

tion and regularization techniques are essential for

managing complexity and preventing overfitting. MLR

suits situations where a straightforward linear relationship

between variables is sufficient, and model interpretability is

a priority.

MLR is straightforward, interpretable, and computa-

tionally efficient. It is well-suited when you clearly

understand the relationships between variables and want a

simple model that can provide insight into how each

independent variable affects the dependent variable.

NLR is employed when the relationship between vari-

ables is nonlinear, meaning that the effect of an indepen-

dent variable is not constant but varies across the range of

the variable.

NLR allows more flexibility in modeling complex,

nonlinear relationships. It can capture relationships that

MLR cannot. NLR can provide more accurate predictions

when the data suggests a nonlinear relationship.

LR is a simplified form of MLR with only one inde-

pendent variable. It’s used when you want to model the

relationship between a dependent variable and a single

independent variable linearly.

Why Use LR: LR is helpful when you’re interested in

understanding the impact of a single variable on the

dependent variable. It’s a basic and interpretable model for

simple relationships.

ANNs are used when dealing with complex, nonlinear

relationships involving many independent variables. ANNs

can capture intricate patterns and interactions within the

data.

Researchers and data scientists often start with simpler

models like MLR or LR to understand the data and

establish a baseline. If the relationships are nonlinear or

involve complex interactions, NLR or ANN might be more

appropriate. Model selection is often an iterative process

involving testing multiple models to determine which best

fits the data and produces accurate predictions.

5.2 Linear regression model

The linear regression model (LR) [7, 31, 32, 34, 35, 44], as

demonstrated in Eq. (1), is the most common technique for

predicting the compaction characteristics of soils:

OMC; MDD ¼ a þ bX ð1Þ

A and b are constants, and x might be one of the G, S, F,

LL, PL, or PL. The previous formula does not include the

combination of other variables that might affect OMC and

MDD, including particle size and soil plasticity. Equa-

tion (2) is presented to combine all different parameters

and factors that might influence OMC and MDD to obtain

more reliable scientific findings.

OMC; MDD ¼ a þ bG þ cS þ dF þ eLL þ fPL þ gPI

ð2Þ

where G is gravel content (%), S is sand content (%), F is

fine content (%), LL is the liquid limit, PL is the plastic

limit, and PI is the plasticity index.

Moreover, the model parameters are a, b, c, d, e, f, and

g. All variables can be changed linearly. Hence Eq. (2) can

be considered an expansion of Eq. (1). This combination

might not always be the case as all factors are unlikely to

affect the compaction characteristics and interact with one

another. Consequently, the model should be updated often

to accurately estimate the OMC and MDD [45, 76, 99].

Table 2 Statistical parameters

for input and output variables
Nos. Variables Min Max Mean Variance SD Skewness Kurtosis

1 G (%) 0 97 7.65 234.79 15.31 2.727 7.84

2 S (%) 0 100 27.13 387.96 19.7 0.745 0.02

3 F (%) 0 100 65.18 670.47 25.9 -0.59 -0.67

4 LL (%) 14.5 495 47.8 1647.65 40.89 6.89 59.12

5 PL (%) 1 119 22.52 70.8 9.732 2.59 16.78

6 PI (%) 0 449 25.35 1373.98 37.04 7.75 70.56

7 OMC (%) 5.7 79.3 18.54 53.02 7.28 1.83 7.29

8 MDD (kN/m3) 4.41 31 16.99 5.14 2.269 -0.529 2.3
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5.3 Nonlinear regression model

Generally, to develop a nonlinear model, the following

Eq. (3) can be applied [39]. To forecast the OMC and

MDD, the connection among various variables in Eqs. (1)

and (2) can be expressed in Eq. (3):

OMC; MDD ¼ a þ bðGÞc þ dðSÞe þ fðFÞg þ hðLLÞi

þ jðPLÞk þ lðPIÞm ð3Þ

where G stands for gravel content (%), S stands for sand

content (%), F stands for fine content (%), LL stands for

liquid limit, PL stands for plastic limit, and PI stands for

plasticity index. Moreover, the model parameters are a, b,

c, d, e, f, g, h, I, j, k, l, and m, calculated based on the least

square method.
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Fig. 5 Comparison between
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model: training data and testing

data
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5.4 Multiple linear regressions

The MLR, also a regression procedure, can be employed

when the expected variable has a parameter greater than

two stages. MLR is a statistical approach that is compa-

rable to multiple linear regressions.

Equation (4) can be utilized to find the variance among

predictable and independent variables.

OMC; MDD ¼ aðGÞbðSÞcðFÞdðLLÞeðPLÞfðPIÞg ð4Þ

If soil is purely coarse-grained (F% = 0) or fine-grained

(G% ? S% = 0), Eq. (4) cannot be applied to forecast the

compaction characteristics. Therefore, there is a limitation

in applying this model as it cannot represent the real for-

mation of the soil. The least-square method was imple-

mented to find the parameters (a, b, c, d, e, f, and g) and

model variables.

The datasets are divided into two groups for the above

models: Training and Testing. 70% of the datasets are used

for training, while 30% go to the testing phase.
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5.5 ANN model

ANN is a robust simulation software developed for data

analysis and computing to process and analyze information

similarly to a human brain. Construction engineering fre-

quently uses this machine learning method to forecast the

future behavior of numerous numerical issues [110, 111].

The ANN model has three primary layers: input, hidden,

and output. Depending on the intended problem, each input

and output layer may consist of one or more layers. The

hidden layer is often extended for two or more layers. The

objective of the designed model and the data collected

often decide the input and output layers, while the rating

weight, transfer function, and the bias of each layer toward

other layers determine the hidden layer. Based on a com-

bination of proportions, weight/bias, and various parame-

ters, including (G, S, F, LL, PL, and PI) as inputs, a multi-

layer feed-forward network is constructed, and output

ANN here is either the OMC or MDD. For designing the

network architecture, no standard approach is available.
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The number of hidden layers and neurons is determined

based on the trial and error test. The prime goal of the

training process of the network is to achieve the optimized

number of iterations (epochs) from which the minimum

mean absolute error (MAE), root means square error

(RMSE), and the high R2-value are provided. Several

studies have examined the influence of iteration on

reducing the MAE and RMSE. In order to prepare for the

designed ANN, the obtained dataset (a total of 2162 data)

has been separated into two groups. Approximately 70% of

datasets were utilized as trained data for training the net-

work. For the testing data, 30% of the overall data was used

for the trained network [34]. The constructed ANN was

trained and tested for several hidden layers to select the

best network structure based on the compatibility of the

predicted compaction characteristics with the obtained

data, for predicting OMC, the best-trained network that

offers the highest R2 and the lowest MAE and RMSE as the

Fig. 8 The architecture of the

used ANN models a OMC and

b MDD
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ANN structure with one hidden layer, eight neurons, and a

hyperbolic tangent transfer function (as illustrated in

Fig. 13, Table 3). As far as the prediction of MDD is

concerned, the best-trained network was three hidden lay-

ers, five neurons, and a hyperbolic tangent transfer

function.

Analyzing the complexity of an Artificial Neural Net-

work (ANN) involves considering several factors related to

its architecture and operation. Below the following is the

breakdown of the key aspects to consider when conducting

a complexity analysis of an ANN:

i. Number of layers: the number of layers in the

network, including input, hidden, and output

layers, significantly impacts complexity. Deeper

networks are generally more complex.

ii. Layer size: the number of neurons or units in each

layer, especially in the hidden layers, affects

model complexity.

iii. Connectivity: the extent of connections between

neurons, also known as the network’s topology,

plays a role in complexity.
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iv. Number of parameters: the number of weights and

biases in the network. The total parameters in an

ANN increase with the number of neurons and

layers.

v. Input features: the dimensionality of the input data

contributes to the complexity. Higher-dimensional

input data require larger networks.

vi. Activation functions: each layer’s choice of acti-

vation functions can influence complexity. Non-

linear activation functions can add to the com-

plexity of the model.

vii. Training algorithm: the algorithm used for training

the ANN can impact complexity. Some training

algorithms, like backpropagation, require more

iterations to converge.

viii. Hyperparameters: the settings of hyperparameters,

such as learning rate, batch size, and dropout rate,

can impact training time and model complexity.

ix. Regularization techniques: techniques like L1 and

L2 regularization can add complexity to the model

by penalizing large weights.

x. Pruning: pruning techniques can reduce complex-

ity by eliminating unnecessary connections and

neurons after training.

xi. Parallelization: distributed training across multiple

GPUs or CPUs can change the complexity of the

training process.

xii. Complexity metrics: several complexity metrics,

like FLOPs (floating-point operations), are used to
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quantitatively measure the computational com-

plexity of ANN models.

xiii. Overfitting: the potential for overfitting increases

with the complexity of the model. Complexity can

lead to the model fitting noise in the data rather

than the underlying patterns.

Equations (5)–(7) display the ANN model’s General

Equation.

From linear node 0:

OMC; MDD ¼ Threshold þ Node 1

1 þ e�B1

� �
þ Node 2

1 þ e�B2

� �
þ � � �

ð5Þ

From sigmoid node 1:

B1 ¼ Threshold þ
X

Attribute*Variablesð Þ ð6Þ

From sigmoid node 2:

B2 ¼ Threshold þ
X

Attribute*Variablesð Þ ð7Þ

5.6 Pseudocode/algorithm
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6 Model assessment tools

The suggested models were evaluated using a variety of

metrics, including coefficient of determination (R2), a20-

index, scatter index (SI), Objective (OBJ), root mean

squared error (RMSE), and mean absolute error (MAE),

which may be calculated using the formulas below:

R2 ¼
Pp

p¼1 yi � yi0ð Þ yp � yp0ð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
p¼1 yi � yi0ð Þ2

h i Pp
p¼1 yp � yp0ð Þ2

h ir
0
BB@

1
CCA

2

ð8Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
p¼1 yp � yið Þ2

p

s
ð9Þ

MAE ¼
Pp

p¼1 yp � yij j
p

ð10Þ

a20 � index ¼ m20

N
ð11Þ

SI ¼ RMSE

y0 ð12Þ

OBJ ¼ ntr

nall

�RMSEtr þ MAEtr

R2
tr þ 1

� �
þ ntst

nall

�RMSEtst þ MAEtst

R2
tst þ 1

� �

þ nval

nall

�RMSEval þ MAEval

R2
val þ 1

� �

ð13Þ

From the formulas above, yp and yi are the expected and

actual values of the path pattern, and yp’ and yi’ are the

averages of the actual and forecasted values. Training,

testing, and validating datasets are tr, tst, and val, respec-

tively; the number of patterns (collected data) in the

associated dataset is denoted as n. In contrast to R2, which

has an optimal value of one, the other evaluating factors

have optimal values of zero. About the SI parameter, a

model performs poorly when it is [0.3, fairly when it is

between 0.2 and 0.3, well when it is between 0.1 and 0.2,

and very well when it is\ 0.1. To assess the effectiveness

of the recommended models, the OBJ parameter was also

used as an integrated performance parameter in Eq. (12).

m20 is the ratio of experimental to the predicted value,

which varies between 0.8 and 1.2, and H is the total

number of data samples. The prime benefit of the a20-

index is that the model predicts values with a deviation

of ± 20% compared to actual values. In order to graphi-

cally show how each model overestimates and underesti-

mates the expected results of OMC and MDD compared to

the actual values from the experiments, positive and neg-

ative error margin lines were added to the model findings.

A positive value is represented for the overestimated per-

centage of OMC and MDD, while a negative value means

the underestimated percentage of OMC and MDD.

7 Results and analysis

7.1 The LR model

Figure 5 exhibits the relation between actual and estimated

OMC and MDD for all training and testing datasets. In

order to develop the model, 2162 data sets have been uti-

lized. Concerning the developed equations, the two plas-

ticity parameters of LL and PI play a substantial role in
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Fig. 11 The OBJ values of a OMC, b MDD for all the models
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determining OMC and MDD. By optimizing the sum of

error squares and the least square approach, which was

performed in Excel using Solver to obtain the ideal value

for the Equation, the present model’s weight of each

parameter on the OMC and MDD was found. The fol-

lowing are the Equations for the LR model with various

weight parameters [Eqs. (13) and (14)]:

OMC ¼ 0:96 � 0:05G � 0:04S þ 0:03F þ 0:72LL

þ 0:07PL � 0:74PI ð14Þ

MDD ¼ 27:13 � 0:025G � 0:045S � 0:073F � 0:215LL

þ 0:04PL þ 0:216PI

ð15Þ

As seen in the above Equations, among other input

parameters, PI can have more influence on lowering the

value of OMC; on the contrary, MDD value declines with

the increase of LL. This seems to be consistent with the

experimental findings reported in the literature that soil

with higher LL has a lower MDD value. The obtained R2,

RMSE, and MAE assessment parameters for the OMC are

0.82, 3.99, and 2.98%, respectively. For the MDD, R2,

RMSE, and MAE are 0.76, 1.05, and 0.84 kN/m3,

respectively. Furthermore, as shown in Figs. 11 and 12, the

current model’s OBJ and SI values for OMC for the

training dataset are 3.69 and 0.23, respectively, while these

values are 1.07 and 0.062, correspondingly, for MDD.
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7.2 NLR model

The NLR model is another model that might be interesting

to examine for its performance among other models. Fig-

ure 6a, b depict the compaction characteristics values for

predicted and real data obtained from the literature for

training and testing datasets. According to the developed

model, F plays a considerable role in changing the value of

both OMC and MDD. The following are the suggested

formulas for the NLR model with various variable

parameters [Eqs. (15) and (16)]:

OMC ¼ 777:3 þ 2:13ðGÞ�0:213 þ 0:000028ðSÞ�6:31 � 784:6 Fð Þ�0:003

� 0:137 LLð Þ0:93þ0:144ðPLÞ1:38 þ 2 PIð Þ0:47

ð16Þ

MDD ¼ 35:7 � 4ðGÞ�0:046 � 94:4ðSÞ�0:0013 þ 60:8 Fð Þ�0:012

� 0:63 LLð Þ0:83þ23:68ðPLÞ0:077 þ 0:35 PIð Þ0:92
ð17Þ

It should be noted that this equation cannot be used for

pure fine-grained soil since it provides zero OMC and

MDD. In order to overcome this issue, the value of G and S

can be approximated to zero (not zero).
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For OMC, this model’s R2, RMSE, and MAE assess-

ment parameters are 0.79, 4.22%, and 2.72%, respectively,

whereas these values for MDD are 0.69, 1.062, and 0.84

kN/m3 correspondingly. Furthermore, the models’ OBJ for

OMC and MDD is 3.38% and 1.09 kN/m3, respectively.

Moreover, the SI values for OMC and MDD are 0.214 and

0.055, respectively.

7.3 MLR model

The comparison between the real compaction characteris-

tics values from literature and predicted values are illus-

trated in Fig. 7a, b for both phases (training and testing

datasets). The following equation shows that PL is the most

influential parameter affecting the OMC. Changing the PL

value can substantially change the value of OMC. How-

ever, both G and S contents have more influence on MDD.

Equations (18) and (19) can be used to forecast the OMC

and MDD, respectively, for the MLR model with various

variable parameters:

OMC

¼ 0:632�ðGÞ�0:0314ðSÞ�0:0142
Fð Þ0:08

LLð Þ0:04ðPLÞ0:955
PIð Þ�0:0153

ð18Þ

MDD ¼ 39:74�ðGÞ0:01ðSÞ0:01
Fð Þ�0:03

LLð Þ�0:12ðPLÞ�0:12
PIð Þ0:02

ð19Þ

The R2, RMSE, and MAE assessment parameters for

this model are 0.81, 4.098%, and 3.02%, respectively, for

OMC, while, for MDD, these are 0.66, 1 kN/m3, and 0.8,

respectively. Furthermore, the current model’s OBJ for

OMC and MDD are 3.78 and 1.15, respectively. In addi-

tion, the SI values of the training dataset for both OMC and

MDD are 0.239 and 0.054, respectively.

7.4 ANN model

The authors investigated several hidden layers, neurons,

momentum, learning rate, and iterations to achieve high

ANN efficiency. Tables 3 and 4 indicate several ANN

architectures examined to obtain the most optimum ANN

model for OMC and MDD. Consequently, it was detected

that when the ANN contains one hidden layer, eight neu-

rons on the left side (as shown in Fig. 8a), 0.1 momentum,

0.2 learning rate, and 2000 iterations, the OMC is best

predicted. However, MDD was best predicted with three

hidden layers and five neurons on each side (Fig. 8b). The

comparison of both predicted and real values of the com-

paction characteristics are demonstrated in Fig. 9a, b for

both phases (training and testing datasets). The ANN

model performs better in predicting OMC value than other

models. Nevertheless, compared to the other models, the

ANN model only performed better in providing R2 value in

predicting MDD. Regarding the OMC, the ANN model’s

R2, RMSE, and MAE assessment parameters are 0.92,

3.51, and 2.574%, respectively. However, for predicting

MDD, R2, RMSE, and MAE values are 0.86, 1.164 kN/m3,

and 2.31 kN/m3, respectively. Moreover, the present

model’s OBJ for OMC and MDD are 3.29 and 2.03,

respectively. Further, SI values for the training dataset for

both OMC and MDD are 0.202 and 0.068, respectively.

8 Model comparisons

In order to categorize the effectiveness of the constructed

models, six different quantitative tools, MAE, R2, RMSE,

OBJ, a20-index, and SI, were used. Figures 13, 14, and 15

illustrate R2, RMSE, and MAE, respectively.

Table 3 The tested ANN

architecture for OMC
No. of hidden layers No. of neurons in hidden layers R2 MAE (%) RMSE (%)

The left side The middle The right side

1 5 0 0 0.9141 2.611 3.6104

1 6 0 0 0.9155 2.6312 3.5765

1 7 0 0 0.9115 2.6715 3.6542

1 8 0 0 0.9187 2.5746 3.5139

1 9 0 0 0.917 2.5828 3.5415

1 10 0 0 0.9151 2.6054 3.5811

2 6 0 6 0.9081 2.7394 3.7289

2 7 0 7 0.9052 2.8017 3.8289

2 8 0 8 0.9039 2.8266 3.8407

2 10 0 10 0.9028 2.8214 3.8718

3 7 7 7 0.9047 2.6454 3.7887

3 8 8 8 0.9002 2.6975 3.8701

3 10 10 10 0.8979 2.7101 3.911
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As far as the OMC is concerned, according to the fig-

ures, the ANN outperforms LR, NLR, and MLR models as

it has a higher R2 and lowers RMSE and MAE values. To

assess the reliability of the models, a new engineering

index, the a20—index, was used. The advantage of the

proposed a20 – index is that it states the number of samples

that match expected values with a variance of less than

20% from experimental values [11]. Concerning this index,

Fig. 10a compares the predicted and measured OMC of the

models. The figure indicated that NLR provided a higher

a20- index value of 0.73, and it was 0.7 for the ANN

model, which means that 73% of samples with the pre-

dicted values have deviated 20% from the actual values of

OMC. Thus, the NLR model predicts OMC with the least

percentage of error. The OBJ for all the models is shown in

Fig. 11. The OBJ values of LR, NLR, MLR, and ANN

models are 3.69, 3.38, 3.78, and 3.29, respectively. Even

though the OBJ values for all the models are very close, the

ANN model has the least OBJ value compared to the

others. Concerning all the assessment tools, the ANN

approach provides more reliable outcomes and accurately

forecasts OMC.

The SI values are exhibited in Fig. 12 for the training

and testing phases. Figure 12a shows that the testing pha-

ses for LR, NLR, and MLR are between 0.2 and 0.3,

indicating fair performance. Nevertheless, the SI value for

the ANN model is on a merge of good performance. This

contradicts the other phases, as LR, NLR, and MLR per-

form well. In light of these analyses, although all models

can, to some extent, be used to forecast the OMC from

physical soil properties, the ANN models are proven to

have a distinct performance.

Concerning the prediction of MDD, in Fig. 10b, all the

models provide a distinction prediction of MDD, and more

than 99% of the predicted samples were within � 20%

deviation from the actual data. ANN model provided a

slightly higher a20-index. Regarding Fig. 11b, the OBJ

values of LR, NLR, MLR, and ANN are 1.07, 1.09, 1.15,

and 2.03, respectively. LR model has the least OBJ com-

pared to the other models. In this regard, the LR, MLR, and

ANN somewhat perform well in predicting MDD.

According to Fig. 12b, the SI values for LR, NLR, MLR,

and ANN models are 0.062, 0.055, 0.057, and 0.068,

respectively. These values show that all the models are

excellent at predicting MDD.

Regarding all the statistical assessment criteria, all the

statistical assessment criteria, all the models perform well

in predicting MDD, and the percentages of errors are less

than 20%. However, the ANN model provides a higher R2

value, and LR can still be a reliable model to predict MDD

with an R2 value of 0.76.

9 Sensitivity analysis

In order to obtain the evident influence of each parameter

on the OMC and MDD, sensitivity analyses were per-

formed for the models. The MLR model was selected since

the value of all input parameters is greater than zero; this

can provide the real contribution of each parameter in the

model and the influence of each parameter on OMC and

MDD. All training data were combined throughout these

analyses, and a single input variable was excluded each

time. The RMSE, R2, and MAE were individually deter-

mined so that the influence of each parameter could be

observed. Tables 5 and 6 indicate the variation of evalua-

tion criteria for predicting OMC and MDD, respectively.

Table 4 The tested ANN architecture for MDD

No. of hidden layers No. of neurons in hidden layers R2 MAE (kN/m3) RMSE (kN/m3)

The left side The middle The right side

1 5 0 0 0.8543 0.9175 1.2119

1 6 0 0 0.8499 0.9109 1.2194

1 7 0 0 0.8563 0.8991 1.198

1 8 0 0 0.8585 0.8806 1.183

1 9 0 0 0.8583 0.8827 1.185

3 5 5 5 0.8618 0.8689 1.1647

2 6 0 6 0.8574 0.8741 1.1769

3 6 6 6 0.858 0.8822 1.1809

3 8 8 8 0.86 0.87 1.1626

3 10 10 10 0.8572 0.892 1.1929

2 8 0 8 0.8604 0.88 1.1744

11362 Neural Computing and Applications (2024) 36:11339–11369

123



The most efficient input parameter is the one that can

remarkably change the values of statistical tools (increas-

ing RMSE, MAE, and decreasing R2). Table 5 indicates the

outcomes of the sensitivity study on predicting OMC. The

findings show that PL is the most dominant parameter

influencing the value of OMC. The R2 value of the model

changed from 0.808 to 0.615 when excluding PL. On the

contrary, the value of RMSE has increased from 4.098 to

5.8.06. Table 6 clarifies the influence of a single input

parameter on MDD. When removing G, the R2 value

declined from 0.66 to 0.62; however, the values of RMSE

and MAE increased to 1.052 and 0.83, respectively.

Therefore, PL can be considered a dominant input

parameter that significantly influences the value of OMC,

while, for quantifying MDD, G plays a remarkable role.

10 Recomandations for future work

i. Refinement of model integration: explore methods

to integrate different models (ANN, NLR, LR,

MLR) to harness the strengths of each model in a

combined predictive approach. Ensemble tech-

niques or hybrid models could potentially yield
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more accurate and robust predictions by leverag-

ing the unique capabilities of individual models.

ii. Additional input parameters: consider expanding

the input parameters beyond the six currently

utilized factors. Incorporating other relevant soil
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Fig. 15 The MAE value of

a OMC and b MDD for all the

four models

Table 5 Sensitivity analysis for

MLR model on OMC
Nos. Input parameters Removed parameter R2 MAE RMSE Ranking

1 G, S, F, LL, PL, PI 0.808 3.02 4.098 -

2 S, F, LL, PL, PI G 0.798 3.12 4.202 2

3 G, F, LL, PL, PI S 0.807 3.02 4.106 4

4 G, S, LL, PL, PI F 0.803 3.085 4.147 3

5 G, S, F, PL, PI LL 0.808 3.02 4.099 5

6 G, S, F, LL, PI PL 0.615 3.41 5.806 1

7 G, S, F, LL, PL PI 0.808 3.02 4.098 6
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properties or environmental factors that might

influence compaction characteristics could

enhance the models’ predictive capabilities.

iii. Data augmentation and validation: continuously

collect new data and augment the existing dataset

with additional samples to improve the models’

training and validation. This can help ensure the

models remain accurate and effective when

applied to a wider range of soil variations.

iv. Regional variability analysis: investigate how the

predictive models perform across regions with

varying soil compositions and climates. Under-

standing how these models generalize to geo-

graphical areas can enhance their applicability and

reliability in diverse construction contexts.

v. Dynamic modelling for real-time applications:

develop dynamic models that can continuously

adapt and predict compaction characteristics based

on real-time data from sensors embedded in

construction equipment. This could facilitate on-

site decision-making and optimize the compaction

process as it progresses.

vi. Incorporation of advanced ai techniques: explore

the integration of advanced artificial intelligence

techniques, such as deep learning or reinforcement

learning, to further improve the predictive accu-

racy of the models. These techniques might

capture more complex nonlinear relationships

within the dataset.

vii. Field validation and case studies: conduct field

validation studies where predictions from the

models are compared against actual on-site com-

paction results. Case studies in real construction

scenarios can provide practical insights into the

models’ effectiveness and help refine their appli-

cation in practical settings.

viii. Optimization algorithms: develop optimization

algorithms that utilize the predictive models to

suggest the most efficient and effective combina-

tions of soil properties to achieve the desired

compaction characteristics, considering both

resource utilization and construction timelines.

11 Conclusions

Developing a predictive model to anticipate Optimum

Moisture Content (OMC) and Maximum Dry Density

(MDD) is crucial for leveraging fundamental soil charac-

teristics such as soil gradation and plasticity. These

parameters are pivotal in gauging soil suitability, simpli-

fying the selection process from various soil sources, and

circumventing the requirement for standard Proctor tests.

An analysis of 2162 datasets, encompassing Gravel (G),

Sand (S), Fine content (F), Plastic Limit (PL), Liquid Limit

(LL), and Plasticity Index (PI) parameters, unveiled sig-

nificant revelations:

Several models—Linear Regression (LR), Nonlinear

Regression (NLR), Multilinear Regression (MLR), and

Artificial Neural Networks (ANN)—were devised to pre-

dict OMC and MDD. Evaluation using diverse metrics

highlighted the superior performance of the ANN model.

When it came to predicting OMC, it had higher R-squared

(R2) values and lower Objective (OBJ), Root Mean

Squared Error (RMSE), Scatter Index (SI), and Mean

Absolute Error (MAE) values.

All models demonstrated robust predictive accuracy for

OMC and MDD, with SI values below 0.2.

The ANN model particularly excelled in predicting

OMC, displaying an OBJ value approximately 12% lower

than LR, 2.7% lower than NLR, and 15% lower than MLR.

Conversely, for MDD prediction, the ANN model pre-

sented a higher OBJ value compared to LR, NLR, and

MLR.

Although the ANN model showcased the highest R2

value, LR, NLR, and MLR models also exhibited com-

mendable R2 values, hovering around 0.8, signifying reli-

ability in predicting OMC based on parameters G, S, F, PL,

LL, and PI. The LR model’s R2 value (0.78) for MDD

implies relative reliability in this context.

The model equations underscore the importance of

Plastic Limit (PL) and Liquid Limit (LL) in projecting

OMC, while the proportions of Gravel (G) and Sand

(S) emerge as pivotal factors in determining MDD.

Table 6 Sensitivity analysis for

MLR model on MDD
Nos. Input parameter Removed parameter R2 MAE RMSE Ranking

1 G, S, F, LL, PL, PI – 0.66 0.8 1 –

2 S, F, LL, PL, PI G 0.62 0.8314 1.052 1

3 G, F, LL, PL, PI S 0.6538 0.802 1.0155 4

4 G, S, LL, PL, PI F 0.6357 0.8277 1.041 2

5 G, S, F, PL, PI LL 0.6561 0.805 1.012 5

6 G, S, F, LL, PI PL 0.6487 0.803 1.023 3

7 G, S, F, LL, PL PI 0.6593 0.8005 1.007 6
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Sensitivity analyses identified Plastic Limit (PL) as the

primary influencer in predicting OMC, while Gravel

(G) holds substantial sway in quantifying MDD.

While the ANN model outshines others in OMC and

MDD prediction, LR models might offer more practicality

owing to their transparent equations grounded in soil

physical properties. This contrasts with the ANN’s inher-

ently complex ‘‘black box’’ approach.
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