
ORIGINAL ARTICLE

Imbalanced instance selection based on Laplacian matrix
decomposition with weighted k-nearest-neighbor graph

Qi Dai1 • Jian-wei Liu1 • Long-hui Wang2

Received: 27 November 2023 / Accepted: 25 March 2024 / Published online: 21 April 2024
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract
Data are an essential component for building machine learning models. Linearly separable high-quality data are conducive

to building efficient classification models. However, the collected dataset is not of high quality, and the number of

instances for difference class is not absolutely consistent. Therefore, models built on these datasets are vulnerable to

problems such as class-imbalance, class-overlap, and other problems. Traditional instance selection algorithms mainly

determine whether there is redundancy or overlap in instances based on the degree of similarity between instances.

Therefore, these methods only focus on the local information of the dataset and ignore the global approximate relationship

of the instances in the dataset. In this paper, an instance selection method based on the global relationship of instances in

the dataset is proposed, called instance selection based on Laplacian matrix decomposition with weighted k-nearest-

neighbor graph (LMD-WNG). First, this method tries to construct a new distance-weighted Laplacian matrix using the

weighted k-nearest-neighbor graph. Then, the distance-weighted Laplacian matrix is decomposed using a Schur decom-

position method. Finally, according to the eigenvalues of the decomposed real matrix, a training dataset suitable for model

learning is selected, and a classifier is constructed on the new training data. The experimental results show that as the

imbalance ratio increases, LMD-WNG becomes more sensitive to parameter k. When the significance level is p ¼ 0:05, the

analysis results using Friedman ranking and the Holm’s post hoc test show that LMD-WNG is significantly better than or

similar to other state-of-the-art algorithms on 30 datasets.

Keywords Weighted k-nearest-neighbor graph � Laplacian matrix � Matrix decomposition � Instance selection �
Class-imbalance problems

1 Introduction

In the real world, even though different industries require

purer raw materials, high-quality raw materials are more

conducive to product manufacturing and save on produc-

tion costs. For example, higher-quality iron ore is in

demand in the metallurgical field, which has given birth to

mineral processing technology, and higher-quality crude

oil is in demand in the petroleum field, which has also

promoted the development of the petrochemical field. For

machine learning models, high-quality data are as impor-

tant as high-quality crude oil or iron ore, because they are

more conducive to building efficient machine learning

models. However, in the real world, we have to admit that

it is hard to collect high-quality dataset that is conducive to

building models. In data collection, various data problems

& Jian-wei Liu

liujw@cup.edu.cn

Qi Dai

dai18232576157@163.com

Long-hui Wang

2522514454@qq.com

1 Department of Automation, College of Information Science

and Engineering / College of Artificial Intelligence, China

University of Petroleum, Beijing, 260 Mailbox China

Changping District, Beijing 102249, China

2 College of Science, North China University of Science and

Technology, 21 Bohai Road, Caofeidian Xincheng,

Tangshan 063210, Hebei, China

123

Neural Computing and Applications (2024) 36:12397–12425
https://doi.org/10.1007/s00521-024-09676-0(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-09676-0&domain=pdf
https://doi.org/10.1007/s00521-024-09676-0

often appear, such as class distribution imbalance [1], class

overlap [2, 3], missing values [4, 5], and noise [6, 7].

The class-imbalance problem is an important challenge

in the real world [8–10]. Taking the binary classification

problem as an example, in the collected dataset, if the

number of instances of one class is significantly higher than

that of the other class, there will be a class-imbalance

phenomenon, which is also called a class-imbalance

problem. If datasets with a class-imbalance problem, we

call them class-imbalance datasets. However, in the

industrial domain, binary classification problems occur

more frequently and are more prone to highly imbalanced

datasets [11]. In the real world, common class-imbalance

problems include but are not limited to: spam classification

[12, 13], medical aided diagnosis [14], software defect

detection [15], anomaly detection [16, 17], and intrusion

detection [18, 19].

Traditional classifiers are trained on balanced or nearly

balanced datasets, and they need to do their best to improve

the overall accuracy of the model. However, it is easy to

cause the minority instances to be misclassified or even

directly regarded as noise and deleted [20]. Let’s take a

simple example. Now we have a dataset with a class-im-

balance problem in our hands. There are 2000 instances in

this dataset, of which the number of majority instances is

1800. Assuming that the classification model we built

directly labels all minority instances as the majority class,

if we only observe the overall accuracy, our model can

achieve an accuracy of 90%, which is already excellent

classification performance. In fact, our model did not

accurately identify any of the minority instances in the

dataset. However, in the real world, minority instances are

very important. For example, for datasets in fault diagnosis,

there are far more normal instances than faulty instances. If

we briefly use the traditional classifier, it will be difficult to

identify these truly faulty instances, resulting in significant

economic losses and even casualties [21].

Methods to cope with the class-imbalance problem can

be simply divided into preprocessing (also known as data

resampling) [22, 23], algorithm modification [24, 25], cost-

sensitive learning [26, 27], and ensemble learning [28, 29].

The preprocessing technique is a very common one, and it

is independent of classifiers. They are widely used and can

be combined with any traditional classifier to build an

efficient classifier [30]. In these proposed data prepro-

cessing techniques, they all follow a common assumption,

namely, that in the preprocessing process, each input

instance is independent of each other and that there is no

connection between them. However, in the real world,

these instances may have subtle differences in feature

values, but there must be a certain relationship with other

instances in the dataset. In some data preprocessing tech-

niques, they use nearest neighbors to represent the neighbor

relationship between instances in a local area [31]. How-

ever, they cannot efficiently capture the global structure in

the dataset. The use of graphs to represent data structures is

rare among preprocessing techniques for handling class-

imbalance problems.

However, we also realize that the global graph structure

information can provide researchers with more new

knowledge. In the class-imbalance problem, the global

structural information of the dataset may be ignored based

on the local information between instances in the dataset.

However, in real-world datasets, the local neighbor rela-

tionships between instances are not always simple neigh-

borhood relationships. Each instance may have many

global relationships with the global instances of the dataset

that cannot be accurately represented. For example, if there

are small disjuncts in the dataset, if only the local infor-

mation between instances is considered, these instances

may be considered to be noise, and they will be eliminated.

However, based on the global information, it is not difficult

to find that there may be more valuable information in local

areas formed by small disjuncts. Therefore, considering the

global structural information of the dataset is a far-sighted

strategy.

The global structure information of the dataset has a

variety of representation methods, such as adjacency

matrix and incidence matrix. However, the adjacency

matrix and the incidence matrix, respectively, represent the

adjacent relationship or the correlation between instances.

Adjacency matrices and incidence matrices cannot show

the number of correlations between instances and have

certain limitations. Laplacian matrix is a common graph

structure information representation method based on

adjacency matrix. The Laplacian matrix not only represents

the adjacent relationship in combination with the adjacency

matrix, but the degree matrix can also accurately show the

neighborhood relationship between instances. The more

complex the neighborhood relationship, the larger the value

corresponding to the instance in the degree matrix.

Therefore, in the LMD-WNG algorithm, we use the

Laplacian matrix to represent the global structural

information.

The Laplacian matrix, also known as the Kirchhoff

matrix, is a commonly used matrix representation in graph

theory [32]. Some researchers have used the Laplacian

matrix for the class-imbalance problem [33–35]. Ye et al.

[36] combined Laplacian eigenmaps to generate instances

in the mapped feature subspace, thereby avoiding SMOTE

from generating noisy minority pseudo-instances. In this

method, the best feature subspace in the dataset is found by

means of Laplacian feature mapping, and the instances in

the dataset are separated in this subspace. They are the first

to use the Laplacian eigenmaps approach for class-imbal-

anced data preprocessing. However, no researchers have

12398 Neural Computing and Applications (2024) 36:12397–12425

123

applied Laplacian matrices to instance selection or under-

sampling techniques.

In summary, this is the first attempt to construct a new

instance selection method using Laplacian matrices and

matrix decomposition techniques. The method is called

instance selection based on Laplacian matrix decomposi-

tion with weighted k-nearest-neighbor graph (LMD-

WNG). In this method, the data space is first searched

using the k-NN, and a weighted k-nearest-neighbor graph

(Wk-NNG) is constructed using the distance metric

method. Then, the distance-weighted Laplacian matrix in

the original dataset is obtained according to the weighted

k-nearest-neighbor graph. Finally, using the matrix

decomposition technique (Schur decomposition), the

Laplacian matrix is decomposed, and the relationship

between instances in the dataset is found according to the

eigenvalues of the decomposed diagonal matrix.

The contributions of LMD-WNG are as follows:

1. To address the class-imbalance problem, we try to use

the k-nearest-neighbor graph to extract the global

structural information;

2. We use a weighted neighbor graph to construct a

Laplacian matrix that fully represents the global

structural information of each instance. According to

the weighted Laplacian matrix, the nearest-neighbor

relationship and the distance value between instances

can be clearly presented, providing new insights for

dealing with class-imbalance problems.

3. We combine the graph structure information and the

matrix decomposition method to select instances that

are beneficial to classifier learning based on the

eigenvalues of the global weighted Laplacian matrix,

which alleviates the impact of the class-imbalance

problem on classifier performance.

The remainder of this paper describes: In Sect. 2, we

review recent research progress on resampling techniques

in the field of class-imbalance learning, especially instance

selection and undersampling methods. In Sect. 3, the

motivation for LMD-WNG and the calculation process of

the algorithm are introduced. The introduction of the

experimental setup, datasets, base classifiers, and evalua-

tion metrics will be given in Sect. 4. Next, the parameter

sensitivity analysis of LMD-WNG is presented in Sect. 5.

The experimental results and nonparametric statistical test

results with other state-of-the-art comparative algorithms

are given in Sect. 6. Finally, in Sect. 7, we conclude this

paper with our main conclusions and future work.

2 Related works

With the advent of the big data era, various datasets have

emerged in different fields, and these are often imbalanced.

As the size of the data increases, it will also face more

serious class-imbalance problems, especially when class-

imbalance problems and other data problems such as class

overlap coexist [37]. However, in the real world, these

small-scale class-imbalance problems are not as simple as

imagined.

In general, most researchers tend to divide methods into

four categories: data-level method, algorithm-level

method, cost-sensitive learning, and ensemble learning. In

addition, some researchers believe that cost-sensitive

learning is a reweighting method, and both cost-sensitive

learning and ensemble learning are algorithm-level meth-

ods. Among these four types of methods, the data-level

method is an easy-to-implement method. Among all the

proposed data preprocessing methods, they can be divided

into oversampling [38], which adds minority instances,

undersampling [39], which removes majority instances,

and hybrid sampling [40], which uses both methods

simultaneously. Since the LMD-WNG instance selection

method is a preprocessing method similar to undersam-

pling, in the subsequent introduction, we will pay attention

to the data preprocessing method.

2.1 Oversampling

Random oversampling (ROS) balances the training dataset

by randomly replicating minority instances. When there are

few minority instances, the randomly copied minority

instances will cover a large area of the original data space,

which will cause the model to fall into the problem of

overfitting. Synthetic minority oversampling technique

(SMOTE) [41] is designed to overcome the overfitting of

random replication instances, and it expands the number of

minority instances by performing linear interpolation

between two minority instances. However, they only syn-

thetic minority instances in the data space of minority

instances and do not expand the overall feature space of

minority instances. When the class-overlap problem exists

simultaneously in the dataset, the pseudo-minority instan-

ces generated by SMOTE may move to the majority class

area, causing a more serious class-overlap problem.

In order to avoid the overfitting problem caused by

SMOTE, a lot of work has been carried out. In the latest

research, some researchers are committed to transforming

the original data space into a different data space to create

synthetic minority instances. Dai et al. [42] mapped all

instances to one-dimensional space according to distance

mapping and searched for neighbor instances of minority

Neural Computing and Applications (2024) 36:12397–12425 12399

123

instances in one-dimensional space. Yuan et al. [43] syn-

thesized minority instances on the convex hull of minority

instances, increased the feature space of minority instances,

and avoided generating noisy minority instances in the

majority class region. Li et al. [44] proposed a new over-

sampling method called subspace minority oversampling

(SMO). This method divides the features in the dataset into

common features and unique features and uses different

interpolation methods to linearly interpolate the minority

instances in the dataset. Islam et al. [45] proposed a tech-

nique called k-nearest-neighbor overresampling (KNNOR)

by identifying the compactness and position of minority

instances relative to majority instances.

In recent years, partial oversampling methods still use

different local search methods to search for local neigh-

borhood relationships and synthesize new instances in a

linear or nonlinear manner. However, when there are class-

overlap or small disjuncts, the local neighborhood rela-

tionship cannot accurately represent the global relationship

between the instances. Therefore, the global graph struc-

ture information can be used to discover minority instances

with insufficient information from the global relationships.

2.2 Undersampling

Random undersampling (RUS) balances the training data-

set by randomly eliminating instances from the majority

area. If the RUS is used directly, there is a risk of losing

important information in the majority instances, and the

method lacks interpretability. The class-overlap problem is

another difficult factor affecting classifier performance. It

helps to alleviate the impact of class-overlap problems on

classifier performance by selecting overlapping instances

that are not conducive to classifier learning. In current

research on the class-imbalance problem, some researchers

still use local information or underlying structural infor-

mation to propose new undersampling methods. Recent

undersampling methods built based on local information

are as follows: Hoyos-Osorio et al. [46] proposed a related

information undersampling method based on the principle

of information preservation to reduce the underlying data

structure for extracting majority instances. Yan et al. [47]

proposed the spatial distribution undersampling (SDUS)

method according to the distribution of the dataset. In this

method, top-down and bottom-up strategies can be used to

select subsets of majority instances from different per-

spectives. Farshidvard et al. [48] proposed a two-stage

approach to address class imbalance using undersampled

data-level and ensemble learning methods. This method

keeps the convex hull of each majority cluster formed by

clustering without minority instances, thereby controlling

the size of each cluster.

The undersampling method can be considered an

instance selection method. Undersampling alleviates the

impact of class imbalance on the classifier by removing

redundant or overlapping majority instances. At present,

some researchers have noticed that using techniques such

as clustering is an effective method to discover local

structural information. However, they did not use tech-

niques such as clustering to discover the global structural

information and use the structural information to propose

new instance selection techniques. To the best of our

knowledge, the overall structural characteristics of the

dataset are not fully considered in undersampling methods

to deal with the class-imbalance problem. In [49], we

attempted to discover global features of datasets using

similarity matrices and matrix decomposition techniques.

However, we only considered the similarity between

instances and did not deeply explore the number of nearest

neighbors between them. In this paper, we try to combine

distance-weighted Laplacian matrices and matrix decom-

position methods to explore the distribution structure

around instances in the original dataset and propose a new

instance selection algorithm.

3 The algorithm of LMD-WNG

We mainly introduce the relevant theory and algorithm

details of the LMD-WNG. In Sect. 3.1, we briefly intro-

duce the motivation of LMD-WNG. In Sect. 3.2, we detail

the theoretical basis of the proposed LMD-WNG instance

selection algorithm. In Sect. 3.3, we introduce the overall

process of LMD-WNG in detail and give the pseudocode

of the algorithm. Furthermore, the time complexity of the

algorithm is presented in Sect. 3.4.

3.1 Motivation

The impact of the class-imbalance problem is particularly

severe when it coexists with other difficulties. Therefore,

studying the solution to the class-imbalance problem is a

fundamental way to improve the learning performance of

classifiers. For the class-imbalance problem, the data pre-

processing technique is similar to a data refinement tech-

nique designed for the class-imbalance problem. These

methods can convert sparse and complex datasets into

high-quality training data that is conducive to classifier

learning through these preprocessing techniques.

More preprocessing techniques to cope with the imbal-

anced dataset. Some researchers believe that oversampling

techniques are more effective than undersampling tech-

niques. However, we believe that such a description is not

comprehensive, and not all oversampling techniques are

optimal on all datasets. Let’s simply think about it. When

12400 Neural Computing and Applications (2024) 36:12397–12425

123

the minority instances are too sparse and overlap with the

majority instances, the traditional oversampling technique

is used directly, and the synthetic minority instances still

overlap with the majority instances, which is not conducive

to the classification boundary of the traditional classifier

learning dataset. Besides that, using oversampling in the

laboratory may improve the results of evaluation metrics.

In the field of practical application, the synthesized pseudo-

minority instances are likely not to represent the actual

instances, causing the classification model to fail to rec-

ognize new unknown instances [50]. Therefore, we believe

that the oversampling technique and the undersampling

technique in the resampling technique do not have an

absolute advantage but should be developed together for

different problems.

Laplacian matrix is a common method in graph theory.

Ye et al. [36] introduced the Laplacian matrix into the

oversampling technique for the first time. They construct a

k-nearest-neighbor graph (k-NNG) using k-nearest neigh-

bors and use Laplacian eigenmaps to find the optimal low-

dimensional space for the dataset. Inspired by this, we try

to introduce the idea of a Laplacian matrix into instance

selection or undersampling techniques. In [49], we used the

metric learning method, constructed a similarity matrix,

and searched for the global similarity trend of the dataset

using positive and negative inertial trends, thereby

achieving undersampling of the dataset. We think that

instances of different classes that are more similar in the

dataset are more likely to become overlapping instances in

the dataset.

In addition, the edges of the k-NNG have no weight.

When generating the Laplacian matrix, we directly mark

the corresponding position in the adjacency matrix as 1.

There is an underlying assumption in using this approach,

namely that the weights of instances connected to vertices

are considered to be the same, which is not conducive to

distinguishing the distance between adjacent instances in

the k-nearest-neighbor graph. Therefore, we use the dis-

tance metric to calculate the distance between adjacent

instances as the weight of the corresponding edge in the

k-NNG and use the Wk-NNG to generate a distance-

weighted Laplacian matrix.

Since the Laplacian matrix generated using the k-near-

est-neighbor graph is a sparse matrix, it cannot be directly

used for instance selection. Therefore, we use the matrix

decomposition method to decompose the generated dis-

tance-weighted Laplacian matrix and use the eigenvalues

of the matrix to select the appropriate majority class as the

training set of the classifier. Furthermore, we need to

clarify the reason for using eigenvalues to select instances.

The mathematical meaning of eigenvalues is shown in

Definition 1.

Definition 1 (Eigenvalues). Let there be an n-dimensional

square matrix M. If there is a constant k and an n-dimen-

sional nonzero column vector x, so that Mx ¼ kx is

established, then k is said to be the characteristic value or

eigenvalue of the matrix M.

According to the definition of eigenvalues, we can

rewrite the equation Mx ¼ kx as the relation

ðkE�MÞx ¼ 0, where E is the identity matrix. During the

solution process, the determinant detðkE�MÞ ¼ 0 is

required. Therefore, we can solve for the eigenvalues of a

matrix by constructing a system of homogeneous linear

equations for the relation. The Laplacian matrix obtained

through the weighted k-nearest-neighbor graph is not a

positive-definite matrix, so its corresponding eigenvalues

must be positive and negative.

Furthermore, the weighted Laplacian matrix we obtain

represents the adjacent position and compactness between

instances in the dataset. Therefore, the eigenvalues in a

system of homogeneous linear equations can be regarded

as the global compactness of the corresponding instances.

We rely on empirical methods to use the eigenvalues after

matrix decomposition as instance selection criteria, and a

new heuristic instance selection method is proposed. When

the eigenvalue corresponding to the instance is negative, it

means that the information about the instance is more

independent and needs to be retained.

In conclusion, based on the above ideas, the matrix

decomposition method is used to calculate the eigenvalues

of the distance-weighted Laplacian matrix, and instances

that are more suitable for classification can be selected

according to the eigenvalues.

3.2 Preliminary knowledge

Before introducing the LMD-WNG instance selection

algorithm, we need to introduce the preliminary knowledge

used by LMD-WNG. In Sect. 3.2.1, we briefly introduce

weighted k-nearest-neighbor graphs (k-NNG). The Lapla-

cian matrix used is described in Sect. 3.2.2. Finally, the

matrix decomposition method used (Schur decomposition

[51]) is presented in Sect. 3.2.3.

3.2.1 Weighted k-nearest-neighbor graph (Wk-NNG)

Graph theory is an important branch of mathematics. It

uses graphs as the research object. In graph theory, a graph

is composed of several given points (or instances) and lines

connecting two points. This type of graph is usually used to

describe a certain relationship between points (or instan-

ces). The basic representation of a graph is shown in

Definition 2.

Neural Computing and Applications (2024) 36:12397–12425 12401

123

Definition 2 (Graph). A graph can be represented as

G ¼ ðv;EÞ, where v ¼ fv1; v2; . . .; vng represents the set of

vertices in the graph and E ¼ feijg; i; j ¼ 1; 2; . . .; n repre-

sents the set of edges connecting two vertices.

It should be noted that graphs can be divided into

directed graphs and undirected graphs according to whe-

ther the edges have directions. If the generated graph is a

directed graph, then eij means the edge connecting vertex i

and vertex j; eij means that the direction of the edge is from

vertex i to vertex j; otherwise, it means that the direction of

the edge is from vertex j to vertex i. Although the graph

generated in the k-NNG is a directed graph, in our algo-

rithm we only consider the connectivity between instances

and the distance metric on edges. Figure 1 shows a simple

graph structure.

The k-NNG [52] is a special graph built using the k-NN

method that can represent the relationship between

instances in a dataset and thus discover the overall data

structure of the dataset. However, k-NNG is a directed

graph defined by a given set of instances in a metric space.

In the dataset, the connectivity information between all

instances can be discovered by using the k-NNG. We give

the definition of the k-NNG in Definition 3.

Definition 3 (k-nearest neighbor graph [53]). Suppose the

dataset D ¼ fx1; x2; . . .; xng 2 Rd contains n instances, and

d represents the dimension of each instance in the dataset.

G ¼ ðv;AhÞ is a directed graph, the vertex set v contains all

instances in the dataset D, and the adjacency matrix A ¼
Aði; jÞn�n constructed according to the dataset D is defined

as follows:

Aði; jÞ ¼ 1 if xj 2 NðxiÞ
0 otherwise

�
ð1Þ

where NðxiÞ represents the set of k-nearest neighbors of

instance xi.

When Aði; jÞ ¼ 1, instance xi and instance xj are one-

way connected, and there is a unilateral connection rela-

tionship between them. It should be noted that there are

mutual nearest neighbors in the dataset. When

Aði; jÞ ¼ Aðj; iÞ ¼ 1, instance xi and instance xj are bidi-

rectional connected, and there is a bidirectional connection

relationship between them.

Remark 1 It should be noted that not all instances have

bidirectional connectivity. The nearest-neighbor relation-

ship formed by using the k-nearest-neighbor search is not a

symmetrical relationship; that is, it is assumed that instance

xi is the nearest neighbor of instance xj in the dataset D.

However, it does not mean that instance xi is also instance

xj’s nearest neighbor.

As the hyperparameter k increases, there must be bidi-

rectional connectivity in the dataset. In the LMD-WNG

algorithm, we do not focus on the samples of bidirection-

ally connected relations. In the k-NNG we constructed,

when Aði; jÞ ¼ Aðj; iÞ ¼ 1 appears, it is only calculated

once in the adjacency matrix, and the value of the corre-

sponding position is 1. (If a distance-weighted k-NNG is

used, the value of the corresponding position of the adja-

cency matrix is dðxi; xjÞ.)
Furthermore, according to the definition of the k-NNG

given in Definition 1, LMD-WNG will search for the k-NN

in the dataset, and we can easily get the k-nearest-neighbor

graph. In LMD-WNG, k is a hyperparameter, and the

parameter sensitivity analysis of LMD-WNG will be given

in Sect. 5.

In many applications, the direction of edges in the

formed k-NNG is ignored, and the graph becomes an

undirected graph. If the k-NNG of definition 1 is used to

construct the Laplacian matrix, it is not difficult to find that

the k-NN searched for the instance xi will all be marked as

1. We believe that in the resulting k-NNG, the weights

corresponding to all instances are the same. However, such

an approach is unreasonable, the main reason being that not

all values obtained by distance metrics are equal. The

smaller the value of the distance metric, the closer the

distance or similarity between instances. It is not advisable

for us to treat all instances equally. Therefore, in the

k-NNG we constructed, we need to calculate the degree of

similarity between instances.

In the field of machine learning, there are many methods

that can measure the correlation or similarity, such as the

Manhattan distance, Minkowski distance, Euclidean dis-

tance, and cosine similarity. Different measurement

methods can discover different characteristics between

instances. Euclidean distance is a classic distance mea-

surement and has been recognized by most researchers

1v

2v 3v

5v

4v

23e

24e

45e

12e

15e
53e

Fig. 1 A simple graph structure

12402 Neural Computing and Applications (2024) 36:12397–12425

123

[52, 53]. In addition, Euclidean distance has the following

advantages:

1. Euclidean distance is very intuitive to use and easy to

implement.

2. Euclidean distance works very well when you encoun-

ter low-dimensional data and the size of the vector is

important.

In addition, we also noticed that when the dimension-

ality is high or there are obvious dimensional differences in

the features, the Euclidean distance will also fall into the

problem of dimensionality disaster or inaccurate measure-

ment. For such datasets, we can replace other measurement

methods, such as standardized Euclidean distance and

Mahalanobis distance. However, in order to be consistent

with the k-nearest-neighbor graph search process, using

k-nearest neighbors, Euclidean distance is used to calculate

the degree of similarity. The definition of Euclidean dis-

tance is shown in Definition 4.

Definition 4 (Euclidean distance). Suppose the dataset

D ¼ fx1; x2; . . .; xng 2 Rd contains n instances, and d

represents the dimension of each instance in the dataset.

The Euclidean distance between instance xi and instance xj
is defined as follows:

d xi; xj
� �

¼

ffiXd
k¼1

xki � xkj

� �2

vuut ð2Þ

Correspondingly, we will calculate the Euclidean dis-

tance as the weight of the edge with connected instances

and construct a Wk-NNG. The adjacency matrix A ¼
Aði; jÞn�n formed at this time can be rewritten as:

Aði; jÞ ¼ dðxi; xjÞ if xj 2 NðxiÞ
0 otherwise

�
ð3Þ

3.2.2 Laplacian matrix

The Laplacian matrix is the core content of the whole

graph theory. With the in-depth study of graph neural

networks, using Laplacian matrices to solve graph structure

problems is becoming more and more popular [33–35].

Computing the adjacency matrix and degree matrix

according to the graph structure is an important step in

computing the Laplacian matrix. Laplacian matrices are

widely used in clustering and other applications. There are

two common forms of Laplacian matrices: classical

Laplacian matrices and normalized Laplacian matrices. In

the proposed LMD-WNG algorithm, the classical Lapla-

cian matrix is used. Therefore, we will introduce the defi-

nition of the classical Laplacian matrix, as shown in

Definition 5. In addition, for a better understanding, we

give the calculation process of the classical Laplacian

matrix according to the simple graph structure shown in

Fig. 1 in Example 1.

Definition 5 (Classical Laplacian matrix). Let G ¼ ðv;AhÞ
be a graph, then the classical Laplacian matrix is defined

as:

L ¼ DðGÞ � AðGÞ ð4Þ

where AðGÞ denotes the adjacency matrix of graph G, and

DðGÞ denotes the degree matrix of graph G. In the degree

matrix, except for the diagonal elements, the elements at

other corresponding positions are all zero. And the corre-

sponding element Di; i ¼ 1; 2; . . .; n on the diagonal rep-

resents the number of edges drawn from the vertex i.

Example 1. According to the graph structure given in

Fig. 1, we can get the adjacency matrix as:

AðGÞ ¼

0 1 0 0 1

1 0 1 1 0

0 1 0 0 1

0 1 0 0 1

1 0 1 1 0

2
66664

3
77775

The degree matrix is:

DðGÞ ¼

2 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 3

2
66664

3
77775

Therefore, the classical Laplacian matrix is:

L ¼ DðGÞ � AðGÞ

¼

2 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 3

2
66664

3
77775

�

0 1 0 0 1

1 0 1 1 0

0 1 0 0 1

0 1 0 0 1

1 0 1 1 0

2
66664

3
77775

¼

2 �1 0 0 �1

�1 3 �1 �1 0

0 �1 2 0 �1

0 �1 0 2 �1

�1 0 �1 �1 3

2
66664

3
77775

Since the values of the adjacency matrix in the classical

Laplacian matrix are all expressed as 1, the classical

Laplacian matrix ignores the distance difference between

Neural Computing and Applications (2024) 36:12397–12425 12403

123

the k-nearest-neighbor instances. Therefore, calculate the

distance between adjacent instances in the adjacency

matrix and calculate the distance obtained as the weight of

the adjacency matrix. In the LMD-WNG instance selection

algorithm, the calculated distance-weighted Laplacian

matrix is expressed as follows:

L0 ¼ DðGÞ � A0ðGÞ ¼ DðGÞ � d � AðGÞ ð5Þ

where � represents Hadamard product, L0 represents the

distance-weighted Laplacian matrix, and A0ðGÞ represents

the adjacency matrix weighted by distance, d represents the

distance matrix between instances. It should be noted that

in the LMD-WNG instance selection algorithm, the

Euclidean distance is used to calculate the distance

between adjacent instances. Therefore, no matter which

vertex the edge emanates from, the distance value is the

same, i.e., dij ¼ dji.

Continuing from Example 1, we can get the weighted

Laplacian matrix as:

L0 ¼ DðGÞ � A0ðGÞ

¼

2 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 3

2
66664

3
77775

�

0 d21 0 0 d51

d12 0 d32 d42 0

0 d23 0 0 d53

0 d24 0 0 d54

d15 0 d35 d45 0

2
66664

3
77775

¼

2 �d21 0 0 �d51

�d12 3 �d32 �d42 0

0 �d23 2 0 �d53

0 �d24 0 2 �d54

�d15 0 �d35 �d45 3

2
66664

3
77775

3.2.3 Schur decomposition

Matrix decomposition is a commonly used mathematical

method that has important research value and significance

in the analysis of matrix theory. The Schur decomposition

method is a common method of matrix decomposition. In

the proposed LMD-WNG instance selection algorithm, we

also decompose the distance-weighted classical Laplacian

matrix using the Schur decomposition method. The rele-

vant theorems and corollaries of Schur’s decomposition are

shown in [51]. Schur decomposition has three important

properties, namely subspace invariance of Schur vectors,

scaling transformation invariance of Schur vectors, and

perturbation stability [51]. Therefore, we can use the Schur

decomposition method to solve the eigenvalues of the

weighted Laplacian matrix more stably and select appro-

priate instances based on the eigenvalues.

According to the conclusion drawn in [51], we can see

that the time consumption of using matrix decomposition

technique is relatively large, but we can use GPU or other

acceleration algorithms for matrix calculation to achieve

accelerated calculation of matrix decomposition. Based on

the three important properties of Schur decomposition

mentioned above, we can see that when the constructed

Laplacian matrix is perturbed, the result of using matrix

decomposition will not cause a great impact, and the

formed eigenvalues are stable. During the instance selec-

tion process, by observing the decomposed eigenvalues, we

can clearly know which instances are selected by the

model. Therefore, methods using matrix decomposition are

highly interpretable. In addition to using the Schur

decomposition method to decompose the distance-weigh-

ted Laplacian matrix, most matrix decomposition methods

such as QR decomposition and SVD decomposition can be

used [51].

3.3 Algorithm description

LMD-WNG is an instance selection method combining

Laplacian matrices and matrix decomposition techniques.

LMD-WNG is the first novel approach combining Lapla-

cian matrices and matrix decomposition techniques on

class-imbalance problems. This method is divided into four

phases: constructing the k-NNG; computing the classical

distance-weighted Laplacian matrix; matrix decomposition

(Schur decomposition); and instance selection. In the first

phase, we use the k-NN to search the instance space and

form a k-NNG. The second phase is to calculate the

adjacency matrix and degree matrix according to the

k-NNG and calculate the classical distance-weighted

Laplacian matrix of the k-NNG. The Schur decomposition

is carried out in the third phase, which mainly decomposes

the classical distance-weighted Laplacian matrix to obtain

the corresponding eigenvalues of the matrix. In the fourth

phase, instance selection is to select instances in the

majority class according to the size of the eigenvalues in

the Laplacian matrix. Finally, the selected majority

instances are combined with the minority instances to form

a new training set. The flowchart of LMD-WNG instance

selection algorithm is shown in Fig. 2.

Next, we introduce the details of the LMD-WNG

instance selection algorithm in detail and give the pseu-

docode of LMD-WNG in Algorithm 1.

Phase 1: Search the instance space and generate the

k-NNG.

Step 1: According to Definition 2, the k-NNG of the

instance space is constructed using the k-NN method. If

instance xi is one of the k-nearest neighbors of instance xj

12404 Neural Computing and Applications (2024) 36:12397–12425

123

or instance xj is one of the k-nearest neighbors of instance

xi, use a line connection between instances xi and xj. In

Sect. 3.2.1, we also mentioned that instances xi and xj may

be k-nearest neighbors to each other, which is called a

bidirectional connection. In this case, we only connect

once. In addition, the generated k-NNG is a standard

directed graph, but the direction of the connection does not

affect our use. Therefore, we directly treat the resulting

graph as an undirected graph.

Step 2: The Euclidean distance between neighboring

instances is calculated according to Eq. (2) and used as the

weight of the edge connecting two instances.

Phase 2: Compute the distance-weighted Laplacian

matrix L0.

Step 3: Calculate the weighted adjacency matrix A0ðGÞ
and the corresponding degree matrix DðGÞ according to the

k-nearest-neighbor graph G.

Step 4: According to Definition 4, the distance-weighted

Laplacian matrix L of the instance space is calculated.

Phase 3: Decompose the distance-weighted Laplacian

matrix L0.
Step 5: Decompose the weighted Laplacian matrix L0

using the Schur decomposition method described in

Sect. 3.2.3. Calculate the eigenvalue vector corresponding

to the matrix L0 according to the Schur decomposition

method.

Phase 4: Majority instance selection.

Input: Original training dataset

Output: New training dataset

Weighted adjacent

matrix

Degree matrix

Weighted Laplacian

matrix based on

distance

Matrix decomposition

(Schuler method)

Eigenvalues of

Laplacian matrix

Select majority

instances

k-nearest neighbor

Calculate distance

Y
es

No Delect

Fig. 2 The flowchart of LMD-

WNG

Neural Computing and Applications (2024) 36:12397–12425 12405

123

Step 6: Arrange in ascending order according to the

eigenvalues of the distance-weighted Laplacian matrix L0.
Step 7: Select the majority instances in ascending order

of eigenvalues and form a new training dataset together

with the minority instances.

It should be noted that, assuming that in the dataset D,

the number of instances in the majority class is N�j j, and

the number of instances in the minority class is Nþj j, then

in the fourth phase, there are two situations:

Case 1. When the number of instances N�
neg

��� ��� with

negative eigenvalues in the corresponding position in the

majority instances is more than the number of instances in

the minority class Nþj j, all instances with negative eigen-

values will be selected to join the training set. We consider

instances with negative eigenvalues to be more

independent and have fewer instances around them. If they

are deleted rashly, it may not be conducive to building an

efficient classification model.

Case 2. When the number of instances N�
neg

��� ��� with

negative eigenvalues in the corresponding position in the

majority class is less than the number of instances in the

minority class Nþj j, we will select the majority instances in

order from small to large. When the majority instances are

balanced with the minority instances, we stop adding more

instances to the new training set.

The pseudocode of the LMD-WNG is shown in Algo-

rithm 1.

Algorithm 1 LMD-WNG instance selection algorithm

12406 Neural Computing and Applications (2024) 36:12397–12425

123

3.4 Complexity

We derive the computational complexity of the LMD-

WNG instance selection algorithm. Before deriving the

complexity, we assume that the number of instances in the

dataset D is n, and the number of features is d.

In the LMD-WNG instance selection algorithm, its

computational complexity mainly comes from two phases:

k-nearest-neighbor graph construction and Schur decom-

position. For the other two phases, a simple search is

performed on the distance-weighted Laplacian matrix, so

their computational complexity is negligible. In the first

phase, we need to search the entire instance space using the

k-nearest-neighbor algorithm. Since there may be differ-

ences in the methods to implement the k-nearest-neighbor

search, we only consider directly searching the instance

space using the k-nearest-neighbor method. The computa-

tional complexity of the whole process is Oðn2dÞ. In

addition, in the third phase, its complexity mainly comes

from decomposing the distance-weighted Laplacian matrix

L0 using the Schur decomposition method. Therefore,

according to the results of [54], it can be known that its

computational complexity is Oðn3Þ.
In summary, the overall complexity of LMD-WNG is

Oðn2d þ n3Þ. Since the dataset we use is not high-dimen-

sional, the dimension d has less impact on complexity.

Therefore, the final complexity of LMD-WNG can be

expressed as Oðn3Þ. For large-scale datasets, this com-

plexity is high and consumes a lot of computing resources.

However, traditional methods are not suitable for larger-

scale imbalanced datasets, and artificial neural networks

are good methods for processing them. During the training

process of the network, we will not directly use the entire

dataset for training. The mini-batch training method is an

effective method for training the neural network. However,

when encountering highly imbalanced datasets, we cannot

guarantee that the data distribution in each mini-batch is

balanced. Therefore, LMD-WNG can be used as a pre-

processing method to select the best instances in mini-

batches for training.

4 Experimental setting and evaluation
metrics

We use Python for modeling, conduct experiments on 30

public datasets, and compare them with state-of-the-art

algorithms to verify the effectiveness of the proposed

instance selection algorithm (LMD-WNG). The experi-

mental computer is as follows: CPU: i7-6700M; System:

Win10 Pro; Interpreter: Python 3.10; imbalanced_learn:

0.10.1; Scikit_learn: 1.2.2; Numpy: 1.22.3; Pandas: 1.4.2.

The base classifier used in the comparative experiment is

introduced in Sect. 4.1. The basic information about the

dataset is shown in Sect. 4.2. Furthermore, the evaluation

metrics used in the experiments will be introduced in

Sect. 4.3.

It should be noted that due to the large number of

datasets used in this paper, we divided all datasets into

three categories according to the imbalance ratio (IR) [55]

in the parameter sensitivity analysis and comparative

experiment. In [55], they consider such datasets as severely

imbalanced when the IR is greater than 10. Throughout the

experiments, we also followed their approach to analyzing

the experimental results in terms of IRs. However, we

classify imbalanced data into three types: mildly imbal-

anced problems, moderately imbalanced problems, and

highly imbalanced problems. When IR� 5, we consider

such a dataset to be only mildly imbalance problems. We

consider such datasets to have moderately imbalanced

problems when 5\IR� 10 applies. When 10\IR, the

dataset is a highly imbalanced dataset. We generally

believe that the higher the imbalance ratio, the more dif-

ficult it is to classify directly using traditional classifiers.

4.1 Classifiers

We chiefly introduce the two classifiers used in the

parameter sensitivity analysis and comparative experi-

ments. They are gradient boosting tree (GBDT) based on

boosting, random forest (RF) based on bagging, and sup-

port vector machine (SVM), respectively. GBDT and RF

are classic methods based on decision trees. The tree

structure method has better interpretability, and we can

clearly see the division process of each node. Therefore, in

our experiments, LMD-WNG is used to improve the per-

formance of tree-based classification algorithms.

Gradient boosting decision tree (GBDT) [56] is an

iterative decision tree algorithm. The algorithm uses clas-

sification and regression decision trees (CART) [57] as the

base classifier of the model. Therefore, it can not only

perform classification but also handle regression analysis

problems. At the beginning of the proposal, the researchers

believed that GBDT has a strong generalization ability and

can adapt to most common application scenarios.

Random forest (RF) [58] is an efficient learning algo-

rithm based on Bagging. This algorithm also uses CART as

the base classifier. Therefore, it, like GBDT, is able to

handle both classification and regression problems. In

addition, it is also an ensemble learning algorithm that can

achieve parallelism and has strong generalization abilities.

Support vector machine (SVM) [59] is a commonly used

machine learning algorithm. SVM has been widely used in

classification and regression problems. The SVM algorithm

maps the original data into a high-dimensional space,

Neural Computing and Applications (2024) 36:12397–12425 12407

123

making it easier for instances to separate from each other in

this space. In addition, SVM can reduce the generalization

error as much as possible while minimizing structural risks,

thereby effectively avoiding the model from falling into

overfitting problems.

It should be noted that the ensemble strategies used by

GBDT and RF are not the same. GBDT uses the decision

tree to repeatedly learn the training data in series, while RF

learns on the training set in parallel. Therefore, RF is able

to achieve parallel computing, while GBDT cannot.

Throughout the experiments, the classifiers we use are

directly invoked from the scikit-learn library [60]. In order

to be fair, in subsequent experiments, we only adjusted the

parameters of the LMD-WNG instance selection algorithm,

while the hyperparameters of the base classifier used the

default hyperparameters in the corresponding library

without any adjustment.

4.2 Baseline datasets

Throughout the experiments, we collected 30 datasets from

the KEEL [61] databases. The meta information of the

datasets is shown in Table 1 (arranged in ascending order

of IR). In the field of data mining, most researchers believe

that the smaller the number of instances, the more difficult

it will be to classify. The main reason is that the model

obtained by training on such a dataset may be biased.

Therefore, researchers use the imbalance ratio to measure

the skewness of instances. The imbalance ratio (IR) is an

important indicator for measuring the distributional

imbalance of datasets. IR refers to the ratio of the number

of instances in the majority class (negative class) to the

number of instances in the minority class (positive class)

[55]. In subsequent experiments, the dataset with the lar-

gest imbalance ratio we used was poker-8-9_vs_5, which

reached 82. The dataset with the smallest imbalance ratio,

ecoli-0_vs_1, has an imbalance ratio of 1.86.

4.3 Evaluation metrics

Evaluation metrics are an important way to assess the

performance of models. Accuracy (Acc) is the most com-

mon evaluation metric for classification problems, but it is

unwise to use it directly for class-imbalanced problems. If

you directly use accuracy to evaluate the base classifier,

you cannot query the results of the minority instances (as

described in Sect. 1).

Therefore, we need to use evaluation metrics that pay

more attention to classification performance in minority

instances. When studying class-imbalance problems,

commonly used evaluation metrics include F1, Recall,

AUC, G-mean, MCC, etc. The area under the receiver

operating characteristic (ROC) curve (AUC) and the

geometric mean (G-mean) are two common evaluation

metrics. G-mean can be regarded as a variant of accuracy.

During the calculation of G-mean, it is necessary to cal-

culate the correct prediction numbers for different types of

instances. When the classification performance of minority

instances is poor, the G-mean will be very low or even

zero. Therefore, G-mean is an evaluation metric that pays

more attention to minority instances. In addition, it should

be noted that in the process of calculating AUC [62], it is

necessary to first draw the ROC curve and calculate the

sum of all trapezoidal areas according to the change in the

threshold. For binary class-imbalance problems, most

classifiers directly output the class labels of instances.

Therefore, when solving the AUC, the AUC value is cal-

culated directly using the labels (two labels, 0 and 1,

respectively) as probabilities. It should be noted that some

researchers use probability as the output of the model.

However, there are certain differences in the AUC obtained

by these two calculation methods (but this does not indicate

that there is an evaluation error in the literature). The

current use of these two methods is confusing and does not

facilitate the assessment of results. Therefore, it is recom-

mended to use a unified AUC calculation method in the

field of class-imbalance problem research in the future.

Throughout the experiments, we still use labels as output

and directly calculate the results of the AUC.

5 Parameter sensitivity analysis

Parameter sensitivity analysis is helpful to understand the

degree of influence of hyperparameters on the uncertainty

of model output. In our proposed LMD-WNG instance

selection algorithm, the hyperparameter k needs to be

manually set during the k-NNG construction stage.

The size of the hyperparameter k affects the result of the

subsequent construction of the distance-weighted Lapla-

cian matrix. When the hyperparameter k is larger, more

neighboring instances are selected in the instance space,

the value of the corresponding position in the newly

formed Laplacian matrix is larger, and the matrix is denser.

Conversely, when the value of k is smaller, the matrix is

sparser. When the value of k is small, the eigenvalues of the

instances located of the sparse region in the instance space

are smaller, and they are easier to be selected. Conversely,

instances located in dense areas of the instance space are

more likely to be ignored. As the value of k increases, the

changes in the dense area are not obvious. Instead, in the

degree matrix, the values corresponding to the positions of

instances in sparse regions become larger, causing these

instances to be removed during the selection process as

well. Therefore, according to the above analysis, we con-

clude that the size of the k value will affect the

12408 Neural Computing and Applications (2024) 36:12397–12425

123

classification performance of the model. When the value of

k is small, more instances are selected; on the contrary, as

the value of k increases, fewer instances are selected.

However, the degree of influence on the model needs fur-

ther verification.

In order to further verify the influence of k value on

model performance, in the sensitivity analysis part, we

choose k = 3, 5, 7 and 9 for experiments. In our experi-

ment, k should not take a larger value because, when the

value of k is too large, the instances in the sparse area will

be included, which is not conducive to the selection of

instances. Due to space reasons, we only use AUC as the

evaluation metric to analyze the effect of the hyperpa-

rameter k on the performance of both GBDT and RF

classifiers. When k = n, the adjacency matrix with simi-

larity is used for calculation, and the LMD-WNG at this

time is similar to our previous work [49]. However, in

previous work, we did not consider the number of

connections between neighbors (i.e., we did not compute

the degree matrix). In Fig. 3, the classification performance

on mildly, moderately, and highly imbalanced datasets is

given using GBDT. In Fig. 4, the classification perfor-

mance on mildly, moderately, and highly imbalanced

datasets is given using RF. Figure 5 shows the impact of

hyperparameter k on SVM.

We first observe the experimental results of the LMD-

WNG instance selection algorithm when using GBDT as

the base classifier. When LMD-WNG is used to process

mildly imbalanced datasets, the value of k has no obvious

impact on the experimental results, as shown in Fig. 3a.

We continue to observe the experimental results in Fig. 3b.

It is not difficult to find that as the value of the hyperpa-

rameter k increases, the AUC value of the classifier fluc-

tuates more obviously. We can observe with the naked eye

that the fluctuations in AUC values are irregular; that is, the

optimal k values are different on different datasets.

Table 1 Meta information of

datasets
Datasets #Feature #Majority #Minority #Class Imbalanced ratio

ecoli-0_vs_1 7 143 77 2 1.86

pima 8 500 268 2 1.87

glass0 9 144 70 2 2.06

vehicle2 18 628 218 2 2.88

vehicle1 18 629 217 2 2.9

vehicle3 18 634 212 2 2.99

vehicle0 18 647 199 2 3.25

segment0 19 1979 329 2 6.02

glass6 9 185 29 2 6.38

yeast3 8 1321 163 2 8.1

ecoli3 7 301 35 2 8.6

yeast-2_vs_4 8 463 51 2 9.08

ecoli-0-6-7_vs_3-5 7 200 22 2 9.09

ecoli-0-1_vs_5 6 220 22 2 11

glass2 9 197 17 2 11.59

yeast-1_vs_7 7 429 30 2 14.3

abalone9-18 8 689 42 2 16.4

yeast-1-4-5-8_vs_7 8 663 30 2 22.1

yeast4 8 1433 51 2 28.1

winequality-red-4 11 1546 53 2 29.17

yeast-1-2-8-9_vs_7 8 917 30 2 30.57

yeast5 8 1440 44 2 32.73

abalone-17_vs_7-8-9-10 8 2280 58 2 39.31

abalone-21_vs_8 8 567 14 2 40.5

yeast6 8 1449 35 2 41.4

winequality-white-3_vs_7 11 880 20 2 44

abalone-19_vs_10-11-12-13 8 1590 32 2 49.69

winequality-white-3-9_vs_5 11 1457 25 2 58.28

abalone-20_vs_8-9-10 8 1890 26 2 72.69

poker-8-9_vs_5 10 2050 25 2 82

Neural Computing and Applications (2024) 36:12397–12425 12409

123

We can simply conclude that LMD-WNG is more sen-

sitive to the hyperparameter k as the dataset imbalance

ratio increases. The setting of parameters is more likely to

affect the classification performance of the model. When

we observe the experimental results in Fig. 3c, the exper-

imental results confirm our conclusion, and the influence of

hyperparameter k does not have any rules, showing a

highly disordered state. When using LMD-WNG to cope

with highly imbalanced datasets, the choice of hyperpa-

rameter k is more important because the performance of the

model is more dependent on k.

Next, we proceed to analyze the parameter sensitivity of

the LMD-WNG instance selection algorithm when using

RF. The choice of hyperparameters did not cause serious

performance differences when using the LMD-WNG

algorithm together with RF on mildly imbalanced datasets.

Taking a closer look at the results in Fig. 4a, we find that

there is no obvious advantage for smaller k values. The

main reason is that in the instance space, the difference in

the number of instances of the majority class and the

minority class is not obvious, and when the k-NN is used to

search the instance space, the degree matrix of the instance

does not increase significantly. Therefore, the LMD-WNG

is not sensitive to the parameters at this time. However,

LMD-WNG is more sensitive to the choice of hyperpa-

rameter k as the dataset imbalance ratio increases. For

moderately imbalanced datasets (as shown in Fig. 4a) and

highly imbalanced datasets (as shown in Fig. 4a), the

overall performance fluctuation of the model is obviously

irregular.

Next, observe the experimental results using the SVM

shown in Fig. 5. We noticed that when the imbalance ratio

(IR) of the dataset is low, the impact of different hyper-

parameters on the model’s performance is not obvious. As

the imbalance ratio increases, the impact of hyperparame-

ter settings on the performance of the model gradually

increases. However, for highly imbalanced datasets, the

overall performance of the model fluctuates significantly

and appears irregular. Therefore, we believe that the setting

of hyperparameters is crucial to the performance of the

LMD-WNG. If the hyperparameter settings are unreason-

able, it can easily make it difficult for SVM to identify

unknown minority instances. In addition, the performance

of SVM depends on the number of support vectors in the

training dataset. When the imbalance ratio (IR) is large, the

existence of boundary instances may cause the support

vectors to also show an obvious imbalance. If you blindly

expand the parameters, it may cause the loss of support

vectors near the boundary, causing the overall performance

of the model to decline.

To sum up, for the problem of class imbalance, we also

consider that the imbalance of class distribution is not the

decisive factor affecting the performance of the model.

From the experimental results, it can be seen that there are

still significant differences in performance for different

degrees of class-imbalance datasets. Therefore, for such

datasets, we still need to explore the most serious data

problems existing in the dataset and mine other difficult

factors in the dataset to effectively solve the class-imbal-

ance problem. In addition, the parameter sensitivity of our

proposed LMD-WNG instance selection algorithm increa-

ses with the increase in the IR of the dataset and exhibits an

irregular phenomenon. Therefore, in our model, the choice

of hyperparameters becomes more important when dealing

with datasets with high imbalance.

But we don’t need to worry; there is only one hyper-

parameter in the LMD-WNG instance selection algorithm,

and the optimal hyperparameter can be searched in the

sample space by various methods. In the subsequent

comparative experiments (Sect. 6), we perform fivefold

cross-validation on the original dataset. In order to select

the optimal hyperparameter k, a hierarchical partitioning

method is used on the training set corresponding to each

fold, and 80% of the instances are selected as the real

training set, and the remaining 20% are used as the veri-

fication set. By selecting the hyperparameter k corre-

sponding to the optimal G-mean (Sect. 4.3) on the

validation set as the real hyperparameter for the compar-

ison experiment.

6 Comparative experiments

In this section, we will conduct a complete comparative

experimental analysis to verify the effectiveness of the

LMD-WNG algorithm by comparing it with state-of-the-art

and classic undersampling and oversampling. It should be

noted that throughout the experiment, the hyperparameter

selection method in Sect. 5 is followed, the performance of

the model was still verified using fivefold cross-validation,

and the mean score was used as the final score of the

model.

6.1 Baseline methods

In this selection, we introduce some resampling and

ensemble learning algorithms used in comparative

experiments.

Random undersampling (RUS) is a classic undersam-

pling method. This method only randomly removes

majority instances until the minority and majority instances

are balanced in the training set. On some datasets, the

performance of the classifier has improved, but the random

selection of instances in the algorithm increases the

uncertainty of the algorithm.

12410 Neural Computing and Applications (2024) 36:12397–12425

123

Fig. 3 The results of parameter

sensitivity analysis (GBDT)

Neural Computing and Applications (2024) 36:12397–12425 12411

123

Fig. 4 The results of parameter

sensitivity analysis (RF)

12412 Neural Computing and Applications (2024) 36:12397–12425

123

Fig. 5 The results of parameter

sensitivity analysis (SVM)

Neural Computing and Applications (2024) 36:12397–12425 12413

123

Synthetic minority oversampling technique (SMOTE)

[41] is a classic method proposed to overcome the over-

fitting problem of random oversampling (ROS) methods.

This method randomly selects an instance among the

k-nearest-neighbor minority instances of the minority

anchor instance and randomly synthetic minority instances

in the space connecting the two instances.

Tomek links (TL) [63] is a classic class-overlap under-

sampling method considering the sample space. There are

many ways to use this method, and you can choose dif-

ferent ways to process datasets according to actual needs.

However, when faced with highly imbalanced datasets, the

effect of directly using TL to process datasets is not

obvious.

NB-TL [64] is an improved method that considers the

problem of class-overlap. This method can expand the

scope of classic TL to clean up overlapping regions in the

instance space and improve the classification performance

of TL.

CDSMOTE [65] uses a class decomposition to reduce

the dominance of majority instances and uses oversampling

techniques to enhance the feature representation of

minority instances. The class decomposition strategy can

prevent the loss of important information.

KNNOR [45] uses the k-nearest-neighbor technique to

identify the position and compactness between the minority

instance and the majority instance and determine the key

areas that need enhancement. KNNOR is able to generate

more reliable synthetic minority instances and maintain the

model’s robustness to noise.

MESA [66] is a novel ensemble learning framework

trained using task-agnostic independent meta-samplers.

This method involves resampling the dataset iteratively to

obtain multiple base classifiers and form a cascade

ensemble learning model.

It should be noted that CDSMOTE, KNNOR, and

MESA are implemented based on the open source code

provided by the author, and the code is improved according

to the description in the literature, and its parameters adopt

the best parameters in the literature. RUS, SMOTE, and TL

are implemented according to the imbalanced_learn open

source code library and use its default parameters. NB-TL

is reproduced according to the details given in [64]. In [64],

the author believes that the value of k has no obvious

impact on the performance of the model. Therefore, the

hyperparameters of NB-TL are set to k ¼ 5.

6.2 Results and analysis

In this section, we use AUC [62] and G-mean as the

evaluation metrics of the model, and the calculation pro-

cess is shown in Sect. 4.3. Note that the AUC used in the

experiments is calculated by directly outputting labels. In

our experiments, we use the mean of the fivefold cross-

validation as the final result of the model, and the cross-

validation training set is nested and divided into 80% of the

training set and 20% of the validation set. It should be

noted that other state-of-the-art models are trained directly

using cross-validated training sets. For state-of-the-art and

classic comparison algorithms, we have briefly introduced

them in Sect. 5.1. The results and open service code of the

entire comparative experiment have been published on

GitHub (https://github.com/cup-dq/LMD-WNG). In order

to prove the effectiveness of the proposed LMD-WNG

instance selection algorithm, we conducted comparative

experiments on 30 publicly available datasets. Tables 2 and

3 show the classification performance of the two ensemble

classifiers, GBDT, RF and SVM, respectively, when AUC

and G-mean are used as evaluation metrics.

Observing the experimental results in Table 2 when

using AUC as the evaluation metric, the mean value of the

LMD-WNG instance selection algorithm on all datasets is

better than other resampling algorithms, and the overall

performance is comparable to other resampling techniques

and has a competitive advantage. Judging from the number

of best scores obtained, we observe that when GBDT is

selected as the base classifier, LMD-WNG obtains the best

scores on 15 datasets, accounting for 50% of the entire

experimental dataset. MESA is the suboptimal model,

achieving the best score on 7 datasets. And KNNOR and

CDSMOTE achieved the best scores on four datasets,

respectively. When RF is selected as the base classifier,

LMD-WNG achieves the best score on 19 datasets,

accounting for 63.3% of the entire experimental dataset.

MESA is the suboptimal model, achieving the best scores

on 7 datasets, accounting for 23.3% of the entire dataset. In

addition, we observed that the mean score of LMD-WNG’s

AUC on all datasets is better than other comparison

methods, and compared with RUS, using GBDT and RF

improved by 3.08% and 2.73%, respectively.

When choosing to use SVM, the performance

improvement of LMD-WNG is not obvious compared with

other resampling methods. LMD-WNG achieves the best

score on only 15 datasets, accounting for 50% of the entire

dataset. Judging from the average values on all datasets, the

overall performance of LMD-WNG still has certain com-

petitive advantages. Moreover, according to the experi-

mental results in Table 2, it can be seen that the

oversampling technique does not achieve higher perfor-

mance on datasets with a higher imbalance ratio. If you

blindly increase the number of minority instances, it may

lead to a decline in model performance or even overfitting

problems.

G-mean is a variation evaluation metric based on

accuracy. It can focus on the recognition effect of minority

instances. When the accuracy of minority instances is

12414 Neural Computing and Applications (2024) 36:12397–12425

123

https://github.com/cup-dq/LMD-WNG

higher, the overall G-mean of the model is higher. When

G-mean is closer to 1, it means that the performance

improvement of minority instances is more obvious. When

the model has difficulty identifying minority instances, the

G-mean of the model will drop significantly.

Next, we continue to observe the experimental results in

Table 3 when using the G-mean as the evaluation metric.

When using GBDT as the base classifier, LMD-WNG

achieved the best scores on 12 datasets, accounting for 40%

of the entire experimental dataset. Furthermore, MESA

achieves the best scores on 7 datasets, and KNNOR

achieves the best scores on 6 datasets. Simply looking at

the number of datasets that achieved the best scores, LMD-

WNG has comparable performance to MESA and

KNNOR. However, for the mean score of the entire

experimental dataset, the mean score of LMD-WNG is

higher, with a performance improvement of 2.89% com-

pared to RUS. For TL and NB-TL, the G-mean score of the

model is significantly lower than other models. When the

class distribution of the dataset is not very different, the

performance gap between TL and NB-TL is not obvious.

When the imbalance ratio of the dataset is very high and

there are too few minority instances, using TL and NB-TL

cannot effectively remove the redundant majority instances

existing in the dataset, resulting in an insignificant per-

formance improvement of the classifier. This is also a

major drawback of only using TL to process the majority

instances in overlapping areas.

When using RF as the base classifier, LMD-WNG

achieved the best score on 16 datasets, accounting for

53.3% of the total number of experimental datasets. The

three comparison methods of MESA, KNNOR, and

CDSMOTE achieved the best performance on 6 datasets, 3

datasets, and 1 dataset, respectively. However, we note that

the mean score of MESA is optimal over the entire

experimental dataset, while the mean score of LMD-WNG

is suboptimal. RF is an ensemble learning algorithm based

on bagging. When the number of instances in the dataset is

too small, a large number of repeated instances will appear

in the training set of the base classifier. Further analyzing

the principle of the LMD-WNG instance selection algo-

rithm, we found that the reason for the abnormal perfor-

mance of LMD-WNG is related to parameter settings.

When the parameter selection is too large, the model may

suffer from overfitting problems because it may be better

on the training set but cannot identify the category of

unknown instances. Therefore, for highly imbalanced

datasets, a more appropriate parameter selection strategy is

needed to determine the hyperparameters of LMD-WNG.

When SVM is selected for classification, LMD-WNG

achieves the best score on 14 datasets, accounting for

46.67% of the entire dataset. Simply looking at the number

of datasets with the best scores, the advantages of LMD-

WNG are not obvious, and the overall performance of the

model can be optimized through other strategies. In order

to further discover the overall performance of each

resampling technique on 30 datasets. We present in Figs. 6,

7, and 8 the mean scores of the two evaluation metrics,

AUC and G-mean, when using GBDT, RF, and SVM,

respectively.

First, observe the classification performance on all

datasets when GBDT is used in Fig. 5. It is not difficult to

see that when using AUC as the evaluation metric, the

LMD-WNG instance selection algorithm has comparable

performance to the three methods of MESA, KNNOR, and

CDSMOTE, and has certain obvious advantages compared

with other resampling techniques. However, when using

G-mean, the performance improvement of the LMD-WNG

instance selection algorithm is more obvious.

When we choose RF, the experimental results of all

compared algorithms are shown in Fig. 7. We observe the

experimental results when AUC is used in Fig. 7a, and the

proposed LMD-WNG instance selection algorithm out-

performs other comparative algorithms and has a strong

competitive advantage compared with ensemble learning

techniques. Furthermore, when observing the use of

G-mean as the evaluation metric, we can draw the same

conclusion as when using GBDT: that our proposed LMD-

WNG is an excellent algorithm.

Next, we continue to observe the classification perfor-

mance of different resampling methods when using the

SVM shown in Fig. 8. Observing the overall performance

evaluated using AUC in Fig. 8b, we notice that the per-

formance differences of different resampling methods are

not obvious. However, when G-mean is used to evaluate

the performance, there are significant fluctuations in the

performance of the TL method. Analyzing the principle of

TL, we found that TL forcibly deletes the majority

instances adjacent to the boundary minority instances,

expanding the classification boundary of the classifier on

the dataset. However, for SVM, its classification perfor-

mance mainly comes from the support vectors on the

boundary. Therefore, the TL-based resampling technique

does not necessarily improve the overall performance of

using SVM.

Although we analyzed the LMD-WNG instance selec-

tion algorithm from different angles, the performance on

different datasets or the overall experimental dataset is

better, but we do not know whether it is statistically sig-

nificant. Therefore, in Sect. 6.3, we perform statistical tests

on all compared algorithms using the Friedman 1*N test

and Holm’s post hoc test on all datasets. From a statistical

point of view, verify whether there is statistical significance

between the LMD-WNG sample selection strategy and

other methods.

Neural Computing and Applications (2024) 36:12397–12425 12415

123

Table 2 The performance of three classifiers, GBDT, RF, and SVM (using AUC)

Datasets RUS SMOTE TL NB-TL

GBDT RF SVM GBDT RF SVM GBDT RF SVM GBDT RF SVM

ecoli-0_vs_1 0.973 0.967 0.984 0.969 0.978 0.984 0.966 0.975 0.984 0.966 0.974 0.984

pima 0.733 0.739 0.714 0.733 0.729 0.729 0.734 0.728 0.698 0.735 0.743 0.706

glass0 0.824 0.856 0.673 0.813 0.862 0.684 0.837 0.859 0.5 0.813 0.842 0.5

vehicle2 0.967 0.976 0.699 0.968 0.985 0.766 0.972 0.983 0.546 0.971 0.980 0.547

vehicle1 0.782 0.773 0.656 0.755 0.737 0.662 0.728 0.711 0.583 0.798 0.777 0.654

vehicle3 0.743 0.763 0.662 0.751 0.733 0.659 0.701 0.693 0.5 0.771 0.766 0.668

vehicle0 0.943 0.960 0.784 0.959 0.959 0.812 0.951 0.958 0.601 0.958 0.966 0.713

segment0 0.991 0.994 0.872 0.99 0.995 0.847 0.986 0.989 0.846 0.987 0.994 0.853

glass6 0.909 0.932 0.638 0.908 0.911 0.887 0.883 0.878 0.561 0.881 0.911 0.5

yeast3 0.897 0.926 0.919 0.896 0.887 0.915 0.886 0.857 0.863 0.907 0.886 0.881

ecoli3 0.835 0.871 0.895 0.795 0.806 0.884 0.785 0.785 0.812 0.845 0.818 0.902

yeast-2_vs_4 0.923 0.929 0.875 0.872 0.898 0.896 0.862 0.853 0.801 0.863 0.871 0.817

ecoli-0-6-7_vs_3-5 0.815 0.802 0.861 0.812 0.805 0.842 0.831 0.835 0.835 0.811 0.835 0.828

ecoli-0-1_vs_5 0.881 0.909 0.907 0.908 0.895 0.889 0.818 0.868 0.898 0.843 0.845 0.898

glass2 0.617 0.678 0.583 0.664 0.637 0.601 0.502 0.548 0.5 0.531 0.548 0.512

yeast-1_vs_7 0.752 0.712 0.752 0.667 0.674 0.697 0.642 0.613 0.5 0.64 0.629 0.621

abalone9-18 0.721 0.715 0.718 0.716 0.742 0.747 0.612 0.581 0.5 0.633 0.581 0.5

yeast-1-4-5-8_vs_7 0.574 0.613 0.629 0.611 0.549 0.645 0.53 0.5 0.5 0.528 0.500 0.5

yeast4 0.804 0.797 0.812 0.774 0.709 0.83 0.611 0.586 0.698 0.656 0.604 0.758

winequality-red-4 0.613 0.651 0.579 0.608 0.58 0.567 0.515 0.518 0.5 0.524 0.500 0.5

yeast-1-2-8-9_vs_7 0.641 0.689 0.691 0.611 0.601 0.701 0.543 0.598 0.5 0.56 0.564 0.648

yeast5 0.950 0.943 0.96 0.903 0.917 0.942 0.837 0.802 0.625 0.871 0.862 0.792

abalone-17_vs_7-8-9-10 0.799 0.817 0.697 0.791 0.709 0.749 0.615 0.544 0.5 0.598 0.542 0.5

abalone-21_vs_8 0.838 0.757 0.759 0.823 0.814 0.881 0.732 0.664 0.5 0.728 0.731 0.85

yeast6 0.820 0.853 0.881 0.818 0.793 0.867 0.709 0.670 0.697 0.751 0.711 0.866

winequality-white-3_vs_7 0.718 0.731 0.634 0.640 0.543 0.769 0.646 0.650 0.619 0.598 0.625 0.593

abalone-19_vs_10-11-12-13 0.605 0.648 0.598 0.628 0.594 0.696 0.531 0.500 0.5 0.509 0.500 0.5

winequality-white-3-9_vs_5 0.664 0.684 0.632 0.595 0.535 0.508 0.574 0.539 0.5 0.615 0.539 0.516

abalone-20_vs_8-9-10 0.774 0.792 0.676 0.792 0.686 0.869 0.577 0.500 0.5 0.617 0.521 0.5

poker-8-9_vs_5 0.650 0.566 0.643 0.536 0.500 0.75 0.500 0.500 0.5 0.500 0.500 0.551

Average 0.7919 0.8014 0.7461 0.7769 0.7588 0.7758 0.7205 0.7095 0.6222 0.7336 0.7222 0.6719

Datasets CDSMOTE KNNOR MESA LMD-WNG

GBDT RF SVM GBDT RF SVM GBDT RF SVM GBDT RF SVM

ecoli-0_vs_1 0.969 0.977 0.955 0.962 0.966 0.981 0.973 0.973 0.981 0.969 0.983 0.988

pima 0.74 0.751 0.715 0.747 0.764 0.721 0.731 0.722 0.719 0.741 0.746 0.744

glass0 0.817 0.824 0.5 0.792 0.789 0.691 0.827 0.831 0.754 0.855 0.877 0.762

vehicle2 0.961 0.978 0.563 0.929 0.927 0.748 0.954 0.966 0.766 0.974 0.977 0.774

vehicle1 0.773 0.8 0.619 0.698 0.696 0.681 0.792 0.768 0.701 0.818 0.797 0.713

vehicle3 0.772 0.77 0.5 0.684 0.699 0.673 0.773 0.778 0.721 0.783 0.794 0.693

vehicle0 0.956 0.965 0.741 0.882 0.923 0.813 0.951 0.956 0.808 0.965 0.968 0.833

segment0 0.991 0.994 0.847 0.981 0.979 0.853 0.988 0.988 0.965 0.991 0.995 0.882

glass6 0.913 0.903 0.867 0.887 0.879 0.877 0.906 0.907 0.871 0.892 0.941 0.885

yeast3 0.912 0.911 0.881 0.927 0.931 0.879 0.916 0.919 0.899 0.935 0.924 0.927

ecoli3 0.851 0.879 0.893 0.885 0.857 0.887 0.878 0.875 0.869 0.859 0.903 0.907

yeast-2_vs_4 0.908 0.911 0.835 0.938 0.92 0.896 0.958 0.923 0.866 0.933 0.939 0.885

ecoli-0-6-7_vs_3-5 0.842 0.842 0.902 0.772 0.781 0.842 0.861 0.847 0.823 0.825 0.858 0.852

12416 Neural Computing and Applications (2024) 36:12397–12425

123

6.3 Nonparametric statistical tests

In order to further analyze the statistical difference between

the proposed LMD-WNG instance selection method and

other resampling or ensemble learning methods on all

datasets, we use the Friedman 1*N test and Holm’s post

hoc test to conduct statistical analysis on the model [67].

We first used the Friedman test to calculate the ranking of

different resampling techniques on all datasets and then

used Holm’s post hoc test to calculate the unadjusted

p values and adjusted p values (APVs). We consider sta-

tistical significance between resampling techniques when

the p value is less than 0.05. Tables 4, 5, and 6 show the

Friedman 1*N test and Holm’s post hoc test results using

GBDT, RF, and SVM, respectively.

The results of nonparametric statistical tests using

GBDT, AUC, and G-mean as evaluation metrics are given

in Table 4. We observe the results given in Table 4. We

believe that the performance of the proposed LMD-WNG

instance selection algorithm and MSEA are approximate,

and there is no statistical significance between them. We

reject the hypothesis of a statistically significant difference

in their performance. Furthermore, LMD-WNG outper-

forms other comparison algorithms with significant statis-

tical differences.

Random forest is a very robust ensemble learning

algorithm. RF has strong generalization ability for different

problems. The statistical results using RF are shown in

Table 5. We note that both the Friedman ranking of the

resampling technique and the results using Holm’s post hoc

test show the advancement of LMD-WNG. Therefore,

experimental results on all datasets show that LMD-WNG

outperforms other resampling techniques with statistical

differences.

Table 6 shows the statistical test results using SVM.

According to the results of Friedman ranking and Holm’s

post hoc test, we believe that the performance of LMD-

WNG and SMOTE is similar. SMOTE is an effective

method to increase the number of minority instances.

During the processing of KNNOR and CDSMOTE, it is

necessary to avoid boundary instances from participating in

the synthesis of new minority instances. Therefore, when

faced with highly imbalanced problems, KNNOR and

CDSMOTE may suffer from the problem of a small

number of instances in the boundary region. However,

more pseudo-minority instances may gather near minority

instances far from the boundary, causing the performance

of the classifier to decline.

Table 2 (continued)

Datasets CDSMOTE KNNOR MESA LMD-WNG

GBDT RF SVM GBDT RF SVM GBDT RF SVM GBDT RF SVM

ecoli-0-1_vs_5 0.839 0.895 0.916 0.82 0.882 0.895 0.913 0.839 0.855 0.861 0.931 0.886

glass2 0.637 0.664 0.5 0.679 0.702 0.594 0.674 0.799 0.583 0.672 0.766 0.613

yeast-1_vs_7 0.761 0.622 0.592 0.697 0.748 0.711 0.694 0.731 0.692 0.727 0.754 0.735

abalone9-18 0.728 0.701 0.532 0.745 0.692 0.749 0.703 0.734 0.758 0.763 0.768 0.696

yeast-1-4-5-8_vs_7 0.675 0.580 0.593 0.643 0.604 0.638 0.650 0.590 0.663 0.634 0.622 0.637

yeast4 0.787 0.746 0.785 0.803 0.830 0.818 0.822 0.807 0.806 0.822 0.831 0.833

winequality-red-4 0.601 0.584 0.5 0.650 0.645 0.552 0.664 0.637 0.525 0.661 0.656 0.587

yeast-1-2-8-9_vs_7 0.63 0.671 0.662 0.678 0.693 0.696 0.728 0.748 0.701 0.690 0.698 0.678

yeast5 0.936 0.936 0.826 0.956 0.961 0.933 0.962 0.944 0.953 0.955 0.969 0.967

abalone-17_vs_7-8-9-10 0.823 0.763 0.541 0.801 0.744 0.725 0.808 0.818 0.755 0.841 0.823 0.682

abalone-21_vs_8 0.857 0.822 0.86 0.832 0.766 0.772 0.859 0.823 0.84 0.865 0.821 0.864

yeast6 0.839 0.816 0.856 0.867 0.842 0.861 0.842 0.842 0.833 0.836 0.861 0.887

winequality-white-3_vs_7 0.626 0.564 0.747 0.748 0.681 0.757 0.748 0.699 0.768 0.760 0.739 0.758

abalone-19_vs_10-11-12-13 0.626 0.618 0.589 0.616 0.617 0.698 0.604 0.655 0.678 0.647 0.650 0.699

winequality-white-3-9_vs_5 0.628 0.529 0.567 0.660 0.658 0.541 0.660 0.753 0.554 0.711 0.702 0.548

abalone-20_vs_8-9-10 0.825 0.759 0.835 0.778 0.795 0.752 0.802 0.846 0.827 0.813 0.829 0.868

poker-8-9_vs_5 0.533 0.562 0.789 0.500 0.587 0.768 0.655 0.631 0.676 0.692 0.577 0.75

Average 0.7919 0.7779 0.7169 0.7852 0.7853 0.7667 0.8099 0.8116 0.7739 0.8163 0.8233 0.7844

Neural Computing and Applications (2024) 36:12397–12425 12417

123

Table 3 The performance of three classifiers, GBDT, RF, and SVM (using G-mean)

Datasets RUS SMOTE TL NB-TL

GBDT RF SVM GBDT RF SVM GBDT RF SVM GBDT RF SVM

ecoli-0_vs_1 0.942 0.958 0.983 0.969 0.971 0.983 0.966 0.964 0.983 0.965 0.963 0.983

pima 0.731 0.737 0.713 0.730 0.725 0.727 0.730 0.724 0.678 0.730 0.739 0.705

glass0 0.821 0.855 0.586 0.812 0.862 0.603 0.834 0.857 0 0.809 0.841 0

vehicle2 0.967 0.975 0.673 0.967 0.985 0.751 0.971 0.983 0.292 0.971 0.980 0.306

vehicle1 0.781 0.771 0.652 0.752 0.729 0.658 0.715 0.695 0.536 0.796 0.777 0.647

vehicle3 0.74 0.761 0.657 0.748 0.725 0.657 0.684 0.667 0 0.769 0.765 0.663

vehicle0 0.935 0.960 0.754 0.959 0.942 0.79 0.951 0.958 0.439 0.958 0.965 0.68

segment0 0.991 0.994 0.865 0.99 0.995 0.833 0.985 0.989 0.832 0.987 0.994 0.84

glass6 0.897 0.928 0.504 0.904 0.901 0.8853 0.871 0.856 0.159 0.868 0.901 0

yeast3 0.896 0.925 0.912 0.892 0.884 0.911 0.880 0.849 0.854 0.905 0.882 0.876

ecoli3 0.831 0.868 0.892 0.769 0.796 0.881 0.738 0.759 0.796 0.828 0.802 0.9

yeast-2_vs_4 0.923 0.927 0.872 0.866 0.892 0.892 0.850 0.829 0.768 0.851 0.859 0.788

ecoli-0-6-7_vs_3-5 0.808 0.787 0.851 0.779 0.777 0.831 0.808 0.812 0.814 0.784 0.816 0.791

ecoli-0-1_vs_5 0.871 0.906 0.902 0.903 0.878 0.877 0.793 0.836 0.886 0.819 0.797 0.886

glass2 0.533 0.663 0.402 0.525 0.432 0.467 0.095 0.211 0 0.203 0.213 0.285

yeast-1_vs_7 0.746 0.708 0.745 0.6 0.605 0.668 0.531 0.37 0 0.538 0.384 0.52

abalone9-18 0.715 0.711 0.705 0.614 0.698 0.734 0.423 0.304 0 0.459 0.353 0

yeast-1-4-5-8_vs_7 0.563 0.600 0.622 0.513 0.227 0.641 0.162 0 0 0.162 0 0

yeast4 0.803 0.794 0.804 0.753 0.650 0.825 0.465 0.41 0.673 0.565 0.445 0.727

winequality-red-4 0.609 0.642 0.548 0.512 0.408 0.546 0.123 0.085 0 0.152 0 0

yeast-1-2-8-9_vs_7 0.625 0.688 0.681 0.431 0.413 0.679 0.196 0.393 0 0.276 0.278 0.503

yeast5 0.949 0.942 0.959 0.898 0.910 0.941 0.821 0.762 0.499 0.857 0.849 0.761

abalone-17_vs_7-8-9-10 0.793 0.816 0.675 0.772 0.648 0.746 0.475 0.261 0 0.433 0.261 0.5

abalone-21_vs_8 0.831 0.661 0.744 0.797 0.706 0.872 0.604 0.429 0 0.602 0.513 0.831

yeast6 0.814 0.849 0.879 0.791 0.758 0.857 0.644 0.563 0.611 0.705 0.621 0.864

winequality-white-3_vs_7 0.699 0.708 0.464 0.409 0.198 0.742 0.539 0.415 0.437 0.341 0.373 0.265

abalone-19_vs_10-11-12-13 0.601 0.643 0.355 0.551 0.447 0.679 0.163 0 0 0.075 0 0

winequality-white-3-9_vs_5 0.66 0.675 0.533 0.419 0.178 0.243 0.356 0.179 0 0.429 0.179 0.263

abalone-20_vs_8-9-10 0.759 0.787 0.662 0.742 0.536 0.86 0.304 0 0 0.371 0.089 0

poker-8-9_vs_5 0.635 0.556 0.636 0.178 0 0.715 0 0 0 0 0 0.151

Average 0.7823 0.7932 0.7077 0.7182 0.6625 0.7498 0.5892 0.5387 0.3419 0.6069 0.5546 0.4912

Datasets CDSMOTE KNNOR MESA LMD-WNG

GBDT RF SVM GBDT RF SVM GBDT RF SVM GBDT RF SVM

ecoli-0_vs_1 0.968 0.977 0.954 0.961 0.966 0.981 0.962 0.973 0.981 0.969 0.983 0.987

pima 0.738 0.749 0.696 0.736 0.753 0.71 0.731 0.721 0.707 0.740 0.744 0.727

glass0 0.814 0.821 0 0.788 0.786 0.613 0.824 0.828 0.746 0.843 0.876 0.752

vehicle2 0.961 0.978 0.298 0.929 0.926 0.727 0.954 0.965 0.751 0.963 0.976 0.76

vehicle1 0.770 0.798 0.512 0.695 0.695 0.68 0.791 0.767 0.697 0.804 0.793 0.692

vehicle3 0.768 0.770 0 0.683 0.693 0.656 0.772 0.777 0.715 0.778 0.789 0.672

vehicle0 0.956 0.964 0.723 0.880 0.920 0.791 0.951 0.956 0.784 0.956 0.968 0.816

segment0 0.991 0.994 0.833 0.981 0.979 0.826 0.988 0.988 0.964 0.991 0.995 0.877

glass6 0.896 0.893 0.862 0.884 0.873 0.875 0.904 0.901 0.866 0.890 0.937 0.862

yeast3 0.911 0.910 0.872 0.926 0.931 0.873 0.916 0.918 0.898 0.925 0.924 0.916

ecoli3 0.841 0.878 0.886 0.873 0.852 0.884 0.872 0.873 0.866 0.855 0.902 0.905

yeast-2_vs_4 0.903 0.907 0.808 0.936 0.918 0.892 0.947 0.921 0.851 0.931 0.938 0.881

ecoli-0-6-7_vs_3-5 0.824 0.825 0.894 0.763 0.764 0.829 0.852 0.838 0.811 0.814 0.849 0.843

12418 Neural Computing and Applications (2024) 36:12397–12425

123

6.4 Global analysis

Combining the experimental results shown in Tables 2 and

3, Figs. 5 and 6, and the analysis results using the Friedman

1*N test and the Nemenyi post hoc test shown in Figs. 7

and 8, we can draw the following conclusions:

1. According to the parameter analysis results in Sect. 5,

we can conclude that the LMD-WNG instance selec-

tion algorithm becomes more sensitive to the hyper-

parameter k as the IR of the dataset increases.

Therefore, more appropriate parameter selection and

optimization methods need to be considered.

Table 3 (continued)

Datasets CDSMOTE KNNOR MESA LMD-WNG

GBDT RF SVM GBDT RF SVM GBDT RF SVM GBDT RF SVM

ecoli-0-1_vs_5 0.825 0.878 0.883 0.801 0.872 0.886 0.901 0.807 0.846 0.859 0.927 0.908

glass2 0.514 0.553 0 0.661 0.599 0.488 0.648 0.793 0.426 0.645 0.763 0.541

yeast-1_vs_7 0.730 0.558 0.588 0.690 0.746 0.68 0.676 0.723 0.676 0.717 0.747 0.714

abalone9-18 0.631 0.662 0.164 0.734 0.655 0.736 0.615 0.733 0.735 0.752 0.762 0.671

yeast-1-4-5-8_vs_7 0.629 0.344 0.485 0.63 0.574 0.634 0.648 0.556 0.648 0.623 0.611 0.619

yeast4 0.771 0.715 0.777 0.801 0.826 0.813 0.821 0.806 0.795 0.820 0.822 0.826

winequality-red-4 0.528 0.432 0 0.645 0.640 0.532 0.654 0.625 0.183 0.650 0.641 0.556

yeast-1-2-8-9_vs_7 0.506 0.584 0.641 0.675 0.685 0.663 0.717 0.741 0.672 0.660 0.630 0.656

yeast5 0.934 0.933 0.807 0.956 0.961 0.932 0.952 0.943 0.952 0.954 0.968 0.966

abalone-17_vs_7-8-9-10 0.815 0.735 0.257 0.798 0.742 0.719 0.794 0.816 0.752 0.837 0.822 0.675

abalone-21_vs_8 0.845 0.704 0.835 0.822 0.738 0.765 0.851 0.805 0.818 0.857 0.704 0.858

yeast6 0.821 0.795 0.84 0.861 0.837 0.851 0.836 0.837 0.809 0.821 0.852 0.883

winequality-white-3_vs_7 0.401 0.297 0.708 0.740 0.670 0.73 0.660 0.672 0.741 0.730 0.690 0.741

abalone-19_vs_10-11-12-13 0.571 0.524 0.563 0.581 0.591 0.681 0.577 0.642 0.676 0.594 0.592 0.684

winequality-white-3-9_vs_5 0.480 0.177 0.334 0.627 0.648 0.1282 0.645 0.748 0.389 0.694 0.642 0.239

abalone-20_vs_8-9-10 0.789 0.721 0.821 0.761 0.793 0.716 0.792 0.842 0.82 0.801 0.824 0.86

poker-8-9_vs_5 0.178 0.533 0.707 0 0.563 0.74 0.648 0.611 0.652 0.674 0.404 0.715

Average 0.7436 0.7203 0.5916 0.7606 0.7732 0.7344 0.7966 0.8042 0.7409 0.8049 0.8025 0.7601

Fig. 6 Mean results on all datasets (using GBDT)

Neural Computing and Applications (2024) 36:12397–12425 12419

123

2. According to the comparative experimental results in

Sect. 6, we found that when the IR of the dataset

increases, the performance of the oversampling method

will fluctuate significantly and degrade continuously

with the increase of the IR. Therefore, we believe that

when the dataset is highly imbalanced, data augmen-

tation techniques that can expand the minority instance

area should be selected as much as possible or used

together with undersampling techniques.

3. We use datasets with a wide range of IRs. Therefore,

we believe that the LMD-WNG instance selection

algorithm can adapt to most datasets with imbalanced

ratios.

4. According to the analysis results of Friedman 1*N test

and Nemenyi post hoc test, we believe that the LMD-

WNG instance selection algorithm is superior or

partially superior to other resampling or ensemble

learning techniques. The LMD-WNG instance selec-

tion algorithm is an instance selection method with

competitive advantages.

In addition, oversampling techniques fluctuated consid-

erably across all datasets throughout the experiment.

Therefore, we briefly analyze the reasons why the perfor-

mance of the oversampling technique decreases as the IR

of the dataset increases. When the imbalance in the dataset

is high, there are fewer instances of the minority class in

the dataset. If you blindly use the oversampling algorithm

to increase the minority instances, more pseudo-instances

are bound to be needed to balance the training dataset.

When there are too many pseudo-instances in the training

dataset, the density of the real minority instances in the

Fig. 7 Mean results on all datasets (using RF)

Fig. 8 Mean results on all datasets (using SVM)

12420 Neural Computing and Applications (2024) 36:12397–12425

123

training dataset will be reduced, so the classifiers will focus

on the pseudo-minority instances.

However, it has to be said that GBDT is a boosting-

based ensemble learning technique. When there are hard-

to-learn instances in the training dataset, it iterates until it

Table 4 Results and APVs of Friedman ranking and Holm’s post hoc test (using GBDT)

Algorithms AUC Algorithms G-mean

Friedman ranking Unadjusted p value APVs (Holm) Friedman ranking Unadjusted p value APVs (Holm)

LMD-

WNG

2.0500 – – LMD-

WNG

2.2833 – –

MESA 3.0167 0.126405 0.126405 MESA 2.9500 0.291841 0.291841

CDSMOTE 3.7333 0.007777 0.015555 RUS 4.0167 0.006132 0.01328

RUS 4.2000 0.000675 0.002026 CDSMOTE 4.0833 0.004427 0.01328

SMOTE 5.0000 0.000003 0.000012 KNNOR 4.3333 0.001190 0.004759

KNNOR 5.0833 0.000002 0.000008 SMOTE 5.2667 0.000002 0.000012

NB-TL 6.2167 0 0 NB-TL 6.2333 0 0

TL 6.7000 0 0 TL 6.8333 0 0

Table 5 Results and APVs of Friedman ranking and Holm’s post hoc test (using RF)

Algorithms AUC Algorithms G-mean

Friedman ranking Unadjusted p value APVs (Holm) Friedman ranking Unadjusted p value APVs (Holm)

LMD-

WNG

1.5833 – – LMD-

WNG

2.0000 – –

MESA 3.7167 0.000743 0.001112 RUS 3.4167 0.025094 0.046866

RUS 3.7667 0.000556 0.001112 MESA 3.4333 0.023433 0.046866

CDSMOTE 4.4167 0.000007 0.000022 KNNOR 4.4000 0.000148 0.000443

KNNOR 4.8333 0 0.000001 CDSMOTE 4.5000 0.000077 0.000309

SMOTE 5.0833 0 0 SMOTE 5.3667 0 0.000001

NB-TL 5.9167 0 0 NB-TL 6.0333 0 0

TL 6.6833 0 0 TL 6.8500 0 0

Table 6 Results and APVs of Friedman ranking and Holm’s post hoc test (using SVM)

Algorithms AUC Algorithms G-mean

Friedman ranking Unadjusted p value APVs (Holm) Friedman ranking Unadjusted p value APVs (Holm)

LMD-

WNG

2.2833 – – LMD-

WNG

2.2333 – –

SMOTE 3.2167 0.140017 0.140017 SMOTE 3.1667 0.140017 0.140017

KNNOR 3.7667 0.019009 0.038018 MESA 3.8167 0.012298 0.036895

MESA 3.8667 0.012298 0.036895 RUS 3.8167 0.012298 0.036895

RUS 4.0000 0.006642 0.026567 KNNOR 3.9333 0.007190 0.028758

CDSMOTE 5.3000 0.000002 0.000009 CDSMOTE 5.7000 0 0

NB-TL 6.1833 0 0 NB-TL 5.9833 0 0

TL 7.3833 0 0 TL 7.3500 0 0

Neural Computing and Applications (2024) 36:12397–12425 12421

123

learns correctly. If we introduce too many pseudo-instances

in the dataset, and these pseudo-instances are not real

instances, it is likely to bias the GBDT model performance

toward pseudo-instances. Therefore, when the dataset is

highly imbalanced and GBDT needs to be used as the base

classifier, we have two suggestions: On the one hand, we

can consider increasing minority instances with oversam-

pling techniques that can expand the minority class region.

But such techniques are also likely to synthesize more

pseudo-instances in the majority class region, leading to a

decrease in the performance of the model. On the other

hand, we can avoid generating more minority instances or

introducing more noise by combining oversampling tech-

niques with instance selection or undersampling techniques

to reduce the number or density of majority instances while

generating synthetic instances.

When we choose RF, we will also face the same prob-

lem. Although the pseudo-minority instances generated by

using the oversampling technique will not directly affect

the learning of the entire classifier like using GBDT.

However, RF is a bagging-based ensemble learning tech-

nique that requires bootstrap sampling of the training

dataset during the learning process. If the number of

minority instances is too large, they are likely to be flooded

into each base classifier. These generated pseudo-instances

may not affect the results of individual classifiers. How-

ever, if the majority vote is directly used for ensemble in

the final integration stage, the final model may be biased

toward those base classifiers filled with many pseudo-mi-

nority instances, reducing the performance of the overall

model.

SVM is a machine learning method that can effectively

handle small-scale datasets. However, SVM needs to learn

a better hyperplane with higher discrimination in the

dataset. If there is a large amount of redundancy in the

dataset or if instances in boundary areas are confused, the

performance of the classifier may significantly decrease.

LMD-WNG can effectively select instances that are ben-

eficial to classifier learning through the matrix decompo-

sition technique. However, LMD-WNG does not consider

the number of instances selected. When facing a highly

imbalanced dataset, the selected instances may be consis-

tent with the number of minority instances, resulting in

insufficient data subsets to obtain a hyperplane with high

discrimination.

6.5 Discussion and limitations

The method proposed in this study searches the global

structural information by using the k-nearest-neighbor

graph and selects instances that are beneficial to classifier

learning. However, we noticed that hyperparameters in the

k-nearest-neighbor graph are the main cause of fluctuations

in classifier performance. When a larger k is selected, the

adjacency relationship between instances becomes more

complex, and it is easy to include instances with weak

adjacency relationships between instances in the selection

process. However, when a smaller k is selected, the clas-

sifier may be limited to the surrounding instances, making

it difficult to mine the global adjacency relationship

between instances. To sum up, the hyperparameter k is an

important factor that hinders the instance selection process.

Of course, we can also provide optimal hyperparameters

for different datasets through other optimization methods

or hyperparameter selection strategies.

When faced with large-scale datasets, the complexity of

the matrix decomposition technique used in LMD-WNG

will increase significantly. This is also another limitation of

LMD-WNG. However, the high-complexity problem of

matrix decomposition can be alleviated by the following

strategies: (1) Acceleration methods for matrix operations

alleviate high-complexity problems by improving the

matrix calculation process or using hardware devices such

as GPUs. (2) Data chunking is another strategy to alleviate

high-complexity problems. We can fuse instances selected

from the chunked data using ensemble learning or other

fusion strategies by randomly partitioning large-scale

datasets into different regions. (3) Mini-batch training is

currently an effective method for training machine learning

models. Small batch training can reduce complexity issues

when we do not use the entire dataset for training. There-

fore, we do not need to be pessimistic. The high-com-

plexity problem of LMD-WNG can be alleviated through

various strategies in future research.

For the class-imbalance problem, in addition to the

imbalance of class distribution and class-overlap, the

presence of noise is also another important issue that

affects the performance of the classifier. In LMD-WNG,

the k-nearest-neighbor graph we use is a strongly con-

strained graph structure search method. We did not con-

sider the degree of correlation or distance between

instances. The noise may be far away from the real

instances of other classes. However, under the strong

constraint of the k-nearest-neighbor graph, at least k in-

stances will be connected to it. Therefore, LMD-WNG may

be affected by noise to a certain extent. In future research,

we can alleviate the impact of noise by improving the

structural information search strategy of LMD-WNG and

using graph structure search methods with weaker

constraints.

In addition, our previous work [2] also proved that more

data information may exist in the subspace. Feature

12422 Neural Computing and Applications (2024) 36:12397–12425

123

selection or subspace are effective methods to reduce the

dimensionality of data [68]. It is obvious that when the

number of features changes, the global correlation or data

information of most datasets will also change. Therefore,

how to select instances from the subspace that are benefi-

cial to classifier learning is another challenge. Likewise,

how to combine selected instances in the subspace also

requires further research.

7 Conclusions

The LMD-WNG is a novel method used to solve the class-

imbalance problem. According to the instance information

in the dataset, it is necessary to select instances with a large

amount of information to join the training dataset. When

the number of minority instances in the dataset is large, we

can use traditional resampling techniques to enhance the

minority class or remove the majority class. However,

when there are few minority instances in the dataset, we

need to screen the majority instances in the training set to

improve the overall performance of the model. In our

proposed instance selection algorithm for LMD-WNG, we

for the first time use graph structure methods and matrix

decomposition methods for instance selection for the class-

imbalance problem. Experiments on 50 baseline datasets

show that the LMD-WNG instance selection algorithm

outperforms or partially outperforms other comparative

algorithms. For highly imbalanced datasets, the perfor-

mance of LMD-WNG is more stable and will not be

affected by the class-imbalance problem. However, the

performance of the LMD-WNG instance selection algo-

rithm will become more sensitive to the hyperparameter

k as the dataset imbalance ratio increases. Therefore, more

efficient parameter selection methods are needed to deter-

mine hyperparameters.

LMD-WNG is the first algorithm to transform data into

a graph structure and select instances. Therefore, in future

work, we can combine it with other methods and be able to

fully explore the selection of instances according to the

data structure. We also need to further explore the per-

formance and selection strategy of the LMD-WNG

instance selection algorithm on multi-class-imbalanced

datasets. In addition, we can also try to explore the appli-

cation of LMD-WNG ideas to graph-structured data or

graph neural networks.

Data availability Data supporting the findings of this study are

available from the corresponding author Qi Dai on request.

Declarations

Conflict of interest We declare that we have no financial and personal

relationships with other people or organizations that can inappropri-

ately influence our work, there is no professional or other personal

interest of any nature or kind in any product, service and/or company

that could be construed as influencing the position presented in, or the

review of, the manuscript entitled ‘‘Imbalanced Instance Selection

Based on Laplacian Matrix Decomposition with Weighted k-Nearest

Neighbor Graph’’.

References

1. He H, Garcia EA (2009) Learning from imbalanced data. IEEE

Trans Knowl Data Eng 21(9):1263–1284

2. Dai Q, Liu JW, Liu Y (2022) Multi-granularity relabeled under-

sampling algorithm for imbalanced data. Appl Soft Comput

124:109083

3. Mayabadi S, Saadatfar H (2022) Two density-based sampling

approaches for imbalanced and overlapping data. Knowl Based

Syst 241:108217

4. Xiong R, Pelger M (2023) Large dimensional latent factor

modeling with missing observations and applications to causal

inference. J Econom 233(1):271–301

5. Lin WC, Tsai CF, Zhong JR (2022) Deep learning for missing

value imputation of continuous data and the effect of data dis-

cretization. Knowl Based Syst 239:108079

6. Khoshgoftaar TM, Van Hulse J, Napolitano A (2010) Comparing

boosting and bagging techniques with noisy and imbalanced data.

IEEE Trans Syst Man Cybern Part A Syst Hum 41(3):552–568

7. Maulidevi NU, Surendro K (2022) SMOTE-LOF for noise

identification in imbalanced data classification. J King Saud Univ

Comput Inf Sci 34(6):3413–3423

8. Krawczyk B (2016) Learning from imbalanced data: open chal-

lenges and future directions. Prog Artif Intell 5(4):221–232

9. Koziarski M, Woźniak M, Krawczyk B (2020) Combined

cleaning and resampling algorithm for multi-class imbalanced

data with label noise. Knowl Based Syst 204:106223

10. Zhu J, Wang Z, Chen J, Chen YPP, Jiang YG (2022) Balanced

contrastive learning for long-tailed visual recognition. In: Pro-

ceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pp 6908–6917

11. Haixiang G, Yijing L, Shang J, Mingyun G, Yuanyue H, Bing G

(2017) Learning from class-imbalanced data: review of methods

and applications. Expert Syst Appl 73:220–239

12. Dhal P, Azad C (2024) A fine-tuning deep learning with multi-

objective-based feature selection approach for the classification

of text. Neural Comput Appl 36(7):3525–3553

13. Dhal P, Azad C (2023) A lightweight filter based feature selection

approach for multi-label text classification. J Ambient Intell

Humaniz Comput 14(9):12345–12357

14. Woźniak M, Wieczorek M, Siłka J (2023) BiLSTM deep neural

network model for imbalanced medical data of IoT systems.

Future Gener Comput Syst 141:489–499

15. Malhotra R, Kamal S (2019) An empirical study to investigate

oversampling methods for improving software defect prediction

using imbalanced data. Neurocomputing 343:120–140

16. Yuan Z, Chen H, Li T, Sang B, Wang S (2021) Outlier detection

based on fuzzy rough granules in mixed attribute data. IEEE

Trans Cybern 52(8):8399–8412

Neural Computing and Applications (2024) 36:12397–12425 12423

123

17. Ibrahim MH (2021) ODBOT: outlier detection-based oversam-

pling technique for imbalanced datasets learning. Neural Comput

Appl 33(22):15781–15806

18. Ding H, Chen L, Dong L, Fu Z, Cui X (2022) Imbalanced data

classification: a KNN and generative adversarial networks-based

hybrid approach for intrusion detection. Future Gener Comput

Syst 131:240–254

19. Al S, Dener M (2021) STL-HDL: a new hybrid network intrusion

detection system for imbalanced dataset on big data environment.

Comput Secur 110:102435

20. Sun Y, Wong AK, Kamel MS (2009) Classification of imbal-

anced data: a review. Int J Pattern Recognit Artif Intell

23(04):687–719

21. Pirizadeh M, Alemohammad N, Manthouri M, Pirizadeh M

(2021) A new machine learning ensemble model for class

imbalance problem of screening enhanced oil recovery methods.

J Pet Sci Eng 198:108214

22. Dai Q, Liu JW, Yang JP (2022) Class-imbalanced positive

instances augmentation via three-line hybrid. Knowl Based Syst

257:109902

23. Fajardo VA, Findlay D, Jaiswal C, Yin X, Houmanfar R, Xie H,

Liang J, She X, Emerson DB (2021) On oversampling imbal-

anced data with deep conditional generative models. Expert Syst

Appl 169:114463

24. Wang G, Wong KW (2022) An accuracy-maximization learning

framework for supervised and semi-supervised imbalanced data.

Knowl Based Syst 255:109678

25. Liu J (2021) Fuzzy support vector machine for imbalanced data

with borderline noise. Fuzzy Sets Syst 413:64–73

26. Zhang Y, Wang G, Huang X, Ding W (2023) TSK fuzzy system

fusion at sensitivity-ensemble-level for imbalanced data classifi-

cation. Inf Fusion 92:350–362

27. Liu W, Fan H, Xia M, Xia M (2022) A focal-aware cost-sensitive

boosted tree for imbalanced credit scoring. Expert Syst Appl

208:118158

28. Tong H, Lu W, Xing W, Liu B, Wang S (2022) SHSE: a subspace

hybrid sampling ensemble method for software defect number

prediction. Inf Softw Technol 142:106747

29. Dai Q, Liu JW, Yang JP (2023) SWSEL: sliding window-based

selective ensemble learning for class-imbalance problems. Eng

Appl Artif Intell 121:105959

30. Ren J, Wang Y, Cheung YM, Gao XZ, Guo X (2023) Grouping-

based oversampling in kernel space for imbalanced data classi-

fication. Pattern Recognit 133:108992

31. Douzas G, Bacao F, Last F (2018) Improving imbalanced

learning through a heuristic oversampling method based on

k-means and SMOTE. Inf Sci 465:1–20

32. Merris R (1994) Laplacian matrices of graphs: a survey. Linear

Algebra Appl 197:143–176

33. Zhao X, Jia M, Lin M (2020) Deep Laplacian auto-encoder and

its application into imbalanced fault diagnosis of rotating

machinery. Measurement 152:107320

34. Zhou J, Jiang Z, Wang S (2020) Laplacian least learning machine

with dynamic updating for imbalanced classification. Appl Soft

Comput 88:106028

35. Ren L, Seklouli AS, Zhang H, Wang T, Bouras A (2023) An

adaptive Laplacian weight random forest imputation for imbal-

ance and mixed-type data. Inf Syst 111:102122

36. Ye X, Li H, Imakura A, Sakurai T (2020) An oversampling

framework for imbalanced classification based on Laplacian

eigenmaps. Neurocomputing 399:107–116

37. Santos MS, Abreu PH, Japkowicz N, Fernández A, Soares C,

Wilk S, Santos J (2022) On the joint-effect of class imbalance and

overlap: a critical review. Artif Intell Rev 55:1–69

38. Kovács G (2019) An empirical comparison and evaluation of

minority oversampling techniques on a large number of imbal-

anced datasets. Appl Soft Comput 83:105662

39. Xia S, Zheng Y, Wang G, He P, Li H, Chen Z (2021) Random

space division sampling for label-noisy classification or imbal-

anced classification. IEEE Trans Cybern 52(10):10444–10457

40. Zhang A, Yu H, Huan Z, Yang X, Zheng S, Gao S (2022)

SMOTE-RkNN: a hybrid re-sampling method based on SMOTE

and reverse k-nearest neighbors. Inf Sci 595:70–88

41. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002)

SMOTE: synthetic minority over-sampling technique. J Artif

Intell Res 16:321–357

42. Dai Q, Liu JW, Zhao JL (2023) Distance-based arranging over-

sampling technique for imbalanced data. Neural Comput Appl

35(2):1323–1342

43. Yuan X, Chen S, Zhou H, Sun C, Yuwen L (2023) CHSMOTE:

convex hull-based synthetic minority oversampling technique for

alleviating the class imbalance problem. Inf Sci 623:324–341

44. Li T, Wang Y, Liu L, Chen L, Chen CP (2023) Subspace-based

minority oversampling for imbalance classification. Inf Sci

621:371–388

45. Hoyos-Osorio J, Alvarez-Meza A, Daza-Santacoloma G, Orozco-

Gutierrez A, Castellanos-Dominguez G (2021) Relevant infor-

mation undersampling to support imbalanced data classification.

Neurocomputing 436:136–146

46. Yan Y, Zhu Y, Liu R, Zhang Y, Zhang Y, Zhang L (2022) Spatial

distribution-based imbalanced undersampling. IEEE Trans

Knowl Data Eng. https://doi.org/10.1109/TKDE.2022.3161537

47. Farshidvard A, Hooshmand F, MirHassani SA (2023) A novel

two-phase clustering-based under-sampling method for imbal-

anced classification problems. Expert Syst Appl 213:119003

48. Islam A, Belhaouari SB, Rehman AU, Bensmail H (2022)

KNNOR: an oversampling technique for imbalanced datasets.

Appl Soft Comput 115:108288

49. Dai Q, Liu JW, Shi YH (2023) Class-overlap undersampling

based on Schur decomposition for class-imbalance problems.

Expert Syst Appl 221:119735

50. Shelke MS, Deshmukh PR, Shandilya VK (2017) A review on

imbalanced data handling using undersampling and oversampling

technique. Int J Recent Trends Eng Res 3(4):444–449

51. Golub GH, Van Loan CF (2013) Matrix computations. JHU

Press, Baltimore

52. Franti P, Virmajoki O, Hautamaki V (2006) Fast agglomerative

clustering using a k-nearest neighbor graph. IEEE Trans Pattern

Anal Mach Intell 28(11):1875–1881

53. Qin Y, Yu ZL, Wang CD, Gu Z, Li Y (2018) A novel clustering

method based on hybrid k-nearest-neighbor graph. Pattern

Recognit 74:1–14

54. Su Q, Niu Y, Liu X, Zhu Y (2012) Embedding color watermarks

in color images based on Schur decomposition. Opt Commun

285(7):1792–1802

55. Barua S, Islam MM, Yao X, Murase K (2012) MWMOTE–ma-

jority weighted minority oversampling technique for imbalanced

data set learning. IEEE Trans Knowl Data Eng 26(2):405–425

56. Friedman JH (2001) Greedy function approximation: a gradient

boosting machine. Ann Stat 29:1189–1232

57. Quinlan JR (1986) Induction of decision trees. Mach Learn

1:81–106

58. Breiman L (2001) Random forests. Mach Learn 45:5–32

59. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20:273–297

60. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,

Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,

Vanderplas J, Duchesnay E (2011) Scikit-learn: machine learning

in Python. J Mach Learn Res 12:2825–2830

12424 Neural Computing and Applications (2024) 36:12397–12425

123

https://doi.org/10.1109/TKDE.2022.3161537

61. Derrac J, Garcia S, Sanchez L, Herrera F (2015) Keel data-

mining software tool: data set repository, integration of algo-

rithms and experimental analysis framework. J Multi Valued Log

Soft Comput 17:255–287

62. Huang J, Ling CX (2005) Using AUC and accuracy in evaluating

learning algorithms. IEEE Trans Knowl Data Eng 17(3):299–310

63. Tomek I (1976) Two modifications of CNN. IEEE Trans Syst

Man Cybern Part A Syst Hum 6:769–772

64. Vuttipittayamongkol P, Elyan E (2020) Neighbourhood-based

undersampling approach for handling imbalanced and overlapped

data. Inf Sci 509:47–70

65. Elyan E, Moreno-Garcia CF, Jayne C (2021) CDSMOTE: class

decomposition and synthetic minority class oversampling tech-

nique for imbalanced-data classification. Neural Comput Appl

33:2839–2851

66. Liu Z, Wei P, Jiang J, Cao W, Bian J, Chang Y (2020) MESA:

boost ensemble imbalanced learning with meta-sampler. Adv

Neural Inf Process Syst 33:14463–14474

67. Garcı S, Triguero I, Carmona CJ, Herrera F (2012) Evolutionary-

based selection of generalized instances for imbalanced classifi-

cation. Knowl Based Syst 25(1):3–12

68. Dhal P, Azad C (2023) Hybrid momentum accelerated bat

algorithm with GWO based optimization approach for spam

classification. Multimed Tools Appl 83:1–41

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Neural Computing and Applications (2024) 36:12397–12425 12425

123

	Imbalanced instance selection based on Laplacian matrix decomposition with weighted k-nearest-neighbor graph
	Abstract
	Introduction
	Related works
	Oversampling
	Undersampling

	The algorithm of LMD-WNG
	Motivation
	Preliminary knowledge
	Weighted k-nearest-neighbor graph (Wk-NNG)
	Laplacian matrix
	Schur decomposition

	Algorithm description
	Complexity

	Experimental setting and evaluation metrics
	Classifiers
	Baseline datasets
	Evaluation metrics

	Parameter sensitivity analysis
	Comparative experiments
	Baseline methods
	Results and analysis
	Nonparametric statistical tests
	Global analysis
	Discussion and limitations

	Conclusions
	Data availability
	References

