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Abstract
Feature selection (FS) is a crucial preprocessing step that aims to eliminate irrelevant and redundant features, reduce the

dimensionality of the feature space, and enhance clustering efficiency and effectiveness. FS is categorized as NP-Hard due

to the high number of existing solutions. Various metaheuristic methods have been developed to address the FS problem,

yielding promising results. Particularly, particle swarm optimization (PSO), an evolutionary computing (EC) approach

guided by swarm intelligence, has gained widespread adoption owing to its implementation simplicity and potential for

global search. This paper analyzes several variants of PSO algorithms and introduces a new FS method called HPSO. The

proposed approach utilizes an asynchronously adaptive inertia weight and an improved constriction factor. Additionally, it

incorporates a chaotic map and a MAD fitness function with a feature count penalty to tackle the clustering FS problem.

The efficiency of the developed method is evaluated against the genetic algorithm (GA) and well-known variants of PSO

algorithms, including PSOs with fixed inertia weights, PSOs with improved inertia weights, PSOs with fixed constriction

factors, PSOs with improved constriction factors, PSOs with adaptive inertia weights, and PSO’s includes advanced

learning exemplars and sophisticated structure topologies. This paper assesses two different reference text data sets,

Reuters-21578 and Webkb. In comparison with competitive methods, the proposed HPSO method achieves higher clus-

tering precision and selects a more informative feature set.

Keywords Text feature selection � Particle swarm optimization algorithm � Genetic algorithm � Constriction factor �
Chaotic map � K-mean text clustering algorithm

1 Introduction

The quantity of textual data generated in recent years on

the internet has exploded exponentially due to the tech-

nology evolution which affects the process of grouping text

documents [1]. Text clustering methods are unsupervised

algorithms, which aim to process a large amount of doc-

uments text and group them into a predetermined number

of clusters [2], so that each group contains similar docu-

ments (documents within the same cluster have a higher

degree of similarity than documents in other clusters). Both

relevant and non-informative features are included in text

clustering data sets, with the redundant, useless, and noisy

non-informative features having the potential to impair the

accuracy and computing performance of the clustering

technique [3]. Features selection technique can be used to

address these by chosen an best subset of relevant attributes

among a wide set of features. Therefore, FS is a primary

and important task, which is the inevitable part of data

mining that deals with the curse of dimensionality. More-

over, these methods are designed to enhance accuracy of

clustering approach and minimize the number of non-in-

formative features for each document. Many areas in text

extraction are supported by the FS approach [4], including
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text clustering, classification, text categorization, informa-

tion retrieval, etc.

This paper introduces a hybrid PSO algorithm named

HPSO to enhance the clustering accuracy. The developed

method is used for reducing the number of non-informative

features to enhance clustering technique and effectiveness

based on an asynchronously adaptive inertia weight and

improved constriction factor. Thus, to improve text clus-

tering accuracy, a chaotic map and the mean absolute

difference (MAD) fitness function with a feature count

penalty are introduced. Chaotic maps play a major role in

enhancing evolutionary algorithms to prevent the local

optima and accelerate the convergence [5]. Concretely, the

HPSO is used in each document to generate new subsets of

useful text features, which are then combined to be the

input for the k-means text clustering approach, which is a

popular unsupervised procedure thanks to its speed con-

vergence [2, 6]. The methodology of numerical validation

of the HPSO is conducted on two different popular text

data sets Reuters-21578 [7] and Webkb [8]. The perfor-

mance of HPSO is examined through its comparison with

genetic algorithm [9] and recent various PSO algorithms

[1, 10]. The experiment results show that the proposed

HPSO is better than the competitive approaches in terms of

Precision, Recall, F-measures, and Accuracy measures.

The rest of this paper is organized as follows. Section 2

reviews literature on PSO and genetic algorithm. Section 3

is devoted to the text preprocessing steps, the FS using PSO

method, the proposed approaches HPSO, and the k-means

clustering technique. The numerical experiments results are

illustrated in Sect. 4. Finally, the conclusion is given in

Sect. 5.

2 State of art

Numerous methodologies have been proposed to make the

problem of selecting characteristics more effective. These

approaches can be classified into wrapper, filter, embedded,

and hybrid methods [11]. The difference between these

three techniques is whether a learning approach is applied

and how it is used. Wrapper approaches are dependent on

the used learning algorithm, making classification. In this

process, a search strategy is applied to generate subsets of

features and a learning algorithm to examine the accuracy

of the selected features subsets [12]. This method is

intended to grow accuracy by inserting or eliminating

features from the subset consecutively. Since the clustering

technique is used in each evaluation, wrapper methods

outperform other approaches in terms of accuracy [13].

However, the action of reaching accuracy improvement

typically suffers from overfitting, and they are computa-

tionally expensive. Moreover, these methods are not

generic. Indeed, the elected subset of features is signifi-

cantly reliant on the clustering algorithm employed to

measure quality. Therefore, any modification in this algo-

rithm leads to re-execution of the FS algorithm. Moreover,

filter approaches are based on some statistics tools, like

correlation and consistency, etc., to evaluate the set of

features in order to generate a new subset of informational

text features, without interacting with learning techniques

[1, 14]. An optimal feature subset is derived by eliminating

the features that perform poorly. While there is no reliance

upon classifiers, these approaches tend to be faster, simpler,

and less accurate than classifiers [15]. Hybrid approaches

[16] combine filter methods and wrapper to select relevant

features. Based on the learning technique’s variable

selection process, embedded approaches automatically

generate and evaluate new feature subsets. As a result, the

computation cost and clustering accuracy of embedded

methods are situated between wrappers and filters [17].

Metaheuristic algorithms appear to be extensively

employed techniques for enhancing feature selection (FS)

methods. Notably, various well-known evolutionary algo-

rithms are employed in these studies to overcome the

challenge of prior works getting stuck in local optima.

These include PSO [18–20], GA [21–23], ant colony

optimization (ACO) [24, 25], differential evolution (DE)

[26], among others.

The PSO approach was initially developed in [27]; it is

an optimization method based on swarm intelligence,

which mimics species social behavior, such as bird flock-

ing. Thus, in order to find the optimum solution, PSO is

positioned in the search space for a FS problem using a

swarm of particles, where each particle’s movement is

determined by its own velocity and also the movement

experiences of other particles. The authors introduced two

variations of the PSO algorithm: (1) ‘‘GBEST’’ approach,

where each particle keeps track of the best solution found

on the swarm, and (2) ‘‘LBEST’’ approach, wherein each

particle follows the best solution found upon its neighbors.

In 1998, another study proposes a new parameter called

inertia weight to boost the effectiveness of the original PSO

[28], along with two models for the PSO algorithm. In the

first model, different values of the inertia parameter were

tested using the fixed inertia weight PSO algorithm,

whereas the second model proposes a time-decreasing

inertia weight. The experiments results demonstrated that

the developed method brings a good improvement in the

PSO performance. PSO has been successfully used to

resolve many optimization problems such as medical care

problems [29], image processing [30], cloud computing

[31], and wireless networks [32]. PSO is also used to

improve classification accuracy in support vector machine

(SVM) by determining parameters and FS of the SVM [3].

In another study, a multi-swarm PSO algorithm is
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introduced to diminish the number of informational fea-

tures and improve classification performance, where a

multi-swam strategy is applied to PSO for parameter

determination and FS in SVM [33].

There are several variants of the PSO algorithm that

have been proposed to improve the convergence and

learning abilities of this algorithm, to overcome some of its

drawbacks, such as premature convergence and getting

stuck in local optima [34]. In this case, the authors [35]

have investigated four PSO variants and introduced two

PSO models. These variants and models include: (1) the

first variant used a fixed inertia weight [35, 36], (2) the

second variant used a functional inertia weight [35, 37], (3)

the third variant used a fixed constriction factor [38], (4)

the fourth variant used a functional constriction factor

[38, 39], (5) the first proposed model used a synchronously

inertia weight and constriction factor, and (6) the final

model used an asynchronously inertia weight and con-

striction factor. Through some experiment results, the

authors establish that the sixth PSO model overwhelms the

other comparative approaches in terms of classification

accuracy across different feature dimensions. Another

study proposes integrating opposition-based initialization,

chaotic strategy, fitness-based dynamic inertia weight, and

mutation into binary PSO (BPSO), to enhance the global

search capability of the PSO [2]. The presented experi-

ments results show that the introduced approach outper-

forms BPSO, chaotic BPSO (CBPSO), simple GA (SGA),

and adaptive inertia weight PSO (AIWPSO) in terms of

convergence speed and the accuracy of clustering. On the

other hand, the authors of the paper [1] have proposed

(FSPSOTC), an improved inertia weight PSO algorithm

with MAD as a fitness function to resolve the text FS

problem. This allows improvement in the performance of

the text clustering technique and reduces the computing

time. The introduced method is compared with genetic

algorithm (GA), harmony search approach (HS), and k-

mean clustering without any FS method on six Benchmark

data sets. The effectiveness of the FSPSOTC in terms of

text clustering technique has been demonstrated by some

numerical experiments.

The GA and the PSO are two algorithms that are fre-

quently applied to solve difficult optimization problems

[40–42]. Crossover and mutation are powerful elements of

the GA. Exploration and exploitation are handled by these

elements in the algorithm. In some research, crossover and

mutation are incorporated into the PSO algorithm to

enhance its search capabilities. The FS problem is solved in

[43] by integrating GA with PSO. The bare bone PSO for

the FS problem is used in [44]. The GA for FS for credit

card fraud detection is used in [45]. In [46] a fast genetic

algorithm for feature selection-A qualitative approximation

approach is proposed.

For this method, particles’ local leaders are updated

using reinforced memory. Moreover, it is proposed that a

uniform combination of crossovers and mutations should

be applied to average out exploration and exploitation of

the algorithm.

Recently, PSO has witnessed numerous advancements.

Surprisingly Popular Algorithm-based Adaptive Euclidean

Distance-based Topology Learning Particle Swarm Opti-

mization (SpadePSO) is a more recent addition to the PSO

family and incorporates innovative learning exemplars and

structural topologies, distinguishing itself from conven-

tional PSO approaches [10]. Its design aims to address

challenges faced by traditional PSO algorithms, providing

enhanced exploration and exploitation capabilities. As we

delve into the landscape of feature selection for text clus-

tering, this study extends beyond established PSO variants,

including a comparative analysis with SpadePSO to elu-

cidate the distinctive contributions of the proposed Hybrid

PSO (HPSO) and Improved Inertia Weight PSO (IIWPSO).

This comparative exploration seeks to shed light on the

evolving dynamics within the realm of PSO-based opti-

mization, offering a comprehensive perspective on the

state-of-the-art algorithms.

3 Methodology

The digital format has led to a gradual increase in the

volume of text documents, making text clustering a crucial

approach for organizing them. The main objective of a text

clustering algorithm is to group these documents based on

their inherent features. To achieve this, certain common

preprocessing steps are applied to the documents before

clustering. These standard preprocessing steps include

tokenization, eliminating stop words, stemming, and term

weighting, which are used to transform the documents into

a suitable format. In this section, we provide a concise

overview of these preprocessing steps. Then, we present

the PSO method for the features selection problem.

Next, we introduce the developed HPSO. The goal is to

improve clustering efficiency and effectiveness by reduc-

ing the number of irrelevant and redundant text features for

each document. Documents are represented using a stan-

dard model called the vector space model (VSM), and the

TF-IDF is the metric used to evaluate the importance of

terms in the clustering process. Finally, we give the clus-

tering technique based on the k-means approach used to

examine the performance of the FS methods.

3.1 Preliminaries

The text documents are transformed into numerical repre-

sentations during the preprocessing processes [2].
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Tokenization, stop-word elimination, stemming, term

weighting, and VSM representation are the five steps. The

subsequent subsections provide an overview of various

preprocessing stages.

3.1.1 Tokenization

A text document is broken into tokens, each of which

represents a single term or a group of related terms, in the

tokenization process. A single term is applied for vector

space model representation in this work.

3.1.2 Stop words elimination

Stop words build a family of frequent words such as ‘‘the,’’

‘‘is,’’ ‘‘an,’’ ‘‘by’’ and other recognizable terms that appear

frequently in text texts but contain little information for the

clustering process. As a result, it is vital to get rid of them

because they provide more features and make the text

clustering approach perform worse.

3.1.3 Stemming

It is possible to get a word’s grammatical root form by

stemming it from its inflectional or derivative forms. For

instance, the words ‘‘information,’’ ‘‘informations,’’ and

‘‘informative’’ all share the same root, ‘‘inform.’’ The list

of potential stemming techniques can be found in [47]. In

this work, stemming tasks are carried out using the porter

stemmer.

3.1.4 Term weighting

Using a procedure called term weighting, words in docu-

ments are converted into a numerical vector representation.

This task has been accomplished using a variety of term

weighting procedures, but the most well-liked method is

term frequency inverse document frequency (TF-IDF). The

TF-IDF is a metric that assesses how crucial a word is in

separating the contents of the documents [1]. When a term

is used frequently and just sometimes in a few documents,

this value rises. The use formula to compute the word-

weighting is defined as follows:

wk;l ¼ tfk;l � idfk;l ¼ tfk;l � log
� n

dfl

�
: ð1Þ

where tfk;l represents the number of times lth term appears

in the kth document, n represents the total number of

documents in the data set, and dfl represents the number of

documents that include the lth term.

3.1.5 VSM

The VSM is a common model to represent documents as

vectors of weights, where each term weight represents the

weight that a word should have in the clustering process.

The following expression illustrates how documents are

represented in this paper using the VSM:

VSM ¼

/1;1 � � � /1;j � � � /1;t

..

. . .
. ..

. . .
. ..

.

/i;1 � � � /i;j � � � /i;t

..

. . .
. ..

. . .
. ..

.

/n;1 � � � /n;j � � � /n;t

2
666666664

3
777777775

ð2Þ

3.1.6 Standard PSO

PSO is a sophisticated optimization approach that falls

under category of population-based meta-heuristic meth-

ods. It is modeled after how a flock of birds or a school of

fish would exploit and explore a problem space to find

food. Swarm is the name given to the PSO population, and

each member of the swarm is abstracted as a particle. The

positioning of the particle i is designed as an N -dimen-

sional vector fi ¼ ðf1; f2; . . .; fN Þ, and its velocity is the

vector denoted by ti ¼ ðt1; . . .; tN Þ. The position f and

velocity vector t are initialized randomly and adjusted

during each iteration using the position’s own well-estab-

lished best position (Poptimj). The current global best

position is represented by the swarm’s best position, which

is denoted by (Goptimj). The original PSO concept makes

use of both the individual and the present global best. The

position that has lowest cost, denoted by F , is what we

called the best position. The updating strategy is written as

follows:

tiþ1 ¼/ti þ c1n1ðPoptimi � fiÞ þ c2n2ðGoptimi � fiÞ
ð3Þ

fiþ1 ¼fi þ tiþ1: ð4Þ

where n1 and n2 are two uniformly distributed random

numbers in [0, 1]. The inertia weight denoted by /, regu-
lates how much the prior velocity will have an impact. This

value is crucial for achieving a balance between the algo-

rithm’s capacity for exploration and exploitation. Addi-

tionally, the parameters c1 and c2 stand for the acceleration

coefficients that regulate, respectively, self-awareness and

social impact. Algorithm 1 summarizes the common PSO

procedures.
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Algorithm 1 PSO algorithm

3.2 Proposed HPSO for the FS problem

This work proposes a new approach for solving FS named

HPSO, which uses an asynchronously adaptive inertia

weight and improved constriction factor, and also uses a

chaotic map and a MAD fitness function with a feature

count penalty to improve text clustering accuracy. To

accomplish this goal, HPSO is used in each document to

generate new subsets of useful text features, which are then

combined to form the input for the k-mean clustering

approach.

Before starting to expose our methodology of HPSO, we

present the mathematical model for considered FS

problem.

3.2.1 Mathematical model

Given VSM as vectors of weights of text features in each

document, VSM is represented as a vector

VSMi ¼ /i;1;/i;2; . . .;/i;j; . . .;/i;t�1;/i;t;

where i is the document number and t is the number of all

unique terms. The FS algorithm generates a new subset of

text features S, represented as a vector

Si ¼ si;1; . . .; si;j; . . .; si;t; si;j 2 f0; 1g; i ¼ 1; . . .; n; j ¼ 1; . . .; t;

where n represents the total number of documents. If

si;j ¼ 1, the feature number j in the ith document has been

chosen as informative feature. If si;j ¼ 0, it implies that the

feature number j in the ith document is an non-informative

text feature. It is possible to formulate the text FS problem

as an optimization problem to identify the ideal subset of

practical features as follows:

Max F i :¼ MADi

s:t: si;j 2 f0; 1g
8 i ¼ 1; . . .; n; 8 j ¼ 1; . . .; t

ð5Þ

where (MAD) is the mean absolute difference, which is

used as an objective function for the text FS problem [1]. It

involves applying the common weighting formula to ana-

lyze the measure that the PSO algorithm uses to assess each

solution it offers in each generation (TF-IDF). The solu-

tions with the highest MAD value provided by the PSO in

each document are considered to be the optimal solutions

to the FS problem. Calculating mean value first, followed

by the absolute value of the difference between value and

mean value of the chosen feature weights /i;j, is how

MAD assigns a score (fitness value) to each candidate

solution, as illustrated below:
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MADi ¼
1

ai

Xt

j¼1

si;j /j � �fi
�� ��

where

�fi ¼
1

ai

Xt

j¼1

si;j/j

ð6Þ

MADi represents the value of the fitness for the ith par-

ticle. If the jth term is selected in the ith solution, si;j ¼ 1;

otherwise, si;j ¼ 0. The /j stands for the weight of the jth

feature in the current document, ai for the total number of

selected features in the ith particle for the current docu-

ment, t for the total number of terms, and �fi for the average
value of the selected weights in the VSM for the current

document.

To resolve the FS problem, we applied PSO approach.

The main goal is to develop a new subset of informative

text features that will serve as the best possible replacement

for the existing document. The process starts with random

vector of features and then enhances the population until

the stop criterion is reached. The PSO swarm is made up of

particles (solutions), each of which is represented by a

binary vector of positions (features) [2]. Each placement

denotes the state of a single feature in the document. The

solution (particle) representation of the PSO algorithm is

given by

X ¼ ½0; 1; 1;�1; 0; 1; 1;�1; 0; 1�; ð7Þ

where each unique term in the t search area for the FS

problem has the option of being chosen or ignored. When

position j is 1, it indicates the jth feature is chosen as a

valuable text feature; when position j is 0, it indicates the

jth feature is not chosen; and when position j is �1, it

indicates the jth feature is absent from the real document.

3.2.2 Penalty fitness evaluation

Denote by d the size of a given feature subset, which is

used as a constraint to force the generated subset of text

features that satisfy the given size requirement [2], and thus

particles that violate this constraint are penalized. The

particle fitness is represented in the following equation.

F i ¼ MADi � d� jai � dj ð8Þ

where d is a penalty coefficient, d is the required size value,
and ai means the total amount of features selected in the

particle ith.

3.2.3 Chaotic map

Chaos refers to some random irregular motions appearing

in deterministic systems. It is a nonlinear dynamic system

that is highly sensitive to its initial circumstances and

parameters. It possesses the traits of determinism, ergod-

icity, stochasticity, and regularity. Several researchers have

employed chaotic maps to improve PSO’s search and

global convergence capabilities [48]. In this study, we use a

logistic map to generate chaotic sequences [2]. Mathe-

matically, the logistic map is defined as

chIþ1 ¼ 4� chI � 1� chIð Þ ð9Þ

ch generates a chaotic value between 0.0 and 1.0 at each

iteration I. ch0 is generated randomly, with ch0 not equal to

0, 0.25, 0.5, 0.75, or 1. Figure 1 represents the changing

curve of the ch value.

3.2.4 Constriction factor

The original PSO has been improved and extensively used

in many applications. Nevertheless, no rigorous mathe-

matical justification for the convergence of the PSO algo-

rithm has been established. Thus, Clerc [49] has explained,

through some mathematical tools, how a simplified PSO

model behaves in its seek for an optimal solution with the

conclusion it may not converge in some situations. Indeed,

the system equations of PSO (3–4) can be seen as system

dynamics. In order to assure convergence and prevent

premature convergence, constriction factors have been

developed as a result of the analysis of the system trajec-

tory [50]. Due to the large dimensions of the text feature

set, the classical PSO will stick in a local optimum where

the global optimum has not yet been found [35]. Thus, this

work incorporated the constriction factor K into PSO to

achieve the best convergence. The velocity and constric-

tion factor based on the cosine function is shown in

Eq. (10). In the early iterations, a convex function with a

large K value is chosen, and a concave function with a

Fig. 1 The changing curve of value ch
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smaller K value is chosen in the late period so that a par-

ticle in PSO will search over vast area to find the placement

of the best solution. Then, in a small range, it will converge

to determine the best solution.

ti;j ¼ K½ti;j þ c1 � n1 � PoptimI � fi;j
� �

þ c2 � n2 � GoptimI � fi;j
� �

�

where

K ¼ 0:25 cos ðp=ImaxÞ � Ið Þ þ 5

8

ð10Þ

I is the number of iterations. Figure 2 represents the

changing curve of the K value. The curve of value K in

Fig. 2 begins as a convex function and eventually becomes

a concave function.

3.2.5 Adaptive inertia weight

As can be seen from Eq. (10), there are three main com-

ponents that keep track of the velocity update. The first

component of the information refers to the particle’s pre-

vious velocity, the second to the information the particle

itself possesses, and the third to the information stored in

the swarm. The inertia weight controls the current velocity,

while c1; n1 and c2; n2 control the second and the third

ones, respectively. These parameters are crucial for

enhancing the PSO algorithm’s ability to search. In this

study, the PSO algorithm uses a fitness-based dynamic

inertia weight to dynamically update velocity and change

the inertia weight’s value based on the particle’s current

fitness [2]. In order to search throughout a large portion of

the search space (exploration), it allocates lower inertia

weights to high fitness particles and larger inertia weights

to low fitness particles (exploitation). The improved

velocity equation and the fitness-based dynamic inertia

weight are described as follows:

ti;j ¼ fwi � ti;j þ c1 � n1 � PoptimI � fi;j
� �

þ c2 � n2 � GoptimI � fi;j
� �

where

fwi ¼ 1:1� 0:9� fwi

fwbest þ 0:1

ð11Þ

fwi and fwbest represent the fitness of the ith and global best

particles, respectively.

3.2.6 Asynchronously adaptive inertia weight
and improved constriction factor

The constriction factor affects PSO particle convergence,

while the inertia weight affects how much the initial

velocity is maintained. In this study, inspired by the idea of

[35] that tries to improve asynchronously inertia weight

and constriction factor, we apply the constriction factor and

the inertia weight adaptively throughout distinct PSO

periods depending on their diverse features. During the

initial phases, when the particle exhibits a high fitness

value, the inertia weight is set to a smaller value. This

allows the particle to retain a limited portion of its previous

velocity, focusing on local development. As the particle

moves farther away from the optimal solution, the inertia

weight is increased, enabling the particle to maintain a

larger portion of its previous velocity and explore the

search space globally. Moreover, we introduce the chaotic

strategy to enhance the global search capability of PSO.

Indeed, the properties of a chaotic system provide a good

exploration of the search space and refine the selected

feature subspace. This strategy avoids the entrapment of an

individual at an undesirable local minimum solution.

Equation (12) shows the new formulas for inertia weight,

constriction factor, and velocity.

ti;j ¼ fwi � ti;j þ c1 � ch� PoptimI � fi;j
� �

þ c2 � ð1� chÞ � GoptimI � zetai;j
� � if I\

Imax
2

ti;j ¼ K½0:7� ti;j þ c1 � ch� PoptimI � fi;j
� �

þ c2 � ð1� chÞ � GoptimI � zetai;j
� �

�
if I� Imax

2

8>>>>>><
>>>>>>:

where

fwi ¼ 1:1� 0:9� fwi

fwbest þ 0:1

K ¼
cos ð2p=ImaxÞ � ðI � Imax

2
Þ

� �
þ 2:428571

4

ð12Þ

ch value between 0.0 and 1.0 generated by Eq. (9) at each

iteration I.

Fig. 2 The changing curve of value K
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3.2.7 Hybrid particle swarm optimization algorithm

The FS problem is addressed by developing a new hybrid

PSO method that identifies the best subset of text features.

Sequence provides a detailed description of the created

process, while Algorithm provides an algorithmic flow. 2.

Algorithm 2 HPSO

With a set of solutions that were produced at random,

the PSO algorithm starts the swarm of particles. Each of

them is assessed by the MAD fitness function using Eqs. (6

and 8) defined feature count penalty. The PSO swarm

consists of several particles; each of them contains a

number of positions (features) that move around with their

own velocity using Eq. (12), causing the PSO algorithm to

be positioned in the search space of the text FS problem.

The fitness value of particles is evaluated in each iteration.

In addition, parameters such as the chaotic map ch, con-

striction factor K, and fitness-based dynamic inertia weight

fwi are calculated in each iteration, and the current and best

fitness is saved to affect particle movement in subsequent

iterations. Finally, the best solution discovered by the PSO

approach is chosen as the best solution, representing a new

subset of revealing features.

3.3 Clustering

The accuracy of the FS techniques is assessed using the k-

mean clustering approach after creating a fresh subset of

informational text characteristics. The following subsec-

tions provide an explanation of the k-mean clustering

method.

3.3.1 Mathematical model

Given a large set of text documents,

D ¼ d1; d2; . . .; di; . . .; dn, where di ¼ wi1;wi2; . . .;wij; . . .;

wit, represents the document number i, wij represents the

weight of the feature number j in the ith document, n is the

number of documents in the given document collection,

and t represents the total number of terms. The cost func-

tion Cosðdi; clÞ that evaluates the cosine similarity measure

between the document number i and the cluster centroid

number l, where cl ¼ cl1; cl2; . . .; clj; . . .; clt must be upda-

ted in every iteration using Eq. (13). An extensive collec-

tion of text documents is clustered into k clusters using the

considered objective function. By assigning documents to

the cluster with the highest degree of similarity based on

their resemblance to the cluster centroid, documents in

these clusters are more similar to one another than docu-

ments in other groups [1].

cl ¼
Pn

i¼1ðaliÞdiPn
i¼1 ali

ð13Þ

where di represents the ith document. ali is equal to 1 if the

document number i is assigned to the lth cluster, and 0

otherwise. The cosine measure is employed in this study to

compute the similarity value between the document vector
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and the cluster centroid vector. The similarity value is

calculated using the following formula:

Cosðdi; clÞ ¼
Pt

j¼1 wij � cljffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt
j¼1 w

2
ij

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt
j¼1 c

2
lj

q ð14Þ

where wij represents the magnitude of feature j in the ith

document, clj is the value of the jth term in cluster centroid

number l,
Pt

j¼1 w
2
ij is the square of the norm of the score

vector for the document number i, and
Pt

j¼1 c
2
lj is the

square of score vector for the cluster centroid number l.

3.3.2 k-means algorithm

The k-means method is an unsupervised one that attempts

to process a large amount of text and organize it into a

specified number of clusters, with each group containing

documents that are similar to one another. k-means solves

the clustering problem by using Eq. (14) to iteratively

reassign text documents to clusters based on their similarity

to the cluster centroid. Each iteration of the reassignment

method will result in the recalculation of the cluster cen-

troids using Eq. (13). In this method, Kðn� kÞ represents
the number of documents and clusters, where n represents

the number of documents. This procedure is described by

Algorithm 3. The k-mean clustering method seeks the best

clustering solution ðn� kÞ.

Algorithm 3 k-means text clustering algorithm

3.4 Complexity analysis

In this subsection, we present a comprehensive computa-

tional complexity analysis of the proposed HPSO used for

feature selection in text data. Evaluating the efficiency and

scalability of optimization algorithms is crucial for

understanding their performance characteristics. The

computational complexity of our HPSO is assessed by

considering key operations involved in the optimization

process. Specifically, we analyze the complexities associ-

ated with objective function evaluations, the generation of

chaotic sequences using logistic maps, velocity updates,

and the adaptive adjustment of inertia weights and con-

striction factors. The overall computational complexity is

derived by aggregating these individual complexities over

the course of HPSO iterations. Let us break down the

complexities associated with each key algorithmic

component:

3.4.1 Fitness function evaluation complexity

The objective function, representing the MAD fitness,

involves the calculation of fitness values for each particle.

Considering N p particles and t features, the complexity

(CMAD) can be expressed as:

CMAD ¼ OðN p � tÞ

3.4.2 Chaotic sequence generation complexity

Logistic map equation (9) for generating chaotic sequences

involves iterative calculations. With Imax iterations, the

complexity (Cchaotic) is given by:

Cchaotic ¼ OðImaxÞ

3.4.3 Velocity updates complexity

Velocity update Equation (10) includes arithmetic opera-

tions and trigonometric functions. Considering Imax itera-

tions and N p � t features, the complexity (Cvelocity) is

expressed as:
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Cvelocity ¼ OðImax �N p � tÞ

3.4.4 Inertia weight and constriction factor adaptation
complexity

The adaptation of inertia weight and constriction factor

involves conditional statements and arithmetic operations.

With Imax iterations and N p particles, the complexity

(Cadaptation) is given by:

Cadaptation ¼ OðImax �N pÞ

By summing up these complexities, the overall computa-

tional complexity (Ctotal) of the proposed PSO variant can

be expressed as:

Ctotal ¼ CMAD þ Cchaotic þ Cvelocity þ Cadaptation

This analysis provides valuable insights into the algo-

rithm’s resource requirements and scalability, offering a

foundation for discussions on optimization efficiency in the

context of large-scale text feature sets.

The classical PSO complexity is given by

OðN p � t þ Imax �N p � t þ Imax �N pÞ. Comparing both

complexities, the proposed HPSO introduces an additional

complexity term associated with chaotic sequence gener-

ation. However, it is important to note that the chaotic

sequence generation complexity (OðImaxÞ) is generally

lower than the velocity updates complexity

(OðImax �N p � tÞ) in both algorithms.

In summary, while the proposed HPSO introduces some

additional computational load due to chaotic sequence

generation, the overall impact on complexity is moderate.

4 Experiments results

We implement a Java software that uses the HPSO algo-

rithm to choose a fresh set of practical text features before

using the k-means text clustering method. This section

includes the data sets, parameter settings, evaluation cri-

teria, and results. All tests are performed on a Laptop with

a core i7 processor and 16GB of RAM in a Windows 10

environment (Table 1).

4.1 Data sets

The experiment is carried out on two different reference

text data sets, Reuters-21578 and Webkb. Tables 2, 3, and

4 represent a summary of the data sets used to compare

HPSO with other competitive methods (GA [9], and other

well-known PSO variants such as PSO with fixed inertia

weight, PSO with improved inertia weight, PSO with fixed

constriction factor, PSO with improved constriction factor,

and PSO with adaptive inertia weight). One of the most

popular document clusters for text categorization research,

the Reuters-21578 data set includes a variety of historical

data from the Reuter news agency. Reuters, Ltd. and

Carnegie Group, Inc. collected and initialized the data. The

R8 set has 7674 documents overall and extracts from

Reuters-21578 all papers with the eight most common

subjects, which are acq, crude, earn, grain, interest, money-

fx, ship, and trade. A thorough distribution of these docu-

ments is presented in Table 2.

Table 3 shows the detailed distribution of the R52 set,

which extracts a large number of documents from Reuters-

21578 with 52 subjects and a total of 9100 documents. The

R8 and R52 data sets are created by applying the following

transformations to the original Reuters-21578:

• SPACE is used in place of the characters TAB,

NEWLINE, and RETURN. Only letters should be kept

(i.e., turn punctuation, numbers, etc. to SPACES).

Lowercase all letters. Multiple SPACES should be

replaced with a single SPACE. Titles and subjects are

simply added to documents.

• Words with fewer than three characters are removed.

For instance, remove ’he’ but keep ’him.’

• 524 stop words should be removed. As a result of being

shorter than three characters, many of them have

already been eliminated.

• Applying Stemmer Porter to the remaining words.

Webkb extracts documents from the web based on four

popular topics: Project, Course, Faculty, and Students, with

a total of 4199 documents, as shown in Table 4. The data

sets documents are described as follows: they are all text

files, one document for each row, each document is rep-

resented by a ‘‘word’’ representing the document’s class, a

TAB character, and a series of ‘‘words’’ separated by

spaces, which represent the terms contained in the docu-

ment. Each document is constituted of its group and its

terms.

4.2 Parameter settings

In this paper, seven meta-heuristic algorithms are com-

pared: PSO with fixed inertia weight (FIWPSO) [35], PSO

with improved inertia weight (IIWPSO) [35], PSO with

fixed constriction factor (FCFPSO) [35], PSO with

improved constriction factor (ICFPSO) [35], PSO with

adaptive inertia weight (AIWPSO) [2], genetic algorithm

(GA) [9], and the proposed HPSO method. The algorithms

under consideration make use of a different changeable

parameters. The parameters for the competing approaches

were derived from relevant papers that the researchers
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suggested based on their experimental study. The values of

the parameters used in the paper are shown in Table 1.

4.3 Evaluation criteria

Comparative evaluations were performed using one

internal evaluation measure (the similarity measure) and

four external evaluation measures (the precision (P), recall

(R), F-measure, and average accuracy). The variables taken

into consideration are generally accepted evaluation stan-

dards for assessing cluster correctness in the context of text

clustering. We must count the number of documents with

the same topic that are in the same cluster as well as the

number of documents with different topics that are in

distinct clusters to examine the performance of clustering.

One of the aforementioned conditions could be true for

every set of documents:

• SS Both documents are grouped together in both our

clusters and the corpus.

• SD Although the two documents are in separate

clusters in the corpus, they are in the same cluster in our

clusters.

• DSIn our clusters, documents are divided into distinct

groups; yet, in the corpus, they are put together in the

same groups.

• DD Both documents were categorized in separate

clusters in both the corpus and our clusters.

The accuracy rate is given by Eq. (15), where a, b, g, and q
are the amount of document couplings in the SS state, SD,

DS, and DD, respectively.

AverageAccuracy ¼ 1

2

a
aþ g

þ q
bþ q

� 	
ð15Þ

Utilizing the F-measure, which has the following formula,

is an additional strategy for evaluating clustering

Table 1 Parameters setting used

in this paper
Parameter FIWPSO IIWPSO FCFPSO ICFPSO AIWPSO GA HPSO

Population size 10 10 10 10 10 10 10

c1 and c2 2.05 2.05 2.05 2.05 2.05 NA 2.05

w 0.58 Improved NA NA Dynamic NA Dynamic

k NA NA 0.7298 Improved NA NA Improved

# of clusters Number of subjects in the data set

Imax 50 50 50 50 50 50 50

Imax k-means 20 20 20 20 20 20 20

Table 2 Detailed distribution of the R8 data set

R8

Class # of Train docs # of Test docs Total # of docs

acq 1596 696 2292

crude 253 121 374

earn 2840 1083 3923

grain 41 10 51

interest 190 81 271

money-fx 206 87 293

ship 108 36 144

trade 251 75 326

Total 5485 2189 7674

The bold highlights the high metric

Table 3 Detailed distribution of the R52 data set

R52

Class # of Train docs # of Test docs Total # of docs

..

. ..
. ..

. ..
.

tin 17 10 27

trade 251 75 326

veg-oil 19 11 30

wpi 14 9 23

zinc 8 5 13

Total 6532 2568 9100

The bold highlights the high metric

Table 4 Detailed distribution of the Webkb data set

Webkb

Class # of Train docs # of Test docs Total # of docs

project 336 168 504

course 620 310 930

faculty 750 374 1124

students 1097 544 1641

Total 2803 1396 4199

The bold highlights the high metric
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F-measure ¼ 2� P� R

Pþ R

where

P ¼ a
aþ b

R ¼ a
aþ g

ð16Þ

Average accuracy, precision, recall, and F-measure can all

go as high as 1. This value may appear if all documents are

successfully grouped.

4.4 Results and discussion

Three experiments are realized to show the efficiency of

the HPSO and to discuss the performance of each PSO

variant. In the first experiment, the inertia weight variants

of PSO named FIWPSO, IIWPSO, and AIWPSO are

compared (Tables 5, 6). The second compares fixed inertia

weight (FIWPSO) to the constriction variants of PSO

known as FCFPSO and ICFPSO in order to illustrate the

effectiveness of the constriction factor in the particle

swarm optimization algorithm. Finally, we compare HPSO

results to all PSO variants and GA results. All algorithms

are executed independently twenty times on all of the six

data sets. These algorithms are compared in terms of

accuracy, precision, recall, F-measure, and convergence

rate. The convergence rate assesses how quickly the

algorithm approaches the optimal solution over iterations.

The comparison of convergence rates is presented in

Fig. 3.

Based on the k-means text clustering algorithm, Table 7

displays the Algorithms effectiveness (Accuracy, Fmea-

sure, Precision, and Recall). The FS technique using the

AIWPSO algorithm and the IIWPSO outperformed the

other comparable inertia weight variant of PSO FIWPSO in

terms of outcomes. According to two of the evaluation

metrics (Accuracy and Precision), the AIWPSO performed

best in three of the six data sets, followed by the IIWPSO

in two of the six data sets. IIWPSO performed best in three

of the six data sets and five of the six data sets, respec-

tively, as measured by Fmeasure and Recall. In the second

experiment, the FCFPSO method clearly outperformed the

other comparative Constriction-based method ICFPSO and

the conventional Fixed Inertia Weight FIWPSO algorithm

for almost all data sets in terms of clustering evaluation

criteria. Finally, for the third experiment, based on the

evaluation criteria, the developed HPSO recorded the best

effectiveness and outperformed the other comparative

methods (FIWPSO, IIWPSO, AIWPSO, FCFPSO,

ICFPSO, and GA), followed by the IIWPSO. According to

Table 7, HPSO achieved the outstanding results in three

out of the six data sets (i.e., WebkbTest, WebkbTrain, and

R8Train), based on the Accuracy measure, followed by

IIWPSO in two out of six data sets (i.e., R52Test and

R52Train). Based on Fmeasure, HPSO and IIWPSO

achieved comparable results, with HPSO get the distin-

guished results in three of six data sets (i.e., WebkbTest,

WebkbTrain, and R8Train) and IIWPSO get the most good

results in three of six data sets (i.e., R8Test, R52Test, and

R52Train). Based on Precision metric, HPSO outperformed

the other algorithms in four out of six data sets (i.e.,

WebkbTest, WebkbTrain, R8Train, and R52Train) fol-

lowed by both IIWPSO and AIWPSO in one out of six data

sets. Based on Recall measure, IIWPSO performed best in

three of the six data sets (i.e., R8Test, R52Test, and

R52Train) followed by HPSO, FCFPSO, and FIWPSO,

who each had the most good results in one of the six data

sets.

Table 8 displays the algorithm’s mean accuracy,

Fmeasure, precision, and recall in six data sets. In terms of

performance, HPSO-based FS approaches clearly outper-

form more traditional FS methods. To begin, HPSO has

one of the best Recall results and the highest mean in the

Accuracy, Fmeasure, and Precision measures. Meanwhile,

IIWPSO and AIWPSO have the best results after HPSO in

most of the measures. According to Table 8, AIWPSO had

the second best mean based on the Accuracy and Precision

measures, with IIWPSO coming in third. According to the

Fmeasure metric, IIWPSO obtained the second best mean

followed by AIWPSO in the third place. Finally, in terms

of recall, IIWPSO outperformed the other algorithms and

achieved the highest mean.

The new developed FS method HPSO is used to gen-

erate new subsets of useful text features in order to improve

the accuracy of the k-mean text clustering algorithm. To

summarize, the proposed HPSO-based FS approaches can

achieve the best performance of text clustering according

to the majority of evaluation measures compared to similar

variants of PSO algorithms and the GA. In addition, the

HPSO has the best mean across almost all measures and is

ranked first. The degree to which particles maintain their

original velocity is measured by inertia weight. Thus, the

inertia weight adjustment is critical for adjusting particle

velocity so that they can escape from the local optimal

solution and reach a more good solution via an effective

search strategy. Tables 7 and 8 clearly illustrate this

analysis. The results show that IIWPSO and AIWPSO

achieve better mean results in almost all measures than the

competitive methods and are ranked 2 and 3, respectively.

The FCFPSO was ranked fourth, outperforming the

FIWPSO and ICFPSO. The k-mean clustering with

genetic-based FS algorithm was the worst, ranking seventh.

In order to demonstrate the convergence characteristics

of the competing approaches, we recorded the convergence
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values for each program obtained through ten runs, each

consisting of 50 iterations. The fitness function MAD

values versus the number of iterations are used in the

comparative analysis of the techniques. Figure 3 illustrates

the changing convergence curves of FIWPSO, IIWPSO,

AIWPSO, FCFPSO, ICFPSO, GA, and HPSO on

WebkbTest, WebkbTrain, R8Test, R52Test, R8Train, and

R52Train data sets.

As observed in Fig. 3, HPSO exhibits a slower con-

vergence when contrasted with other methods that rely

Table 5 Algorithms effectiveness (Accuracy, Fmeasure, Precision, and Recall) in six data sets over ten runs based on k-means text clustering

algorithm

Data set Number of

unique

features

Method FIWPSO IIWPSO AIWPSO FCFPSO ICFPSO GA HPSO

WebkbTest 4798 Accuracy 0.587 0.582 0.589 0.582 0.582 0.588 0.610

Fmeasure 0.428 0.427 0.430 0.432 0.425 0.430 0.460

Precision 0.387 0.375 0.389 0.370 0.376 0.387 0.427

Recall 0.483 0.498 0.485 0.523 0.494 0.489 0.508

Mean rank 4.87 5.25 3.37 4.00 5.50 3.75 1.25

Rank 5 6 2 4 7 3 1

WebkbTrain 7287 Accuracy 0.616 0.598 0.611 0.616 0.621 0.628 0.653

Fmeasure 0.478 0.464 0.472 0.476 0.484 0.492 0.516

Precision 0.400 0.373 0.393 0.399 0.403 0.411 0.447

Recall 0.602 0.624 0.597 0.596 0.618 0.615 0.633

Mean rank 4.37 5.75 6.00 5.37 3.00 2.50 1.00

Rank 4 6 7 5 3 2 1

R8Test 8575 Accuracy 0.575 0.594 0.595 0.575 0.581 0.567 0.590

Fmeasure 0.362 0.399 0.397 0.368 0.367 0.344 0.386

Precision 0.552 0.587 0.594 0.540 0.579 0.542 0.586

Recall 0.272 0.305 0.300 0.281 0.269 0.253 0.289

Mean rank 5.37 1.50 1.50 5.12 4.75 6.75 3.00

Rank 6 1 1 5 4 7 3

R52Test 9730 Accuracy 0.538 0.545 0.539 0.541 0.535 0.524 0.531

Fmeasure 0.167 0.193 0.170 0.179 0.161 0.120 0.144

Precision 0.609 0.618 0.616 0.617 0.585 0.544 0.591

Recall 0.097 0.114 0.099 0.104 0.093 0.067 0.082

Mean rank 4.00 1.00 3.00 2.00 5.25 7.00 5.75

Rank 4 1 3 2 5 7 6

R8Train 14575 Accuracy 0.574 0.569 0.574 0.572 0.568 0.569 0.597

Fmeasure 0.373 0.362 0.365 0.369 0.360 0.344 0.391

Precision 0.531 0.527 0.548 0.544 0.526 0.550 0.644

Recall 0.292 0.279 0.275 0.285 0.275 0.251 0.281

Mean rank 2.62 5.12 3.75 3.25 6.37 5.37 1.50

Rank 2 5 4 3 7 6 1

R52Train 16145 Accuracy 0.536 0.540 0.536 0.539 0.533 0.522 0.530

Fmeasure 0.160 0.173 0.161 0.169 0.152 0.112 0.133

Precision 0.610 0.618 0.611 0.615 0.596 0.533 0.656

Recall 0.092 0.101 0.093 0.098 0.087 0.062 0.074

Mean rank 4.12 1.25 3.37 2.25 5.25 7.00 4.75

Rank 4 1 3 2 6 7 5

Mean rank

Final rank

4.23

5

3.31

2

3.50

3

3.67

4

5.02

6

5.40

7

2.87

1

The bold highlights the high metric
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solely on the MAD fitness function without incorporating a

feature count penalty. This characteristic is attributed to the

multi-objective nature introduced in the proposed HPSO.

In this multi-objective approach, HPSO is designed to

simultaneously optimize two critical objectives: the MAD

fitness function and a feature count penalty.

Table 6 Algorithm’s mean

Accuracy, Fmeasure, Precision,

and Recall in six data sets

Method FIWPSO IIWPSO AIWPSO FCFPSO ICFPSO GA HPSO

Accuracy 0.571 0.571 0.574 0.571 0.570 0.566 0.585

Fmeasure 0.328 0.336 0.332 0.332 0.325 0.307 0.338

Precision 0.515 0.516 0.525 0.514 0.511 0.495 0.559

Recall 0.306 0.320 0.308 0.315 0.306 0.290 0.311

The bold highlights the high metric

Fig. 3 The changing

convergence curves of

FIWPSO, IIWPSO, AIWPSO,

FCFPSO, ICFPSO, GA, and

HPSO on six data sets
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The MAD fitness function serves to assess the quality of

solutions by evaluating their capacity to represent pertinent

text features. Conversely, the feature count penalty intro-

duces a cost for larger feature subsets, aiming to strike a

delicate balance between the necessity for informative

features and the aspiration for a concise feature set. Con-

sequently, the integration of the feature count penalty adds

a layer of complexity to the optimization process, resulting

in a slower convergence rate compared to methods exclu-

sively optimizing the MAD fitness function. This

Table 7 Algorithm effectiveness (Accuracy, Fmeasure, Precision, and Recall) in six data sets over ten runs based on k-means text clustering

algorithm

Data set Number of

unique

features

Method IIWPSO HPSO SpadePSO

WebkbTest 4798 Accuracy

Fmeasure

Precision

Recall

Mean rank

Rank

0.582

0.427

0.375

0.498

3.00

3

0.610

0.460

0.427

0.508

1.25

1

0.603

0.454

0.397

0.529

1.75

2

WebkbTrain 7287 Accuracy

Fmeasure

Precision

Recall

Mean rank

Rank

0.598

0.464

0.373

0.624

2.75

3

0.653

0.516

0.447

0.633

1.00

1

0.622

0.479

0.413

0.578

2.25

2

R8Test 8575 Accuracy

Fmeasure

Precision

Recall

Mean rank

Rank

0.594

0.399

0.587

0.305

1.00

1

0.590

0.386

0.586

0.289

2.00

2

0.573

0.349

0.562

0.254

3.00

3

R52Test 9730 Accuracy

Fmeasure

Precision

Recall

Mean rank

Rank

0.545

0.193

0.618

0.114

1.00

1

0.531

0.144

0.591

0.082

2.00

2

0.531

0.142

0.587

0.081

2.75

3

R8Train 14575 Accuracy

Fmeasure

Precision

Recall

Mean rank

Rank

0.569

0.362

0.527

0.279

3.00

3

0.597

0.391

0.644

0.281

1.25

1

0.572

0.373

0.533

0.290

1.75

2

R52Train 16145 Accuracy

Fmeasure

Precision

Recall

Mean rank

Rank

0.540

0.173

0.618

0.101

1.25

1

0.530

0.133

0.656

0.074

2.25

2

0.529

0.135

0.586

0.077

2.5

2

Mean rank

Final rank

2.00

2

1.625

1

2.33

3

The bold highlights the high metric
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deceleration is attributed to the algorithm’s additional

consideration of penalizing larger feature subsets. While it

may lead to a more gradual convergence, this nuanced

approach proves beneficial in enhancing overall clustering

accuracy, as the algorithm strategically balances the quality

and quantity of the selected features.

Another observed result is that the IIWPSO converges

faster than the competing methods and achieves the best

results across nearly all six text data sets. AIWPSO has

similar convergence curves to FIWPSO, but its final fitness

is only slightly worse. ICFPSO has a lower fitness than

FCFPSO but the fastest convergence speed, except for

IIWPSO, requiring only 30 iterations to achieve the opti-

mum. In comparison with all methods, FCFPSO has the

second best fitness. The GA has the final worst fitness,

when compared to all PSO variants, its fitness is slightly

worse than ICFPSO, but its convergence speed is the

slowest.

To assess the robustness of the proposed HPSO in fea-

ture selection clustering against more recent variants of

PSO, especially those incorporating learning exemplars

and structure topologies, we compare HPSO with Spa-

dePSO [10]. SpadePSO, introduced as one of the latest

variants of PSO, is distinguished by its innovative approach

that includes advanced learning exemplars and sophisti-

cated structure topologies. These features aim to enhance

the algorithm’s adaptability and exploration–exploitation

balance. By choosing SpadePSO as a benchmark, we aim

to provide a comprehensive evaluation, considering not

only the historical PSO variants but also the cutting-edge

developments in the field.

In this case, we have adopted the source code of Spa-

dePSO [10], for solving the FS problem. In Tables 7 and 8

we present the performance comparison between Spa-

dePSO, IIWPSO, and HPSO applied to the six data sets.

In the comparative evaluation of SpadePSO, HPSO, and

IIWPSO across the six data sets, noteworthy patterns

emerge from the performance metrics. HPSO consistently

demonstrates robust results, outperforming both SpadePSO

and IIWPSO in several key aspects. In terms of accuracy,

precision, recall, and F-measure, HPSO excels, showcasing

its superior ability to generate effective feature subsets for

text clustering. IIWPSO, known for its fast convergence,

remains competitive, demonstrating strengths in specific

data sets. SpadePSO, while exhibiting respectable perfor-

mance, generally falls behind HPSO, particularly in accu-

racy and precision. These results underscore the efficacy of

HPSO in enhancing clustering outcomes, emphasizing the

importance of its unique combination of asynchronously

adaptive inertia weight, improved constriction factor,

chaotic map, and MAD fitness function with a feature

count penalty. The multi-objective nature of HPSO, though

contributing to slower convergence, proves instrumental in

achieving top-tier effectiveness, providing a valuable trade-

off for practitioners seeking optimal clustering solutions.

As a summarized conclusion of the comparison results

for the three experiments realized, we have:

1. Comparison of Inertia Weight Variants of PSO

(FIWPSO, IIWPSO, AIWPSO):

AIWPSO and IIWPSO outperformed FIWPSO in

most data sets for accuracy, precision, recall, and F-

measure.

2. Comparison of Constriction Factor Variants of PSO

(FCFPSO, ICFPSO):

FCFPSO consistently outperformed ICFPSO and the

conventional FIWPSO in almost all data sets based on

clustering evaluation criteria.

3. The comparison between HPSO and the most recent

variant of PSO (SpadePSO):

Comparison reveals intriguing insights into their

performance across various data sets and evaluation

metrics. In terms of accuracy, F-measure, precision,

and recall, HPSO demonstrates a competitive edge

over SpadePSO in the majority of data sets.

4. HPSO vs. All PSO Variants and GA:

• HPSO demonstrated superior performance when

compared to all PSO variants and GA.

• HPSO achieved outstanding results in three of the

six data sets based on accuracy (WebkbTest,

WebkbTrain, R8Train), followed by IIWPSO in

two data sets (R52Test and R52Train).

• In terms of F-measure, HPSO and IIWPSO

achieved comparable results, with HPSO excelling

in three data sets (WebkbTest, WebkbTrain,

R8Train), and IIWPSO performing best in three

data sets (R8Test, R52Test, R52Train).

• HPSO outperformed other algorithms in four data

sets in terms of precision (WebkbTest, Webkb-

Train, R8Train, R52Train).

• IIWPSO performed best in three data sets in terms

of recall (R8Test, R52Test, R52Train).

Table 8 Algorithm’s mean Accuracy, Fmeasure, Precision, and

Recall in six data sets

Method IIWPSO HPSO SpadePSO

Accuracy 0.571 0.585 0.572

Fmeasure 0.336 0.338 0.322

Precision 0.516 0.559 0.513

Recall 0.320 0.311 0.302

The bold highlights the high metric
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• In the evaluation across the six data sets (WebkbT-

est, WebkbTrain, R8Test, R52Test, R8Train,

R52Train), HPSO consistently exhibits superior

performance compared to SpadePSO, showcasing

its efficacy in feature selection for text clustering

across diverse data sets.

It follows that the mean performance across all measures,

including accuracy, F-measure, precision, and recall, is

consistently better for HPSO-based FS approaches com-

pared to traditional methods. Moreover, HPSO ranks first

in most measures, with IIWPSO and AIWPSO following,

while the convergence analysis reveals that HPSO,

although having slower convergence due to its multi-ob-

jective nature, achieves the best overall effectiveness. It

turns out that IIWPSO stands out with fast convergence

and top results in most data sets.

We concluded that the HPSO-based FS approach sig-

nificantly enhances text clustering performance across

multiple evaluation metrics when compared to various PSO

variants and the GA. This improvement is attributed to the

exploration and exploitation capability owing to asyn-

chronously adaptive inertia weight, improved constriction

factor, chaotic map, and MAD fitness function with a

feature count penalty. These strategies helped the algo-

rithm improve its search capability (exploration and

exploitation); hence, the HPSO attains a better solution and

avoids stagnation of the particles at a local optimal

solution.

5 Conclusions and prospective directions

Text clustering offers an efficient means to automatically

group digital documents based on their inherent charac-

teristics. However, the high dimensionality of the feature

space poses a significant challenge in text clustering.

Various meta-heuristic techniques have been proposed in

the literature to address the feature selection problem. In

this paper, we analyze several variants of PSO algorithms

and introduce a novel approach for feature selection, which

we have named HPSO. Our aim is to overcome issues such

as premature convergence and particle entrapment in local

optima. To achieve this, we integrate different strategies

into the PSO to enhance its search capabilities.

We work on four distinct stages of the PSO to improve

its search efficiency. This includes the incorporation of an

asynchronously adaptive inertia weight, an enhanced con-

striction factor, the use of chaotic maps, and the application

of a MAD fitness function with a feature count penalty.

Through numerical experiments, we have assessed the

effectiveness of the developed method compared to other

competitive methods. The results demonstrate that the

proposed HPSO method not only achieves higher cluster-

ing precision but also selects a more informative feature

set.

While the elementary steps introduced in HPSO incre-

mentally increase the algorithm’s computational com-

plexity, they significantly enhance the PSO’s search

capabilities, improving both convergence behavior and

accuracy. Statistical analysis validates that the HPSO out-

performs competitive methods.

Looking ahead, we plan to address specific issues

identified with HPSO in this study. We will explore other

PSO variants known for their improved search capabilities

and faster convergence to apply them to the feature

selection task. We also aim to develop methods for the

automatic adjustment of certain parameters, given their

influence on PSO performance, while maintaining reason-

able computational complexity.

Data availability The data that support the findings of this study are

openly available in [7, 8].
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