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Abstract
Unsupervised domain adaptation (UDA) aims to explore the knowledge of labeled source domain to help training the

model of unlabeled target domain. By now, while most existing UDA approaches typically learn domain-invariant rep-

resentations by directly matching the distributions across the domains, they pay less attention on respecting the cross-

domain similarity and discrimination exploration. To address these issues, this article designs a kind of UDA with dynamic

bias alignment and discrimination enhancement (UDA-DBADE). Specifically, in UDA-DBADE we define a dynamic

balance factor by the ratio of the normalized cross-domain discrepancy to the discrimination, which decreases gradually in

the process of UDA-DBADE. Afterward, we construct domain alignment with adversarial learning as well as distin-

guishable representations through advancing the discrepancy of multiple classifiers, and dynamically balance them with the

defined dynamic factor. In this way, a larger weight is originally assigned on the domain alignment and then gradually on

the discrimination enhancement in the learning process of UDA-DBADE. In addition, we further construct a bias matrix to

characterize the discrimination alignment between the source and target domain samples. Compared to current state-of-the-

art methods, UDA-DBADE achieves an average accuracy of 88.8% and 89.8% on Office-31 dataset and ImageCLEF-DA

dataset, respectively. Finally, extensive experiments demonstrate that UDA-DBADE has an excellent performance.

Keywords Unsupervised domain adaptation � Bias alignment � Bias matrix � Discrimination enhancement �
Cross-domain alignment

1 Introduction

In recent years, machine learning models especially deep

networks have achieved wide success, as in image classi-

fication [1] and semantic segmentation [2]. Nevertheless,

these methods typically follow the assumption that both the

training and test data are collected from the same distri-

butions. In real applications, it frequently does not hold

because of the distribution discrepancy between the

domains, i.e., domain shift. To address this issue, the

paradigm of domain adaptation (DA) [3–6] was proposed

to match the domains. On the other hand, the methods

aforementioned typically reply on large numbers of labeled

data; however, labeling data is time-consuming and labo-

rious, or even difficult to obtain. To further address such

challenges, unsupervised DA (UDA) was raised. The UDA

methodology exploits source domain knowledge to handle

unlabeled target tasks. The modeling strategies of existing

UDA works can be mainly divided into two categories. On

the one hand, it seeks to match the source and target

domains by reducing their distribution discrepancy [7–10].

On the other hand, it performs domain adaptation by

learning domain-invariant representations encouraged by

adversarial domain discriminator [3, 4, 11], conditional

domain discriminator [5, 12] or task classifier [13, 14]. The

former usually uses the momentum distance [15, 16], or

second-order correlation [9, 17, 18], between the source

and target domains to align their distributions. The latter

learns domain-invariant feature representations to achieve

& Qing Tian

tianqing@nuist.edu.cn

1 School of Software, Nanjing University of Information

Science and Technology, Nanjing 210044, China

2 Wuxi Institute of Technology, Nanjing University of

Information Science and Technology, Wuxi 214000, China

3 State Key Laboratory for Novel Software Technology,

Nanjing University, Nanjing 210023, China

123

Neural Computing and Applications (2024) 36:7763–7777
https://doi.org/10.1007/s00521-024-09507-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-0030-3645
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-09507-2&amp;domain=pdf
https://doi.org/10.1007/s00521-024-09507-2


UDA via the generative adversarial network [19] or

domain-adversarial training. Among them, Xiao et al. [20]

introduced the notions of alignment degree and discrim-

inability degree to dynamically weight the learning losses

of alignment and discriminability. Wei et al. [21] proposed

treating domain alignment objectives and classification

objectives as meta-training and meta-testing tasks in a

meta-learning framework. Huang et al. [22] devised a

novel adversarial learning strategy between domain-level

and class-level feature representations. Most of these UDA

methods with adversarial learning [4, 11, 23–28] can

effectively learn domain-invariant representations for bet-

ter generalization to the target domain. Moreover, the

flexibility and diversity provided by some GAN models

[3, 28] enable them to adapt to multiple target domains,

thus enhancing the applicability of UDA in complex sce-

narios. Although most of these methods have achieved

promising results on UDA tasks, they still suffer from the

following limitations. Firstly, they have not considered the

quantity imbalance issue between the domains, since the

domain with more samples affects more on the process of

UDA. Even worse, this issue tends to result in an unde-

sirably biased UDA model. Thirdly, these methods usually

directly align the source and target domains without pre-

serving the class diversity, which may lead to excessive

domain alignment. Finally, such methods like [29–31]

usually assume that the model trained on source domain

data generalizes well on the target domain tasks and con-

sequently only aligns the cross-domain marginal distribu-

tions but ignores the data classes bias across domains,

which easily leads to misclassification. As shown in

Fig. 1b, even though the marginal distributions of the

source and target domains are aligned well, the target

samples are still misclassified seriously by the source

classifier.

In order to address the issues aforementioned, in this

article we propose a kind of UDA model via dynamic bias

alignment and discrimination enhancement (UDA-

DBADE). Specifically, we firstly construct a dynamic

balance factor by the ratio of the normalized cross-domain

discrepancy to the inter-/intra-class discrimination, whose

value decreases gradually with iterated process of UDA-

DBADE. Then, with the balance factor, we dynamically

regulate the adversarial domain alignment and distin-

guishable representations. As a result, UDA-DBADE pays

more attention on domain alignment and then gradually

more on the discrimination enhancement in the learning

process of domain adaptation. In addition, we design a bias

matrix to characterize the discrimination alignment

between the source and target domains. In summary, our

main contributions are fourfold as follows:

• Proposing a novel kind of unsupervised domain adap-

tation (UDA) model via dynamic bias alignment and

discrimination enhancement (UDA-DBADE), which

jointly achieves the goal of domain alignment and

discrimination enhancement.

• In UDA-DBADE, a dynamic balance factor is con-

structed by the ratio of the normalized cross-domain

discrepancy to the target domain inter-/intra-class

discrimination, which encourages the model pay more

attention on domain alignment and then gradually more

on the discrimination enhancement in the learning

process of domain adaptation.

• A bias matrix is designed to characterize the discrim-

ination alignment between the source and target domain

samples to further regularize the performance of UDA-

DBADE.

• Extensive experiments validate the effectiveness and

superiority of the proposed UDA-DBADE over the

current state-of-the-art methods with average accuracy

improvement of 0.4% on digital datasets and with

average accuracy improvement of 0.5% on Office-

Home dataset.

The rest of this article is organized as follows. In Sect. 2,

we give a brief overview of the related work. Section 3

introduces the method in details. Then, experiments and

(a)  Before  adapta�on (b)  Adversarial domain training

Noisy  samples

Source
Target

Close similar samples
Push away dissimilar samples

Domain discriminator

Classifica�on boundary

(c)  Our model

Fig. 1 Comparison of existing and the proposed DA methods. a
Domain adaptation to the previous source and target domains. b Most

of the existing domain adaptation methods directly align the Marginal

distribution, which often leads to noise near the classification

boundary. c UDA-DBADE firstly uses the balance factor x to control

the degree of domain alignment to prevent negative migration caused

by excessive domain alignment. Secondly, the sample similarity loss

is calculated using sample bias matrix S to narrow the similar samples

and push the dissimilar samples
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analyses are presented in Sect. 4. Finally, conclusions and

future directions are given in Sect. 5.

2 Related work

In this section, we briefly review some representative UDA

approaches mostly related to our work.

UDA with discrepancy measurement These approa-

ches mainly match the source and target domains though

reducing their distribution discrepancy. Representative

measures include maximum mean difference (MMD)

[8, 32], correlation alignment (CORAL) [9] and central

moment difference (CMD) [16], etc. In articles [8] and

[32], the distribution divergence between the source and

target domains were measured with variants of MMD, such

as multi-core MMD (MK-MMD) and joint maximum mean

difference (JMMD). The authors of [33] designed a

weighted MMD by assigning class-specific weights into the

MMD measure. In D-CORAL [18], the CORAL was

improved by incorporating the correlations between the

active layers of the deep networks. Moreover, the central

moment difference (CMD) [16] was also used to UDA by

matching higher-order central moments across domain

distributions.

UDA with domain-adversarial learning This kind of

UDA is inspired by Generative Adversarial Network

(GAN) [19], which uses adversarial training to learn

domain-invariant representations. Along this line, the

methods as domain adversarial training of neural networks

(DANN) [3], adversarial discriminative domain adaptation

(ADDA) [4] and conditional domain adversarial network

(CDAN) [5] adopted a domain discriminator to distinguish

the divergence among domain representations. Moreover,

Wasserstein distance guided representation learning

(WDGRL) [34] and re-weighted adversarial adaptation

network (RAAN) [35] predicted the distribution distance

between the source and target domain samples via a

domain critical network with adversarial learning. Maxi-

mum classifier discrepancy (MCD) [13] and sliced

Wasserstein discrepancy (SWD) [14] performed domain

alignment through building task-specific classifiers as

domain discriminators to train domain-invariant represen-

tations. Recently, domain-symmetric networks (SymNets)

[36] was modeled with an improved adversarial learning

objective with a two-layer domain obfuscation structure.

Moreover, in view of the intermediate and image distortion

caused by the instability of the generation network, in the

article [37], the authors apply an end-to-end transfer

framework to improve the image quality of the interme-

diate domain of adversarial generation network. In addi-

tion, transferable adversarial training (TAT) [38] was

modeled to reduce the cross-domain gap by performing

UDA with the generated transferable samples, as well as

the reverse-trained depth classifier to make consistent

predictions on the transferable samples.

UDA with metric learning To facilitate the alignment

across domain samples, the methodology of distance metric

has been introduced in UDA. Most of related works were

modeled with metric loss on the samples [39–42] or

proxies [43–46] to learn class distinction boundary, in

which the key issue is how to characterize both the intra-

and inter-class differences. In the article [47], the authors

apply clustering-based self-supervised learning to classify

pseudo-labels into positive and negative classes, forming a

set of clusters through the similarity of pseudo-labels.

Finally, the classification results are given based on two

confidence scores for each label from the detector back-

bone and multi-expert fusion. Furthermore, in the article

[48], the authors employ a memory mechanism and

develop two types of nonparametric classifiers that assign

pseudo-labels to target samples using only target data.

Different from [48], we use the source domain data, then

follow the K-nearest neighbors algorithm and employ a

ratio test to assign the target sample pseudo-labels. In

articles [49] and [50], the authors use soft-max contrast loss

and noise contrast loss to characterize intra- and inter-class

differences, respectively. We use the useful sample pair

relation of pair domain adaptation classification to con-

struct the sample pair similarity loss as processing multiple

positive and negative sample pair information at one time.

Although domain adaptation algorithms based on metric

learning have been proposed by many previous studies, the

principle of metric learning is rarely considered to improve

conventional domain adaptation problems. Wang et al. [51]

applied a triplet loss utilizing both source and unlabeled

target samples on the confusion domain in order to achieve

class-level alignment. Furthermore, considering the dif-

ferent importance of pairwise samples for feature learning

and domain alignment, Wang et al. [52] derived a BP-

triplet Loss that adjusts the weights of pairwise samples

within and between domains from the perspective of

Bayesian learning. Nevertheless, previous related work

either required triplet losses with complex sampling

strategies or did not use sample-level similarity relation-

ships. In this article, we calculate the sample pair similarity

loss from the sample level, which makes the close simi-

larity more compact and the dissimilar samples more

discrete.

3 Proposed methodology

In this section, we describe the details of our approach, and

the overall architecture of our model is shown in Fig. 2.

The symbols used in this article are defined in Table 1.
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Firstly, in order to prevent the deviation of the trained

model due to the large difference in the number of samples

in the two domains, we weight the samples in the source

domain and target domain. Secondly, we calculate the

equilibrium factor x according to the degree of domain

alignment and class differentiability and use it to adjust the

domain alignment and class difference loss to prevent

excessive domain alignment. Finally, we construct the

sample pair bias matrix to calculate the sample similarity

loss and optimize the sample similarity loss to make the

intra-class more compact and the inter-class more discrete.

Consider the classification of image X in class C prob-

lems. For UDA, we are typically given a source domain

Xs = ðxis; yisÞ
� �Ns

i¼1
with Ns labeled examples and a target

domain Xt = xjt

n oNt

j¼1
with Nt unlabeled examples.

3.1 Weight Adaptation

Sample Weighting: In the process of model training, when

the sample number difference between the two domains is

too large, it will lead to a deviation in model training, and

the model will be biased toward the domain with a large

sample number. In order to avoid such problems, we

intuitively weight the samples before they are input into the

model to prevent the model deviation caused by the

unbalanced number of samples. For each domain, the

weight of the sample should be inversely proportional to its

total sample size in both domains. Specifically, we weight

the samples of each domain as follows:

�xis ¼ aðNs þ Nt

Ns
Þxis; i ¼ 1; 2; :::;Ns ð1Þ

�xjt ¼ aðNt þ Ns

Nt
Þxjt; j ¼ 1; 2; :::;Nt ð2Þ

where a 2 ð0; 1� is the hyperparameter controlling the

degree of sample weighting.

Domain Alignment and Class Discriminability Weight-

ing: During the optimization process of domain alignment

Fig. 2 Overall architecture of the UDA-DBADE method in this

article. Our network architecture is divided into three modules:

feature extractor (F), domain discriminator (D), the classifier

(C1;C2;C3) and related parameters /f ;/d , (/c1;/c2;/c3). The

balance factor x acts on the loss of domain alignment, and ð1�

xtÞ acts on the loss of class discrepancy to balance the degree of

domain alignment. Additionally, we use source domain features and

target domain features to construct a sample pair bias matrix S, which
preserves the similarity between samples. Then, we use the value of

bias matrix S to calculate the sample similarity loss

Table 1 Definition of variables and symbols

Notation Meaning

xis; x
j
t

The source/target domain samples

ysi The label of the ith source domain sample

�xis; �x
j
t

The weighted source/target domain samples

Ns The number of samples from the source domain

Nt The number of samples from the target domain

BS;BT The source and target domain batch sample collection

F The model feature extractor

D The model discriminator

Ci The ith model classifier

C The class number of the source or target domain

W The projection matrix

d The dimension after dimensionality reduction

S The sample bias matrix

t The current iteration number

T The maximum iterations
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loss and class discrepancy loss, excessive domain align-

ment or class discrimination is easy to occur, leading to the

occurrence of negative transfer. In order to avoid this sit-

uation and make the domain alignment and class differ-

entiability be optimized together, we calculate the domain

alignment degree and class discrepancy during each itera-

tion and get the balance factor x of the current iteration. x
is used as the weight of domain alignment loss and class

discrepancy to control the degree of domain alignment. We

use maximum mean discrepancy (MMD) and linear dis-

criminant analysis (LDA) [53] to calculate the degree of

domain alignment and class differentiability of the current

network model. As one of the widely used distance mea-

sures for domain adaptation, MMD can express the dif-

ference in cross-domain distribution between the source

domain and target domain after mapping:

MMDðXS;XTÞ ¼ jj 1
Ns

XNs

i¼1

Fð�xisÞ �
1

Nt

XNt

j¼1

Fð�xjtÞjj2H ð3Þ

In addition, the definition of linear class discriminator

LDAðWÞ based on LDA is as follows:

argmax
W

LDAðWÞ ¼ trðWTSbWÞ
trðWTSwWÞ

ð4Þ

where W 2 Rn�d is the projection matrix, d is the dimen-

sion projected into low-dimensional space, Sb is the inter-

class divergence matrix and Sw is the intra-class divergence

matrix. By maximizing the inter-class divergence matrix

and minimizing the intra-class divergence matrix, the lar-

ger LDAðWÞ value is obtained. A larger LDAðWÞ value

represents the smallest difference within a class and the

largest difference between classes, that is, the class is more

distinguishable. We normalize the original values obtained

from Eq. (3) and Eq. (4) by using the min–max standard-

ization method. In order to balance the complexities of

MMDðXS;XTÞ and LDAðWÞ, we normalize them, respec-

tively, in Eq. (5) and Eq. (6):

MMDðXS;XTÞ�t¼
MMDðXS;XTÞt �MMDðXS;XTÞmin

MMDðXS;XTÞmax �MMDðXS;XTÞt þ d

ð5Þ

where d is an infinitesimal value (e.g., 1e-3) to guarantee

the denominator not equal to zero, t 2 ½1; T� indicates

current iteration number. MMDðXS;XTÞt represents the

domain alignment degree at current tth iteration.

MMDðXS;XTÞmin and MMDðXS;XTÞmax, respectively,

indicate the minimal value and maximal value of

MMDðXS;XTÞ in previous iterations of the model training

process and are updated at each iteration.

LDAðWÞ�t ¼
LDAðWÞt � LDAðWÞmin

LDAðWÞmax � LDAðWÞt þ d
ð6Þ

where LDAðWÞt represents the class discrepancy at current

tth iteration. LDAðWÞmin and LDAðWÞmax, respectively,

indicate the minimal value and maximal value of LDAðWÞ
in previous iterations of the model training process and are

also updated at each iteration. We can easily draw the

conclusion from Eq. (5) and Eq. (6) that MMDðXS;XTÞ�t 2
½0; 1� and LDAðWÞ�t 2 ½0; 1�. For the sake of dynamically

balancing between domain alignment and cross-domain

discrimination, with the normalized MMDðXS;XTÞ�t and

LDAðWÞ�t , we design the balancing factor xt for the tth

iteration as follows:

xt ¼
MMDðXS;XTÞ�t

MMDðXS;XTÞ�t þ ð1� LDAðWÞ�t Þ
ð7Þ

The smaller the value of MMDðXS;XTÞ�t , the better the

alignment of the current domain, and the larger the value of

LDAðWÞ�t , the stronger the distinguishability of the current

class. When the degree of domain alignment is far worse

than the degree of class discrimination, the MMDðXS;XTÞ�t
approaches 1, the ð1� LDAðWÞ�t Þ approaches 0, and the xt

approaches 1. When the degree of domain alignment is far

better than the class discriminability, the MMDðXS;XTÞ�t
approaches 0, the ð1� LDAðWÞ�t Þ approaches 1, and the xt

approaches 0. Then, xt gradually converges to the value of

0.5 with increased iteration epochs.

3.2 Domain alignment and class discrepancy

Adversarial learning has been widely used in domain

adaptation tasks to learn domain-invariant representation.

In adversity learning, weighted samples �xis and �xjt are used

as the input of feature extractor F to obtain domain-in-

variant feature representation. By training model network,

parameter /f of feature extractor F and parameter /d of

domain discriminator D are updated to optimize the

domain alignment loss in the following formula:

min
/f

max
/d

Ldomð/f ;/dÞ ¼
1

Ns

XNs

i¼1

log½DðFð�xisÞÞ�

þ 1

Nt

XNt

j¼1

log½1� DðFð�xjtÞÞ�
ð8Þ

The domain alignment task can be achieved by optimizing

Eq. (8). However, optimizing domain alignment loss does

not guarantee class distinguishability. In order to get the

feature representations which have good discriminability,

we are inspired by MCD [13] to maximize the discrepan-

cies between the classifiers, which benefits for generating
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more discriminative features. Therefore, the classification

discrepancy measure is defined as Eq. (9):

Mðp1; p2; p3Þ¼
1

C

XC

k¼1

jjpk1 � pk2jj1

þ 1

C

XC

k¼1

jjpk1 � pk3jj1þ
1

C

XC

k¼1

jjpk2 � pk3jj1

ð9Þ

where the classifiers C1, C2 and C3 are obtained through

pre-training on the source domain. In addition, p1, p2 and

p3 denote the probability labels predicted by the classifiers

C1, C2 and C3, respectively. The superscript K represents

categories, for example, pk1, p
k
2 and pk3 represent probability

outputs of class k. In order to obtain class features with

large discrepancy, we optimize the loss of class discrep-

ancy as follows:

min
/f ;/c1

max
/c2;/c3

Lclð/f ;/c1;/c2;/c3Þ¼E�xjt �XT
½Mðp1; p2; p3Þ�

ð10Þ

First, we train the feature extractor F by fixing C2 and C3 to

minimize feature discrepancy. Then, we fix F and C1 to

maximize the discrepancy between classifiers C2 and C3 in

the target domain. /c1, /c2 and /c3 are parameters of

classifiers C1, C2 and C3, respectively. It is worth noting

that different from MCD [13], we add a main classifier C1,

whose decision hyperplane is between C2 and C3, to make

the distance between the classified samples and the deci-

sion boundary larger. Equation (7) shows that the larger the

value of xt, the worse the degree of domain alignment, and

the larger the value of ð1� xtÞ, the worse the class dif-

ference. With this observation, we take xt as the weight of

the domain alignment loss and ð1� xtÞ as the weight of

the class difference loss. The weighted model loss is as

follows:

min
/f ;/c1

max
/d ;/c2;/c3

xtLdomð/f ;/dÞ

þð1�xtÞLclð/f ;/c1;/c2;/c3Þ
ð11Þ

When the degree of domain alignment is less than the class

distinguishability, we increase the weight of domain

alignment loss. In contrast, when the class distinguisha-

bility is less than the domain alignment degree, we increase

the weight of class distinguishability. With the iteration of

training, we use xt to adjust the domain alignment and

class discrepancy loss, and this weight enables the model to

maintain the consistency of domain alignment and class

differentiability, effectively avoiding negative migration.

3.3 Sample similarity loss

To constrain alignment at the class level, we explore the

bias relationships between source and target sample pairs

for each batch at the sample level and use them in calcu-

lating sample similarity losses. However, the target domain

samples are unlabeled, if the classifier trained by source

domain data is used to label the target domain with pseudo-

labels, the sample bias relationship we get is wrong due to

the influence of label noise. Therefore, we use the KNN

classifier to assign pseudo-labels to the target domain

samples. First of all, for each target domain sample, we

take the first K source domain samples closest to it as

pseudo-label samples. Secondly, the pseudo-label samples

are labeled and voted, and the results are regarded as

pseudo-label in the target domain. Finally, the label

information is used to fill the sample bias matrix as fol-

lows: Sij ¼ 1; if yis ¼ ŷjt; Sij ¼ �1; otherwise. The pseudo-

label of the target sample obtained from the KNN algorithm

also has noise sample. Therefore, after constructing sample

bias matrix S, we filter out pseudo-labels that may be noise.

We use the rejection confidence measure based on the

neighborhood similarity test commonly used in KNN to

filter noise labels. BS and BT , respectively, represent the

sample set of the current batch in the source and target

domain. Define Np
j to represent the sample set of similar

source domain near the target sample �xjt 2 BT , which is

obtained by Np
j ¼ f�xis 2 BSjyis ¼ ŷjtg. Similarly, Nn

j is

defined to represent the dissimilar source domain sample

set near the target domain sample �xjt 2 BT , which is

obtained by Nn
j ¼ f�xis 2 BSjyis 6¼ ŷjtg. We calculate the ratio

of similar set to dissimilar set to serve as the consistency

score Xj of pseudo-label prediction of sample �xjt in the

target domain. The definition is as follows:

Xj ¼
P

�xis2N
p
j
dðf is; f

j
tÞ

P
�xis2Nn

j
dðf is; f

j
tÞ

ð12Þ

where f is and f jt, respectively, represent the output features

of the samples in the source domain and target domain

calculated using feature extractor F, and d(., .) is the sim-

ilarity score between features. After sorting Xj from large

to small, the confidence factor l is used to select the sorted

confidence samples, and the bias matrix value of the

remaining target samples is set as Sij ¼ 0. For example, if

our batch size is 64 and confidence factor l ¼ 0:75, the

first 48 target domain samples are taken as confidence

samples in order of consistency score predicted by pseudo-

label. When we randomly sample batches from the source

and target domains, it can happen that some classes cannot

be selected in the source domain, which is problematic. For

example, some target samples might not have a corre-

sponding true source sample, leading to incorrect pseudo-

labels. To address this issue, we perform class-balanced

sampling for the mini-batch BS on the source domain, and
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extract the same representations for all classes of the source

domain. For the target domain, the instances are sampled

randomly since they are unlabeled. In this way, the sample

information with noise labels will not be involved in the

calculation of sample similarity loss LS, to prevent the

influence of noise labels on model training.

For each source domain sample �xis, we divide the same

batch of target domain samples into relevant sample set

B
Sþi
T ¼ f�xjt 2 BT jSij ¼ 1g and unrelated sample set

B
S�i
T ¼ f�xjt 2 BT jSij ¼ �1g. Using the above two sets, we

optimize Eq. (13) to make source domain sample �xis more

compact with related samples and more separated from

those irrelated:

Li
S ¼ � log

P
�xjt2B

Sþ
i

T

edðf
i
s;f

j
tÞ

P
�xjt2B

Sþ
i

T

edðf
i
s;f

j
tÞ þ

P
�xjt2B

S�
i

T

edðf
i
s;f

j
tÞ

ð13Þ

The overall similarity loss of the current batch of source

domain samples is defined as follows:

LS ¼
1

jBSj
X

�xis2BS

Li
S ð14Þ

We use normalized inverse Euclidean distance [54] as the

similarity measure, which is defined as follows:

dðf is; f
j
tÞ ¼

1

1þ jjf is � f jtjj2
ð15Þ

If Sij ¼ 1, it means that �xis and �xjt are similar sample pairs,

and the similarity degree is obtained by Eq. (15). Similarly,

when Sij ¼ �1, it means that �xis and �xjt dissimilar sample

pairs, and the similarity degree value is close to 0.

3.4 The overall objective

In order to transfer the source knowledge to supervise

target model training, we also need to incorporate the

source domain classification in the UDA process. As a

result, taking into account the source domain classification,

domain alignment, class discrepancy and sample similarity

aforementioned, we can naturally design the overall

objective function of UDA with dynamic bias alignment

and discrimination enhancement (UDA-DBADE) as

follows:

Ltotal¼ min
/f ;/c1

max
/d ;/c2;/c3

Lsup þ LS þ xtLdomð/f ;/dÞ

þ ð1�xtÞLclð/f ;/c1;/c2;/c3Þ
ð16Þ

where

Lsup ¼
1

Ns

XNs

i¼1

LceðFð�xisÞ; yisÞ ð17Þ

denotes the classification loss on the source domain. As

shown in Eq. (16), it mainly contains four parts: supervised

classification loss Lsup of the source domain, similar rela-

tionship loss LS between samples, domain alignment loss

Ldom and class difference loss Lcl. For the sake of clarifi-

cation, we summarize the complete steps of UDA-DBADE

in Algorithm 1.

Algorithm 1 UDA-DBADE algorithm
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4 Experiments

In this section, we conduct several experiments to evaluate

the validity of the proposed method. First, we introduce

four UDA datasets: Digits, Office-31, ImageCLEF-DA and

Office-Home, along with their experimental settings. Then,

we compare the proposed method with existing methods.

Finally, we perform ablation experiments to verify the

validity of each part of the model.

4.1 Datasets

Digital datasets1 We construct domain adaptive tasks

among MNIST [55], USPS and SVHN [56] three digital

datasets. Both MNIST (M) and USPS (U) datasets are

handwritten numeric datasets from 0� 9. SVHN (S) is a

dataset of real images in Google Street View images. We

perform domain adaptation experiments on M ! U, U !
M and S ! M tasks.

Office-312 [57] This dataset consists of three different

domains, including Amazon (A), Webcam (W) and DSLR

(D), each with 31 classes. We conduct experiments on all

six domain adaptation tasks, namely A ! W, D ! W, W

! D, A ! D, D ! A and W ! A.

ImageCLEF-DA3 [58] This dataset consists of three

domains, including Caltech256 (C), ImageNet ILSVRC

2012 (I) and Pascal VOC 2012 (P), each with 12 classes

Office-Home4 This dataset is a large benchmark dataset

containing around 15,500 images divided into 65 classes.

The dataset comprises four domains: Artistic (Ar), Clip Art

(Cl), Product (Pr) and Real-World (Rw).

4.2 Implementation details

We compare the proposed method with several state-of-

the-art domain adaptation methods: DANN [3], ADDA [4],

CDAN [5], DAN [8], MCD [13], DWL [20], TAT [38],

JAN [32], LDC [66], GoGAN [70], CyCADA [59], CAT

[60], SimNet [61], TPN [62], SAFN [67], LWC [63], ETD

[64], CGDM [65], GSDA [69] and SCAL [68]. According

to the standard protocol of UDA, all labeled source domain

samples and unlabeled target domain samples participate in

the training phase. For the domain adaptation task on the

handwritten digit set, we follow the protocol in MCD [13].

We use 2K images from MNIST and 1.8K images on USPS

to perform domain adaptation tasks between MNIST and

USPS, and use the entire training set to perform domain

adaptation between SVHN and MNIST. During the

experiment, to train our model, we use ADAM whose

weight attenuation of the learning rate is 0.0005 to opti-

mize the network weight parameters. The learning rate is

set as 0.0002, the sample batch size is set as 128, and the

number of training iterations is set as 200. The classifica-

tion accuracy of the target domain is adopted as the eval-

uation standard of the experiment. For image datasets such

as Office-31, the original datasets are programmed on

PyTorch, and the original features of the dataset are

extracted by ResNet [19] network pre-trained on ImageNet

[71]. The classifier network of the model in this article is

set to be a two-layer network, and the domain discriminator

is also composed of two-layer networks including ReLU

and Dropout (0.5). We use small batches of SGD with a lot

size of 32, a learning rate of 0.001 and a momentum of 0.9.

4.3 Experimental results

In this section, we conduct extensive experiments to

evaluate our model, and all comparative method results are

taken from relevant literature. Experimental results on

three datasets are shown in Tables 2, 3, 4 and 5. Our

method is superior to many previous methods in different

datasets. We present three-domain adaptation scenarios on

handwritten numeral sets, and Table 2 reports the experi-

mental results. The domain adaptation results of our

method between MNIST and USPS reach 96.3% and

97.5%, respectively, and its classification accuracy is better

than in previous work. The proposed method focuses on

preventing excessive domain alignment and constructing a

Table 2 Accuracy (% ) on the digital datasets for unsupervised

domain adaptation

Method M ! U U ! M S ! M Avg

ResNet-50 [19] 76.7 ± 0.2 63.4 ± 0.1 67.1 ± 0.3 69.1

DAN [8] 80.3 ± 0.2 77.8 ± 0.4 73.5 ± 0.2 77.2

DANN [3] 90.8 ± 0.4 93.9 ± 0.1 83.1 ± 0.2 89.2

CDAN [5] 93.9 ± 0.2 96.9 ± 0.2 88.5 ± 0.3 93.1

CyCADA [59] 95.6 ± 0.1 96.5 ± 0.2 90.4 ± 0.1 94.2

CAT [60] 90.6 ± 2.3 80.9 ± 3.1 98.1 ± 1.3 89.9

SimNet [61] 95.6 ± 0.2 96.4 ± 0.2 – –

MCD [13] 94.2 ± 0.7 94.1 ± 0.3 96.2 ± 0.4 94.8

TPN [62] 92.1 ± 0.6 94.1 ± 0.8 93.0 ± 0.5 93.1

LWC [63] 95.6 ± 0.3 97:1� 0:5 97.1 ± 0.4 96.6

ETD [64] 96.4 ± 0.5 96.3 ± 0.7 97.9 ± 0.4 96:9

DWL [20] 95.8 ± 0.4 96.7 ± 0.3 97.3 ± 0.4 96.6

CGDM [65] 96.0 ± 0.2 97.0 ± 0.1 97.6 ± 0.5 96.8

Ours 96:3� 0:6 97.5 ± 0.4 98:0� 0:3 97.3

Bold values indicate the best accuracy and the underline values

indicate the second best

1 http://yann.lecun.com/exdb/mnist/.
2 http://ai.bu.edu/adaptation.html.
3 https://www.imageclef.org/2014/adaptation.
4 https://www.hemanthdv.org/officeHomeDataset.html.
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sample bias matrix by introducing metric learning to cal-

culate sample similarity loss to make the classification

boundary clearer and prevent negative migration. We show

the results of the six preadaptation tasks on the Office-31

dataset and their averages in Table 3. We observe that the

proposed method achieves the best results on two tasks

with an average accuracy of 88.8%, which is superior to the

previous comparison method. The accuracy of the model is

100% in W!D and D!W tasks. From the observation of

classification accuracy, it can be seen that the proposed

method can effectively balance the degree of domain

alignment and class differentiation to prevent excessive

domain alignment and smooth the classification boundary

by using similarity loss among samples, thus improving the

performance of the classifier in the target domain. For

D!A and W!A tasks with large domain displacement

and difficult domain adaptation, our model can still achieve

74.2% and 73.0% classification accuracy, which is better

than 71.0% and 67.8% of the Enhanced Transport Distance

(ETD) [64]. In Table 4, we show the results of six

preadaptation tasks on the ImageCLEF-DA dataset and

their average values. When training is stopped after 200

iterations, it is shown in Table 4 that our method is superior

to the previous work and achieve the best average accuracy

(89.8%). The evaluation results on Office-Home are

reported in Table 5. It can be observed that the average

accuracy of the proposed method UDA-DBADE achieves

70.8%, which is higher than 70.3% of GSDA. More

importantly, UDA-DBADE achieves significant improve-

ment on Pr!Ar and Rw!Ar tasks. It demonstrates the

Table 3 Accuracy (% ) on Office-31 dataset for unsupervised domain adaptation (ResNet-50)

Method A ! W D ! W W ! D A ! D D ! A W ! A Avg

ResNet-50 [19] 68.4 ± 0.2 96.7 ± 0.1 99.3 ± 0.1 68.9 ± 0.2 62.5 ± 0.2 60.7 ± 0.2 76.1

DAN [8] 80.5 ± 0.4 97.1 ± 0.2 99.6 ± 0.1 78.6 ± 0.2 63.6�0.3 62.8 ± 0.2 80.4

LDC [66] 78.6 ± 0.5 98.7 ± 0.1 100.0 ± .0 79.1 ± 0.3 61.9 ± 0.3 59.6 ± 0.5 79.7

DANN [3] 82.0 ± 0.4 96.9 ± 0.2 99.1 ± 0.1 79.7 ± 0.4 68.2 ± 0.4 67.4 ± 0.5 82.2

ADDA [4] 86.28 ± 0.5 96.28 ± 0.3 98.48 ± 0.3 77.88 ± 0.3 69.58 ± 0.4 68.9�0.5 82.9

CDAN [5] 93:1� 0:1 98.0 ± 0.1 100.0 ± .0 89.8 ± 0.2 70.1 ± 0.3 68.0 ± 0.3 86.6

CAT [60] 91.1 ± 0.2 98:6� 0:6 99.6 ± 0.1 90.6 ± 1.0 70.4 ± 0.7 66.5 ± 0.4 86.1

SimNet [61] 88.6 ± 0.5 98.2 ± 0.2 99:7� 0:2 85.3 ± 0.3 73:4� 0:8 71.6 ± 0.6 86.2

SAFN [67] 88.8 ± 0.4 98.4 ± 0.0 99.8 ± 0.0 87.7 ± 1.3 69.8 ± 0.4 69.7 ± 0.2 85.7

ETD [64] 92.1 ± 0.5 100.0 ± .0 100.0 ± .0 88.0 ± 0.3 71.0 ± 0.4 67.8 ± 0.2 86.2

DWL [20] 87.2 ± 0.2 99.1 ± 0.1 99.6 ± 0.3 86.3 ± 0.4 71.5 ± 0.2 69.8 ± 0.3 85.5

CGDM [65] 90.1 ± 0.2 99.3 ± 0.1 100.0 ± .0 89.0 ± 0.3 70.0 ± 0.2 70.8 ± 0.2 86.5

SCAL [68] 93.5 ± 0.2 98.5 ± 0.1 100.0 ± .0 93.4 ± 0.3 72.4 ± 0.1 74.0 ± 0.3 88:6

Ours 93.5 ± 0.2 100.0 ± .0 100.0 ± .0 92:6� 0:4 74.2 ± 0.3 73:0� 0:1 88.8

Bold values indicate the best accuracy and the underline values indicate the second best

Table 4 Accuracy (%) on

ImageCLEF-DA dataset for

unsupervised domain adaptation

(ResNet-50)

Method I ! P P ! I I ! C C ! I C ! P P ! C Avg

ResNet-50 [19] 74.8 ± 0.3 83.9 ± 0.1 91.5 ± 0.3 78.0 ± 0.2 65.5 ± 0.3 91.2 ± 0.3 80.7

DAN [8] 74.5 ± 0.4 82.2 ± 0.2 92.8 ± 0.2 86.3 ± 0.4 69.2 ± 0.4 89.8 ± 0.4 82.5

DANN [3] 75.0 ± 0.6 86.0 ± 0.3 96.2 ± 0.4 87.0 ± 0.5 74.3 ± 0.5 91.5 ± 0.6 85.0

JAN [32] 76.8 ± 0.4 88.0 ± 0.2 94.7 ± 0.2 89.5 ± 0.3 74.2 ± 0.3 91.7 ± 0.3 85.5

CDAN [5] 76.7 ± 0.3 90.6 ± 0.2 97.0 ± 0.3 90.5 ± 0.3 74.5 ± 0.2 93.5 ± 0.3 87.1

CAT [60] 76.7 ± 0.2 89.0 ± 0.7 94.5 ± 0.4 89.8 ± 0.3 74.0 ± 0.2 93.7 ± 1.0 86.3

SAFN [67] 78.0 ± 0.4 91.7 ± 0.5 96.2 ± 0.1 91.1 ± 0.3 77.0 ± 0.5 94.7 ± 0.3 88.1

TAT [38] 78.8 ± 0.2 92.0 ± 0.2 97.5 ± 0.3 92.0 ± 0.3 78.2 ± 0.4 94.7 ± 0.4 88.9

ETD [64] 81:0� 0:6 91.7 ± 0.4 97.9 ± 0.3 93.3 ± 0.2 79.5 ± 0.5 95.0 ± 0.3 89:7

DWL [20] 78.1 ± 0.2 91.2 ± 0.3 96.8 ± 0.3 91.5 ± 0.4 77.5 ± 0.2 95.8 ± 0.3 88.5

CGDM [65] 78.7 ± 0.2 93:3� 0:1 97:5� 0:2 92:7� 0:2 79:2� 0:1 95:7� 0:2 89.5

Ours 81.2 ± 0.2 93.6 ± 0.1 97:5� 0:3 92.4 ± 0.4 77.6 ± 0.2 96.8 ± 0.3 89.8

Bold values indicate the best accuracy and the underline values indicate the second best
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advantage of this method, especially when deal with

transferring from a complicated scenario to a simple sce-

nario. Moreover, when encountering a large domain dis-

crepancy, UDA-DBADE still achieves promising results on

complex transfer tasks such as Ar!Rw, Cl!Rw and

Pr!Rw, which further demonstrates its efficiency. In

particular, Tables 2, 3, 4 and 5 show that compared with

DWL, our method has achieved great advantages, espe-

cially on the Office-31 dataset, the average accuracy of our

method is 3.3% higher than that of DWL. To this end, we

analyze that, similar to DWL, we leverage adversarial

learning to achieve domain alignment and build discrimi-

native representations by boosting differences across mul-

tiple classifiers in this paper. In addition, we take into

account the impact of label noise on the model, so we

propose to use sample similarity loss to achieve sample-

level alignment and reduce the impact of label noise on the

model performance. Therefore, we consider that this is the

superiority of our method over DWL.

4.4 Experimental analysis

In this section, we further analyze the advantages and

disadvantages of the model from the convergence,

parameter sensitivity, feature visualization and ablation

experiments of the proposed method.

Convergence Analysis

Since the objective of UDA-DBADE is optimized in

iterative manner, we evaluate the classification accuracy

with iterations. Specifically, Fig. 3a shows the experi-

mental results of Digits domain adaptation task M!U,

ImageCLEF domain adaptation task P!C and Office-31

domain adaptation tasks W!A and A!D, respectively. It

can be seen that the accuracy ascends gradually and comes

to stable with about 90 epochs.

Parameter Sensitivity Analysis

It can be concluded from Eq. (12) that a high l value

will lead to the selection of many noisy pseudo-label

samples, thus leading to the deviation of model classifi-

cation. By comparison, a low l value will even filter out

some confident samples that may be positive. In order to

evaluate the influence of the confidence factor l, we adjust
its value and use it to predict the threshold of the consis-

tency score Xj for target domain sample pseudo-labels. As

shown in Fig. 3b, sensitivity evaluations in terms of the

confidence factor l are conducted on the Digits domain

adaptation task M!U, ImageCLEF domain adaptation task

P!C and Office-31 domain adaptation tasks W!A and

A!D, respectively. We observe that model reaches the

optimum when l ¼ 0:75, which is equivalent to accepting

two-thirds of the pseudo-label prediction.

We use the K-nearest neighbor algorithm to assign

pseudo-labels to the target samples, but the value of K is

closely related to the accuracy of the pseudo-labels of the

target samples. Larger values of K lead to assigning wrong

pseudo-labels to target samples, while lower values of K

miss the correct pseudo-labels of target samples. In order to

evaluate the influence of the K, we adjust its value and use

it to select pseudo-labels for target samples. As shown in

Fig. 3c, sensitivity evaluations in terms of the confidence

factor K are conducted on the Digits domain adaptation

task M!U, ImageCLEF domain adaptation task P!C and

Office-31 domain adaptation tasks W!A and A!D,

respectively. We observe that model reaches the optimum

when K ¼ 5. It is not difficult to understand that K[ 1 is

beneficial to the pseudo-label of the target sample, because

Table 5 Results (%) on Office-Home dataset for unsupervised domain adaptation (ResNet-50)

Method Ar!Cl Ar!Pr Ar!Rw Cl!Ar Cl!Pr Cl!Rw Pr!Ar Pr!Cl Pr!Rw Rw!Ar Rw!Cl Rw!Pr Avg

ResNet-50

[19]

34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [8] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN [3] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN [32] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN?E [5] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

TAT [38] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8

ETD [64] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3

GSDA [69] 61.3 76.1 79.4 65.4 73.3 74:3 65:0 53.2 80.0 72.2 60.6 83:1 70:3

SCAL [68] 55.3 72.7 78.7 63.1 71.7 73.5 61.4 51.6 79.9 72:5 57.8 81.0 68.3

DWL [20] 56.2 74:9 78.5 64.3 73:7 74:3 64.8 53:6 80:2 72.1 60.9 82.9 69.7

Ours 57:0 74.7 79:8 64:6 74.1 74.6 65.2 55.1 81.0 74.6 59:7 84.3 70.8

Bold values indicate the best accuracy and the underline values indicate the second best
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it helps to deal with the noise prediction of the classifier

boundary.

For the balance factor xt, its value changing rule in the

model training process is shown in Fig. 3d. We observe

that at the beginning, the value shakes seriously within the

range of 0.4 to 0.8, and then gradually converges to the

value of 0.5 with increased iteration epochs. It endorses the

theoretical analysis Eq. (7).

4.5 Feature visualization

We use t-SNE to visualize the features learned by ResNet-

50, DANN and the model UDA-DBADE in this article on

the Digits domain adaptation task M!U, ImageCLEF

domain adaptation task P!C and Office-31 domain

adaptation tasks W!A and A!D, respectively, and the

results are shown in Fig. 4. Figure 4 shows that the feature

distribution of RESNET-50 is disordered, and the source

and target domain are not aligned. DANN can alleviate this

problem to some extent, but there are still big differences

between the two domains. UDA-DBADE achieves the best

adaptation results with clear class boundaries.

4.6 Ablation studies

To evaluate the contribution of different modules to the

model in this article, we conduct ablation experiment, and

the experimental results are shown in Tables 6 and 7. We

select the Office-31 domain adaptation task W!A and

Digits domain adaptation task M!U for the ablation

experiments. We observe that sample weight, balance

factor xt and sample similarity loss LS all play a key role in

promoting the performance of the model.

Fig. 3 Model convergence and parameter sensitivity. a Model

convergence analysis of UDA-DBADE on domain adaptation tasks

M!U, W!A, A!D and P!C. b, c Sensitivity analysis of UDA-

DBADE to parameters l and K of domain adaptation tasks M!U,

W!A, A!D and P!C. d Iterative change analysis of UDA-DBADE

to parameters xt of domain adaptation tasks M!U, W!A, A!D

and P!C
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5 Conclusion

This article proposed a kind of UDA through dynamic bias

alignment and discrimination enhancement (UDA-

DBADE). Specifically, in UDA-DBADE we define a

dynamic balance factor by the ratio of the normalized

cross-domain discrepancy to the discrimination. Afterward,

we construct domain alignment with adversarial learning as

well as distinguishable representations through advancing

the discrepancy of multiple classifiers and dynamically

balance them with the defined dynamic factor. Finally, we

further construct a bias matrix to characterize the dis-

crimination alignment between the source and target

domain samples. Our experiments on multiple UDA data-

sets clearly showed that UDA-DBADE is superior to the

most advanced methods. Although the proposed UDA-

DBADE in this article has achieved outstanding results, it

is only for the scenario of a single source domain and a

single target domain, and does not consider the scenario of

multiple source domains a single target domain. Therefore,

in the future, we will try to extend the method to the

(a) ResNet-50 (b) DANN (c) DBADE

(d) ResNet-50 (e) DANN (f) DBADE

Fig. 4 t-SNE on the tasks of M!U and W!A, where red circles and blue circles denote the samples of source and target domains, respectively

Table 6 Accuracy (% ) of

ablation experiments on the

domain adaptation task W!A

Sample weighting Balancing factor x Sample similarity loss S Accuracy(%)

67.9
p

68.3
p p

69.8
p p p

73.0

Table 7 Accuracy (% ) of

ablation experiments on the

domain adaptation task M!U

Sample weighting Balancing factor x Sample similarity loss S Accuracy(%)

93.6
p

94.1
p p

95.8
p p p

96.3
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scenario of multiple source domains and a single target

domain.
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