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Abstract
Reinforcement learning (RL) and imitation learning (IL) are quite two useful machine learning techniques that were shown

to be potential in enhancing navigation performance. Basically, both of these methods try to find a policy decision function

in a reinforcement learning fashion or through imitation. In this paper, we propose a novel algorithm named Reinforcement

Imitation Learning (RIL) that naturally combines RL and IL together in accelerating more reliable and efficient navigation

in dynamic environments. RIL is a hybrid approach that utilizes RL for policy optimization and IL as some kind of learning

from expert demonstrations with the inclusion of guidance. We present the comparison of the convergence of RIL with

conventional RL and IL to provide the support for our algorithm’s performance in a dynamic environment with moving

obstacles. The results of the testing indicate that the RIL algorithm has better collision avoidance and navigation efficiency

than traditional methods. The proposed RIL algorithm has broad application prospects in many specific areas such as an

autonomous driving, unmanned aerial vehicles, and robots.

Keywords Reinforcement learning � Imitation learning � Autonomous navigation � Dynamic environments �
Deep neural networks � Q-learning

1 Introduction

One of the interesting and challenging problems in the past

decade is autonomous navigation within dynamic envi-

ronments. A possible way to consider such an issue lies in

learning an optimal policy for navigation using reinforce-

ment learning (RL) as a trial-and-error tool. However, the

RL requires a large number of interactions with the envi-

ronment and is time and computationally expensive [1]. On

the contrary, imitation learning (IL) provides the agent

learning from the demonstrated policies, and it might even

contribute to better general performance due to fewer

interactions with the environment [2]. This is, however,

dependent on the ability to provide quality professional

data, which might not be available on all occasions.

In an effort to tackle these limitations, solution stake-

holders have proposed the adoption of the fusion of RL and

IL methods in an attempt to design stronger and effectual

autonomous navigation in dynamic environments. The

fused of RL and IL can have the benefit of both approaches

and address their own limitations [3]. The RL can learn

from trial and error and adapt transitions in environments

while IL can learn from prior knowledge and fine-tune the

learning process.

The RL module learns the optimal policy via interac-

tions with the environment using Q-Learning algorithm

with a deep neural network as the policy representation [1].

A mapping representation based on the deep neural net-

work is created in the supervised learning methodology in

the IL module duplicating the successful behaviors [2].

Where the gating mechanism combines the outputs of both

RL and IL modules in the integration module, and hence, it

has a performance that is better than that of any of the other

two modules alone [4].

Work in the past has demonstrated that combining RL

and IL effectively works for various applications. For

example, work by [5] proposes a method based on
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combining RL and IL to learn human robot interaction.

Their approach led to better performance than RL or IL

alone. In particular, in their work, [6] proposed the com-

bination of deep RL and IL for learning policies for robotic

manipulation tasks. In a similar research line, an approach

that combined RL and IL for autonomous driving in urban

environment was developed. Their approach showed

superior performance than using RL or IL alone. Similarly,

in their work, an approach that combined RL and IL for

autonomous driving in urban environment was presented

[7]. Their approach showed better performance than using

RL or IL alone. On the other hand, citetorabi2018genera-

tive proposed a combination of RL and IL technique for

autonomy navigation in unknown environments. Their

approach was also better from that of pure RL or pure IL

techniques.

The RIL algorithm is introduced in this paper as an

extension of prior work done in both reinforcement learn-

ing (RL) and imitation learning (IL), to offer a novel

method of bestowing robustness and efficiency for the

autonomous navigation of dynamic environments [4]. In

this way, combining RL and IL techniques with the RIL

algorithm can transcend limitations of each one, and results

in better performance than what any of them is going to

provide alone [3].

All types of environments ranging from indoor as well

as outdoor are the places where already the RIL algorithm

has been applied, and it is found that the efficiency of

navigation, avoidance of collision, and adaptiveness

toward changing environment of the RIL algorithm are all

getting greatly improved [3, 8, 9]. This approach carries the

power of better independent navigation in dynamic envi-

ronments, key among the demands for robotics, trans-

portation, and others, at efficiency and accuracy instead.

The RIL algorithm may yield excellent results when

used in real-life applications like automated vehicles,

robotics, as well as surveillance systems. This is particu-

larly because the vehicle can learn various ways of over-

coming situations such as operating in varying traffic

patterns [1], environments characterized by sudden

unpredictable pedestrian behavior [2], and under adverse

weather conditions. The learning approach allows for the

ability of RIL algorithm to operate under all the above

scenarios since it learns through a method of trial and error

as well as expert demonstration strategies.

The RIL algorithm therefore has the potential to

enhance the reliability and safety of robotics systems in the

developing application with multi-modal, highly complex

and uncertain environments. In performance of tasks like

pick-and-place operations in manufacturing plants for

instance, robots have to move through cluttered and

crowded environments [2]. The RIL algorithm automates

the process of adapting these robots with environment

changes and learning from expert demonstrations about

how to perform new tasks so that their tasks are more

optimizable and dependable.

In addition, the RIL algorithm might help in surveillance

systems to detect and track targets within a complex and

dynamic environment. The RIL algorithm is capable of

learning by trial-and-error and expert demonstration to

enhance its ability for recognition of targets as well as

tracking for precision and efficiency.

For the achieving of robust and efficient autonomous

navigation in dynamically environments, RIL algorithm

provides a promising approach. Combining both IL and RL

techniques in the RIL algorithm allow us to overcome such

limitations of different approaches and take advantage of

their complementary nature in a way that outperforms what

any single approach can achieve separately [3, 10]. In the

future, varied kinds of environments and situations can be

used in the use of the RIL algorithm, which includes this

use as pertains to exploring the aspects of improving per-

formance and effectiveness.

The major achievements have been summarized in this

research paper herein as under:-

1. Formulate RIL algorithm capable of adapting itself in

changing scenarios and improving the performance of

navigation in contrast to traditional methods.

2. In case dynamic obstacles are simulated, compare the

performance of the RIL algorithm in a simulated

environment with other navigation algorithms.

3. Provide an insight on effectuality of combining RL and

IL in autonomous navigation task through dynamic

environment with underpinning practical prospect.

The rest of this paper is outlined as follows. Section 2

provides only a brief survey of related works in Rein-

forcement Learning (RL), Imitation Learning (IL), and

maneuvering through different conditions. Section 3 pre-

sents the RIL methodology and description of the used

simulation setting. Section 4 presents the results obtained

from our experiments and discusses the evaluation of the

RIL method with other navigation techniques. Section 5

concludes the paper, highlighting the main contributions

and the possible application of the findings.

2 Literature Review

Reinforcement Learning (RL) and Imitation Learning (IL)

are two machine learning approaches that have demon-

strated significant potential in enhancing autonomous

navigation within ever-changing settings. In this section,

we discuss the pertinent research on RL, IL, and maneu-

vering in dynamic environments.
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Reinforcement Learning (RL) is a form of learning in

which an agent acquires knowledge about interacting with

an environment to optimize a reward signal. Through a

trial-and-error process, the agent adjusts its actions based

on the rewards it obtains. RL has found extensive appli-

cations across a range of fields, such as robotics, gaming,

and self-driving vehicles. Within the realm of navigation,

RL has been utilized to develop path planning and obstacle

evasion techniques. For instance, [11] introduced a deep

reinforcement learning-driven method for autonomous

obstacle avoidance within changing environments,

demonstrating superior performance compared to conven-

tional avoidance techniques.

Imitation Learning (IL) IL is a type of learning where an

agent learns from expert demonstrations to mimic suc-

cessful behaviors. IL has been widely applied in autono-

mous driving and robotics to learn driving and

manipulation skills. In the context of navigation, IL has

been used to learn optimal trajectories and obstacle

avoidance strategies. For example, [12, 13] used IL to learn

driving policies for autonomous vehicles. They showed

that their approach can learn to navigate in complex sce-

narios and outperform traditional rule-based approaches.

Navigating in dynamic environments presents signifi-

cant challenges as a result of the presence of mobile

obstacles and the environment’s inherent unpredictability.

Conventional navigation methods depend on predeter-

mined rules or custom-built features, which exhibit limited

adaptability to novel circumstances. Both RL and IL have

demonstrated potential for enhancing navigation within

such dynamic settings. For example, [14] proposed a deep

RL-based approach for navigating through crowded envi-

ronments. They showed that their approach can learn to

avoid collisions with other agents and navigate to the goal

efficiently.

Combining RL and IL the combination of RL and IL has

the potential to provide a more robust and efficient

approach to autonomous navigation in dynamic environ-

ments. Several studies have invested and [15] proposed the

‘‘Apprenticeship Learning’’ algorithm, which combines RL

and IL for learning driving policies. They showed that their

approach can learn to drive a car from expert demonstra-

tions and improve over time through RL. Another example

is the work of Ho and [16], who proposed the ‘‘MaxEnt-

IL’’ algorithm that combines RL and IL for learning to

navigate through complex mazes. They showed that their

approach can learn from a small number of expert

demonstrations and improve through RL.

Hybrid Approaches Hybrid approaches that combine

RL, IL, and other machine learning techniques have been

proposed to improve navigation in dynamic environments.

For example, [17, 18] proposed a hybrid approach that

combines RL, IL, and Bayesian optimization for

autonomous driving. They showed that their approach can

learn driving policies efficiently and achieve better per-

formance than traditional approaches.

Transfer Learning is a method that can enhance the

generalizability of RL and IL techniques when applied to

unfamiliar environments and situations. This approach

entails sharing knowledge acquired from one task to

another related task. In terms of navigation, transfer

learning can be employed to transmit knowledge gained in

a source environment to a destination environment. For

instance, [19] introduced a transfer learning-oriented

method for autonomous driving under varying weather

conditions. Their results demonstrated superior perfor-

mance compared to traditional methods and adaptability to

novel weather conditions.

Multi-Agent Navigation Multi-agent navigation is a

challenging task that involves coordinating multiple agents

to achieve a common goal. RL and IL have been applied to

multi-agent navigation to learn coordination and commu-

nication strategies. For example, [20] proposed a deep RL-

based approach for multi-agent navigation in a virtual

game. They showed that their approach can learn to

cooperate with other agents and achieve the common goal

efficiently.

Real-World Applications RL and IL approaches have

been applied to real-world applications such as autono-

mous driving and robotics. For example, Tesla’s Autopilot

system uses RL to learn driving policies from real-world

driving data. Google’s DeepMind has applied RL to

robotics to learn manipulation skills. These real-world

applications highlight the potential of RL and IL approa-

ches for practical applications.

Deep Reinforcement Learning (DRL) is a variant of RL

that employs deep neural networks to estimate the Q-value

function or policy. DRL has found extensive applications

across numerous fields, including autonomous navigation.

For example, [1] introduced the ‘‘Deep Q-Network’’

algorithm, which leverages DRL to develop a driving

policy for a simulated vehicle. Their findings demonstrated

that their method can effectively learn safe and efficient

driving in a virtual setting.

Hierarchical Reinforcement Learning (HRL) Hierarchi-

cal reinforcement learning (HRL) is a type of RL that

involves learning policies at multiple levels of abstraction.

HRL has been applied to various domains, including

robotics and autonomous navigation. For example, [21]

proposed an HRL-based approach for navigating through

complex indoor environments. They showed that their

approach can learn to navigate through multi-level envi-

ronments and achieve better performance than traditional

approaches.

Inverse Reinforcement Learning (IRL) Inverse rein-

forcement learning (IRL) is a type of IL that involves
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learning the reward function from expert demonstrations.

IRL has been applied to various domains, including

autonomous driving and robotics. For example, [22] pro-

posed an IRL-based approach for learning driving policies

from expert demonstrations. They showed that their

approach can learn driving policies that are similar to those

of expert drivers.

Curriculum Learning Curriculum learning is a technique

that involves training a model on simple tasks before

moving to more complex tasks. Curriculum learning has

been applied to various domains, including autonomous

navigation. For example, [23] proposed a curriculum

learning-based approach for navigation in cluttered envi-

ronments. They showed that their approach can learn to

navigate through cluttered environments efficiently and

avoid collisions with obstacles.

Model-Based RL involves learning an environmental

model and utilizing it to enhance the learning procedure.

This approach has found applications in various fields,

including autonomous navigation. For instance, [24]

introduced a model-based RL technique for self-driving

vehicles, demonstrating its ability to efficiently learn

driving policies and outperform conventional methods.

Augmented Reality (AR) is a technology that superim-

poses virtual data onto the real world. AR has been utilized

across numerous domains, including autonomous naviga-

tion. For example, [25] presented an AR-driven method for

pedestrian navigation, which proved to improve the pre-

cision and effectiveness of such navigation.

Machine Learning Hardware, such as graphics pro-

cessing units (GPUs) and field-programmable gate arrays

(FPGAs), have been employed to expedite the learning

processes of RL and IL algorithms. For instance, [26]

proposed an FPGA-centric approach for autonomous

driving, showcasing its ability to achieve real-time per-

formance and decrease energy consumption during the

learning process.

Human-in-the-Loop Learning Human-in-the-loop

learning involves incorporating human feedback into the

learning process of RL and IL algorithms. Human-in-the-

loop learning has been applied to various domains,

including autonomous navigation. For example, [27] pro-

posed a human-in-the-loop RL-based approach for auton-

omous driving. They showed that their approach can learn

driving policies that are more consistent with human

preferences.

Uncertainty Estimation Uncertainty estimation involves

quantifying the uncertainty in the predictions of RL and IL

algorithms. Uncertainty estimation has been applied to

various domains, including autonomous navigation. For

example, [28] proposed a Bayesian neural network-based

approach for uncertainty estimation in deep RL. They

showed that their approach can improve the safety and

reliability of autonomous systems.

Reinforcement Learning with Memory Reinforcement

learning with memory involves using memory modules to

store past experiences and use them to guide future deci-

sions. Reinforcement learning with memory has been

applied to various domains, including autonomous navi-

gation. For example, [29] proposed a deep RL-based

approach for navigation in complex 3D environments.

They showed that their approach can learn to navigate

through complex environments efficiently by using mem-

ory to store past experiences.

Safe Reinforcement Learning involves incorporating

safety constraints into the learning process of RL algo-

rithms to ensure safe and reliable behavior. Safe rein-

forcement learning has been applied to various domains,

including autonomous navigation. For example, [30] pro-

posed a safe RL-based approach for navigation in a sim-

ulated highway environment. They showed that their

approach can learn safe driving policies and avoid colli-

sions with other vehicles.

Neuroevolution involves using evolutionary algorithms

to optimize neural networks for a given task. Neuroevo-

lution has been applied to various domains, including

autonomous navigation. For example, [31] proposed a

neuroevolution-based approach for navigation in a simu-

lated environment with obstacles. They showed that their

approach can learn to navigate through obstacles efficiently

and achieve better performance than traditional

approaches.

Multi-Objective Reinforcement Learning entails opti-

mizing multiple goals concurrently, such as reducing travel

duration and enhancing the safety of the navigation system.

This approach has been utilized in various fields, including

autonomous navigation. For instance, [32] introduced a

multi-objective RL-driven method for navigating a simu-

lated environment with obstacles, demonstrating superior

performance compared to conventional methods by effec-

tively balancing multiple objectives.

Limitations: Despite the encouraging outcomes, several

constraints persist in applying RL and IL techniques for

navigation within dynamic environments. One such limi-

tation is the challenge of generalizing to novel environ-

ments and situations. RL and IL methods often necessitate

vast amounts of data and extensive training periods to

achieve satisfactory performance, posing difficulties for

real-world implementations. Another constraint is the

comprehensibility of the acquired policies. RL and IL

techniques frequently result in opaque models that are

challenging to interpret and explain.

The Reinforcement Imitation Learning (RIL) algorithm

is a proposed algorithm whose stand-out feature is its

innovative combination of Reinforcement Learning (RL)
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with Imitation Learning (IL). As a means of solving the

difficulties of autonomous navigation in dynamic envi-

ronments, this method is well known but by no means

certain.

The RIL algorithm is designed to overcome the specific

restrictions of RL or IL as independent technologies.

Several differences between the RIL algorithm and other

related research are given below. The RIL algorithm is just

one point that differs from methods which base themselves

on only RL or IL. This integration lets the algorithm take

advantage of RL’s penchant for exploration and the

learning efficiency seen in IL expert demonstrations.

This paper talks about a new way for artificial intelli-

gence systems to learn called Reinforcement and Imitation

Learning (RIL). It tries to combine the best parts of two

other methods—reinforcement learning where the AI

explores on its own, and imitation learning where it copies

what human experts do.

The reinforcement learning module uses Q-learning,

which is more advanced than old reinforcement learning

code. It lets the AI build better mental models by linking

rewards to actions with a neural net.

The imitation module watches human demonstrations

and tries to copy them. This focuses on mapping states to

expert actions directly, instead of just trying to mimic

everything a human does and what makes RIL unique is its

integration system to balance the reinforcement and imi-

tation. It has a gate thing that weights each part depending

on how chaotic the environment is. So if there’s lots of

noise, it listens to the human more. This flexibility helps it

work better overall.

Tests show RIL handles change better than reinforce-

ment or imitation alone. It mixes exploring new things and

copying tried and true human paths in a smart way. This

would let it do tough tasks like robot delivery or self-

driving cars.

Because RIL can pivot between exploration and experts,

it could work for tons of applications - inside places, out-

side places factories, self-driving trucks. The future looks

bright for this approach as it’s good at dealing with sur-

prises, which is useful for real-world robotics.

In summary, the RIL algorithm represents a significant

advancement in autonomous navigation, skillfully

addressing the challenges of dynamic environments by

integrating the strengths of RL and IL. This approach not

only enhances performance compared to using RL or IL

alone but also opens new avenues for practical applications

and further research in the field.

3 Methodology

In this section, we provide a detailed description of the

proposed Reinforcement Imitation Learning (RIL) algo-

rithm, and the data collection, preprocessing, and model

training procedures.

3.1 Reinforcement imitation learning (RIL)
algorithm

Reinforcement Imitation Learning (RIL) is a new paradigm

in reinforcement learning (RL) and imitation learning (IL)

that unifies the RL and IL techniques to achieve robust

autonomous navigation in dynamic environments. In gen-

eral, the RIL algorithm consists of three parts, which

include an RL module, an IL module, and an integration

module. The block diagram of the RIL algorithm is shown

in Fig. 1.

RL module learns an optimal policy using the Q-learn-

ing algorithm by its interactions with the environment. The

policy is depicted as a deep neural network that takes the

current state of the environment as input and delivers the

Fig. 1 Block diagram of RIL Algorithm
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corresponding action to be executed. The RL module

updates the policy using maximum expected cumulative

reward.

Here, the IL module learns to imitate successful

behaviors demonstrated by experts. The role that a model

learns in this case is how to map between the current state

of the environment, and an action causing a transition to

some desirable state. The IL module comprises a deep

neural network that given the state of the current envi-

ronment, comes up with an expert action as the output.

The integration module combines the outputs of the RL

and IL modules to achieve better performance than either

module alone. The integration module uses a gating

mechanism to control the weight of the RL and IL policies.

The weight of the RL policy is increased when the envi-

ronment is dynamic and requires more exploration, while

the weight of the IL policy is increased when the envi-

ronment is stable and requires more exploitation.

3.1.1 RL module

The Reinforcement Learning (RL) module is one of the

three modules of the Reinforcement Imitation Learning

(RIL) algorithm. The RL module learns the optimal policy

through interactions with the environment using the

Q-learning algorithm. The following formulas, equations,

tables, and algorithm are used in the RL module:

Q-Learning The Q-Learning algorithm aims at finding

the optimal policy by rewarding the expected cumulative

reward. The update equation for a Q-value of some state-

action pair reads as follows:

Qðs; aÞ  Qðs; aÞ þ aðr þ c � max0aðQðs0; a0ÞÞ � Qðs; aÞÞ
ð1Þ

where Q(s, a) is the Q-value of states, action a, a represents

learning rate, r is the immediate reward, c is the discount

factor, s’ is the next state, and a’ is the next action.

Deep Neural Network

The policy for the RL module is modeled by the deep

neural network taking the current state of the environment

as input and giving the action to be taken as output. The

deep neural network consists of multiple layers of neurons

that transforms the input state into an output action. It is

computed as:

a ¼ pðsÞ ð2Þ

where a is the action an agent should take, s is the current

state of the environment and p is the deep neural network

that provides the representation of policy.

Training Data Data for training the RL module is col-

lected from interaction with environment which is made up

of states, actions, and the rewards in the form of tuples. It is

considered good to have data collection that is diverse and

representative when learning a good domain model.

Training Procedure The training of the RL module is an

iterative process that involves:

1. Updating the Q-values of each state-action pair basing

on the Q-Learning algorithm, this would be an

important step since it will help the module learn

how valuable actions are in different states.

2. Adjust the weights in the deep neural network, using

backpropagation. This permits the optimized prediction

of cumulative reward and which therefore makes the

policy more effective.

The convergence of this training process indicates the

ability of the RL module toward making informed deci-

sions about actions in different states thereby learning an

effective policy for navigation in dynamic environments.

Algorithm used for RL module

Flowchart of RL algorithm is depicted in Fig. 2.

The RL module algorithm is summarized in algorithm 1:
Algorithm 1 RL Module Algorithm

In general, through the Q-Learning algorithm’s inter-

actions with the environment when mounted on a deep

neural network, the optimal policy is learned in the RL

module. The RL module is one of the most effective

learning modules which allow for learning from trial and

error, hence providing the ability to adapt flexibly to

varying environments.
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3.1.2 IL module

The Imitation Learning (IL) module is one of the three

Reinforcement Imitation Learning (RIL) algorithm mod-

ules. The IL module utilizes the expert demonstrations to

learn promising behaviors through imitation. The super-

vised learning is used to make the deep neural network

learn the mapping between the current state of the envi-

ronment and the expert action. The below formulas,

equations, algorithm have been used in this IL module:

Supervised Learning

The agent’s only input comes through actions, in

response to states. Thus, the mapping from the environ-

ment’s current state to the expert’s action can be learned

using supervised learning. Supervised learning’s loss

function is mean squared error between predicted action

and the expert action:

L ¼ ða� f ðsÞÞ2 ð3Þ

where L is the loss function. a denotes the expert action.

s represents the current state of the environment.

f symbolizes the mapping function implemented by the

deep neural network.

Deep Neural Network

It learns the mapping between the current state of the

environment and the expert action using deep neural net-

work learning. The deep neural network is formed from

several layers of neurons that convert an input state to an

output action. The action computed at the exit can be

determined through the following equation:

a ¼ f ðsÞ ð4Þ

where a is the action predicted by the network for state

s. The architecture of this neural network including the

number of layers and neurons in each layer is very pivotal

to determine the model’s performance and accuracy.

Training Data Train the IL module through demon-

strations by experts, or rather pairs constituting

Fig. 2 Flowchart of RL Algorithm

Fig. 3 Flowchart of IL Algorithm
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environmental states and expert actions in response.

Essentially, the model learns from demonstrations as these

are crucial to training it on strong navigation strategies.

Training Procedure Here, the training of the IL module

is adjusting the neural network weights to minimize the

loss function. This can be implemented by the stochastic

gradient descent algorithm that updates the weights itera-

tively along the direction where the fastest decrease occurs

on the loss function. The weight update is:

wi ¼ wi � g
oL

owi
ð5Þ

where wi represents the weight of the ith neuron. g is the

learning rate, controlling the size of the weight updates. oL
owi

is the partial derivative of the loss function with respect to

the weight wi.

This training process is repeated until a desired level of

accuracy is obtained or the number of iterations has

reached some predetermined criterion.

So, what is conclusive is that the IL module plays an

essential role in the RIL algorithm to be a support that aids

improved decision-making in navigation tasks through the

use of expert knowledge. The IL module successfully

emulates human expert behavior through well-structured

deep neural network and strong training regimen, thus

improving the overall effectiveness of RIL algorithm.

Algorithm used for IL module

Flowchart of IL algorithm is depicted in Fig. 3.

The IL module algorithm is summarized in algorithm 2:
Algorithm 2 IL Module Algorithm

In summary, the IL component of the RIL algorithm

employs supervised learning in conjunction with a deep

neural network to learn from expert demonstrations and

emulate effective behaviors. The IL module offers an

efficient means of incorporating prior knowledge and

enhancing the RIL algorithm’s learning process.

3.1.3 Integration module

The integration module is one of three modules constitut-

ing the Reinforcement Imitation Learning (RIL) algorithm.

By combining both RL and IL modules’ outputs, the

integration module manages to produce better performance

than either module independently. The gating mechanism

is implemented by the integration module to control the

weight of the RL and IL policies. For this, the design for

the integration module is as follows:

Gating Mechanism

Another gating mechanism, whose value weightage is

either that of the RL or IL modules, respectively, modu-

lates one of the dynamic interactions. The environmental

context at any time point in decision-making determines

which gating mechanism shall be responsible for the inte-

gration process taking place between the two agents.

• Adaptive Weight Allocation: Weights are assigned to

policy derived from the RL and IL modules by the

gating mechanism. The weight allocations will be

dependent on environmental dynamics:

– Unpredictable, dynamic environments, with lots of

exploration needed, a higher weighting will be

applied to the RL policy.

– The IL policy gets increased focus in relatively

more stable and predictable environments, where

exploiting known strategies pays off.

• Operational Equation: The functionality of the gating

mechanism is encapsulated in the following equation:

w ¼ rðW � ½hrl; hil� þ bÞ ð6Þ

Here, w represents the weight assigned to the RL

policy. r denotes the sigmoid activation function, pro-

viding a smooth transition between weights. W is a

weight matrix that linearly transforms the concatenated

outputs of the RL and IL modules, represented by hrl
and hil, respectively. b is a bias term that offsets the

gate’s activation threshold.

Training the Integration Module The training of the Inte-

gration Module involves fine-tuning the combined policies

derived from the RL and IL modules. This process is done

through a validation set where the united policy is evalu-

ated and refined under controlled conditions. The major

objective during training would be to adapt the weights of

the gating mechanism such that overall performance is

maximized of the integrated policy. This will require
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iterative adjustments of the W and the bias b matrices, as

well as possibly revising the individual policy.

To sum up, the Integration Module combines the per-

formance advantage of RL and the learning efficiency of IL

because it represents the RIL algorithm. It dynamically

gateways to make an optimal choice between exploration

and exploitation depending on the environment. In this

sense, the RIL can work successfully and robustly within a

large set of environments and, for these reasons, it is a very

powerful algorithm for autonomous navigation in dynamic

environments.

Integration Module Algorithm

Flowchart of integration module algorithm is depicted in

Fig. 4.

The integration module algorithm is summarized in

algorithm 3:
Algorithm 3 Integration Module Algorithm

Overall, the RIL algorithm uses a gating mechanism to

combine the output from the RL and IL modules in the

integration module and the policies are sample-based fine-

tuned based on the validation set to yield performance

better than either of the two modules individually. The

module integration presents a good means toward balanc-

ing exploration and exploitation within the changing

environment.

Fig. 4 Flowchart of Integration Module Algorithm
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3.1.4 Algorithm for reinforcement imitation learning (RIL)
algorithm

The RIL algorithm is described in algorithm 4:

Algorithm 4 RIL Algorithm

Time complexity

The RIL algorithm’s time complexity is influenced by

factors such as the dimensions of the state and action

spaces, the iteration count for the RL module, the amount

of expert demonstrations for the IL module, and the sizes

of the training, validation, and test sets for the integration

module. The time complexity can be estimated as O(N * T

* M), with N representing the number of states, T denoting

the number of iterations, and M indicating the number of

actions.

Overall, the RIL algorithm combines RL and IL tech-

niques to achieve robust and efficient navigation in

dynamic environments. The RIL algorithm provides an

effective way to balance exploration and exploitation and

adapt to changing environments, making it suitable for a

wide range of autonomous navigation applications.

Moreover, due to the adaptive balancing between

exploration (RL) and exploitation (IL), which RIL algo-

rithm is able to follow, it also appears quite applicable for

autonomous navigation in possibly wide ranges of envi-

ronments as well. Whether such navigation pertains to the

navigation through unpredictable urban landscapes or

execution of the tasks or goal-related objectives within

relatively better controlled environment, RIL’s adaptability

is believed to be somewhat robust.

Last but not least, the realistic applications of RIL when

it was applied to autonomous systems. The ability to learn

from environment interaction as well as expert demon-

strations seems capable of bringing the design for advanced

reliable autonomous navigation closer. However, chal-

lenges persist in terms of computational requirements and

IL requiring high quality expert data. Furthermore, the

incorporation of RL and IL presents new challenges to its

capacity to switch learning modes as required in case this

switching is cued environmentally.

4 Experiment and result

4.1 Performance metrics

We have used the following performance metrics to eval-

uate the Reinforcement Imitation Learning (RIL) algorithm

and compare the performance with RL and IL algorithm:

Success rate: The percentage of trials in which the agent

successfully reaches the goal within a specified time frame.

This metric indicates the overall effectiveness of the RIL

algorithm in navigating through the environment.

Average reward: The average total reward obtained by

the agent over a specified number of trials. This metric

reflects the ability of the RIL algorithm to balance explo-

ration and exploitation to achieve long-term goals.

Time taken to reach the goal: The average time taken by

the agent to reach the goal over a specified number of trials.

This metric reflects the efficiency of the RIL algorithm in

navigating through the environment.

Collision rate: The percentage of trials in which the

agent collides with an obstacle or another agent. This
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metric indicates the ability of the RIL algorithm to avoid

obstacles and other agents in the environment.

4.2 Experiment

The experimental results of the Reinforcement Imitation

Learning (RIL) algorithm demonstrate its effectiveness in

achieving robust autonomous navigation in complex and

dynamic environments. The RIL algorithm is implemented

and evaluated in a simulation environment using a variety

of performance metrics, and the results are compared to

those obtained using other navigation algorithms RL and

IL.

Table 1 shows the values of the input parameters taken

for our experiment.

The simulation environment used for this experiment is

a custom-built 2D grid world, which is commonly used in

reinforcement learning experiments. The environment

consists of a rectangular grid of cells, where each cell

represents a position in the environment. The agent is

placed in one of the cells at the beginning of each episode

and must navigate to a goal cell located elsewhere in the

environment while avoiding obstacles and other agents. It

is shown in Fig. 5.

In Fig. 5:

‘‘A’’ represents the agent’s starting position.

‘‘G’’ represents the goal.

‘‘X’’‘‘ represents an obstacle in the environment.

Environment Description

The environment is a 2D grid world, a common choice

for basic reinforcement learning experiments due to its

simplicity and ease of understanding. Here are the key

features:

Grid: A rectangular grid of cells.

Agent: Placed in one of the cells at the start of each

episode.

Goal Cell: The agent aims to navigate to this cell.

Obstacles: These are cells the agent must avoid.

Other Agents (Optional): For more complex scenarios,

other agents can be included, which the main agent must

avoid or interact with.

States: Each cell represents a distinct state.

Actions: Typically, the agent can move up, down, left,

or right.

Rewards: The agent receives rewards based on reaching

the goal, avoiding obstacles, etc.

The environment is populated with a number of obsta-

cles and agents that move randomly throughout the grid.

The obstacles are randomly placed and static within the

environment, whereas the agents move at random in any of

the four directions (up, down, left, right) on each time step.

The agent’s objective is to navigate to the goal cell while

avoiding collisions with obstacles and other agents.

Given a goal, with obstacles and other agents on the

way, an agent performs actions: up, down, left, or right

move, being rewarded ?1 for reaching the goal and -1 if

there is a collision with an obstacle or another agent. The

agent receives a small negative reward at each time step for

its goal of reaching the goal as soon as possible.

The environment is implemented in the Python pro-

gramming language with the used of Pygame library that

provides an interface to create the 2D games and simula-

tions. The environment is made configurable where it

allows changing parameters like number of obstacles and

agents, size of the grid as well as the reward structure.

4.3 Result analysis

4.3.1 Performance comparison based on number
of episodes

Success Rate

The Reinforcement Imitation Learning (RIL), Rein-

forcement Learning (RL) and the Imitation Learning (IL)

success rates results with respect to a number of episodes

from 100 to 1000 are, respectively, depicted in Fig. 6.

From Fig. 6 results, it clearly shows that across all

numbers of episodes, the RIL algorithm leads with a higher

target success rate compared to both RL and IL algorithms.

The results also suggest that with the increase in episodes,

both RIL as well as RL algorithms improve in success rate,

while it appears to plateau for the IL algorithm. The RIL

algorithm outperforms either the RL and IL algorithms,

even at lower numbers of episodes.

Average Reward

Figure 7 shows the average reward results of Rein-

forcement Imitation Learning (RIL), Reinforcement

Learning (RL), and Imitation Learning (IL) algorithms

over a range of episodes from 100 till 1000.

Table 1 Input parameter

Input parameter Effective value

Learning rate 0.001–0.01

Discount factor 0.9–0.99

Exploration rate 0.1–0.5

Number of iterations (RL) 1000–10,000

Number of expert demonstrations (IL) 500–5000

Batch size (IL) 32–128

Hidden layer size (RL and IL) 64–256

Number of episodes (integration) 100–1000

Training–validation–test split ratio (integration) 60–20–20
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The result in Fig. 7 shows that at each number of epi-

sodes, the RIL algorithm is always achieving better per-

formance than the RL and IL algorithms with

corresponding rewards of 300 in each case. The results also

show that both the RIL and RL algorithms improve in

average rewarding as number of episodes increase, while

IL algorithm appears to mostly likely have hit a plateau in

performance. Moreover, even in the cases where the

number of episodes is lesser, the RIL algorithm was able to

eventually generate a better average reward as compared to

both the RL and IL algorithms.

Time to Goal

The results of the time to the goal for Reinforcement

Imitation Learning (RIL), Reinforcement Learning (RL),

and Imitation Learning (IL) algorithms are shown in Fig. 8

versus various episodes ranging from 100 through 1000.

Figure 8 results show that an algorithm RIL is achieving

a lower time to goal than the algorithms RL and IL con-

sistently across all of numbers of episodes. The time to

goal for all the three algorithms reduces with the RIL

algorithm continually achieving the smallest time to goal as

the number of episodes increases. Analysis also shows that

the RIL algorithm was able to learn quicker compared to

RL and IL algorithms, getting a shorter time to goal even at

lower numbers of episodes.

Collision Rate

Stressing on the collision rate, similar results were

obtained throughout the Reinforcement Imitation Learning

(RIL), Reinforcement Learning (RL), and Imitation

Learning (IL) algorithms, as shown in Fig. 9 depicting the

varying range within 100–1000 episodes plotted.

In the results of Fig. 9, the RIL algorithm kept on

showing a lesser collision toward the combinations of RL

and IL to any number of episodes. Though the episode

number increases, one can see that the collision rate

decreases for all the three algorithms; however, the RIL

algorithm plays an eminent contribution in keeping the

collision rate at its minimum throughout. The results fur-

ther show that the RIL algorithm learns fast in comparison

to the RL and IL algorithms as it attains a lower collision

ratio even with smaller episodes.

4.3.2 Performance comparison based on number
of iterations

Success Rate

Figure 10 shows the results of success rate for the

Reinforcement Imitation Learning (RIL) and Reinforce-

ment Learning (RL) algorithms over a range of iterations

from 1000 to 10000.

Figure 10 results show that the RIL algorithm consis-

tently achieves a higher success rate than the RL algorithm

across all numbers of iterations, with a higher success rate

in each case. The success rate increases for both algorithms

as the number of iterations increases, but the RIL algorithm

consistently achieves the highest success rate. The results

also demonstrate that the RIL algorithm is able to learn

more quickly than the RL algorithm, achieving a higher

success rate even at lower numbers of iterations.

Average Reward

Figure 11 shows the results of average reward for the

Reinforcement Imitation Learning (RIL) and Reinforce-

ment Learning (RL) algorithms over a range of iterations

from 1000 to 10000.

Figure 11 reveals that the RIL algorithm persistently

attains a greater average reward than the RL algorithm for

every iteration count, with an increased average reward in

each instance. The average reward rises for both algorithms

as the iteration count grows, but the RIL algorithm

Fig. 5 2D grid world simulation environment

Fig. 6 Success rate versus number of episodes
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consistently outperforms with a higher average reward. The

findings also indicate that the RIL algorithm learns more

rapidly than the RL algorithm, securing a higher average

reward even with fewer iterations.

Time to Goal (s)

Figure 12 shows the results of time to goal (s) for the

Reinforcement Imitation Learning (RIL) and Reinforce-

ment Learning (RL) algorithms over a range of iterations

from 1000 to 10000.

Figure 12 results show that the RIL algorithm consis-

tently achieves a shorter time to goal than the RL algorithm

across all numbers of iterations, with a shorter time to goal

in each case. The time to goal decreases for both algo-

rithms as the number of iterations increases, but the RIL

algorithm consistently achieves a shorter time to goal. The

results also demonstrate that the RIL algorithm is able to

learn more quickly than the RL algorithm, achieving a

shorter time to goal even at lower numbers of iterations.

Collision Rate

Figure 13 shows the results of collision rate for the

Reinforcement Imitation Learning (RIL) and Reinforce-

ment Learning (RL) algorithms over a range of iterations

from 1000 to 10000.

Figure 13 displays that the RIL algorithm constantly

attains a reduced collision rate compared to the RL algo-

rithm throughout every iteration count, with a lower col-

lision rate in each situation. The collision rate declines for

both algorithms as the number of iterations grows, yet the

RIL algorithm consistently achieves a lower collision rate.

The findings also highlight that the RIL algorithm learns

more swiftly than the RL algorithm, reaching a lower

collision rate even with fewer iterations.

Success Rate

Figure 14 shows the results of success rate for the

Reinforcement Imitation Learning (RIL) and Imitation

Learning (IL) algorithms over a range of expert demon-

strations from 500 to 5000.

Figure 14 results show that the RIL algorithm consis-

tently achieves a higher success rate than the IL algorithm

across all numbers of expert demonstrations, with a higher

success rate in each case. The success rate increases for

both algorithms as the number of expert demonstrations

increases, but the RIL algorithm consistently achieves the

highest success rate. The results also demonstrate that the

RIL algorithm is able to learn more quickly than the IL

algorithm, achieving a higher success rate even at lower

numbers of expert demonstrations.

Average Reward

Figure 15 shows the results of average reward for the

Reinforcement Imitation Learning (RIL) and Imitation

Fig. 7 Average reward versus number of episodes

Fig. 8 Time to goal versus number of episodes

Fig. 9 Collision rate versus number of episodes Fig. 10 Success rate versus number of iterations
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Learning (IL) algorithms over a range of expert demon-

strations from 500 to 5000.

Figure 15 results show that the RIL algorithm consis-

tently achieves a higher average reward than the IL algo-

rithm across all numbers of expert demonstrations, with a

higher average reward in each case. The average reward

increases for both algorithms as the number of expert

demonstrations increases, but the RIL algorithm consis-

tently achieves a higher average reward. The results also

demonstrate that the RIL algorithm is able to learn more

quickly than the IL algorithm, achieving a higher average

reward even at lower numbers of expert demonstrations.

Time to Goal (s)

Figure 16 shows the results of time to goal (s) for the

Reinforcement Imitation Learning (RIL) and Imitation

Learning (IL) algorithms over a range of expert demon-

strations from 500 to 5000.

Figure 16 results show that the RIL algorithm consis-

tently achieves a shorter time to goal than the IL algorithm

across all numbers of expert demonstrations, with a shorter

time to goal in each case. The time to goal decreases for

both algorithms as the number of expert demonstrations

increases, but the RIL algorithm consistently achieves a

shorter time to goal. The results also demonstrate that the

RIL algorithm is able to learn more quickly than the IL

algorithm, achieving a shorter time to goal even at lower

numbers of expert demonstrations.

Collision Rate

Figure 17 shows the results of collision rate for the

Reinforcement Imitation Learning (RIL) and Imitation

Learning (IL) algorithms over a range of expert demon-

strations from 500 to 5000.

Figure 17 results show that the RIL algorithm consis-

tently achieves a lower collision rate than the IL algorithm

across all numbers of expert demonstrations, with a lower

collision rate in each case. The collision rate decreases for

both algorithms as the number of expert demonstrations

increases, but the RIL algorithm consistently achieves a

lower collision rate. The results also demonstrate that the

RIL algorithm is able to learn more quickly than the IL

algorithm, achieving a lower collision rate even at lower

numbers of expert demonstrations.

5 Discussion based on results

Key observations and lessons from empirical results of the

Reinforcement Imitation Learning (RIL) algorithm indeed

show high performance and advantages in dynamic and

Fig. 11 Average reward versus number of iterations

Fig. 12 Time to goal versus number of iterations

Fig. 13 Collision rate versus number of iterations

Fig. 14 Success rate versus numbers of expert demonstrations
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complex environments. Here are those key observation

points and learned lessons summarized:

• Superiority of RIL Over Individual RL and IL: The RIL

algorithm is superior to the standalone RL and IL

algorithms on all the performance metrics. The obser-

vation further makes strong the point that RL and IL

techniques can be integrated at the concepting stage for

maximal performance. The two competing techniques

seem to have some synergies which were realized when

combined as both contributed their best qualities to

offer a superior result than perhaps what an individual

method is capable of doing.

• Success Rate Improvements: The RIL algorithm has

outperformed RL and IL in the enhancement of success

rate through a number of episodes as well as iterations.

Therefore, the integrated approach is more successful in

meeting the goals established in the simulation

environment.

• Higher Average Reward: In the average reward, RIL

outperforms RL and IL also. The adaptiveness of RIL to

apply the strategies of RL and IL must offer the

efficiency in decision-making for enhancing high

rewards.

• Efficiency in Reaching Goals: The time to goal

exhibited by the RIL algorithm is shorter compared to

RL and IL. Such an efficiency in time is imperative in a

dynamically changing environment giving an implica-

tion that the RIL can adapt to changes fast for it to find

effective paths toward objectives.

• Lower Collision Rate: RIL shows a lower collision rate

in the scattered scenarios preserving its superiority in

navigability and obstacle avoidance characteristics.

These are vital characteristics for some applications

ingraining autonomous systems as the prime concern is

about safety and reliability.

• Scalability with Increasing Complexity: With increas-

ing complexity in terms of the number of iterations,

episodes, and expert demonstrations, the RIL algorithm

improved significantly across a wide range of perfor-

mance metrics. This scalability is testimony to the

robustness of the algorithm for enabling learning in

complex and dynamic environments.

• RIL’s Quick Learning Ability: For adaptation in envi-

ronments where there is quick need for adaptation, the

RIL algorithm presents quickly learning curve as

compared to RL and IL individually.

• Real-world Application and Testing: Translating the

success of RIL in simulated environments to real-world

scenarios is a crucial next step, involving field tests and

real-world data integration.

• Algorithmic Transparency and Interpretability: Future

research should also address the interpretability of

complex algorithms like RIL, ensuring that their

decision-making processes are transparent and under-

standable, which is vital for trust and wider adoption.

• Adaptive and Context-Aware Systems: Building on the

success of RIL, future systems should aim for greater

adaptability and context awareness, allowing them to

adjust more fluidly to changing environmental condi-

tions and unforeseen challenges.

Fig. 15 Average reward versus numbers of expert demonstrations

Fig. 16 Time to goal versus numbers of expert demonstrations Fig. 17 Collision rate versus numbers of expert demonstrations
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6 Conclusion

This paper has reviewed the application of a novel inte-

gration of reinforcement learning (RL) and imitation

learning (IL) techniques in achieving robust autonomous

navigation in dynamic environments. The proposed

approach of the Reinforcement Imitation Learning (RIL)

algorithm designs a novel way to combine the strengths of

RL and IL so that an improved performance is achieved

than over either of them. The RIL algorithm has been

tested and found far superior in every way on the efficiency

of navigation, avoiding collision, and adapting to changing

environments in all sorts of different dynamic kinds of

environments.

The RIL algorithm has others than improved implica-

tions on real world defying purposes like the autonomous

vehicles, robotics and surveillance systems. Combining

these experience-based learning approaches, expert

demonstrations and trial and error allow the RIL algorithm

to learn more efficiently while at the same time increasing

reliability for autonomous navigation in complex, uncertain

environments. In future, different phenomena and envi-

ronments can be dealt with to enhance the performance and

effectiveness of RIL algorithm.
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