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Abstract
Brain–Computer Interface is tested as a successful method in improving human cognitive functions such as attention and

memory. Attention plays a significant role in areas ranging from a person’s day-to-day life to educational domain and

professional activities. When attention is evaluated using camera-based techniques, the users may suffer privacy issues.

Using Brain–Computer Interface (BCI) to obtain a measure of attention will be useful in this regard. The paper proposes a

Human Attention Recognition System (HARS) in which EEG signal acquisition is used to obtain the attention of the

individual, Renyi’s entropy-based mutual information method is used for feature selection and a deep learning-based

classifier is used to classify the signals. HADS is not camera-based: therefore, faces of the subjects are not revealed. EEG

signals were collected using the Ultracortex Mark III dry electrodes and were visualised using OpenBCI GUI (Graphical

User Interface). The experiment is validated using the publicly available Confused Student EEG dataset from Kaggle,

giving an accuracy of 99.21%. The results indicate that the proposed method can identify attention levels accurately and

can be effectively used in educational systems, biofeedback and medical research.
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1 Introduction

Attention can be described as focussing cognitive resources

on information, while avoiding distraction [1]. To know

whether a person is attentive or not, the facial expressions

and/or eye movement may be observed manually, or by

automated methods. Zaletelj proposed a novel approach in

assessing students’ attention in classrooms in which Kinect

One sensor was used to capture body movements and facial

features of students [2]. Zhang et al. [3] collected infor-

mation on students’ attention using wearable devices.

These techniques have the limitation that they fail to

respond if there is no obvious shift in attention, resulting in

a change in eye/head movement or facial expressions. This

made researchers to apply Brain–Computer Interface (BCI)

in attention analysis. BCI is defined as a system which

gives their users communication and control channels that

do not depend on the brain’s normal output channels of

peripheral nerves. BCI-based communication has a unique

feature that no traditional means of communication is

required. BCI can be used to acquire the emotional state as

well as the cognitive state of a person. The signals from the

brain can be acquired with the help of specialised elec-

trodes. The electrodes can be invasive, partially invasive or

non-invasive. The first two types need surgical procedure

by which electrodes can be placed inside the brain. Non-

invasive electrodes are placed on top of the head, and are

popular because they are easy to use and will not cause any

long-term impacts. The raw EEG signals from the brain are

applied to a feature extraction technique. This work used

Fast Fourier Transform to extract the features. The

extracted features are applied to a mutual information-

based feature selection algorithm.

Apart from many possibilities of BCI like medical

research and biofeedback, it can also be used to improve

cognitive performance. EEG is a voltage signal which
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measures the neural activity of the brain and this activity

fluctuates according to cognitive activity and mental state

[4]. Sezer et al. [5] used Support Vector Machine (SVM) to

classify EEG signals to track attention and obtained an

accuracy of 70.62%. Hassan et al. [6] devised a novel

attention recognition model with advanced machine

learning algorithms obtaining data using a single channel

EEG device with accuracy of 89%. Certain disorders such

as attention deficit hyperactivity disorders (ADHD) can be

detected effectively with the help of BCI Technology [7].

ADHD is a neurobehavioral disorder which can cause lack

of attention and focus, along with other issues in control-

ling normal behaviour [8]. Cho et al. [9] proved in their

work that EEG biofeedback can be used to enhance

attention in children suffering from ADHD. Another set of

stakeholders of EEG-based attention detection is visually

impaired students, with the difference that auditory stim-

ulus should be presented to them, instead of visual stimulus

[10]. Application of deep learning models in classifying

EEG data is emerging in fast pace in recent years [11, 12].

Deep neural networks are widely used with high success

rates in various areas like bioinformatics, medical imaging

and health monitoring [13], especially in the recognition of

mental states like Alzheimer’s disease [14] and depression

[15, 16]. Toa et al. used deep learning to analyse brain

signals, combined with eye-gaze for attention and obtained

an accuracy of 92% [17].

In real-life, however, a change in attention is not nec-

essarily associated with a change in eye gaze or head

movement. Camera-based systems rely upon changes in

facial expression for recognising a lack of attention. In

many cases, the person’s attention may be lost even when

there is no change in facial expression. On the other hand,

another person may maintain a neutral expression even

when highly attentive. BCI measures the signals directly

from the brain, not considering eye gaze or facial expres-

sion for detecting the attention state. This gives an objec-

tive measure of attention. BCI-based systems can also

account for individual variability in the manifestation of

attention. In addition to that, when attention analysis is

required in domains other than education, for instance, in

medical research or rehabilitation, using face detection

may turn up as a privacy breach. Hence there is a lack of

research in exploring the possibility of considering brain

waves alone for the development of an attention recogni-

tion model, without compromising the accuracy. Keeping

that in mind, this research is devoted to the development of

a deep learning neural network model for analysing the

brain features in an advanced, effective and accurate way.

BCI will collect only the brain signals, and will not

expose the face, surroundings or audio information of its

users, unlike camera-based systems. It typically requires

the consent and engagement of the user for its working. So,

the users will have control over when and how the data are

collected. This is a significant advantage over camera-

based systems that may collect images or even videos,

without the consent from the users. BCI-based systems are

less susceptible to surveillance, because it primarily col-

lects brain data and there are no cameras involved. Another

advantage is that it is easy to anonymize brain data as it

does not include facial or audio data of a person. This

ensures the privacy of the users, especially in cases of

medical and research settings. Another advantage of BCI is

data minimization. BCI collects only specific brain signals;

and therefore the overall data amount of data is less when

compared to continuous video recordings.

The rest of the paper is organised as follows: Sect. 2

provides state-of-the-art studies in our research area. Sec-

tion 3 provides the methods we have used to carry out the

research. It provides the pre-processing techniques, feature

extraction, dataset creation and the machine learning

algorithms used in the study. Section 4 consists of the

results.

2 Related work

In this section, a summary of previous studies in our

research field is provided. This chapter is structured as

follows: Initially, we present the various works in attention

analysis. Then we discuss the use of machine learning in

attention detection. The next sub-section presents some

works which used BCI for the analysis of attention. In the

final sub-section, we present the use of SSVEP BCI as a

communication paradigm between humans and an external

device, doing away with the conventional interactive

methods such as keyboard or voice commands.

2.1 Attention analysis methods

In Zaletelj’s model, head-motion, pen-motion and visual

focus were integrated, thereby producing a multimodal

system to analyse the attention of students [2]. Here,

information is collected with the help of cameras, gyro-

scopes and accelerometers and students’ behaviour is col-

lected. Machine vision-based approach was used to obtain

good estimations of manual ratings. Automated analysis

was used to improve correlations between manual ratings

and post-test variables. Farhan et al. [18] presented the use

of Internet of Things (IoT) framework in attention analysis.

They proposed an Attention Scoring Model (ASM) whose

algorithm can be implemented using any programming

language. A camera is used to monitor the students’

activities while watching a video lecture. If a face is

detected, a face recognition score is logged in and when

eyes are seen opened, an eye detection score is logged in.
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Goldberg et al. [1] propose a proof of concept in which a

machine vision-based approach is used for analysing stu-

dents’ engagement or disengagement in class. The authors

extracted direction of gaze, head pose and facial expres-

sions and performed an automated analysis. A pilot study

on camera-based attention systems was done by Renawi

et al. [19] which used a webcam, a standard computer and

computer vision algorithms to estimate the level of atten-

tion of students in a classroom. All these works used

changes in facial expressions captured using camera for

detecting inattentive states. In most of the real-life sce-

narios, a loss of attention, even when it is deliberate or not,

may not reflect in a change in facial expression. So, it is

evident that there is a requirement of techniques other than

camera-based ones for analysing attention.

2.2 Use of machine learning in attention
detection

Machine learning has been used for the classification of

attention in many works. Numerous works which assessed

students’ attention with the help of machine learning

techniques have been reviewed by Villa et al. [20]. Li et al.

[21] proposed a machine learning-based approach, which is

a novel multimodal assistant system to infer the attention of

students during formative assessment. K-Nearest Neigh-

bours was used by them for real-time recognition of

attention by developing a Self-Assessment Manikin (SAM)

model. Instead of using neural networks, simpler methods

such as support vector machines (SVM) can lead to less

training time and speedy convergence. They obtained an

average accuracy of 57.03% [22]. So, when simpler

methods are used for attention analysis, it results in low-

ering accuracy.

2.3 Use of BCI in human attention detection

Recently, brain waves are used for the recognition of

emotional states of an individual. Electroencephalography

(EEG) sensors are commonly used to capture the brain

waves and advanced machine learning techniques are used

to recognise attention level. One of the earliest attempts in

this was made in a work by Hassan et al. [6]. The work

used frequency decomposed EEG and devised a novel

machine learning attention recognition model. A hybrid

model combining Convolutional Neural Network (CNN)

and Long Short-Term Memory (LSTM) was used for

sequence classification. A study of students’ attention

levels at real classroom settings was done by Sezer et al.

[5] with the help of NeuroSky MindWave which is a

commercial EEG device used to measure brain waves. The

results of this study indicated that teaching methods using

digital media helped in an increased attention compared to

lectures without video or PowerPoint presentations. SVM

was used to classify EEG data collected from students in

classroom with the help of mobile sensors [23]. The clas-

sification accuracy obtained was 70.62%. The use of arti-

ficial intelligence in multilevel attention recognition is

explored by Parui et al. [24].

2.4 Use of SSVEP BCI as a communication
paradigm

BCIs can be classified as endogenous and exogenous.

Endogenous BCI allows intentional modulation of neuronal

activity by the users whereas exogenous BCIs depend on

stimulus applied externally to the user. Former includes

paradigms like Motor Imagery. SSVEP and P300 para-

digms fall under the latter. A study of both kinds is pre-

sented by Ravi et al. [25]. Our work is focussed on SSVEP-

based BCI. Visual Evoked Potentials (VEP) are used

widely in EEG-based BCIs. The design of a suitable visual

stimulator has an important role in using VEPs for BCI.

Wang et al. proposed the design of a visual stimulator for

use in SSVEP BCI [26]. Their approach was to use com-

puter monitor flickers to elicit steady state visual evoked

potential at a flexible frequency. BCIs are used by people

of all ages. The dependence of age in various subjects in

the performance of BCI is reviewed by Volosyak et al. [27]

and the work concluded that there will be a performance

drop in SSVEP BCI in people with advanced age and

suggested that GUIs should be modified for elderly users.

SSVEP-based BCI can be used in neuro orthosis for cases

like tetraplegia [28] and for controlling robotic arms [29]

and robotic wheelchairs [30, 31]. It can also be used in

combination with motor imagery [32], electromyography

[33], eye gaze [34] or event related synchronisation [35]

and event related desynchronisation [36]. When BCI is

combined with another system or when more than one

BCIs are involved, the system is called hybrid BCI [37].

Numerous attempts have been made in improving the

performance of SSVEP BCI, such as Task Discriminant

Component [38] and other optimization techniques [39].

From all the related work, it is obvious that the develop-

ment of an accurate attention recognition model is a req-

uisite, in diverse domains in which human cognition has a

role.

3 Materials and methods

A BCI device establishes a communication between human

brain and an external device. The architecture of the pro-

posed BCI system is presented in Fig. 1. The objective of

this system is to acquire EEG signals from the brain of the

user, pre-process them, select the relevant features from
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them according to the Human Attention Recognition

algorithm and classify those signals using a deep learning

classifier to recognise the attention levels. An EEG-based

Brain Communication Interface is used to estimate the

mental attention states of humans. A Human Attention

Recognition Algorithm is developed and a 10- layered deep

learning neural network is used for classification. The

challenge is aimed at using machine learning to estimate

the attention of students. The dataset is the publicly

available Confused Student EEG brainwave data from

Kaggle which consists of EEG data collected from 10

volunteers who were made to watch MOOC video clips

[40]. Each student watched 10 videos, which means there

are 100 data points. It also contains demographic data and

video data, but for this work, we have used only EEG data

as the benchmark. The creators of the dataset claim that the

dataset is well suited for binary classification. It consists of

Video ID, subject ID, EEG frequency bands and also User-

defined and pre-defined labels.

The Electroencephalography (EEG) signal measures the

electrical movement of the cerebrum [41]. EEG uses either

dry electrodes or wet ones, depending on the application.

The wet electrodes come with an abrasive paste and an

electrolyte gel, used to reduce the skin impedance, to a

range of 5–20 kX, which is an acceptable value when

compared to MX range without the use of the gel. The

paste and gel are minimally invasive and harmless, but are

sticky and make the scalp dirty. Apart from that, when the

gel begins to dry up, transductive properties start disap-

pearing which makes the wet electrodes not suitable for

long term measurements. Therefore, in recent decades, the

use of dry electrodes has been increased, which resolves

the limitations of the wet ones [42].

This work used an 8-channel headset in which dry

electrodes are installed in Ultracortex nodes. Recording of

EEG signals is done with Ultracortex Mark IV which is a

3D-printable headset. Among the electrodes, six of them

are named spikey electrodes, designed to be used in areas

of the head with hair and two of them, named non-spikey

electrodes, are designed for the forehead. These electrodes

are placed in a 3D printed headset. 5 more comfort units,

without electrodes were also used to distribute the weight

of the headset. An OpenBCI Cyton 8-channel board was

used for EEG signal acquisition. Ultracortex Mark IV

electrodes do not require conductive gel or adhesive paste

as they are dry electrodes. Also, there is no need of skin

preparation. There are two ear clips which act as the ref-

erence electrodes. Electrodes were placed according to the

10–20 International standard for EEG electrodes [43].

3.1 EEG recording

The 10–20 EEG system was introduced three decades back

by Homan and since then had been the standard for

locating EEG electrodes on the scalp [41]. It measures

external cranial landmarks for locating electrodes. The

measurement is based on the assumption that the scalp

electrode locations and underlying cerebral structures

maintain a consistent correlation. For 8-channel system, the

Fig. 1 Block diagram of the

human attention recognition

system

Table 1 Electrode names and

their positions on the brain
Notation Position

FP1, FP2 Pre-frontal

C3, C4 Central

P7, P8 Parietal

O1, O2 Occipital
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standard mentions electrode positions as described in the

Table 1. The electrodes mounted on the helmet is shown in

Fig. 2. This can be worn comfortably by a user for

recording his/her EEG data. The acquired signals were

visualised and recorded using OpenBCI Graphical User

Interface.

The voltage levels from each of the electrodes along

with information like accelerometer data and timestamp are

automatically saved as a text file by the OpenBCI

application.

3.2 Experimental setup

The Kaggle dataset provided pre-processed data which

could be applied directly to the deep learning model. To

generalise the model, we created our own dataset in which

eye-blinks and power supply noise are eliminated using

filters. The acquired raw data were converted into fre-

quency sub-bands, Alpha1, Alpha2, Beta1, Beta2, Gam-

ma1, Gamma2, Delta and Theta. Before the experiment,

the participants were given a brief introduction on the

nature of the experiment. They were seated in a cabin, with

a table, chair, a laptop and a mobile phone. Then they were

allowed to wear the EEG equipment, with the help of one

of the authors and were asked to relax so that they can get

used to the equipment. Each of the participant were to

watch a 2 min video in a day. There were 10 such videos

and it took 10 days per participant to complete the exper-

iment. While the participants watched the video, the EEG

signal from their brain were acquired and recorded. The

collected raw EEG was input to the deep learning network

for binary classification. The detailed process of the dee

learning model will be explained in a subsequent sub-

section.

Given the EEG data from 10 participants, our task was

to determine their attention using deep learning methods.

The participants were assigned to watch 10 videos con-

taining pre-defined labels classifying them as ‘easy to

focus’ (label 1) and ‘difficult to focus’ (label 2). The easy

videos contained topics which are familiar to an engi-

neering student, whereas the difficult topics were taken

from the middle of video clips containing topics which are

not familiar to them, removing the introduction part. The

participants wore an 8-channel EEG headset which is

connected to the OpenBCI software which was used to

extract the focus data.10 healthy male volunteers, each

with normal or corrected to normal vision participated in

the experiment. The videos had an average length of 2 min.

The volunteers wore the Ultracortex Mark IV headsets

while watching the videos and the EEG waves were

recorded with the help of OpenBCI software. They were all

given awareness of the procedure and purpose of the study.

Before the commencement of the experiment, consent was

obtained from each of the participants and once the signals

were acquired, their names were anonymised, so that their

privacy is not affected. The data are not made public and is

available with the authors only, ensuring its ethical use.

Data are collected from 10 volunteers, watching 10 videos,

leading to 100 data points in more than 12,000 rows. The

sampling frequency was 256 Hz. Each volunteer watched

one video per day. The experiments were monitored by one

of the authors so as to ensure that no significant disruptions

took place.

We used K-means to cluster the data due to the fact that

it guarantees convergence. Although the number of target

classes is known to be 2, we verified that using the elbow

method, which finds the optimal value of the number of

clusters, k by a graphical visualisation-based technique

[45]. In this method, variation is plotted against the number

of clusters and the optimal value is picked as the elbow of

the curve. Figure 3 shows the variation Vs number of

clusters and the elbow of the curve was obtained at k = 2.

Hierarchical Model, Gaussian Mixture Model (GMM) and

Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) were also applied, but K-means gave a

better performance in demarcating the datapoints.

3.3 Data pre-processing

We used a mutual information-based feature selection

algorithm to determine the mental attention states of sub-

jects based on the EEG signals acquired from their brains

using a BCI device. A band pass filter is applied so that

frequencies of range 1.5–50 Hz is included. A notch filter

is applied for 50 Hz frequency to eliminate noise due toFig. 2 Experimental set up
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supply power. K-means clustering is a classical algorithm

which is used to divide data into classes or clusters [44].

Our work combines feature–feature mutual information

and feature-class mutual information so that an optimal

subset of relevant features is obtained. MI-based feature

selection was chosen for our work because of its effec-

tiveness in evaluating multiple classifiers in multiple

datasets. Hoque et al. evaluated MI-based feature selection

method over 12 datasets having varying dimensionalities

and the performance was compared with 8 other feature

selection methods like Chi square and symmetric uncer-

tainty [46]. EEG signals were classified using maximised

mutual information by Aci et al. [11] for classification of

emotions.

Algorithm 1 Mutual Information-based Feature Selection

Input: fi feature vector, k no. of clusters

Output: Optimal Feature set Fi

Initialise count=0

Calculate MI according to equation 8. 

MI previous= Initial MI

While count < i

If MI > 1 

fi Є Fi 

Else fi not an element of Fi

End If

End While

For the dataset D, let F be the feature set

F ¼ f 1;f 2;f 3; . . .; f d

� �

An optimal subset of the features F’ is to be selected

such that.

F’ , F.

For F’, a classifier should give maximum classification

efficiency.

The proposed method uses Mutual Information theory

for finding out a feature subset of maximum relevance and

minimum redundancy.

For any pair f i; f j
� �

;2 F0

The formal definition of Mutual Information is given as

follows:

Mutual Information

I f i; f j
� �

¼ 1
F2

P
f i;f j2F p f i; f j

� �
logp f i; f j

� �

p f ið Þp f j
� � ð1Þ

where p(fi, fj) is the joint probability density function of fi

and fj and p(fi) and p(fj) are the marginal probability

density functions for fi and fjLiu.

The minimum redundancy condition

For the feature set F,

Fig. 3 Flowchart of the proposed algorithm
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min Fi;Fj

� �
¼ 1

F2

X

f i;f j2F
I f i; f j
� �

ð2Þ

where I (fi, fj) is the mutual information (MI) between the

features fi and fj.

The Maximum relevance condition

1

F

X

fi;fj2F
I C; f ið Þ ð3Þ

where C defines the classes and I (C, fi) is the relevant

feature fi for a class C.

The final set should satisfy both the conditions

simultaneously.

I Fi;Fj

� �
¼ p f i;f j

� �
logp f i;f j

� �
p f i;
� �

pðf jÞ ð4Þ

Feature–feature mutual information is calculated for all

the 14 features. The selected features should have this

value lower than the threshold, which is set to be 1.

Feature-class mutual information should be high for

each class C.

MI score is calculated by including both the conditions.

Calculation of mutual information involves computa-

tional difficulties and when higher dimensions are

involved, it will become more and more complex. A

solution to this problem is to use non-parametric entropy

estimators to calculate Mutual information. Such an esti-

mator is the Renyi’s entropy. Renyi’s entropy can be used

to formulate mutual information between features and

target classes. A transformation function is applied to

feature–feature mutual information and feature-class

mutual information and a discrete value is assigned for

each feature.

Entropy is the uncertainty in a variable. A high value for

entropy implies almost the same probability of occurrence

for every event, whereas a low entropy implies widely

different probability of occurrences. The information one

random variable possess about another random variable is

termed as the mutual information of those variables [60].

This measure is used in feature selection to quantify the

relevance of a feature subset with respect to the target

class. Discarding irrelevant features and selecting the rel-

evant ones will help to reduce computation time. Mutual

information-based feature selection used in this work cor-

responds to finding an optimal feature subset with mini-

mum redundancy and maximum relevance (mRMR). It

finds applications in various fields like machine learning,

information theory and image processing, in feature

extraction and clustering analysis.

Renyi’s entropy is a generalised formulation for order a.

Selecting a = 2 makes the measure positive for all the

values of i and j. So, we use Renyi’s quadratic formulation

for measuring entropy.

Let l be the median and r be the standard deviation of a

particular feature

f 0 ið Þ ¼ 1 if i� lzþ r=2

0 ifi\l� r=2

The entropy or uncertainty of a class label is given as

follows:

HðCÞ ¼ �RPðcÞlogPðcÞ ð5Þ

For a feature vector y, the uncertainty of the class

identity is known as the conditional entropy [17].

HðC; YÞ ¼ ypðyÞðcpðc=yÞlogðpðc=yÞdy ð6Þ

The amount by which the class uncertainty is reduced,

over the feature vector is called mutual information, which

is given by:

I C; Yð Þ ¼ H Cð Þ � HðC=YÞ ð7Þ

= RPðcÞlogPðcÞ�ypðyÞðcpðc=yÞlogðpðc=yÞdypðc; yÞ
¼ pðc=yÞpðyÞandPðcÞ ¼ ypðc; yÞdy ð8Þ

Lemma 1 The joint density of C and Y can be factored as

product of marginal densities P(c) and p(y).

Proof of Lemma1

I C; Yð Þ ¼ cyp c; yð Þlog p c; yð Þ=P cð Þp yð Þdy ð9Þ

When C and Y are independent of each other,

IðC; YÞ ¼ 0

w ¼ argmaxwðIfci; yigÞ : yi ¼ wTxi ð10Þ

Here, wTw ¼ I

Columns of D X d matrix W span Rd.

For visualisation of the EEG data, we used OpenBCI

GUI. OpenBCI has an in-built feature of saving the

electrode readings in a text file with timestamp added for

each entry. During data acquisition, if the recording option

is turned on, a text file is formed in a folder named

‘Recordings’ in the OpenBCI folder of the Documents

folder of a Windows PC, by default. To convert the data

from time domain to frequency domain, fast Fourier

transform (FFT) was used. The raw data obtained in this

manner was converted into different frequency bands with

the help of a Butterworth filter. FFT was applied to every

signal.

i:e:; cypðc; yÞlogpðc; yÞ=PðcÞpðyÞdy ¼ 0

which implies

log½pðc; yÞ=PðcÞpðyÞ� ¼ 0

p c; yð Þ ¼ P cð Þp yð Þ ð11Þ
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This means that joint density of C and Y can be factored

as product of marginal densities P(c) and p(y).

To maximise the mutual information between the

feature yi and class C, the partial derivative with respect

to y needs to be equated to zero [30].

Let Jp be the number of samples in a class Cp

ITyi ¼ yi½ðiÞ þ ðiiÞ þ ðiiiÞ�

To find a linear transform with reduced dimensions,

there should be a subspace Rd where d\D

3.4 Classification

Our work used Python Keras; an open-source deep learning

framework to create a Sequential model [47]. Dense layer,

which is a regular deeply connected neural network was

used for classification of data. In deep learning, input is

analysed layer-by-layer. 10 such layers were used. Each

layer used ReLU activation and is followed by a dropout

layer to handle overfitting and batch normalisation layer to

normalise the batch with its mean and standard deviation.

Sci-kit Learn’s StandardScaler was used to scale the data.

The model was optimised using Adamax optimiser and

Keras binary cross entropy loss class was used to compute

the cross entropy loss between true labels and predicted

labels. The results are tabulated in Table 2.

3.5 Feature extraction

The section explains the different methods by which fea-

tures were extracted. The methods used are statistical

methods, Welch periodogram [48] and fast Fourier Trans-

form (FFT). FFT was used to implement the separation of

frequencies into different frequency bands. This method of

feature extraction was applied on every electrode signal

separately. With 10 signals multiplied by eight frequency

bands, 80 features were obtained. With the feature

extraction methods, a time-independent dataset was cre-

ated. The dataset contains a file for each participant which

consists of values at each electrode with timestamps. For

benchmarking classification of data, machine learning

algorithms [49, 50] logistic regression (LR), linear dis-

criminant analysis (LDA), K-neighbours classifier (KNN),

decision tree classifier (DT), Naı̈ve Bayes (NB), and Sup-

port Vector Machine (SVM) are used.

3.6 Visualisation using OpenBCI

We used OpenBCI GUI, a powerful tool from OpenBCI for

recording and visualising the EEG data from the OpenBCI

Cyton Board. The GUI consists of mini tools called ‘wid-

gets’ that fit into the interface panes. There are numerous

widgets available in the tool, but the work used only four of

them. The most important widget which displays the EEG

data is the ‘Time series’ widget. It displays eight graphs,

representing the voltage detected by the eight electrodes of

the EEG acquisition device. The wires of the Ultracortex

matches with the colour-codes of the GUI, so that it is easy

to keep track of the electrode-channel mapping. If an

electrode is providing poor signals, the GUI gives us a

‘railed’ warning, so that the electrodes can be checked for

proper positioning and contact. Another visualisation fea-

ture is the ‘FFT plot’ widget. It displays frequencies on the

x-axis and the corresponding amplitudes on the y-axis. This

widget is also colour-coded to match the channels of the

time series widget. The head plot widget shows the regions

of brain with more activity in deep red colour, with

intensity lowering with decreasing activity. It also contains

the band power widget which displays the relative voltages

of the different frequency sub-bands (Tables 3 and 4).

3.7 Novel contributions

The novel contributions of this paper are presented as

under:

1. A Spherical Gaussian kernel-based quadratic entropy

model for the binary classification of EEG.

2. A mutual information-based deep learning sequential

network with 10 dense layers for the classification of

EEG

3. Creation of an SSVEP dataset with educational and

non-educational videos as visual stimulus

4. Validation of the entropy model by benchmarking the

proposed model against traditional machine learning

models.

Table 2 Evaluation metrics

Metric Purpose Description Equations

Accuracy Classification The number of properly classified instances divided by the number of all instances TPþTN
TPþFPþTNþFN

Mean squared error Prediction The sum of squared differences between the predicted and actual values of the label
Pi

n¼1
ðyi�piÞ2

n
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4 Results

In this section, we present the experimental results of the

participants’ EEG data. Since 10 volunteers participated in

the experiment for 10 videos in 10 days, we obtained 100

EEG data samples. The performance of the deep learning-

based classifier is evaluated using tenfold cross validation

[51]. Cross validation is used as a standard method in

machine learning for evaluating accuracy of classification

and regression [52, 53]. In cross validation, a specified

number of available data (1 for every 10, in this case) is

kept away while training the machine leaning model so that

the model will be unaware of that subset of data. After

finishing the training, this unseen set of data is applied to

the model and accuracy of the model is evaluated.

4.1 Evaluation metrics

The metrics used for classification and prediction are listed

and described in the Table 2.

All the experiments conducted for this study were per-

formed by healthy individuals. They were all informed

about the objectives and procedures of the experiments

conducted. Figure 9 shows the sample EEG data acquired

using Ultracortex Mark IV equipment visualised with the

help of OpenBCI GUI. The data so obtained were applied

to a K-means clustering algorithm and it was revealed that

there were only 2 target classes which could be identified.

Elbow method was used to obtain the number of classes, as

shown in Fig. 3. To obtain the correlation between the

features, Canonical Correlation Analysis was done.

K-means clustering technique was used to cluster the data

into two, attentive and inattentive. A mutual information-

based feature selection is used after preparing a heatmap

with Pearson correlation technique. The Fig. 4 Elbow

method to find the number of clusters.

The clusters can be seen as K = 2 classifier, Naive

Bayes Classifier, SVM, Decision designed system is

Table 3 Loss and accuracy
Number of epochs Loss Accuracy Validation loss Validation accuracy

1 85.96 56.74 73.33 53.92

10 56.55 71.61 45.56 77.67

25 31.67 85.85 18.90 93.35

50 17.76 93.07 06.66 98.26

75 9.19 96.63 3.30 99.29

100 6.43 97.83 2.80 99.52

125 4.02 98.56 3.03 99.52

150 2.97 98.90 3.04 99.64

Table 4 Comparison of machine learning algorithms

Sl. No Algorithm Accuracy %

1 Logistic regression 97.32

2 Linear discriminant analysis 94.82

3 KNN 97.32

4 Decision tree 93.04

5 Naı̈ve Bayes 93.04

6 SVM 96.07

7 Proposed algorithm 99.21

Fig. 4 Elbow method to find the number of clusters

Fig. 5 Sample welch periodogram
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compared with K-neighbours Tree classifier and logistic

regression. K-fold validation with K = 10 was used to

validate the results. The deep learning network is trained

with the EEG characteristic of a few subjects. In the final

stage, the EEG signals are classified as either ‘attentive’ or

‘non-attentive’. Figure 4 shows the clustered data after

applying K-means. The mutual information-based network

was initially applied on the public dataset and the accuracy

obtained was 99.21%. The dataset being labelled,

traditional machine learning algorithms were also applied

for classification.

Fig shows the ground truth against the clustering models

K-means, Hierarchical, GMM and DBSCAN methods. It is

obvious from the figure that the performance is better with

K-means, compared to other models (Figs. 5 and 6).

At the first epoch, accuracy was obtained as 55.70%

which kept on increasing up to 99.41% at epoch 150.

K-fold validation was used with number of folds = 10.

Fig. 6 Heatmap for calculating the correlation between features
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After compiling the model, the accuracy and validation

accuracy are plotted as shown in Figs. 7 and 8. Figure 7

shows the accuracy for training set and validation set.

Figure 8 shows the loss with training data and validation

data plotted separately. A few representative values for

different epochs are as shown in Table 2. It can be inferred

that Accuracy is increasing and loss is decreasing with

increasing number of epochs.

5 Conclusion and future work

In the proposed work, we developed a Spherical Gaussian

kernel-based quadratic entropy model for the binary clas-

sification of EEG. We collected a new dataset related to

individuals who listened to a set of videos. The dataset

consists of EEG data from 10 individuals watching 10

videos, which gives 100 datapoints for analysis. We

demonstrated detection of attention levels with high

accuracy which reached 99.81% (best) and 99.21% (aver-

age). The entropy model was validated using a public

dataset. The proposed model was benchmarked against 6

other machine learning algorithms and our method out-

performed them with respect to accuracy. The mutual

information-based deep learning EEG model can be of use

to detecting attention levels in students as well as detecting

attention related disorders such as ADHD [55]. The mutual

information based deep learning EEG model used in this

work can be generalised for detection of attention levels in

different circumstances. A few of such examples in which

generalisation of this study can be used are detection of

Alzheimer’s disease and ADHD. In earlier works, human

actions were detected, analysed and controlled using

numerous methods [56] like exemplar-based methods [57],

bag of visual words [58] and also BCI-based methods

[59, 60].

Fig. 7 Comparison of the

different clustering models

Fig. 8 Accuracy and validation accuracy plots

Fig. 9 Training loss and validation loss
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Although BCI is a promising technology and this work

has used it successfully in recognising attention with a

good accuracy, it has a few demerits as well. One major

demerit of the BCI is the inconsistency of brain output

from person to person and from time to time. When the

subjects were stressed or tired, more time was taken to get

a steady output, before the video stimulus could be applied

(Fig. 9). The recorded EEG data needed numerous steps for

preprocessing to obtain good accuracy, so a real-time

analysis could not be performed. But if the preprocessing

steps can be done in a fast and efficient way, real-time

attention monitoring can be done. The subjects put on the

EEG cap for a few minutes only, including the time for

obtaining stable signals and the time for which video

stimuli were applied. Wearing the head cap for long time

may cause inconvenience to the users (Fig. 10).

BCI is an interdisciplinary domain which involves

research in biology, engineering, applied mathematics and

computer science. HARS was devoted to detecting the

attention of a human being accurately. The attention data

can be used in BCI-based control of electronic devices

ranging from a simple gaming vehicle to a complex elec-

tronic wheelchair. Incorporating BCI with Internet of

Things (IoT) can help humans control devices in home or

office with their brain signals. Currently, evoked potentials

from local electrodes are used in BCI. In future, develop-

ment of a comfortable thin layer of EEG harnessing

equipment can be developed, which can decode more brain

waves than those acquired from the electrodes. Further

application of BCI in attention and action recognition gives

hope to lot of physically compromised, but mentally active

people to lead a better life.
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1. Goldberg P, Sümer Ö, Stürmer K, Wagner W, Göllner R, Gerjets
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47. Dürr O, Sick B, Murina E (2020) Probabilistic deep learning:

with python, keras and tensorflow probability. Manning

Publications

48. Sun Z et al (2019) Mutual information based multi-label feature

selection via constrained convex optimization. Neurocomputing

329:447–456

49. Gupta A, Agrawal RK, Kirar JS, Andreu-Perez J, Ding WP, Lin

CT, Prasad M (2019) On the utility of power spectral techniques

with feature selection techniques for effective mental task clas-

sification in noninvasive BCI. IEEE Transact Syst Man Cybern

Syst 51(5):3080–3092. https://doi.org/10.1109/TSMC.2019.

2917599

50. Lashgari E, Liang D, Maoz U (2020) Data augmentation for

deep-learning-based electroencephalography. J Neurosci Meth-

ods 346:108885. https://doi.org/10.1016/j.jneumeth.2020.108885

51. Kumari P, Deb S (2020) EEG cross validation of effective mobile

technology by analyzing attention level in classroom. In: 2020

International conference on electronics and sustainable commu-

nication systems (ICESC), 2020, pp 961–965. https://doi.org/10.

1109/ICESC48915.2020.9155588

52. Ghosh SM, Bandyopadhyay S, Mitra D (2021) Nonlinear clas-

sification of emotion from EEG signal based on maximized

mutual information. Exp Syst Appl 185:115605

53. Hosseini MP, Hosseini A, Ahi K (2020) A review on machine

learning for EEG signal processing in bioengineering. IEEE Rev

Biomed Eng 14:204–218. https://doi.org/10.1109/RBME.2020.

2969915

54 Koprinska I (2009) Feature selection for brain-computer inter-

faces Pacific-Asia conference on knowledge discovery and data

mining. Springer, Berlin, Heidelberg

55. Gao Z, Sun X, Liu M, Dang W, Ma C, Chen G (2021) Attention-

based parallel multiscale convolutional neural network for visual

evoked potentials EEG classification. IEEE J Biomed Health Inf

25(8):2887–2894. https://doi.org/10.1109/JBHI.2021.3059686)

56. Megalingam RK (2021) Human action recognition: a review. In:

2021 10th international conference on system modelling &

advancement in research trends (SMART), MORADABAD,

India, 2021, pp 249–252. https://doi.org/10.1109/SMART52563.

2021.9676211

57. Nair SAL, Megalingam RK (2022) Fusion of bag of visual words

with neural network for human action recognition. In: 2022 12th

International conference on cloud computing, data science &

engineering (Confluence). IEEE

58. Lin J-S, Jiang Z-Y (2017) An EEG-based BCI system to facial

action recognition. Wireless Pers Commun 94:1579–1593

59. Megalingam RK, Thulasi AA, Krishna RR, Venkata MK, BV
AG, Dutt TU (2013) Thought controlled wheelchair using EEG

acquisition device. In: 3rd International conference on advance-

ments in electronics and power engineering, pp 207–212
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