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Abstract
Data collection using Mobile Sink (MS) is one of the best approaches to address the hot spot issue resulting from multihop

data collection and extend the lifetime of Wireless Sensor Networks wherein the MS tours a few specific locations called

sojourn locations that serve as data collecting points (DCPs). The best choice of these locations is an NP-hard problem, and

the optimum or nearly optimum results can be achieved by applying meta-heuristic optimization methods. It is challenging

to create an effective algorithm that allows MS for data collection irrespective of the network topology changes caused by

node failures since these changes affect node coverage, data transmission, and network lifespan. Hence, an effort must be

made to ensure a trade-off between the MS trajectory and the number of hops. Different MS-based techniques have been

proposed; however, most of them fell short of addressing the above goals. With this inspiration, we propose iCapS-MS,

which is an integrated approach that utilizes an improved Capuchin Search Algorithm (iCapSA) to determine the best set of

DCPs and enhanced Ant Colony Optimization (e-ACO)-based MS trajectory design. Using iCapSA, the best DCPs are

selected such that almost every node is served in one-hop communication with the shortest feasible hop distance and

minimum coverage intersection between DCPs. The best trajectory for MS is established using e-ACO method. The results

demonstrate that iCapS-MS outperforms existing methods based on several performance metrics.

Keywords Wireless Sensor Network (WSN) � Data Collection � Capuchin Search Algorithm (CapSA) � Ant Colony
Optimization (ACO) � Mobile Sink (MS)

1 Introduction

In applications involving Wireless Sensor Networks

(WSNs), data gathered by the sensor nodes is transmitted

via single or multi-hop routes to a designated destination,

which can be either a fixed sink or a Base Station (BS)

[1, 2]. A major drawback of a multi-hop data delivery

strategy is that nearby nodes to the BS must transfer greater

data than far-off nodes, resulting in increased energy

consumption by the nearby nodes compared to those at
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longer distances from the BS [3]. This adverse situation

(called hotspot problem) causes network partitioning and

increases traffic dispersion, ultimately decreasing the WSN

lifetime [4–6]. Several studies have shown that utilizing a

Mobile Sink (MS) to address the hotspot issue is a viable

method that evenly distributes the network’s total energy

usage [7, 8]. Additionally, it promotes reliable data

acquisition and improves accessibility to isolated regions.

Despite having numerous benefits, the task of designing an

efficient trajectory for the MS and determining the optimal

Data Collecting Points (DCPs) where the MS should pause

for data collection presents significant challenges [9–12].

Researchers have suggested several Swarm Intelligence

(SI)-based techniques to improve the DCPs’ selection and

quickly discover near-optimal MS trajectory [13, 14]. This

includes Ant Colony Optimization (ACO), Harmony

Search Algorithm (HSA), Artificial Bee Colony (ABC),

Moth Flame Optimization (MFO), Particle Swarm Opti-

mization (PSO), Butterfly Optimization Algorithm (BOA),

Cuckoo Search Algorithm (CSA), and others [15–19].

WSN performance greatly relies on the proper selection

of DCPs and efficient MS trajectory design, impacting

coverage, data transmission, and network lifetime [20]. A

higher number of DCPs can increase the trajectory size.

Hence, it is recommended to shorten MS trajectory to

enhance data transfer speed. However, a shorter trajectory

necessitates greater multi-hop communications, resulting in

increased hop counts and multi-hop paths. Consequently,

nodes consume more energy. This implies that the best data

collection strategy may not always involve the shortest MS

trajectory. Conversely, as the trajectory size increases, hop

counts decrease, and multi-hop paths decrease. However,

this can lead to an increase in data delivery latency. This

implies that consideration must be given while constructing

the MS trajectory so that there will be a trade-off between

the multi-hop paths and the MS trajectory. The best choice

of the locations of DCPs is an NP-hard problem, and the

optimum or nearly optimum solutions can be generated by

applying meta-heuristic optimization algorithms. Current

techniques in MS-based WSNs are concentrated on

developing trajectories that minimize energy usage and

minimize data acquisition time. However, most of the

strategies fell short of addressing the adaptability toward

the changes in the aspect of network topology caused by

node failures that have an impact on the coverage of nodes,

network lifetime, and data collection performance. To

effectively reduce the latency and enhance the lifetime

performance of WSN, the number and location of DCPs as

well as the trajectory must be adaptable to changes in the

network.

This motivates us to design an effective approach, called

iCapS-MS, which is a hybrid approach that utilizes an

improved Capuchin Search Algorithm (iCapSA) to

determine the best set of DCPs and enhanced Ant Colony

Optimization (e-ACO)-based MS trajectory design method

for MS to achieve the above goals. The number and

location of DCPs adapt to network changes caused by node

failures, optimizing the MS path for decreased data deliv-

ery latency and increased WSN lifetime. This method

allows most nodes to employ single-hop communication,

with only a few outliers resorting to multi-hop transmis-

sion. While the original Capuchin Search Algorithm

(CapSA) [21] excels in maintaining a balance between

exploration and exploitation phases through the lifespan

factor and exhibits enhanced performance with efficient

global search capabilities than other recent SI methods, it

encounters premature convergence and local optima chal-

lenges, like other meta-heuristic algorithms. We propose an

improved version (called iCapSA) to tackle the limitations

of the CapSA and enhance its performance. iCapSA

incorporates three mutation strategies (Gaussian, Cauchy,

and Levy) into the basic CapSA, promoting population

diversity and guiding search agents toward the best solu-

tions. In addition, we propose the e-ACO algorithm, an

enhanced version of the original ACO. This enhancement

focuses on refining the existing ACO’s operation by

maximizing the utilization of global information through

an enhanced pheromone update mechanism. When the

algorithm fails to identify a superior solution, the proposed

approach allows the pheromones to be maintained as fixed

rather than updated.

The following summarizes the key contributions of this

paper:

• We propose a novel scheme called iCapS-MS for

reducing the data collection time and enhancing the

data delivery performance of WSN.

• We propose an improved Capuchin Search Algorithm

(iCapSA) to tackle the limitations of the original

CapSA algorithm and improve its search abilities.

• We develop an iCapSA-based method for selecting the

best DCPs that enhances the coverage of nodes with

minimized intersecting coverage among the DCPs for

efficient data collection in WSN by allowing the nodes

to communicate the data with MS with the least feasible

hop distance.

• An e-ACO algorithm is presented for identifying the

best MS trajectory through the DCPs.

• iCapS-MS enables the dynamic adjustment of DCP

count and positions in response to node failures, leading

to a shorter and more efficient MS trajectory for

decreased data delivery latency and increased WSN

lifetime.

The remainder of this paper is divided into the following

sections. Section 2 provides the related research, while the

background details are discussed in Sect. 3. Section 4 gives
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the system model and problem statement. In Sect. 5, we

present the proposed iCapS-MS in detail. Simulation

results are discussed in Sect. 6. Section 7 concludes the

work. Table 1 summarizes the main abbreviations and

notations used in this paper.

2 Related research

Numerous research strategies have recently been put for-

ward to lower energy use and data gathering latency by

utilizing MS in WSNs [2, 3]. Existing research indicates

that there are two types of MS mobility: uncontrolled

movement and controlled mobility [1, 4]. The MS travels

erratically in the sensing field while in uncontrolled

mobility to collect data. The nodes communicate data to

the MS while the MS travels within their respective

transmission range. Due to the mobility pattern’s ran-

domness, the latency in data acquisition, which is crucial in

many applications, cannot be guaranteed. In contrast,

controllable mobility optimizes MS trajectory to maximize

the network efficiency, by allowing for a reduction in data

collection delay. MS needs to visit a few specific locations,

called sojourn (rendezvous) locations, for data collection

[11]. Here, we review the advantages and disadvantages of

relative methods in DCP selection as well as planning of

MS trajectory.

Some of the existing algorithms have applied clustering-

based methods of selecting the data collection points to

tackle the problem. In [22], an enhanced Artificial Bee

Colony (ABC) method is employed to establish a cluster-

ing strategy, and ACO is used to discover the MS trajectory

visiting the cluster heads (CHs) for data collection. Park

et al. [23] uses a different iterative clustering approach to

address the ‘‘hotspots’’ issue, which arises when nodes are

placed more densely in some areas than others. Based on

node density and remaining energy, MS determines the

optimal number of clusters to visit. An online suboptimal

approach is devised in [24], where the ideal position for the

sink is determined by using a primal-dual approach with

limited background information. In [25], a CH selection

mechanism using nature inspired firefly method with

improved results than existing models is discussed. In [20],

the MS trajectory is designed using ACO covering an

appropriate set of rendezvous points. Rendezvous points

are selected so that each rendezvous point can serve the

greatest number of CHs through single-hop communica-

tion. The technique performs better in terms of data

acquisition and power consumption. A decentralized data

gathering method employing MS for WSNs is recom-

mended in [9], where each link’s data flow varies

depending on the source’s rate of data generation. They

used the computationally intensive and NP-hard Traveling

Salesman Problem (TSP) to tackle the trajectory formation

of MS. A lightweight solution is always recommended for

Table 1 Summary of main

abbreviations and notations
Notation Description

CapSA Capuchin Search Algorithm

ACO Ant Colony Optimization

DCP Data Collecting Points

MS Mobile Sink

iCapSA Improved Capuchin Search Algorithm

e-ACO Enhanced Ant Colony Optimization

Fj Food location in the jth dimension

Pef Elasticity probability of the capuchin motion on the ground

Pbf Balancing probability or balance factor

f Random number generated uniformly in [0, 1]

s Lifespan factor of capuchins

Pr Random search probability of capuchins

Hcn Average hop count

Hdis Average hop distance

D Set of DCPs

OHco Coverage rate of DCP

OHint Intersecting coverage of DCP

Hd Hop distance

Hc Hop count
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the constrained sensor nodes since distributed solutions

cause the nodes’ power consumption to increase quickly.

An MS-based method is suggested by Gharaei et al. [26] to

extend the network lifetime by balancing the CHs’ power

consumption. In order to gather the data, the MS awaits at

every cluster for a reasonable amount of time. A fuzzy

clustering-based technique is proposed by Verma

et al. [10], which takes into account the energy of the nodes

to increase WSN lifespan. It’s an improvement on the

LEACH method that uses fuzzy clustering rather than

k-means. A Neural-Fuzzy-based method is given in [27]. In

[15], a minimal spanning tree approach for choosing ren-

dezvous points is suggested. In this study, a computational

geometric technique is used to establish the path planning

for MS. Miao et al. [28] considers the reduction of the data

collecting delay utilizing MS in multi-hop networks. By

transforming the problem into a TSP, the solution is found.

Although the clustering-based approach accomplishes a set

of goals, it also puts additional overheads on the nodes

throughout the clustering and data collection processes.

Additionally, the energy usage for packet relaying through

nodes toward the MS continues to increase, which has an

impact on the WSN lifespan. We focus on eliminating this

overhead in our proposed iCapS-MS paper and enable the

majority of nodes to deliver data directly to the MS with

just one hop.

A directed spanning tree-based rendezvous technique is

proposed in [16] considering non-uniform data restrictions,

and an improved version is presented in [14]. The findings

indicate improvements in network lifetime and data col-

lection latency. The authors studied data collection and

path formation employing MS in three-dimensional WSN

and presented them in [29]. The research in [30] offered an

ambient crop field evaluation for enhancing context-based

agriculture utilizing WSNs. By doing so, the MS sent the

freshly received data from the field to the BS with a pri-

mary focus on it. The energy-aware path construction

method suggested by [31] employs an MS for collecting

and communicating data from nodes to BS. Depending on

the count of data packets and the separation between two

adjacent rendezvous points, the initial rendezvous points

selection is made. For MS trajectory planning, convex

polygons are used, and the convex-hull technique is used to

design the route. [32] presented a density-aware data

gathering by building the MS trajectory that takes into

account the nodes’ remaining energy. DEDC divides the

region initially into a number of grids, the size of which is

based on the MS travel distance. Prior to refining the path

to take into account the uneven grids, DEDC builds a

normal path in order to evenly distribute relaying loads and

increase WSN lifetime. The outcomes demonstrate reduced

energy usage and WSN lifespan. Unfortunately, the tech-

nique proved ineffective as it only collected a small

amount of data when traveling through sparse grids with

few or no sensor nodes. [33] presented an information-

gathering technique that enables the MS to get data from

fixed nodes with a shorter route. This method not only

ensures that all the nodes are covered for data gathering,

but it also reduces the path length by determining the

transmission rate. However, the algorithms discussed

above guarantee the minimized latency requirement of

applications by offering a shorter trajectory for MS, the

expended energy is comparatively greater than one-hop

data communication owing to multi-hop communication.

As an alternative to these methods, we use enhanced ACO

to plan the MS trajectory via the designated set of DCPs

that makes a trade-off between the multi-hop paths and the

MS trajectory, where the planned trajectory is adaptive to

node failures to produce a shorter trajectory with improved

coverage and less latency.

Some of the current algorithms facilitate single-hop

communication for data forwarding to reduce the energy

usage of the nodes. In order to minimize the time needed

for data collection, the shortening of the trajectory of the

MS is carried out. An MS trajectory planning method with

moth flame optimization for WSNs is discussed in [13]. In

[11], an optimal rendezvous selection and MS trajectory

design is provided. With this method, the rendezvous

selection and MS trajectory are effectively identified.

In [34], rendezvous nodes are chosen to use a distributed

technique following a game theoretic approach, and the MS

trajectory is designed using ACO. Three different types of

path planning are introduced in [35], including reduced

energy, reduced delay, and delay-bound path, respectively.

An effective sparrow search-based data collection method

for WSNs is suggested in [36]. Comparing the findings to

previous approaches, the method exhibits improved cov-

erage of nodes. The authors of [12] present an MS path

planning strategy, where the rendezvous points are notated

by their position and communication range of the MS. MS-

based data collection in [37] is achieved by traversing a set

of network points, where a larger number of nodes are

addressed for simultaneous data gathering. Multi-objective

PSO is used in [17] to balance the data loads at rendezvous

points and shorten the MS path. Instead of using node

locations, the rendezvous locations are chosen from within

the transmission range overlaps among the nodes. A route

encoding technique that chooses an arbitrary number of

rendezvous points is developed in order to construct the

MS path. The ultimate result is increased performance in

terms of energy usage, delay, and WSN lifespan. Addi-

tionally, in [38], the rendezvous points are chosen based on

the nodes’ locations, communication overlaps, and data

accessibility. The intersection sets that are produced by

communication overlap between nodes are seen as possible

visiting faces by the MS.
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We can notice that different heuristic techniques have

been used to overcome MS-based data collection issues

[18]. As demonstrated in past research, fewer DCPs are

preferable since they result in shorter MS paths and require

less time for data collection. The downside of this is that it

could leave a number of nodes exposed and uncovered at a

DCP, compelling the rest of the nodes to perform multi-hop

transmission to relay data toward MS. This increases the

expended energy of the network. Furthermore, the previ-

ously mentioned MS-based methods do not preserve node

coverage for the MS by the respective DCPs, particularly

after the first node dies (FND), since they do not take any

coverage adaptive criteria into consideration. The designed

path is also not resilient to node failures. Hence, we are

motivated to design an effective approach, called iCapS-

MS, for selecting the best DCPs that enhance the node

coverage by the respective DCPs with minimized inter-

section of coverage among the DCPs, and constructing the

MS trajectory for WSNs that allows for reduced data col-

lection time and enhanced data delivery performance.

Although some heuristic techniques have minimized the

problem complexity, they do not provide the best results in

regard to both energy utilization and delay since they do

not emphasize node coverage of the DCPs and do not

update the designed MS trajectory in reference to node

failures for improved coverage.

3 Background

In this section, we provide the background details of the

different methods we have utilized in the proposed work.

3.1 Capuchin Search Algorithm (CapSA)

CapSA is a novel optimization technique inspired by the

wandering and hunting behaviors of capuchin monkeys

across riverbanks and trees in forests in search of food [21].

CapSA can be modeled based on three motion mecha-

nisms, as follows:

Jumping motion: Capuchins traverse extensive dis-

tances over trees to locate food resources, resembling a

global search mechanism. In this context, the capuchins’

movement between trees reflects the principles of projectile

motion, which can be described by Newton’s third law of

motion, as below [21]:

x ¼ x0 þ v0t þ
1

2
at2 ð1Þ

where x, x0, v0, a, and t are the capuchin’s new location,

original location, original velocity, acceleration, and time

span, respectively. This equation can be modified as fol-

lows [21]:

x ¼ x0 þ
v0

2 sinð2h0Þ
g

ð2Þ

where g and h0 are the acceleration of gravity and the

leaping angle, respectively.

Wavering motion Capuchins sway on the branches of

trees during the foraging process, a behavior identical to

pendulum motion. This motion emulates the local search

phase and can be represented as below [21]:

x ¼ L sinðhÞ ð3Þ

where L is the tail length and h denotes the wavering angle.

Climbing motion Capuchins climb trees in their search

for food, a motion that mimics the local search process in

an optimization method. The climbing motion can be

represented as below [21]:

x ¼ x0 þ v0t þ 0:5ðvf � v0Þt2 ð4Þ

where vf is the capuchin’s ultimate velocity and t is the

current iteration.

CapSA population CapSA’s first step is to create a

swarm of n capuchins in an d-dimensional search space

using upper and lower limits (ub and lb), as shown below

[21]:

xi ¼ ubj þ f� ðubj � lbjÞ ð5Þ

where f 2 ½0; 1� is a random number, ubj and lbj are the

respective upper and lower bounds of ith capuchin in the

jth dimension. The population is split into two groups:

group leaders (alpha) and followers. The leader jumps

between the branches to locate the food resource, and this

can be described as follows [21]:

xij ¼ Fj þ
Pbf ðvijÞ2 sinð2hÞ

g
; i\

n

2
; 0� f\0:2 ð6Þ

where Fj is the food location in the jth search space, Pbf is

the balancing probability provided by the capuchins tail, vij
is the ith capuchin velocity in the jth search space, h is the

jumping angle and n is the size of the population,

respectively.

CapSA possesses the benefit of balancing the explo-

ration and exploitation stages using the lifespan factor s
given by [21]:

s ¼ b0e
�b1

t
Tð Þ

b2 ð7Þ

where b0, b1, and b2 are experimentally set constants with

values 2, 21, and 2, and t and T are the current and maximal

iterations, respectively. The velocity of ith capuchin cor-

responding to jth search space while tree jumping is cal-

culated as [21]:

vij ¼ qvij þ sa1ðxbestij � xijÞr1 þ sa2ðFj � xijÞr2 ð8Þ
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where q is the inertia factor, xbestij is the best location of the

capuchin, r1 and r2 2 ½0; 1� are random numbers, Fj is the

food source location, and a1 and a2 are two positive values

taken as unity.

Capuchin motion The leader and the other capuchins’

motions can be represented as follows:

• In the event of a capuchin jumping on the ground, the

new location is given by [21]:

xij ¼ Fj þ
Pef Pbf ðvijÞ2 sinð2hÞ

g
; i\

n

2
; 0:2� f\0:3

ð9Þ

where Pef and Pbf are the elasticity probability of the

capuchin motion on the ground and the balancing

probability, respectively.

• The motion of the alpha leader on the ground can be

represented as below [21]:

xij ¼ xij þ vij; i\
n

2
; 0:3� f\0:5 ð10Þ

• During the wavering phase, alpha, and other capuchins

employ local foraging strategies, and their respective

locations are given by [21]:

xij ¼ Fj þ sPbf sinð2hÞ; i\
n

2
; 0:5� f\0:75 ð11Þ

• The capuchin location in the climbing phase is given by

[21]:

xij ¼ Fj þ sPbf ðvij � viðj�1ÞÞ; i\
n

2
; 0:75� f\1:0

ð12Þ

where viðj�1Þ denotes the prior velocity of ith capuchin

in the jth search space.

• Capuchins also explore in random directions for better

food, which can be described as [21]:

xij ¼ s� ðlbj þ fðubj � lbjÞÞ; i\
n

2
; f�Pr ð13Þ

where Pr is the random search probability assigned to

0.1. This setting improves CapSA’s global search

capability and prevents it from falling into the local

minimum.

• The followers adjust their positions based on alpha’s

new locations as follows [21]:

xij ¼
1

2
ðx0

ij þ xði�1ÞjÞ;
n

2
� i� n ð14Þ

where x
0
ij is the alpha capuchin’s current location in jth

search space, and xði�1Þj is the followers’ prior locations

vector in jth search space.

3.2 Gaussian mutation

Gaussian mutation has been demonstrated to enhance the

search efficiency of various meta-heuristic techniques in

the literature [39, 40]. It enhances population diversity,

improves search speed, and optimizes convergence. The

Gaussian mutation density function is given by [39]:

GðxÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2pr2
p e�

x2

2r2 ð15Þ

where r represents the standard deviation of the Gaussian

distribution. This equation simplifies to generate a random

number from a Gaussian distribution with mean 0 and

variance 1.

3.3 Cauchy mutation

Cauchy mutation method is based on the Cauchy distri-

bution [41]. Cauchy distribution has a density function

similar to the Gaussian distribution, however, the primary

difference lies in the fact that the Cauchy distribution is

narrower vertically, whereas the Gaussian distribution is

broader horizontally. The Cauchy distribution density

function is defined as follows [41, 42]:

CðyÞ ¼ 1

2
þ 1

p
arctan

y

g

� �

ð16Þ

where g is the ratio parameter with a fixed value of 1, and y

is a number with uniform distribution 2 ½0; 1�.

3.4 Levy mutation

Lévy flight, inspired by the foraging behavior of various

species in nature [43], is an optimal random search strat-

egy. Unlike the uniform Gaussian distribution, Lévy flight

employs the Levy distribution to generate step sizes. Lévy

mutation approach enables the optimization algorithm to

explore its surroundings in shorter steps while also incor-

porating occasional large jumps, preventing it from getting

stuck in local minima. The Lévy flight follows a simple

power law equation, LðSÞ� jSj�1�b
in which S is step size

and 0\b� 2. The Lévy distribution can be defined as

follows [43]:

LðSÞ ¼ u

j v j1=b ð17Þ

where u and v follow the standard normal distribution:

u�Nð0; r2uÞ, v�Nð0;r2vÞ,

ru ¼
Cð1þ bÞ � sinðpb

2
Þ

C½1þb
2
� � b � 2b�1

2

 !1
b

; rv ¼ 1 ð18Þ

where C represents the standard gamma function.
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3.5 Ant colony optimization algorithm

ACO is a population-based meta-heuristic technique for

tackling challenging combinatorial optimization issues,

such as TSP [19]. In ACO, each individual in the popula-

tion is an artificial agent (or artificial ant) that produces a

solution to the issue gradually and stochastically [34]. The

artificial pheromones are used by the ants to form a prob-

abilistic model that is employed to decide throughout the

solution construction stages. In order to boost the likeli-

hood that subsequent agents will produce better answers,

the agents continuously enhance the probabilistic model.

This technique is continued until a termination condition is

met.

4 System model and problem statement

We consider a WSN comprised of randomly distributed

nodes in a square region and a single MS. The MS passes

through the sensor field at a constant speed and has a

sufficient power supply. The nodes are deployed during the

setup procedure to cover the complete region [34, 36]. The

nodes are conscious of their geographic location using a

GPS device or a localization mechanism [11, 13], and

hence they know their neighbors. Nodes communicate

among themselves when they are in their transmission

range and use a wireless link to do so. We define DCPs as

distinct geographical locations where the MS pauses to

gather data. We consider that the MS traverses the network

on a regular basis to collect data, and that nodes send the

data to the MS if it is available at their respective DCP. MS

possesses the same communication range as that of the

nodes, and it uses its trajectory to collect data from the

nodes. A node is considered covered if at least one DCP is

within its communication range. Nodes upload their data

through a single hop when the MS is within the range. Any

node that is not inside the MS’s range must rely on nearby

nodes. The nodes are powered by batteries, which have a

limited capacity. When their power runs out, they are

considered inoperable.

We assume the same energy model as adopted in

[34, 35]. Consider Eelc and Eam represent the energy

expended by the electronic circuitry of the transmitter/re-

ceiver and the transmitter amplifier, respectively. The

energy required to send a packet of size p bits over a dis-

tance of k is given by:

Etrnðp; kÞ ¼ Eelc � pþ Eam � k2 � p ð19Þ

The energy required to receive a packet of size p-bits over

a distance of k is given by:

ErecðpÞ ¼ Eelc � p ð20Þ

The objective of our work is to find the trajectory for MS

that passes through a set of selected DCPs for data col-

lection. To enhance the data collection performance, an

improved Capuchin Search Algorithm (iCapSA)-based MS

sojourn location optimization and enhanced Ant Colony

Optimization (e-ACO)-based MS trajectory design is pro-

posed. We determine the potential set of DCPs so that most

of the nodes are covered in one-hop communication with

the shortest feasible hop distance and hop count. The range

of at least one DCP must be able to reach every node in

order to achieve our objective of having a sufficient num-

ber of DCPs. Because if a node is within the coverage

range of a DCP, it can communicate with the MS directly

in one hop. In addition, both the average communication

distance and hops at any DCP should be kept minimum.

When the MS comes to a halt at a DCP location, the range

of DCP mimics the communication range of MS. Hence,

any node within the DCP range can deliver data in single-

hop. However, we must keep in mind that the MS visits

each DCP during data collection; so, the greater the DCPs

count, the greater the data-gathering latency. As a result,

the best position to get the most out of each DCP would be

the one that encompasses as many nodes as feasible while

minimizing any intersecting coverage among DCPs.

Therefore, we interpret this issue as a coverage problem,

where a node is considered covered if at least one DCP is

within its communication range. To achieve the highest

number of data uploads in single hop communication, we

need every node to be covered by at least one DCP. At the

same time, to prevent wasting resources by repetitively

covering the same nodes, we must also reduce the coverage

intersection among DCPs. In this way, the proposed

approach enables the majority of the nodes to use single

hop connection, with only a few outlier nodes adopting

multi-hop transmission. DCPs are assigned by prioritizing

one-hop coverage of nodes. Intersecting coverage among

DCPs gets minimized and at the same time ensures maxima

node coverage. Also, we emphasize resilience in response

to node failure conditions in addition to the objective of

reducing network energy utilization and decreasing data

communication latency. Those nodes that fail because of

the lack of energy or other circumstances have to be con-

sidered while scheduling the trajectory. To minimize

overall trajectory length and data gathering latency, these

nodes have to be removed from the planned trajectory. Let

N ¼ fs1; s2; . . .; si; . . .; sng be the number of functional

nodes in the network, D ¼ fd1; d2; . . .dk; . . .dmg where

dk 2 D, D denotes the set of DCPs and m is the number of

selected DCPs. A node is considered allotted to a DCP

according to Eq. 23. We transfer the problem into mixed

integer programming as follows:
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Maximize fOHcg && Minimize fOHin; Hcn; Hdisg
ð21Þ

where OHc represents the number of single hop covered

nodes at DCPs, OHin represents the coverage intersection

among DCPs, and Hcn and Hdis represent the average hop

count and hop distance at DCPs, respectively, subject to the

following constraints:

X

m

k¼1

allotðsj; dkÞ ¼ 1; 8sj 2 N ð22Þ

given,

allotðsj; dkÞ ¼
1; sj 2 N is allotted to dk 2 D;

0; otherwise

�

ð23Þ

And,

disðsj; dkÞ � allotðsj; dkÞ� cr; 8sj 2 N; 8dk 2 D ð24Þ

disðsj; spÞ � allotðsp; dkÞ� cr; 8sj; sp 2 N; j 6¼ p; 8dk 2 D

ð25Þ

The constraint in Eq. 22 specifies that every node sj 2 N

should be assigned to exactly one DCP dk 2 D. Constraint

in Eq. 24 specifies that all the nodes sj 2 N which comes

under the communication range (cr) of dk 2 D are allotted

to it. Furthermore, the constraint in Eq. 25 guarantees that

the nodes that are not within the transmission range of any

DCP but are within the transmission range of some other

node that is allotted to a DCP are covered. That is, if a node

sj is not covered by any DCP but is within the range of a

node sp that is allotted to dk, then sj also gets allotted to dk
as well.

5 Proposed iCapS-MS Algorithm

In this section, we provide a detailed discussion of the

proposed iCapS-MS algorithm. It operates in two phases.

Phase 1: Improved Capuchin Search Algorithm-based

selection of DCPs (iCapSA) and Phase 2: Enhanced ACO-

based MS trajectory design (e-ACO). Figure 1 gives the

flowchart of the proposed iCapS-MS algorithm.

5.1 Phase 1: Improved Capuchin Search
Algorithm-based selection of DCPs (iCapSA)

We provide the proposed technique for selecting relevant

DCPs where the MS pauses for data collection from the

nodes. The capuchin population is used to represent the

placement of DCPs, and each capuchin represents a full

solution for DCPs’ selection. Like other meta-heuristic

algorithms, CapSA faces convergence issues or tends to

fall into a local minimum. iCapSA is introduced to tackle

the limitations of the original CapSA algorithm and

improve its search abilities. The main idea of iCapSA is to

use different mutation strategies to improve the solution

diversity obtained by the optimization algorithm and to

overcome the problem of premature convergence and being

trapped in the local minima. To mutate the population in a

number of ways, mixed mutation operators are imple-

mented. In the proposed iCapSA, three strategies are

integrated into the original CapSA: Gaussian, Cauchy, and

Levy mutation operation. As a result, this technique drives

Fig. 1 iCapS-MS flowchart
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search agents to strive for the best result, and the mixed

mutation operators are greatly proficient in enhancing

population diversity. The mutation technique is an opti-

mization approach that acts on the initial position vector

with a random value that follows the normal distribution to

create a new result. The proposed iCapSA is coupled with a

randomized mutation, where in every iteration, n search

agents are mutated as given below:

x
0

i ¼ xi � ð1þ dÞ ð26Þ

where xi and x
0
i represent the original and the new position

of a search agent after mutation, respectively, and d is a

mutation operator. In the iCapSA method, three mutation

operations are taken into consideration as follows:

1. Gaussian-based mutated solution Gðx0
iÞ is calculated as

follows:

Gðx0

iÞ ¼ xi � ð1þ GðaÞÞ ð27Þ

where GðaÞ denotes a random number generated from

Gaussian distribution using Eq. 15.

2. Cauchy-based mutated solution Cðx0
iÞ is calculated as

follows:

Cðx0

iÞ ¼ xi � ð1þ CðyÞÞ ð28Þ

where C(y) denotes a random number generated from

Cauchy distribution using Eq. 16.

3. Levy-based mutated solution Lðx0

iÞ is calculated as

follows:

Lðx0

iÞ ¼ xi � ð1þ LðSÞÞ ð29Þ

where L(S) denotes a random number generated from Levy

distribution using Eq. 17.

The fitness value of x
0
i, Gðx

0
iÞ, Cðx

0
iÞ, Lðx

0
iÞ are compared

at the end of every iteration, and the best solution from

them is selected.

The goal of the proposed iCapSA-based algorithm in

this phase is to select the best set of DCPs which allows

almost every node to pursue one-hop transmission for

uploading data to MS, with only a few outlier nodes

making use of multi-hop transmission. Due to the fixed

dimensional characteristics of the algorithm, we should

first figure out the number of desired DCPs based on the

network setting. For this, we use the formula

nD ¼ d�e A
pc2r

þ w, where nD denotes the number of DCPs,

A is the area of the network, cr is the nodes’ communica-

tion range, and w is a constant that adjusts for the given

topology of the network by taking into account the count of

nodes and their positions, respectively. Next, we define the

objective function for the proposed iCapSA algorithm. We

utilize Eqs. 30 and 31 to define the coverage rate and

coverage intersection rate, respectively. The nodes within

the communication range of the MS, when it is at dk 2 D,

are called the neighbors of that dk.

OHco ¼
PN

j¼1 ohcj

N
ð30Þ

OHint ¼
PN

j¼1 intj
PN

j¼1 ohcj
ð31Þ

where N is the number of functional nodes, ohcj and intj are

defined in Eqs. 32 and 33, respectively.

ohcj ¼
1; if sjlies within the radius of

atleast one dk 2 D;

0; otherwise

8

>

<

>

:

ð32Þ

intj ¼
1; if node sjlies within the radius of

more than one dk 2 D;

0; otherwise

8

>

<

>

:

ð33Þ

In order to cover all the nodes with a minimum possible

count of DCPs, each of them should cover as many nodes

as possible. So, we prefer to maximize the OHco result. At

the same time, we must reduce the intersecting node cov-

erage among DCPs by minimizing the OHint result. In order

to ensure the minimum possible hop count and hop dis-

tance at each DCP, we also consider the following changes

in the aspect of network topology caused by node failures

that affect the coverage of nodes, data transmission, and

WSN lifetime. Considering these factors can effectively

reduce the latency and enhance the lifetime performance of

WSN since this reduction signifies that the expended

energy due to the intermediate forwarding is minimized.

Let Td denotes the transmission range of a node si which is

provided by the Euclidean distance to either the next-hop

node or the adjacent DCP through which si sends its data to

MS, HdðdkÞ is the average transmission distance of the

nodes at a given dk 2 D, Hc denotes the hop count of

nodes, and HcðdkÞ denotes the average hop counts at a

given dk 2 D of the nodes allotted to dk through which the

data from si reaches MS at its corresponding DCP,

respectively.

HdðdkÞ ¼
PN

i allotðsi; dkÞ � TdðsiÞ
PN

i allotðsi; dkÞ
ð34Þ

HcðdkÞ ¼
PN

i allotðsi; dkÞ � HcðsiÞ
PN

i allotðsi; dkÞ
ð35Þ

The average hop distance and hop count of the DCPs in the

set D are represented by AðHdðDÞÞ and AðHcðDÞÞ and their

normalized values are denoted by nHd and nHc,

respectively.

Neural Computing and Applications (2024) 36:8501–8517 8509

123



These criteria are presented as the objective function of

the algorithm. We transform the Formula given in 21 as the

objective function and our goal is the minimization of this

function Fo given by Eq. 36, where OHci = (OHint=OHco),

and nHd and nHc represent the normalized values of hop

distances and hop count at the DCPs, respectively.

Fo ¼
OHci

nHd � nHc

ð36Þ

Accordingly, the algorithm returns the best positioning of

the DCPs. Sometimes, a few outlier nodes may not be

covered, so they must transfer their data to a covered

neighbor node, which will subsequently relay that data to

the MS at the corresponding DCP. Most of the nodes adopt

one-hop communication and only a few nodes, especially

the outliers, inevitably utilize multi-hop communication.

However, because these outliers are not often, multi-hop

communication is rarely employed over the network’s

lifespan. The algorithm for Phase 1 is provided in Algo-

rithm 1.

Algorithm 1 Phase 1: iCapSA-based selection of DCPs

5.2 Phase 2: Enhanced ACO-based MS trajectory
design (e-ACO)

The best positions of DCPs are recognized when Phase 1 is

completed. The next step is to construct the shortest tra-

jectory for the MS visiting the DCPs, which is Phase 2 of

the algorithm. An enhanced ACO-based MS trajectory

design is executed in this phase. The MS will visit each

DCP following the constructed trajectory to collect data

from the nodes. The nodes will communicate the sensed

data as well as their energy levels. MS then returns to the

BS to deliver the collected data, and if necessary, obtain a

revised trajectory for the next round. ACO is a well-known

method suited for TSP, which identifies the fastest closed

path that passes through a specified collection of data

points [19, 34]. At the same time, the selection of hyper-

parameters has a direct influence on search process per-

formance, including search process diversification and

intensification. Therefore, we utilize the enhanced ACO

algorithm for improving the results. To enhance the per-

formance, we make modifications to the working of the

existing ACO, where we strive to more effectively utilize

the global information by implementing an enhanced

pheromone update mechanism. If the algorithm cannot

identify a better solution, the proposed approach allows the

pheromones to be maintained fixed rather than updated. We

describe the collection of DCPs as a completely connected

undirected graph denoted by Gv ¼ Vr;Edh i in which Vr is

the collection of vertices representing the DCP positions

and Ed is the collection of edges linking them. The

Euclidean distance between the linked vertices is used to

weight these edges. The main steps of Phase-2 are encap-

sulated in Algorithm 2, which is carried out in the subse-

quent steps:

1. Set the m ants at random to start at any of the D ¼
fd1; d2; . . .dk; . . .dng available DCPs. For each edge

(i, j), set the pheromone concentration sijðtÞ to a small

positive constant c and set Dsij to zero.

2. According to the Euclidean distance and pheromone

concentration of the following edge, decide for each

ant which DCPs it will go next. Ants are only allowed

to visit a DCPs that has not yet been visited. The

selection probability for the next destination is com-

puted according to Eq. 37, where pkijðtÞ is the proba-

bility that the k-th ant will select the path from di to dj
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in the present iteration. sij denotes the pheromone

concentration on the path from di to dj. gij is the

reciprocal of the distance between di to dj, and it

denotes the visibility of the destination for the current

ant. a and b are parameters that control the importance

of the pheromone concentration and the visibility,

respectively. Meanwhile, the set allowedk specifies the

collection of DCPs that the k-th ant hasn’t yet accessed.

pkijðtÞ ¼
½sijðtÞ�a½gij�b

P

k2allowedk ½sikðtÞ�
a½gik�b

if j 2 allowedk

0 otherwise

8

>

<

>

:

ð37Þ

3. Update the tour length so far after moving to the

destination using Eq. 38, where lij is the distance

between di to dj. bij is described in Eq. 39.

Lk ¼
X

i;j2D;i 6¼j

lijbij ð38Þ

bij ¼
1 if k-th ant toured the edgeði; jÞ
0 otherwise

�

ð39Þ

4. Upon tour completion, update pheromone concentra-

tion on all edges (i, j) toured by the k-th ant as shown

in Eqs. 40-42. To enhance the performance, we make

modifications to the working of the existing ACO as

follows. If the algorithm cannot identify a better

solution, the proposed approach allows the pheromones

to be maintained fixed rather than updated. The

parameter q is a coefficient that controls the evapora-

tion rate of the pheromones on the trail, Q is a constant,

and Dskij is the pheromone concentration placed on

edge (i, j) by k-th ant in the interval t and t þ 1.

sijðt þ 1Þ

¼
qsijðtÞ þ Dsij if a better result is obtained

sijðtÞ otherwise

�

ð40Þ

Dsij ¼
X

m

k¼1

Dskij ð41Þ

Dskij

¼
Q

Lk
ifk-th ant touredði; jÞinintervaltandt þ 1

0 otherwise

8

<

:

ð42Þ

5. Repeat the process until the maximum iterations are

reached.

Following the completion of the aforementioned proce-

dure, BS sends the information to the MS for its next tour.

Algorithm 2 Phase 2: e-ACO-based MS trajectory design

5.3 Complexity Analysis

The complexity of the iCapS-MS is the combination of

Phase 1 (iCapSA-based DCP selection) and Phase 2 (e-

ACO-based MS trajectory design). The complexity of

Phase 1 can be determined mainly based on the following

steps: initialization, fitness evaluation, and population

updating using mutation strategies. Assuming that the

algorithm’s population size is p, the maximum number of

iterations is i, the cost of the objective function is c, the

number of evaluation experiments is v and the number of

DCPs is k, the time complexity of Phase 1 can be deduced

to O(v.p.i.k). During Phase 2, e-ACO-based MS trajectory

design through the DCPs is executed. The rate at which the

pheromone evaporates has a substantial impact on the

algorithm’s time complexity, and as a result, the pher-

omone update value in each iteration relies on the out-

comes of previous iterations. In the worst-case scenario,

with a given number of ants (a), the time complexity can be

expressed as O(1/q(a:k:e: log k)), where e, k, and q repre-

sent the number of edges, DCPs, and the pheromone

evaporation rate, respectively. Therefore, the time com-

plexity for Phase 2 can be described as O(1/q(a:k:e: log k)).
Consequently, the overall time complexity of iCapS-MS is

estimated as O(v.p.i.k) ? O(1/q(a:k:e: log k)).

6 Simulation analysis

In this section, we examine the performance of iCapS-MS,

and the results are compared with CTOS [38], TRPMC

[12], ESRP-MP [36] and ORPSTC [15]. The simulations

are conducted in MATLAB. The simulation environment is
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considered as a 400 x 400 m square area with 100–300

nodes deployed randomly to monitor and collect data. The

nodes’ sensing and communication radii are set at 25 m and

50 m, respectively. The initial energy of nodes is 2 J. MS is

used to collect data from nodes, and its communication

range is identical to that of the nodes. MS moves to visit

the DCPs at a consistent speed of 2 m/s, waiting 5 s at each

DCP to acquire data. We use the same network model to

execute and evaluate the performance of all compared

algorithms. In this study, the evaluation of energy con-

sumption is based on the radio energy dissipation model

[12, 34–36], which accounts for the distance between the

transmitter and receiver. The energy and communication

models employed in this research are similar to those

outlined in [12, 35, 36]. Specifically, the energy expended

by the electronic circuitry of both the transmitter (Eelc) and

the receiver is quantified at 50 nJ/bit. Meanwhile, the

transmitter amplifier (Eam) consumes 100 pJ/bit/m2. To

ensure a meaningful comparison, we have adopted other

parameters consistent with those found in previous works

[12, 15, 36, 38]. Table 2 discusses the main parameters

employed in this research.

We discuss the results of the simulation experiments

under different performance metrics as follows:

1. Number of selected DCPs, which gives the count of

DCPs selected for planning the MS trajectory under

different algorithms.

2. Percentage of node coverage, which measures the

covered nodes by the DCPs during the operation of

WSN.

3. Intersecting coverage among DCPs, which measures

the overlapping or redundant coverage among DCPs.

4. Trajectory length, which is the total distance traveled

by the MS.

5. Tour time of MS, which measures the time taken by the

MS to finish its trip.

6. Energy consumption, which is the total energy utilized

by nodes in communication.

7. Network lifetime, which gives the lifetime of the

network under different algorithms (first node dead).

6.1 Number of data collecting points (DCPs)

Figure 2 shows the number of DCPs encountered in the MS

tour to accomplish data gathering. A reduced number is

usually preferred given that most of the nodes are covered

since minimal stopping points result in a shorter travel path

and less delay in data collection. During simulation, the

initial number of nodes is fixed to n ¼ 200. We evaluate

the performance of the algorithms in terms of the number

of DCPs with respect to varying percent of failed nodes.

TRPMC, ESRP-MP, ORPSTC and CTOS have a greater

number of DCPs than our planned iCapS-MS. The number

of DCPs in TRPMC is preset during network construction

and remains consistent throughout the network’s lifespan.

Meanwhile, ESRP-MP, ORPSTC, CTOS, and iCapS-MS

involve a dynamic number of DCPs that vary according to

the network’s node percentage. The number of DCPs is

shown to decrease as the percentage of nodes decreases.

The number of DCPs drops consistently as the percentage

of nodes in the network decreases for both techniques.

ESRP-MP has the second lowest number of DCPs. CTOS,

on the other hand, generates several more DCPs than the

other algorithms considering the same number of deployed

nodes owing to the fact that CTOS identifies DCPs based

on the intersection of the communication ranges of the

nodes. Moreover, there is no option for updating DCP

positioning, and thus more DCPs are necessary to contin-

uously cover most of the nodes.

6.2 Percentage of node coverage by DCPs

This metric assesses the percentage of nodes that the DCPs

have covered. The results are depicted in Fig. 3. The

amount of energy expended by nodes for communication

directly relates to the number of nodes covered by DCPs. A

node can use single-hop communication to submit its data

directly to the MS if it is covered by a DCP. Multi-hop

communications increase network energy consumption

since the nodes that are not covered by a DCP must depend

on a neighbor node to relay their data to the MS instead of

being able to upload data directly. During simulation, the

initial number of nodes is fixed to n = 200. We evaluate the

performance of the algorithms in terms of the percentage of

node coverage by DCPs with respect to varying percent of

failed nodes. With the rise in the percent of node failures,

the percentage of node coverage by DCPs is found to

become more reduced in ORPSTC and TRPMC than

iCapS-MS, ESRP-MP, and CTOS. As can be seen in the

previous result, TRPMC and CTOS use more DCPs than

the proposed iCapS-MS in order to cover the nodes.

ORPSTC has the least coverage among the algorithms. It

utilizes a spanning tree-based approach and the disadvan-

tage is the combination of multi-hop transmission. If at all

feasible, CTOS, ESRP-MP, and iCapS-MS locate DCPs to

provide coverage of all nodes with high significance to

facilitate one-hop communication. In terms of node cov-

erage, their performance is essentially comparable. How-

ever, as has been previously observed, more DCPs are

considered (or approximately twice as many DCPs (by

CTOS)) to obtain the same output, and this has an adverse

effect on MS trajectory length and data collection time, as

demonstrated in the results that follow.
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6.3 Intersecting node coverage among DCPs

This metric gives an indication of DCP coverage that is

redundant or overlapping. Figure 4 illustrates the inter-

secting node coverage among DCPs. The best DCP loca-

tions are those that can offer complete coverage of all

nodes in the network while minimizing DCP redundant

coverage. This is because the DCPs are the locations toured

by the MS for data collection from the nodes. If the node

coverage among DCPs intersects, their positions are not the

best since the nodes’ coverage is redundant. MS has to visit

each DCP during data collection. Consequently, as the

count of DCPs increases, the data-gathering latency also

increases due to the increased trajectory length. According

to Fig. 4, TRPMC has the lowest percentage of redundant

coverage, followed by iCapS-MS and ESRP-MP. However,

there is a trade-off between node coverage and intersecting

coverage of DCPs. Node coverage suffers as a result of

emphasizing redundancy reduction in TRPMC, as shown in

Fig. 3. For ESRP-MP, redundant coverage percentage

about 26%. Meanwhile, ORPSTC and CTOS do not con-

sider DCP redundant coverage at all, and the percentage of

coverage intersection goes as high as in the range of

61.6–82.5%, which is highly redundant. However, iCapS-

MS emphasizes minimizing the intersecting coverage

while guaranteeing full node coverage. Therefore, the

redundant coverage among DCPs in iCapS-MS may go up

to only 24.6% depending on the percentage of nodes in the

network.

6.4 MS trajectory length

This is the overall length of the MS trajectory for a varying

percentage of sensor nodes. During simulation, the initial

number of nodes is fixed to n = 200. We evaluate the

performance of the algorithms in terms of MS trajectory

length with respect to the change in the percent of failed

Table 2 Parameters and their

values
Parameter Value

Network dimension 400� 400m2

Nodes count 100–300

Sensing range of nodes 25 m

Node’s communication range 50 m

Communication range of MS 50 m

Initial energy of nodes 2 J

Energy consumption of transmitter circuit (Eelc) 50 nJ/bit

Amplifier parameter for free-space model (�f ) 10 pJ/bit/m2

Amplifier parameter for multi-path model (�m) 0.0013 pJ/bit/m4

Velocity of MS 2 ms�1

Data packet size 500 bits

MC wait time at each di 2 D 5 s

iCapSA population size 100

b0, b1, b2 2, 21, and 2

Pr 0.1

Ants count m in e-ACO 40

Pheromone concentration control factor a in e-ACO 1

Control factor b in e-ACO 2

Evaporation co-efficient q in e-ACO 0.5

Fig. 2 Number of data collecting points
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nodes. Figure 5 illustrates the overall distance traveled by

the MS to complete its tour under varying percentages of

failed nodes. It is critical to decrease the length of the

projected trajectory whenever feasible in order to reduce

data transmission delay. TRPMC generates the path just

once during network initialization, hence the path length

stays unchanged irrespective of the number of nodes in the

network. ORPSTC readjusts the path length by adopting a

re-selection strategy. CTOS, ESRP-MP, and iCapS-MS

select a trajectory depending on the count and location of

the nodes. We can observe that iCapS-MS outperforms all

the other methods, followed by ESRP-MP and ORPSTC,

and later, CTOS. Furthermore, when the percent of failing

nodes in the network gets larger, ORPSTC and CTOS are

unable to plot their path across the changing topology. The

number of DCPs will drop as the percent of failed nodes

increases, resulting in lesser node coverage and increased

multi-hop communication in them, which is also evident

from the previous figures. This implies that the scheduled

trajectory cannot be optimized to reach the maximum

number of nodes, and overall network energy usage will

rise as a result of the higher hop count and hop lengths

involved in multi-hop communications. In contrast, the

proposed iCapS-MS maintains a favorable trajectory that

allows for data gathering in a more efficient manner by

prioritizing maximum coverage of nodes, reduced hops,

and reduced intersecting coverage of DCPs.

6.5 MS tour time

Figure 6 depicts the entire tour time of the MS for the

algorithms. It is influenced by two key factors: the length

of the MS trajectory and the number of visited DCPs

(Figs. 5 and 2, respectively). Moreover, MS traverses the

entire distance at a constant speed and pauses at each DCP

for data upload by the nodes. During simulation, the initial

number of nodes is fixed to n = 200. We evaluate the

performance of the algorithms in terms of MS tour time

with respect to varying percent of failed nodes. When

compared to others, iCapS-MS has a shorter travel dis-

tance. Furthermore, when the percentage of nodes decrea-

ses in iCapS-MS, the path length and number of DCPs

lowers. As the percentage of failing nodes increases, the

overall tour time for iCapS-MS lowers, and the data

transmission latency decreases. TRPMC’s overall tour time

remains constant during the network’s operation. ESRP-

MP has a shorter tour time than CTOS and ORPSTC.

When the number of DCPs is large, the MS must wait for

data at each of them for the defined interval, and as a result,

the data delivery latency for existing methods will worsen.

6.6 Total energy consumption

It is the overall energy expended by the communication of

nodes. Figure 7 depicts the total energy utilized by nodes

for communication. The covered nodes can connect to the

MS directly and communicate in a single hop. This con-

serves energy and increases the lifetime of the WSN.

During simulation, the initial number of nodes is fixed to n

= 200. We evaluate the performance of the algorithms in

terms of total energy consumption with respect to the

change in the percent of failed nodes. ORPSTC has the

greatest total energy usage, since many nodes are forced to

undertake multi-hop communication owing to a lack of

DCP coverage. Meanwhile, ESRP-MP and CTOS provide

higher coverage and indeed consume less energy than

Fig. 3 Percentage of node coverage by DCPs Fig. 4 Percentage of intersecting node coverage among DCPs
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ORPSTC. TRPMC also has greater transmission energy

usage despite ensuring one-hop connectivity. However,

based on the above results, we can infer that iCapS-MS is

more energy efficient due to enhanced DCP selection and

MS trajectory planning, which significantly enhances the

data communication efficiency when compared to previous

algorithms.

6.7 Network lifetime

The performance benefit of the methods on network life-

time is demonstrated in Fig. 8. The graph depicts how

much time it takes for the first node to die (FND) in the

WSN when each method is used. Because of the appro-

priate selection of DCPs and MS trajectory planning, the

network remains functional for a longer period of time

under the proposed iCapS-MS method.

6.8 Overall analysis

Path planning for WSN data collection using MS is a

crucial and complex issue. The network’s overall perfor-

mance heavily depends on the chosen path. If the planned

path is too, the MS will take a considerable amount of time

to traverse it, leading to significant network latency. Con-

versely, if the path is too short, many sensors may not have

the opportunity to directly interact with the mobile col-

lector, resulting in inefficient energy utilization for data

forwarding. Striking a balance between a short path and

optimal coverage is, therefore, a challenging task. The

proposed iCapS-MS maintains a favorable trajectory that

allows for data gathering in a more efficient manner by

prioritizing maximum coverage of nodes, reduced hops,

and reduced intersecting coverage of DCPs. It not only

reduces energy consumption and latency, but also

demonstrates robustness and adaptability in the face of

network topology changes caused by node failures. In

TRP-MC, the number of DCPs is predetermined at the

initiation of the network and remains constant throughout

the network’s operation. In contrast, ORPSTC, ESRP-MP,

CTOS and iCapS-MS approaches dynamically adjust the

number of DCPs based on the number of nodes present in

the field, allowing for adaptability as the network evolves.

CTOS generates considerably more DCPs than others

because CTOS chooses DCPs in terms of intersecting

communication ranges of the nodes, and requires more

DCPs for coverage of the nodes. ORPSTC and CTOS do

not consider DCP redundant coverage at all, and have high

redundant coverage of more than 60%. However, the

redundant coverage among DCPs in iCapS-MS is only upto

24.6% depending on the percentage of nodes in the net-

work. CTOS, ESRP-MP, and iCapS-MS strategically

position DCPs to ensure comprehensive node coverage,

prioritizing one-hop communication. In terms of node

coverage, their performance is quite similar. However, it’s

noteworthy that, as observed previously, a relatively larger

number of DCPs (approximately twice by CTOS) is

employed to achieve the same level of coverage. This

increased DCP count has a negative impact on both MS

trajectory length and data collection time, as evidenced in

the experimental results. iCapS-MS is more energy effi-

cient due to enhanced DCP selection and MS trajectory

planning, which significantly enhances the data commu-

nication efficiency when compared to others, and the net-

work remains functional for a longer period of time with a

considerable extension of WSN lifetime by 3.56–43.6%

compared to existing schemes.

Fig. 5 MS trajectory length

Fig. 6 MS tour time
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7 Conclusion

The performance of MS-based WSN is significantly

influenced by effective trajectory design. In this paper, an

effective algorithm, called iCapS-MS, is proposed based on

two approaches, viz. an improved Capuchin Search Algo-

rithm (iCapSA)-based MS sojourn location optimization

and enhanced Ant Colony Optimization (e-ACO)-based

MS trajectory design. An iCapSA-based algorithm is uti-

lized in the first phase for selecting the best DCPs such that

almost every node can communicate data in single-hop

with the least feasible hop distance and coverage inter-

section between DCPs is minimal. The trajectory for MS is

determined in the second phase using an enhanced ACO

method. The results demonstrate that iCapS-MS outper-

forms existing methods based on several performance

metrics. The redundant coverage among DCPs in iCapS-

MS is only 24.6% whereas in the majority of existing

algorithms, it exceeds 60%. On average, iCapS-MS

demonstrates notable improvements, including about

4.7–12.67% reduction in MS tour time and a considerable

extension of network lifetime by 3.56–43.6% compared to

existing schemes.

In the future, we aim to consider different swarm

intelligence methods and also plan to test the proposed

method for other QoS parameters. Moreover, we intend to

extend the research to solve other real-world WSN data

collection challenges.
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