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Abstract
Walking is a complex task that requires consistent practice to master, and it involves the synchronisation between the lower

limbs and the brain, making it challenging. While bipedal robots have been developed to mimic human walking, they must

achieve an efficient gait due to structural differences and walking challenges. This study aims to produce a more human-

like walk by analysing human lower extremity activities. To capture the bipedal robot locomotion learning process, an

ensemble classifier based on deep learning is introduced to recognise human lower activities. A publicly available UC

Irvine Machine Learning Repository (UCI) dataset on surface electromyography (sEMG) signal for the lower extremity of

11 fit participants and 11 participants with knee disorders for sitting while performing knee extension, walking, and

standing while performing knee flexion is used. A hybrid ensemble of deep learning models comprising long short-term

memory and convolution neural network is employed to classify activities, with reported average accuracies of 98.8%,

98.3%, and 99.3% for healthy subjects for sitting, standing and walking, respectively. Moreover, the ensemble model

reported average accuracies of 98.2%, 98.1%, and 99.0% for individuals with knee pathology. Notably, this study holds

promising significance, as it has yielded a considerable enhancement in performance as opposed to state-of-the-art work.

The applications of this work are diverse and include improving postural stability in elderly subjects, aiding in the

rehabilitation of patients recovering from stroke and trauma, generating walking trajectories for robots in complex envi-

ronments, and reconstructing walking patterns in individuals with impairments.

Keywords Human activity recognition (HAR) � sEMG � Deep learning � Hybrid ensemble classifier � Signal processing �
Bipedal robots

1 Introduction

Gait analysis is crucial in rehabilitation because it gives

reliable information regarding a patient’s walking pattern

and lower limb motions. This information can be used to

identify divergences from normal gait and assess rehabili-

tation interventions’ effectiveness. By examining gait,

clinicians can demarcate the degree of impairment, monitor

progress during rehabilitation, and adjust the treatment plan

accordingly. Gait analysis plays a crucial role in rehabili-

tation by providing valuable insight into the patient’s

operational abilities and enabling clinicians to optimise the

treatment plan to attain the most suitable outcomes. Inju-

ries like knee osteoarthritis, sciatica, meniscus and anterior

cruciate ligament (ACL) are among the leading sources of

impairment worldwide, affecting people of all ages [1, 2].

It has been demonstrated that assistive technology has the

potential to enhance the standard of life for individuals

with these injuries, particularly by tracking their rehabili-

tation progress [3, 4]. Gait analysis is a standard diagnostic

tool for neuromuscular and skeletal disorders that helps

classify and assess lower extremity motion [5]. However,

conventional clinical rehabilitation techniques involving

gait analysis require comprehensive laboratory settings,

which can be time-consuming, costly, and inconvenient,
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especially in secluded areas [6]. Remote monitoring of

rehabilitation improvement using wearable devices has

become critical to overcoming these limitations. These

wearables can not only control assistive devices like

exoskeletons but also yield improvement feedback to users

and assist clinicians in assessing and treating patients

[7–9]. Lower extremity motions are integral to many

human activities, including sitting, standing, stair ascent

and descent, and squatting. Gait analysis, which involves

classifying and evaluating lower leg motions [3, 10], is

crucial for diagnosing neuromuscular and skeletal disor-

ders. However, traditional gait analysis techniques require

extensive laboratory setups, making it necessary to develop

more straightforward methods for assessing gait dysfunc-

tion. Various noninvasive and kinematics techniques have

been proposed for this purpose [11].

In recent years, electromyography (EMG) has emerged

as a widely used approach for recording muscle activities

in the skeletal muscles, which is valuable for investigating

neuropathic and myopathic conditions, controlling pros-

thetic devices, and aiding in rehabilitation. EMG signals

can be obtained using surface or concentric needle elec-

trodes. sEMG is mainly used in rehabilitation and pros-

thetic applications. In contrast, concentrically arranged

needles diagnose neuromuscular disorders affecting motor

units (MUs). In [12], Gautam et al. have used a transfer

learning-based LRCN model on the publicly available UCI

dataset to predict joint angles and classify lower extremity

activities. They have achieved a mean classification accu-

racy of 92.4% and 98.1% for participants with knee dis-

orders and fit participants, respectively. A general deep-

learning approach is shown in Fig. 1. In [13], the authors

have generated a dataset using a Microsoft Kinect V2

sensor for 12 different human activities. They have used a

hybrid deep learning model for classification, and an

average accuracy of 90.89% has been achieved.

Imbalanced class distribution is a significant problem in

medical datasets, where the number of samples in different

classes varies greatly. This imbalance can lead to preju-

diced results towards the majority class, negatively

impacting diagnosis accuracy [14]. Therefore, balancing

the data by either oversampling the minority class or

undersampling the majority class is essential to enhance

diagnostic success. In a previous study [15], Rajesh et al.

used the AdaBoost ensemble classifier to classify five

groups of heartbeats with imbalanced ECG beats. Other

studies have also shown that oversampling techniques,

such as the Synthetic Minority Oversampling Technique

(SMOTE) and Adaptive Synthetic Technique (ADASYN),

can address the class disproportion problem [16–19]. Taft

et al., for example, used SMOTE to improve the classifi-

cation model’s performance in identifying adverse medi-

cation events in females hospitalised for childbirth and

labour. [17].

The major contributions of the authors are ensue:

1. Data Standardisation: The data were scaled using a

standard scaler, which rescales the features to have a

zero mean and unit variance. It ensures that all features

have the same scale and distribution, improving the

model’s efficiency and convergence.

Fig. 1 Flowchart of general

deep learning model
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2. Managing the imbalanced dataset: The dataset is

highly imbalanced. We used ADASYN to balance the

dataset.

3. Data representation: The four-channel sEMG input

signal data were segmented into a 256ms window size

with an overlap of 64ms.

4. Model Design: Our proposed hybrid ensemble deep

neural network architecture for lower extremity recog-

nition utilises an ensemble of CNN and LSTM models

trained on four channels of sEMG data. By combining

CNN and LSTM, the model can effectively capture

human activity data’s spatial and temporal aspects.

5. Performance analysis: The model has been validated

rigorously by investigating the sEMG data and has

obtained an average accuracy of 98.8%, 98.3%, and

99.3% for fit individuals for sitting, standing and

walking, respectively. Furthermore, an average accu-

racy of 98.2%, 98.1%, and 99.0% for individuals with

knee pathology is a remarkable improvement over the

previously published state-of-the-art work.

6. Statistical Analysis: The proposed ensemble model

has been statistically tested to be significantly different

from all competing algorithms using Friedman test,

Bonferroni-Dunn test and Wilcoxon-signed rank

test.

An ensemble deep learning model comprising CNN-LSTM

using four-channel sEMG signal data has been proposed.

Our hybrid model utilises both CNN and LSTM to capture

human activity data’s spatial and temporal characteristics

obtained through sEMG. While CNN captures spatial

information, LSTM captures temporal information in the

data.

Moreover, the proposed work dealt with the imbalanced

dataset by employing Adaptive Synthetic Sampling

(ADASYN) technique. This data augmentation technique

addresses the problem of imbalanced data by creating

synthetic data for classes with fewer samples. ADASYN

uses weight distribution while generating synthetic samples

for minority classes. Unlike SMOTE, where the synthetic

samples are generated uniformly for all minority classes,

ADASYN generated synthetic samples according to their

difficulty in learning. Hence, more synthetic samples are

generated for minority classes that are harder to learn and

most likely to be misclassified. The ADASYN algorithm

has been shown to improve the performance of classifiers

on imbalanced datasets by effectively increasing the size of

the minority class and reducing the bias towards the

majority class. None of the previous work published on this

dataset has dealt with the problem of imbalanced classes,

which can make the model overly biased towards the

majority class. Moreover, none of the previously published

work has performed statistical tests like the Bonferroni-

Dunn test, the Friedman test or Wilcoxon test to

demonstrate whether the proposed hybrid ensemble model

is significantly different from the existing models or not.

Our proposed model (ensemble) not only outperforms

existing competing algorithms but is also proven to be

significantly different statistically. The same has been

demonstrated in the results (Sect. 6) of this paper.

The remaining portion of this article is laid out as fol-

lows. Section 2 comprises the related work of lower

extremity activity recognition using wearable sensors.

Section 3 contains the description of the individual com-

ponents of the proposed hybrid ensemble model. Section 4

contains the comprehensive description of the architecture

and functionality of our model. Section 5 is the method-

ology section that entails data collection and pre-process-

ing information. Section 6 outlines the formulas for

evaluating the model’s performance. It also comprises a

detailed description of the results obtained and provides a

comparative analysis with other cutting-edge work. Sec-

tion 6 also gives the results of all statistical tests per-

formed. Lastly, Section 7 comprises the conclusion and the

future scope.

2 Literature review

Extensive research has been conducted on gait analysis and

human activity recognition. The data can be collected as

sensor-based or video-based [20]. Both of these method-

ologies have their benefits and drawbacks. Sensor-based

systems are more successful at capturing the tiny subtleties

of human motion that may be difficult to see in video

frames. Gait analysis can be performed on data obtained

from IMU sensors. IMUs typically comprise accelerome-

ters, gyroscopes, and sometimes magnetometers and can be

worn on various body parts to capture motion data

[10, 21–23]. In [24], Naik et al. investigated 11 fit indi-

viduals and 11 with knee disorders. Independent Compo-

nent Analysis (ICA) separated the sEMG signals into

independent components representing individual muscle

activations. Six time-domain features were extracted, and

an ensemble-based modelling approach was later used for

classification. Fit subjects had a mean classification accu-

racy of 96.1%, while people with knee problems had an

accuracy of 86.2%. Zhang et al. introduced a new tech-

nique for identifying multi-channel electromyography

(EMG) signals using noise-assisted multivariate empirical

mode decomposition (NA-MEMD) in [25]. The NA-

MEMD technique was used to partition multi-channel

EMG data into a set of intrinsic mode functions (IMFs) that

capture the signal’s numerous frequency components.

However, their study was limited to fit participants and was

not extended to participants with knee disorders. The
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average classification activity obtained was 79% for

walking and 83% for both sitting and standing, respec-

tively. In [12], Gautam et al. proposed a combination of

convolutional and recurrent neural networks (LRCN) for

the recognition of lower extremity movements, prediction

of knee joint angles, and classification of lower extremity

activities using surface electromyography (sEMG) signals

for both fit and participants with known knee disorders.

According to [12], the authors reported mean classification

accuracy for fit and people with knee ailments of 98.1%

and 92.4%, respectively. None of the previous work

[12, 24, 25] dealt with a significant problem of an imbal-

anced dataset. In [26], the authors have proposed a deep

neural network model for the consecutive estimation of

lower extremity motions using sEMG signals. The model

comprises multiple branches, each processing a different

segment of the sEMG signal. The outputs from these

branches are then combined to produce the final prediction.

The model achieves a mean classification accuracy of

90.92% for speed-dependent and 85.4% for speed-inde-

pendent. In [27], the authors have used the sEMG data of

11 fit participants and 11 participants with known knee

disorders. They have denoised the data and obtained time-

domain features. Various anomaly detection techniques

were used to enhance the model’s classification accuracy.

Various machine learning classifiers, notably random forest

and light gradient boosting, were used to classify the

activities. The best classification accuracy of 98.5% was

obtained using the iforest anomaly detection algorithm

with a light gradient boosting machine. The LDA-PSO-

LSTM algorithm combines three techniques: long-short-

term memory (LSTM) neural networks, particle swarm

optimisation (PSO), and linear discriminant analysis

(LDA). To extract discriminant characteristics from sEMG

data, the LDA is used. The PSO algorithm is then used to

optimise the hyperparameters of the LSTM, which is

employed to recognise the gait phases [28]. In [29], authors

used a convolutional network for feature selection from the

denoised data and a kernel extreme learning machine to

classify lower limb activity. The accuracy reported was

95.90% for classification. In [30], the authors have pro-

posed a bimodal hybrid classifier on IMU sensor data for

HAR, which can improve the robustness and accuracy of

the recognition system. However, the approach may

require a relatively large amount of training data to achieve

high accuracy. Secondly, the approach may be affected by

sensor placement and calibration, which can affect the

quality of the motion data.

3 Deep neural networks (DNNs)

Deep neural network (DNN) is a form of artificial neural

network (ANN) that consists of multiple hidden layers

between the input and output layers. There are various deep

learning models like convolution neural network (CNN),

long short-term memory (LSTM) and bi-directional LSTM,

etc. In this section, the individual components of the pro-

posed hybrid ensemble deep learning model are detailed.

3.1 Convolution neural network (CNN)

Convolutional neural networks (CNNs) perform various

operations such as convolution, pooling, dropout, fully

connected layer and activation functions.

1. Convolution: The convolution operation involves

sliding a filter or kernel over the input data and

performing element-wise multiplication, followed by a

summation. The equation for the convolution operation

is Eq. 1

2. Pooling: Pooling is a downsampling operation that

reduces the spatial size of the activation maps while

preserving the essential features. The two most com-

mon types of pooling operations are maximum pooling

and average pooling. Maximum pooling selects the

maximum value within a window of pixels, while

average pooling calculates the average value within the

window. In our proposed algorithm, maximum pooling

has been employed.

3. Activation Function: An activation function adds

nonlinearity to the network after each convolution or

pooling operation. The most popular activation func-

tion is the rectified linear unit, denoted as ReLU, which

returns a maximum of 0 or the input value. ReLU and

softmax activation functions have the equations Eqs. 2

and 3, respectively.

4. Fully Connected Layers: After several convolutional

and pooling layers, the feature maps are flattened into a

vector and passed through one or more fully connected

layers. These layers are similar to feed-forward neural

networks, where each neuron is connected to all

neurons in the previous layer. The output of the final

dense layer is then supplied to a softmax layer for

classification. The equation for the same is Eq. 4.

5. Dropout Throughout the training process, dropout

neurons are selected at random and eliminated by

setting their synaptic values to zero in every layer. The

pace at which these synaptic are lost is known as the

dropout rate. Additionally, it speeds up a model’s

learning process and inhibits overfitting.
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cðtsÞ ¼ða � bÞðtsÞ ð1Þ

ReLUðxÞ ¼maxð0; xÞ ð2Þ

softmaxðziÞ ¼
expðziÞ

PK
j¼1 expðzjÞ

ð3Þ

X ¼Wzþ bias ð4Þ

where cðtsÞ denotes the convolution of a and b,

depicted by ða � bÞðtsÞ, and is defined as the integral of

the product of the two functions, shifted by a parameter

ts. Furthermore, exp zi and exp zj denote the standard

exponential function for input and output vector,

respectively, and k denotes the number of categories.

3.2 Long short term memory (LSTM)

It is commonly employed in analysis of time-series and

natural language processing.

1. Input Gate: The input gate controls what data from the

current input are stored in the memory cell. The input

gate’s equation is Eq. 5.

2. Forget Gate: The forget gate determines which

information from the previous memory cell should be

discarded. Equation 6 gives the equation for the forget

gate.

3. Output Gate: It identifies which information from the

current input and previous memory cell should be

outputted. The equation for the output gate is Eq. 7.

4. Cell State: It is the long-term memory of the LSTM. It

is updated based on the forget, input and output gates.

The equations for the same are Eqs. 8 and 9.

5. Hidden State: The hidden state is the short-term

memory of the LSTM. It is calculated based on the cell

state and the output gate. The equation for the hidden

state is shown in Eq. 10.

hts ¼rðWinput � ½hts�1; xts� þ binputÞ ð5Þ

fts ¼rðWforget � ½hts�1; xts� þ bforgetÞ ð6Þ

ots ¼rðWoutput � ½hts�1; xts� þ boutputÞ ð7Þ

cts ¼tanhðWc½ ~hts�1; xts� þ bcÞ ð8Þ

cts ¼fts � cts�1 þ its � ~cts ð9Þ

Fig. 2 Threefold cross-

validation architecture

Fig. 3 Architecture of our proposed model
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hts ¼ots � tanhðctsÞ ð10Þ

where fts, ots and hts denote the forget, output and input

gate, respectively. W implies the weight for the cor-

responding gate (g), hts denotes the previous LSTM

block’s output at time step ts-1, xts denotes the input at

current time step ts, and b implies the bias for the

corresponding gate (g). cts implies cell state at time

step ts, and ~cts denotes the candidate for cell state at

time step ts.

3.3 Hybrid ensemble deep learning

A hybrid deep ensemble model is a model that combines

both deep learning and ensemble learning. Basic deep-

learning models can learn complex patterns in data but may

suffer from overfitting and have difficulty generalising to

new data. Ensemble learning, on the other hand, combines

multiple models to improve performance by leveraging the

strengths of each deep learning model and reducing the risk

of overfitting. In a hybrid deep ensemble model, multiple

deep learning models are trained on the same data but with

different architectures, hyperparameters, or random ini-

tialisations. The outputs of these models are then com-

bined. This approach can improve the performance of deep

learning models by reducing the risk of overfitting and

increasing the diversity of the models. It can also provide

more robust predictions and better generalisation of new

data. This proposed work uses both LSTM and CNN to

create a deep hybrid ensemble model that considers the

data’s spatial and temporal aspects.

4 Proposed model

The ensemble model is made up of LSTM and CNN

models that run in tandem. Two convolutional layers pre-

cede a maximum pooling layer and a dropout layer in the

model design. The convolutional layers employ 3 9 1 fil-

ters with increasing filters, commencing with 32 and dou-

bling to 64. Using max pooling layers diminishes the

dimensionality of the feature maps and extracts the most

significant characteristics. By randomly turning a percent-

age of the input units to 0 during training, the dropout

layers help circumvent overfitting by manipulating the

network to acquire more robust and generalisable features.

The LSTM model is split into two layers, each with 32 and

16 units. Finally, the output of the final convolutional layer

is transformed into a vector. The outputs of the LSTM and

CNN models are concatenated and supplied into a dense

layer consisting of 32 units and an activation function of

ReLU. The dense layer’s output is then transmitted to the

dense layer that follows it, which uses a softmax activation

function to generate the final estimations for the three

categories. To train and access the model on the training

set, threefold cross-validation is employed. The 3-fold

cross-validation is depicted in Fig. 2. To avoid overfitting,

a premature end of the callback is also used. Figure 3

depicts the architecture. Table 1 contains details regarding

the model’s architecture.

Furthermore, the approach of the suggested study is

shown in Algorithm 1.

Table 1 Model architecture

Layer type Output shape No. of parameters

Input Layer (CNN) (None, 256, 4) 0

Conv1D_1 (None, 254, 32) 416

MaxPooling1D_1 (None, 127, 32) 0

Dropout_1 (None, 127, 32) 0

Conv1D_2 (None, 125, 64) 6208

MaxPooling1D_2 (None, 62, 64) 0

Dropout_2 (None, 62, 64) 0

Flatten (CNN) (None, 3968) 0

Input Layer (LSTM) (None, 256, 4) 0

LSTM_1 (None, 256, 32) 4736

LSTM_2 (None, 16) 3136

Concatenate (None, 3984) 0

Dense (None, 32) 127520

Dense (None, 3) 99
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Algorithm 1 Proposed Hybrid Ensemble Learning-based Human Activity Recognition System

5 Experimental setup and details

The content of this section encompasses a description and

pre-processing of the dataset used, as well as a schematic

diagram illustrating the proposed architecture and the

algorithm.

5.1 Data acquisition and setup

This study gathered signal data from 22 male volunteers

aged 18 and up. Four sEMG channels and one lower limb

goniometer measurement channel are included in the data.

The participants were split into two groups: eleven fit

people and eleven with knee disease, including one with

sciatica pain, four with meniscal rupture and six with an

anterior cruciate ligament (ACL) injury. Biometrics Ltd.

and Datalog MWX8 with the goniometer SG150B were

utilised to obtain data on sEMG and knee joints. To ensure

interference-free sampling, the SEMG electrodes are sep-

arated by 20 mm, and the input impedance is greater than

10 M ohm. The data capture sampling rate was 1000 Hz,

and the range for filtering the data instances was between

20 Hz and 460 Hz. The goniometer is positioned on the

outer side of the knee. The sEMG electrode channels were

positioned on the rectus femoris (rf), semitendinosus (st),

vastus medialis (vm), and biceps femoris (bf). The partic-

ipants’ left and right extremities were selected for fit

individuals and those with knee disorders. sEMG data and

knee joint angles were collected while the subject engaged

in three types of physical tasks: standing while making

knee flexion motions, walking at ground level, and sitting

while performing knee extension actions. These exercises

are commonly performed in daily life and rehabilitative

activities and do not necessitate the use of additional

weights, dumbbells, or fitness equipment. The database

does not include knee joint angle measurements or the

sEMG signal during transitional activities such as sit-to-

stand or walk-to-sit.

5.2 Data pre-processing

The four-channel sEMG signal data was first standardised

to have unit variance, and zero mean to ensure the faster

convergence of gradient descent and to preclude the

overfitting problem [31]. We also employed the ADASYN

algorithm to balance the imbalanced dataset. ADASYN

creates synthetic samples of the classes with a smaller

number of samples. It was done to ensure the model is

impartial and unbiased towards the majority class. Later,

the four-channel sEMG signal data were segmented into a

256ms window size with 64 ms overlap using a sliding

window approach, as per the research published by [24].

We employed k-fold cross-validation, where k = 3, to

perform an equitable comparison with existing cutting-

edge work. To create k-folds, we randomly divided the

dataset into k equal subgroups and repeated the process k

times. One of the k subsets is designated as the testing or

validation set in each fold, whereas the remaining k-1

subsets are designated as the learning set. The final result is

a calculation of the average classification accuracy over

k-folds.

6 Results and discussion

6.1 Performance evaluation criteria

The efficiency of the suggested hybrid ensemble model is

evaluated using accuracy, F1_score, recall, and precision.

The following equations give the formula used for each of

the performance evaluation criteria:
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Prec ¼ Tru Pos

Tru Posþ False Pos
ð11Þ

Rec ¼ Tru Pos

True Posþ Fal Neg
ð12Þ

F1 score ¼2 � Prec � Rec
Precþ Rec

ð13Þ

Acc ¼ Tru Posþ Tru Neg

Tru Posþ Fal Posþ Fal Negþ Tru Neg
� 100

ð14Þ

where Acc denotes accuracy, Prec denotes precision, Rec

denotes recall, Tru_Pos denotes true positive, Tru_Neg

denotes true negative, Fal_Pos denotes false positive and

Fal_Neg denotes false negative.

Apart from the metrics mentioned above, we have also

performed statistical tests, namely Friedman test [32],

Bonferroni-Dunn test [33] and Wilcoxon test [34], to

compare our proposed ensemble model with other com-

peting algorithms.

6.1.1 Comparative analysis

The effectiveness of the suggested model was assessed

using the aforementioned equations: Eqs. 11–14. The

results obtained have been consolidated in Tables 2 and 3.

Here, Tables 2 and 3 show the individual subject analysis

for healthy and subjects with knee pathology on three

different activities, namely walking, standing and sitting

obtained by proposed hybrid ensemble model. However,

the point is that none of the previously published state-of-

the-art work has dealt with the imbalanced dataset prob-

lem. Hence, it would be inappropriate to compare the

accuracy, as accuracy alone is not the best metric to

evaluate the performance of a model, especially when the

class distribution is imbalanced. The average classification

accuracy, precision, recall and f1_score obtained by the

proposed hybrid ensemble model are 98.8%, 98.8%, 98.7%

and 98.7%, respectively, for all the healthy participants and

98.4%, 98.4%, 98.3% and 98.3% for the participants with

knee pathology. Moreover, this paper also includes the

participant-wise classification accuracy for fit individuals

obtained by the proposed hybrid ensemble model in

Table 4. Table 4 also compares the suggested model with

Table 2 Average precision, accuracy, F1_score and recall obtained of each healthy subject for each activity

Subject Precision Recall F1_score Accuracy

Walking Standing Sitting Walking Standing Sitting Walking Standing Sitting Walking Standing Sitting

1 99.6 ±

0.7

100.0 ±

0

100.0

± 0

100.0 ±

0

99.6 ±

0.7

100.0 ±

0

99.8 ±

0.3

99.8 ±

0.4

100.0 ±

0

99.6 ±

0.7

100.0 ±

0

100.0

± 0

2 100.0 ±

0

99.2 ±

1.4

98.3 ±

3.0

98.7 ±

2.3

99.6 ±

0.7

99.1 ±

1.5

99.3 ±

1.2

99.4 ±

1.1

98.7 ±

2.3

100.0 ±

0

99.2 ±

1.4

98.3 ±

3.0

3 98.8 ±

2.1

97.2

±4.9

96.2 ±

4.9

98.8 ±

2.1

99.2 ±

0.6

92.7 ±

12.7

98.8 ±

2.1

98.2 ±

2.7

94.3 ±

9.0

98.8 ±

2.1

97.2 ±

4.9

96.2 ±

4.9

4 99.1 ±

1.5

96.3 ±

6.4

98.0 ±

3.5

97.9 ±

3.7

99.6 ±

0.7

95.4 ±

8.0

98.5 ±

2.6

97.9 ±

3.7

96.6 ±

5.9

99.1 ±

1.5

96.3 ±

6.4

98.0 ±

3.5

5 99.5 ±

0.8

99.1 ±

1.6

99.6 ±

0.7

99.1 ±

1.6

100.0 ±

0

99.2 ±

1.5

99.3 ±

1.2

99.5 ±

0.8

99.4 ±

1.1

99.5 ±

0.8

99.1 ±

1.6

99.6 ±

0.7

6 96.8 ±

5.5

94.1 ±

9.4

99.5 ±

0.8

95.8 ±

6.3

97.5 ±

0.7

95.4 ±

7.9

96.3 ±

5.9

95.7 ±

7.0

97.3 ±

4.6

96.8 ±

5.5

94.1 ±

9.4

99.5 ±

0.8

7 100.0 ±

0

99.2 ±

1.4

99.6 ±

0.8

100.0 ±

0

99.6 ±

0.7

99.1 ±

1.5

100.0 ±

0

99.4 ±

1.1

99.3 ±

1.2

100.0 ±

0

99.2 ±

1.4

99.6 ±

0.8

8 100.0 ±

0

98.3 ±

0.0

98.8 ±

2.1

100.0 ±

0

99.2 ±

1.5

97.6 ± 0 100.0 ±

0

98.7 ±

0.8

98.2 ±

1.0

100.0 ±

0

98.3 ±

0.0

98.8 ±

2.1

9 100.0 ±

0

99.7 ±

0.5

98.4 ±

2.8

98.0 ±

2.8

100.0 ±

0

100.0 ±

0

99.0 ±

1.4

99.9 ±

0.3

99.2 ±

1.4

100.0 ±

0

99.7 ±

0.5

98.4 ±

2.8

10 100.0 ±

0

99.3 ±

0.6

99.7 ±

0.6

99.8 ±

0.3

99.6 ±

0.8

99.7 ±

0.3

99.9 ±

0.2

99.5 ±

0.7

99.7 ±

0.4

100.0 ±

0

99.3 ±

0.7

99.7 ±

0.6

11 99.0 ±

1.9

99.2 ±

1.3

98.3 ±

3.0

99.3 ±

1.3

98.1 ±

3.3

99.4 ±

1.1

99.1 ±

1.6

98.7 ±

2.3

98.8 ±

2.1

99.0 ±

1.9

99.2 ±

1.4

98.3 ±

3.0

Average 99.3 ±

1.1

98.3 ±

2.5

98.8 ±

2.0

98.8±1.9 99.3±1.2 98.0±3.1 99.1±1.5 98.8±1.9 98.3±2.6 99.3 ±

1.1

98.3 ±

2.5

98.8 ±

2.0
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other cutting-edge work, namely MyoNet [12], ICA-EBM

[24], NA-MEMD [25], on the same dataset for fit partici-

pants. The average classification accuracy of walking

activity obtained by the proposed model is 99.3% ± 1.1 as

opposed to 98.2% ± 1.6 in [12], 96.0% ± 1.3 in [24], and

79.0% in [25]. Furthermore, the average classification

accuracy for standing activity for fit participants obtained

by the proposed hybrid ensemble model is 98.3% ± 2.5

and for sitting is 98.8% ± 2.0 which shows a significant

improvement over the previously published state-of-the-

artwork: 97.7% ± 1.3, 98.4% ± 1.4 [12] and 96.2% ± 1.2,

96.2% ± 1.1 in [24], 83.0% and 83.0% in [25], respec-

tively. The comparison of mean classification accuracy

obtained using the proposed hybrid ensemble work with

other state-of-the-art work for healthy participants pre-

sented in Table 4 is further illustrated in Fig. 4a.

Our proposed model also shows promising results for

classifying various lower limb activities performed by

individuals with knee pathology. Table 3 comprises the

class-wise average accuracy, f1_score, precision, and recall

for each individual with known knee pathology. Moreover,

Table 5 compares the proposed model’s performance on

data obtained from participants with knee pathology with

existing cutting-edge work, namely MyoNet [12] and ICA-

EBM [24]. The mean accuracy of 98.2% ± 2.9, 98.1% ±

2.6, 99.0% ± 1.4 for sitting, standing, and walking activ-

ities for participants having knee disorders using the pro-

posed hybrid ensemble model. It shows a significant

improvement from the average accuracy obtained by pre-

vious cutting-edge work; 86.4%, 85.5%, 86.6% in [24],

92.2%, 92.3%, 92.8% in [12] for walking, standing, and

sitting, respectively. The details presented in Table 5 can

also be seen in Fig. 4b. The previously published state-of-

the-art work has struggled to perform activity classification

for subjects with knee pathology, as for such individuals,

each pathology is different and can lead to different func-

tional limitations and activity restrictions. Therefore,

developing a single classification model that accounts for

different pathologies in different individuals is challenging.

Our proposed model achieved an average accuracy of

98.4% across all individuals with pathology as opposed to

92.4% in [12], 86.2% in [24]. The proposed model out-

performs the previously published state-of-the-art work

[24] by 12.2% and [12] by 6.0%. Moreover, it is worth

noting that in the real world, signals contain noise, and our

proposed method works on noisy signals and does not

Table 3 Average precision, accuracy, F1_score and recall obtained of each subject with knee pathology for each activity

Subject Precision Recall F1_score Accuracy

Walking Standing Sitting Walking Standing Sitting Walking Standing Sitting Walking Standing Sitting

1 99.7 ±

0.5

99.3 ±

1.3

99.4 ±

1.0

99.3 ±

0.2

100.0 ±

0

99.6 ±

0.8

99.5 ±

0.8

99.6 ±

0.6

99.5 ±

0.9

99.7 ±

0.5

99.3 ±

1.3

99.4 ±

1.0

2 99.5 ±

0.8

98.1 ±

3.3

98.0 ±

2.3

100.0 ±

0

97.7 ±

2.9

98.0 ±

3.4

99.8 ±

0.4

98.0 ±

3.1

98.0 ±

2.8

99.5 ±

0.8

98.1 ±

3.3

98.0 ±

2.3

3 99.7 ±

0.4

98.7 ±

1.8

98.8 ±

2.1

99.3 ±

1.3

99.3 ±

0.8

98.4 ±

1.5

99.4 ±

0.5

99.0 ±

1.3

98.6 ±

1.8

99.7 ±

0.4

98.7 ±

1.8

98.8 ±

2.1

4 99.9 ±

0.2

99.9 ±

0.2

98.9 ±

1.1

99.4 ±

0.5

99.9 ±

0.2

99.6 ±

0.7

99.7 ±

0.3

99.9 ±

0.2

99.2 ±

0.9

99.9 ±

0.2

99.9 ±

0.2

98.9 ±

1.1

5 99.6 ±

0.7

98.0 ±

1.5

99.3 ±

0.6

98.6 ±

0.9

99.7 ±

0.4

99.3 ±

1.2

99.1 ±

0.7

98.9 ±

1.0

99.3 ±

0.8

99.6 ±

0.7

98.0 ±

1.5

99.3 ±

0.6

6 98.6 ±

2.5

94.9 ±

8.9

97.9 ±

3.7

94.4 ±

9.7

99.7 ±

0.5

95.5 ±

7.7

96.3 ±

6.4

97.1 ±

5.0

96.7 ±

5.8

98.6 ±

2.5

94.9 ±

8.9

97.9 ±

3.7

7 100.0 ±

0

98.7 ±

2.3

98.4 ±

1.9

100.0 ±

0

98.2 ±

2.1

98.8 ±

2.1

100.0 ±

0

98.4 ±

2.2

98.6 ±

2.0

100.0 ±

0.0

98.7 ±

2.3

98.4 ±

1.9

8 98.4 ±

1.9

96.7 ±

2.9

97.0 ±

5.1

95.0 ±

5.2

98.7 ±

1.3

98.5 ±

2.7

96.6 ±

3.4

97.7 ±

1.6

97.7 ±

3.9

98.4 ±

1.9

96.7 ±

2.9

97.0 ±

5.1

9 96.0 ±

5.5

97.5 ±

3.9

97.4 ±

4.4

98.0 ±

3.0

100.0 ±

0

90.6 ±

14.1

97.0 ±

4.2

98.7 ±

2.0

93.7 ±

9.8

96.0 ±

5.5

97.5 ±

3.9

97.4 ±

4.4

10 99.1 ±

1.6

99.4 ±

1.1

97.0 ±

5.2

96.6 ±

5.8

99.4 ±

1.1

99.4 ±

1.0

97.8 ±

3.8

99.4 ±

1.1

98.2 ±

3.2

99.1 ±

1.6

99.4 ±

1.1

97.0 ±

5.2

11 99.0 ±

1.7

98.3 ±

1.9

97.6 ±

4.1

97.9 ±

3.6

99.7 ±

0.4

97.4 ±

3.4

98.5 ±

2.7

99.0 ±

1.1

97.5 ±

3.7

99.0 ±

1.7

98.3 ±

1.9

97.6 ±

4.1

Average 99.0 ±

1.4

98.1 ±

2.6

98.2 ±

2.9

98.0±2.8 99.3±0.9 97.7±3.5 98.5±2.1 98.7±1.7 97.9±3.2 99.0

±1.4

98.1±

2.6

98.2 ±

2.9
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employ any denoising technique. Furthermore, the pro-

posed model showed an average precision, recall and

f1_score of 98.4%, 98.3% and 98.4%, as opposed to

93.4%, 92.6% and 92.9%, respectively, across subjects

with knee pathology. The comparison of the overall per-

formance of the proposed model with the MyoNet method

[12] for healthy subjects and subjects with knee pathology

has been shown in Fig. 4c and d, respectively. It can be

noted that the proposed model outperforms the Myonet

method [12] in terms of recall, F1_score and accuracy for

healthy subjects and in terms of accuracy, recall, precision

and F1_score for subjects the knee pathology.

In this research, a subject-wise comparison of the sug-

gested ensemble model with CNN-only and LSTM-only

models for healthy subjects and subjects with knee disorder

is also shown in Tables 6 and 7, respectively. The mean

accuracy for walking, standing, and sitting using the CNN-

only model is 98.3%, 96.7% and 96.0% for fit individuals

and 97.6%, 97.4% and 97.2%, respectively, for subjects

with knee disorders. Similarly, the LSTM-only models

achieved an average accuracy of 86.0%, 81.7% and 91.2%

for walking, standing, and sitting activities for fit partici-

pants and 80.1%, 79.3% and 78.3%, respectively, for

participants with knee disorder. It can be noted that

LSTM_only suffers massively in classifying the lower

limb-related activities for both fit and individuals with knee

pathology, and CNN_only performs better than

LSTM_only but the hybrid deep ensemble model performs

the best as it captures both the spatial and temporal aspect

of the data. The comparison of accuracy obtained using

CNN_only, LSTM_only and proposed hybrid model have

also been further illustrated in Fig. 4e and f.

6.1.2 Statistical test

To compare the efficiency of the suggested work with that

of other cutting-edge approaches, we have performed

friedman [32], bonferroni-dunn [33] and Wilcoxon

signed rank test [34] on the proposed ensemble model,

ICA [24], MyoNet [12]. In addition to the proposed

ensemble model, we have also compared the CNN-only

and LSTM-only models. We have not statistically com-

pared our proposed model with NA-MEMD [25] because

in [25], the study was limited to healthy subjects, and

pathological subjects were not considered.

Table 4 Comparative analysis of classification accuracy (%) for different methods on the three activity classes for the healthy subjects dataset

Subject MyoNet [12] ICA-EBM [24] NA-MEMD [25] Our method

Walking Standing Sitting Walking Standing Sitting Walking Standing Sitting Walking Standing Sitting

1 98.2 ±

1.8

98.5 ±

1.2

97.3 ±

1.8

95.6 ±

1.2

96.3 ±

1.3

96.2 ±

1.3

78.0 76.0 84.0 99.6 ±

0.7

100.0 ±

0

100.0 ±

0

2 97.6 ±

2.1

97.2 ±

1.6

98.6 ±

1.7

96.3 ±

1.3

96.4 ±

1.3

96.4 ±

1.2

79.0 76.0 84.0 100.0 ±

0

99.2 ±

1.4

98.3 ±

3.0

3 97.3 ±

1.7

93.9 ±

1.7

99.2 ±

0.6

95.8 ±

1.4

96.2 ±

1.2

96.1 ±

1.2

83.0 80.0 88.0 98.8 ±

2.1

97.2 ±

4.9

96.2 ±

4.9

4 98.4 ±

0.8

97.3 ±

1.4

99.1 ±

0.2

96.4 ±

1.3

96.3 ±

1.3

96.3 ±

1.1

76.0 76.0 80.0 99.1 ±

1.5

96.3 ±

6.4

98.0 ±

3.5

5 99.1 ±

1.5

99.6 ±

2.2

98.2 ±

2.1

96.1 ±

1.4

95.6 ±

1.1

96.2 ±

1.0

81.0 82.0 76.0 99.5 ±

0.8

99.1 ±

1.6

99.6 ±

0.7

6 98.1 ±

1.6

97.0 ±

1.7

99.5 ±

0.6

95.6 ±

1.6

96.1 ±

1.4

96.3 ±

1.4

84.0 80.0 75.0 96.8 ±

5.5

94.1 ±

9.4

99.5 ±

0.8

7 97.5 ±

2.2

98.5 ±

1.1

98.2 ±

2.1

96.2 ±

1.1

95.8 ±

1.2

96.1 ±

1.1

79.0 89.0 77.0 100.0 ±

0

99.2 ±

1.4

99.6 ±

0.8

8 99.4 ±

0.6

95.7 ±

0.7

98.9 ±

1.6

96.3 ±

1.5

96.2 ±

1.3

96.2 ±

1.4

79.0 89.0 86.0 100.0 ±

0

98.3 ±

0.0

98.9 ±

2.1

9 96.5 ±

2.6

98.6 ±

1.5

97.3 ±

2.6

95.8 ±

1.3

96.4 ±

1.3

96.1 ±

1.2

79.0 92.0 87.0 100.0 ±

0

99.7 ±

0.5

98.4 ±

2.8

10 100 ± 0 99.3 ±

0.2

98.5 ±

1.6

95.9 ±

1.4

96.5 ±

1.2

96.3 ±

1.2

72.0 89.0 91.0 100.0 ±

0

99.3 ±

0.7

99.7 ±

0.6

11 99.0 ±

1.5

99.3 ±

1.3

98.3 ±

1.3

95.8 ±

1.2

96.2 ±

1.5

96.3 ±

1.3

79.0 88.0 86.0 99.0 ±

1.9

99.3 ±

1.4

98.3 ±

3.0

Average 98.2 ±

1.6

97.7 ±

1.3

98.4 ±

1.4

96.0 ±

1.3

96.2 ±

1.2

96.2 ±

1.1

79.0 83.0 83.0 99.3 ±

1.1

98.3 ±

2.5

98.8 ±

2.0
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The Friedman test is a widely accepted statistical test to

compare the performance of multiple models. Let rij signify

the rank of the ith algorithm over the jth dataset, ri denote

the mean rank of the ith method, and n denotes the count of

sets or samples. k signifies the count of competing

Fig. 4 Comparative analysis of proposed Model with other cutting-edge methodology

Neural Computing and Applications (2024) 36:7373–7388 7383

123



Table 5 Comparitive analysis of classification accuracy (%) for subjects with knee pathology

Subject MyoNet [12] ICA-EBM [24] Our method

Walking Standing Sitting Walking Standing Sitting Walking Standing Sitting

1 92.7 ± 1.8 92.1 ± 1.5 90.7 ± 2.1 87.7 ± 1.3 85.8 ± 1.3 86.4 ± 1.4 99.7 ± 0.5 99.3 ± 1.3 99.4 ± 1.0

2 93.6 ± 2.3 91.6 ± 1.6 92.9 ± 1.2 86.8 ± 1.2 85.2 ± 1.2 86.5 ± 1.2 99.5 ± 0.8 98.1 ± 3.3 98.0 ± 2.3

3 94.2 ± 0.7 93.4 ± 0.4 92.6 ± 1.7 86.4 ± 1.3 85.4 ± 1.3 86.7 ± 1.3 99.7 ± 0.4 98.7 ± 1.8 98.8 ± 2.1

4 92.7 ± 2.1 92.9 ± 1.1 91.8 ± 2.2 86.4 ± 1.4 85.5 ± 1.2 86.4 ± 1.2 99.9 ± 0.2 99.9 ± 0.2 98.9 ± 1.1

5 92.6 ± 2.3 91.3 ± 0.7 92.5 ± 1.8 86.8 ± 1.2 85.4 ± 1.4 86.5 ± 1.6 99.6 ± 0.7 98.0 ± 1.5 99.3 ± 0.6

6 92.9 ± 2.4 91.9 ± 0.9 91.4 ± 0.9 86.3 ± 1.3 85.5 ± 1.1 86.4 ± 1.4 98.6 ± 2.5 94.9 ± 8.9 97.9 ± 3.7

7 93.3 ± 1.8 93.6 ± 2.3 92.9 ± 0.7 86.4 ± 1.4 85.7 ± 1.5 86.3 ± 1.3 100.0 ± 0.0 98.7 ± 2.3 98.4 ± 1.9

8 89.6 ± 2.1 92.5 ± 1.2 92.2 ± 1.81 86.3 ± 1.3 85.4 ± 1.2 86.8 ± 1.2 98.4 ± 1.9 96.7 ± 2.9 97.0 ± 5.1

9 94.1 ± 1.0 87.9 ± 1.7 93.1 ± 0.7 86.7 ± 1.2 85.5 ± 1.4 86.3 ± 1.3 96.0 ± 5.5 97.5 ± 3.9 97.4 ± 4.4

10 93.4 ± 0.6 94.8 ± 1.1 92.6 ± 2.2 86.8 ± 1.5 85.8 ± 1.3 86.2 ± 1.4 99.1 ± 1.6 99.4 ± 1.1 97.0 ± 5.2

11 91.9 ± 2.1 93.3 ± 1.3 92.4 ± 2.4 86.4 ± 1.2 85.5 ± 1.4 86.3 ± 1.2 99.0 ± 1.7 98.3 ± 1.9 97.6 ± 4.1

Average 92.8 ± 1.7 92.3 ± 1.2 92.2 ± 1.6 86.6 ± 1.3 85.5 ± 1.3 86.4 ± 1.3 99.0 ± 1.4 98.1 ± 2.6 98.2 ± 2.9

Table 6 Comparative analysis

of suggested Ensemble model

with LSTM-only and CNN-only

model for healthy subjects

Subject Ensemble model CNN-only LSTM-only

Walking Standing Sitting Walking Standing Sitting Walking Standing Sitting

1 99.6 100.0 100.0 99.6 99.6 97.8 98.7 97.8 96.2

2 100.0 99.2 98.3 100.0 98.4 98.7 81.8 93.4 90.2

3 98.8 97.2 96.2 97.9 93.5 92.8 94.2 88.1 93.5

4 99.1 96.3 98.0 99.1 92.9 88.9 89.5 73.6 88.2

5 99.5 99.1 99.6 99.1 99.1 97.9 99.5 86.6 83.5

6 96.8 94.1 99.5 97.8 90.5 93.9 41.8 51.1 86.7

7 100.0 99.2 99.6 96.0 96.2 95.6 76.3 66.05 96.8

8 100.0 98.3 98.9 99.2 98.4 96.8 95.6 77.9 90.36

9 100.0 99.7 98.4 95.8 100.0 98.8 86.3 86.8 93.5

10 100.0 99.3 99.7 97.8 98.9 97.8 96.5 95.9 93.3

11 99.0 99.3 98.3 98.8 96.6 97.5 85.8 81.9 90.7

Average 99.3 98.3 98.8 98.3 96.7 96.0 86.0 81.7 91.2

Table 7 Comparative analysis

of proposed Ensemble model

with LSTM-only and CNN-only

model for subjects with knee

pathology

Subject Ensemble model CNN-only LSTM-only

Walking Standing Sitting Walking Standing Sitting Walking Standing Sitting

1 99.7 99.3 99.4 98.0 99.3 99.8 96.3 89.3 91.7

2 99.5 98.1 98.0 99.5 96.4 95.7 68.9 96.9 32.5

3 99.7 98.7 98.8 99.7 97.5 99.4 96.8 86.5 80.5

4 99.9 99.9 98.9 94.1 99.8 98.2 85.3 76.72 74.7

5 99.6 98.0 99.3 99.2 95.3 99.3 94.9 90.7 79.6

6 98.6 94.9 97.9 97.1 97.6 97.6 61.0 83.9 66.9

7 100.0 98.7 98.4 99.2 97.4 97.5 82.5 66.5 93.6

8 98.4 96.7 97.0 98.7 95.1 95.7 88.1 62.4 80.1

9 96.0 97.5 97.4 92.8 97.3 93.2 67.1 65.6 80.2

10 99.1 99.4 97.0 97.6 98.4 95.9 73.3 84.9 82.5

11 99.0 98.3 97.6 97.9 97.8 97.2 66.4 69.5 99.4

Average 99.0 98.1 98.2 97.6 97.4 97.2 80.1 79.3 78.3
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methods. In the event of a tie between any algorithms, the

average rank is shared.

The Friedman statistic(Fr) is evaluated using the

Eqs. [15] and [16].

Fr ¼
ðn� 1Þv2f

nðk � 1Þ � v2f
ð15Þ

where

v2f ¼
12n

kðk þ 1Þ ð
Xk

i¼1

r2i �
kðk þ 1Þ2

4
Þ ð16Þ

In our case, n = 66, k = 5, chosen level of significance (a) =
0.05.

v2f ¼
12� 66

5� 6
� 51:529� 5� ð6Þ2

4

 !

ð17Þ

v2f ¼ 172:367 ð18Þ

Fr ¼
65� 172:367

66� 4� 172:367

� �

¼ 122:268 ð19Þ

Critical value p-value ¼ 1:1415� 10�36

This p-value indicates decisive statistical significance,

as it is much smaller than the threshold for statistical sig-

nificance (a) = 0.05. This means we can reject the null

hypothesis that the models are not statistically different

with high confidence. Additionally, we have used the

pairwise comparison method of the Bonferroni-Dunn test

[33] to determine whether algorithms are significantly

different. Using the proposed model as the governing

algorithm, we have also examined whether it performs

noticeably better than rival techniques. Equation 20

determines the critical distance (CD).

CD ¼ xa
kðk þ 1Þ

6n

� �1=2
ð20Þ

At the level of significance, a = 0.05, the obtained CD =

0.6876. The result for the Bonferroni-Dunn test with the

proposed algorithm as a control algorithm and a general

comparison is shown in Fig. 5a and b, respectively. Fig-

ure 5a shows that the CNN-only model and MyoNet [12]

are similar and not statistically different, and LSTM-only

and ICA [24] are also similar to each other and not sta-

tistically significantly different. As depicted in Fig. 5a and

b, it is further emphasised that the proposed ensemble

model (referred to as ensemble) is not only better per-

forming than all the other competing algorithms in terms of

accuracy but is also significantly different from them.

To further validate that the proposed hybrid ensemble

model outperforms the other model and is significantly

different from existing state-of-the-art work, we have

employed Wilcoxon Signed-Rank Test [34]. The result of

the Wilcoxon signed-rank test has been shown in Table 8.

As shown in Table 8, the p� value is significantly less than

the significance level a = 0.05. The proposed ensemble

model is significantly different from other competing

algorithms and outperforms each of them.

Fig. 5 Comparative analysis of each algorithm using the Bonferroni-Dunn test

Table 8 Wilcoxon signed-rank

test results for the suggested

ensemble model opposed to

other models

S. No. Model Test statistic P value Result

1 Ensemble vs MyoNet [12] 109.5 7:67� 10�10 Different

2 Ensemble vs ICA [24] 6.5 3:24� 10�12 Different

3 Ensemble vs CNN-only 178.5 9:63� 10�08 Different

4 Ensemble vs LSTM-only 3.0 2:77� 10�12 Different

Neural Computing and Applications (2024) 36:7373–7388 7385

123



6.2 Discusssion

Individuals with knee-related illnesses like osteoarthritis,

meniscus tears, and ACL tears frequently struggle with

daily activities involving lower extremity motions such as

walking, standing, and sitting [35]. Surface electromyog-

raphy signals obtained from the muscles, like the quads and

hamstrings, during motion can aid in diagnosis by clini-

cians and assist in rehabilitation [36, 37]. Additionally,

sEMG signals can help evaluate the improvement in

physiotherapy sessions when using a network-based reha-

bilitation approach.

We have suggested a hybrid ensemble model compris-

ing LSTM and CNN that captures the spatial and temporal

aspects of the signal. In [25], Zhang et al. investigated the

use of intrinsic mode functions (IMFs) obtained from the

decomposition of surface electromyography (sEMG) sig-

nals as features for identifying the lower leg motion. They

explored the use of three different decomposition methods,

namely multivariate empirical mode decomposition

(MEMD), noise-assisted MEMD (NA-MEMD) and

empirical mode decomposition (EMD), to extract the IMFs

from the raw sEMG signal. One of the significant limita-

tions of their work is that they have restricted the scope of

their study to the data of healthy subjects and not extended

it to subjects with knee disorders. In [24], Naik et al. have

extracted six time-domain features and then applied feature

dimensionality reduction. Furthermore, the authors used

SVM with an RBF kernel to classify lower limb motion in

fit subjects and subjects with knee abnormalities. We have

compared our suggested ensemble model with previous

cutting-edge work and CNN-only and LSTM-only models.

The ensemble model outperforms all the other methods

with an average accuracy of 99.3%, 98.3% and 98.8% for a

walk, stand and sit activity for healthy subjects and 99.0%,

98.1% and 98.2% respectively, for subjects with knee

pathology. Moreover, our proposed ensemble model is also

statistically proven to differ significantly from all the

competing methodologies. For better understanding, the

comparative analysis of the previous cutting-edge tech-

niques with the proposed ensemble model is shown in

Table 9.

7 Conclusion and future scope

A hybrid ensemble deep learning model is proposed for

classifying lower extremity movement. The proposed

hybrid ensemble model significantly improves the recall,

f1_score, accuracy, and precision values over the previ-

ously published state-of-the-art work. Our proposed hybrid

ensemble model provides an average accuracy of 98.8%,

precision of 98.8%, f1_score of 98.7% and recall of 98.7%.

In addition to the proposed hybrid ensemble model com-

prising CNN and LSTM models, this work has also stan-

dardised the data zero mean and unit variance that leads to

faster convergence of the models along with enhacing

model’s efficiency. The dataset was highly imbalanced,

and the previous works had not considered that aspect. An

imbalanced dataset may lead to discriminatory behaviour

by the model towards the majority class, and hence accu-

racy may not be the best metric to gauge the model’s

performance. We have handled the imbalanced dataset

problem using the adaptive synthetic oversampling algo-

rithm (ADASYN). Enhancing classification accuracy, our

suggested hybrid ensemble model beats all current cutting-

edge work, particularly for participants with knee

pathologies. For fit participants and participants with knee

disorders, our model had a mean classification accuracy of

98.8% and 98.4%, respectively. Additionally, the proposed

ensemble model has been also compared with CNN and

LSTM individually. And our results show that the proposed

hybrid ensemble models works better in catering both

temporal and spacial aspect of the data. Moreover, the

proposed work has also incorporated statistical tests like

the Friedman, Bonferroni-Dunn, and Wilcoxon tests to

compare our proposed model with all other competing

algorithms. All the statistical tests and performance metrics

Table 9 Comparison with related work

Parameters [38] [24] [25] [39] [12] Our model

Dealt with class imbalance No No No No No Yes

Human intervention in feature selection Yes Yes Yes Yes No No

Number of different features extracted 39 7 16 6 Data-driven feature extraction Data-driven feature extraction

Walking accuracy (%) 88 91.3 79.0 – 95.5 99.2

Sitting accuracy (%) 94 91.3 83.0 – 95 98.2

Standing accuracy (%) 92 90.8 83.0 – 95.3 98.5

Average accuracy (%) 91.3 91.1 81.6 85 95.2 98.6

Statistical comparison No No No No No Yes
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proved that our model is superior and significantly different

from all other competing algorithms discussed. None of the

previous works has standardised the data, handled the

imbalanced dataset problem, or compared their algorithms

statistically with previous state-of-the-art work. All the

points mentioned above have been addressed in the pro-

posed work. In the future, we intend to create a model that

can classify activities and predict joint angles. The pro-

posed model can also be validated using a larger dataset.

We will additionally employ TinyML to significantly

reduce the model’s complexity and make it more compu-

tationally efficient.

Acknowledgements This work was supported by the Ministry of

Education, Government of India, through the project HEFA CSR

under Grant SAN/CSR/08/2021-22. The authors would like to thank

the volunteers who have participated and contributed in preparation of

the dataset and also the creator of the dataset.

Author contributions P.T and V.B contributed to conceptualisation

and methodology; P.T contributed to software; P.T, V.B and S.J

contributed to validation and writing–original draft preparation and

review and editing; V.B and S.J supervised the study. All authors

have read and approved the final manuscript.

Funding The work is funded by Ministry of Education, Govt. of India

to Dr. Vijay Bhaskar Semwal under Higher Education Financing

Agency (HEFA) under CSR Grant with Sanctioned order no- SAN/

CSR/08/2021-22.

Data availability The dataset analysed during the current study are

available in the UCI Machine Learning repository, http://archive.ics.

uci.edu/ml/datasets/emg?dataset?in?lower?limb.

Declarations

Conflict of interest The authors state that they do not have any con-

flicts of interest.

Compliance with Ethical Standards All the ethical issues have been

taken care of while writing the manuscript, and we have complied

with all the standards to the best of our knowledge.

References

1. Kujala UM, Orava S, Parkkari J, Kaprio J, Sarna S (2003) Sports

career-related musculoskeletal injuries: long-term health effects

on former athletes. Sports Med 33:869–75

2. Kianifar R, Lee A, Raina S, Kulic D (2017) Automated assess-

ment of dynamic knee valgus and risk of knee injury during the

single leg squat. IEEE J Trans Eng Health Med 30(5):1–3

3. Dua Nidhi, Singh Shiva, Semwal Vijay, Challa Sravan (2022)

Inception inspired CNN-GRU hybrid network for human activity

recognition. Multimed Tools Appl 82:03

4. Anjali Gupta and Vijay Bhaskar Semwal (2022) Occluded gait

reconstruction in multi person gait environment using different

numerical methods. Multimed Tools Appl 81(16):23421–23448

5. Baker R (2006) Gait analysis methods in rehabilitation. J Neuro-

eng Rehabil 3(1):4

6. Muro-De-La-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A

(2014) Gait analysis methods: an overview of wearable and non-

wearable systems, highlighting clinical applications. Sensors

Basel Switz 14:3362–94

7. Semwal VB, Gaud N, Nandi GC. (2019) Human gait state pre-

diction using cellular automata and classification using elm. In

M. Tanveer and Ram Bilas Pachori, editors, Machine intelli-

gence and signal analysis, pp 135–145, Singapore, Springer

Singapore

8. Semwal VB, Gupta A, Lalwani P (2021) An optimized hybrid

deep learning model using ensemble learning approach for human

walking activities recognition. J Supercomput

77(11):12256–12279

9. Challa SK, Kumar A, Semwal VB (2021) A multibranch CNN-

BILSTM model for human activity recognition using wearable

sensor data. Vis Comput 38(12):4095–4109

10. Qiu Sen, Fan Tianqi, Jiang Junhan, Wang Zhelong, Wang

Yongzhen, Junnan Xu, Sun Tao, Jiang Nan (2023) A novel two-

level interactive action recognition model based on inertial data

fusion. Inform Sci 633:264–279

11. Del Din S, Godfrey A, Mazza C, Lord S, Rochester L. (2016)

Free-living monitoring of parkinson’s disease: lessons from the

field. Movement Disorders, 31, 06

12. Gautam Arvind, Panwar Madhuri, Biswas Dwaipayan, Acharyya

Amit (2020) Myonet: a transfer-learning-based LRCN for lower

limb movement recognition and knee joint angle prediction for

remote monitoring of rehabilitation progress from semg. IEEE J

Trans Eng Health Med 8:1–10

13. Khan IU, Afzal S, Lee JW (2022) Human activity recognition via

hybrid deep learning based model. Sensors 22(1):323

14. Krawczyk Bartosz (2016) Learning from imbalanced data: open

challenges and future directions. Prog Artif Intell 5:04

15. Rajesh KN, Dhuli R (2018) Classification of imbalanced ECG

beats using re-sampling techniques and AdaBoost ensemble

classifier. Biomed Signal Process Control 41:242–54

16. Nahar J, Imam T, Tickle KS, Ali AS, Chen YP (2012) Compu-

tational intelligence for microarray data and biomedical image

analysis for the early diagnosis of breast cancer. Expert Syst Appl

39(16):12371–7

17. Taft LM, Evans RS, Shyu CR, Egger MJ, Chawla N, Mitchell JA,

Thornton SN, Bray B, Varner M (2009) Countering imbalanced

datasets to improve adverse drug event predictive models in labor

and delivery. J Biomed Inform 42(2):356–364

18. He H, Bai Y, Garcia E, Li SA (2008) Adasyn: Adaptive synthetic

sampling approach for imbalanced learning. pp 1322 – 1328, 07

19. Nur Ghaniaviyanto Ramadhan (2021) Comparative analysis of

Adasyn-Svm and smote-Svm methods on the detection of type 2

diabetes mellitus. Sci J Inform 8(2):276–282

20. Jia Hairui, Chen Shuwei (2020) Integrated data and knowledge

driven methodology for human activity recognition. Inform Sci

536:409–430

21. Sekaran SR, Han PY, Yin OS (2023) Smartphone-based human

activity recognition using lightweight multiheaded temporal

convolutional network. Expert Syst Appl 227:120132

22. Han Chaolei, Zhang Lei, Tang Yin, Huang Wenbo, Min Fuhong,

He Jun (2022) Human activity recognition using wearable sensors

by heterogeneous convolutional neural networks. Expert Syst

Appl 198:116764

23. Roetenberg Daniel, Luinge Henk, Slycke Per (2009) Xsens mvn:

full 6dof human motion tracking using miniature inertial sensors.

Xsens Motion Technol BV Tech Rep 3:01

24. Naik GR, Selvan SE, Arjunan SP, Acharyya A, Kumar DK,

Ramanujam A, Nguyen HT (2018) An ICA-EBM-based sEMG

classifier for recognizing lower limb movements in individuals

with and without knee pathology. IEEE Trans Neural Syst

Rehabil Eng 26(3):675–86

Neural Computing and Applications (2024) 36:7373–7388 7387

123

http://archive.ics.uci.edu/ml/datasets/emg%2bdataset%2bin%2blower%2blimb
http://archive.ics.uci.edu/ml/datasets/emg%2bdataset%2bin%2blower%2blimb


25. Zhang Y, Xu P, Li P, Duan K, Wen Y, Yang Q, Zhang T, Yao D

(2017) Noise-assisted multivariate empirical mode decomposi-

tion for multichannel emg signals. Biomed Eng Online 16(1):107

26. Wang Xingjian, Dong Dengpeng, Chi Xiaokai, Wang Shaoping,

Miao Yinan, An Mailing, Gavrilov Alexander I (2021) SEMG-

based consecutive estimation of human lower limb movement by

using multi-branch neural network. Biomed Signal Process

Control 68:102781

27. Bansal H, Chinagundi B, Rana PS, Kumar N (2022) An ensemble

machine learning technique for detection of abnormalities in knee

movement sustainability. Sustainability 14(20):13464

28. Cai Shibo, Chen Dipei, Fan Bingfei, Mingyu Du, Bao Guanjun,

Li Gang (2023) Gait phases recognition based on lower limb

SEMG signals using lda-Pso-lstm algorithm. Biomed Signal

Process Control 80:104272

29. Juan Tu, Dai ZunXiang, Zhao Xiang, Huang Zijuan (2023) Lower

limb motion recognition based on surface electromyography.

Biomed Signal Process Control 81:104443

30. Venkatachalam K, Yang Z, Trojovsky P, Bacanin N, Deveci M,

Ding W (2023) Bimodal HAR-An efficient approach to human

activity analysis and recognition using bimodal hybrid classifiers.

Inform Sci 628:542–57

31. Sola J, Sevilla J (1997) Importance of input data normalization

for the application of neural networks to complex industrial

problems. IEEE Trans Nucl Sci 44(3):1464–8
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