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Abstract
Deep reinforcement learning has proven to be effective in various video games, such as Atari games, StarCraft II, Google

research football (GRF), and Dota II. We participated in the 2022 IEEE Conference on Games Football AI Competition

and ranked in the top eight. Despite recent efforts, building agents for GRF still suffers from multi-agent coordination,

sparse rewards, and stochastic environments. To address these issues and achieve good outcomes in the competition, we

devised a reinforcement learning algorithm that uses deep reinforcement learning from demonstrations and policy dis-

tillation. In this study, we innovatively propose a two-stage algorithm named mimic-to-counteract reinforcement learning

(MCRL) based on the historical game logs of opponents, we encountered during the warm-up session and formulated

partner agents function similarly to human sparring partners, whereby they simulate opponents with diverse styles of play,

enabling primary players to practice against a range of policies, they may encounter in real competitions. Additionally, we

trained numerous mentor agents capable of restraining the sparring partners. We distilled their policies and amalgamated

them to train a potent primary agent. Empirical results show that the proposed MCRL algorithm can efficiently search for

valuable strategies with stable updates and balance the relationship between policy iteration and policy style deviation.

Also, the primary agent can learn diverse but coordinated counteracting strategies and ranks in the top eight in the

competition.

Keywords Multi-agent reinforcement learning � Google research football � Wasserstein distance � Policy distillation

1 Introduction

Deep reinforcement learning (DRL) has proven to be

effective in various video games [1], such as Atari games

[2], StarCraft II [3], Google research football (GRF) [4],

and Dota II [5]. However, DRL systems still face chal-

lenges such as multi-agent coordination [6–8], sparse

rewards [9, 10], and stochastic environments. We partici-

pated in the 2022 IEEE Conference on Games Football AI

Competition and secured a fourth place ranking in the

warm-up session and advances to the top eight in the IEEE

Conference on Games 2022 Football AI Competition.

GRF is a reinforcement learning platform designed to

provide a realistic football game environment for

researchers and developers. The platform offers a new

reinforcement learning environment where agents are

trained to play football in an advanced, physics-based 3D

simulator [4]. GRF provides a highly customizable game

engine that allows users to modify various game rules and
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parameters, such as the number of agents controlled and

the number of agents controlled. The platform features

challenging AI opponents to compete against users and

provides various learning algorithms and benchmark tests

to evaluate the performance of different algorithms.

Table 1 contrasts GRF with some other popoular DRL

environments, illustrating its challenge. As shown in

Fig. 1, three types of observations are offered. The first

type consists of 1280 � 720 RGB images that correspond

to the displayed screen. The second type is the super mini-

map (SMM), which consists of four 72 � 96 matrices to

record current situational data. The third sort of observation

is the RAW observations, which encompass a dict that

encapsulates the up-to-date information pertaining to the

ongoing game. GRF is a powerful tool for reinforcement

learning research that can help researchers and developers

gain a better understanding of and solve various problems

in football games.

Despite recent efforts, building agents for GRF still

suffers from many difficulties [16–19]. First, the game

involves both cooperative and competitive players, which

results in a huge joint action space and the need to adapt to

various opponents. Second, the goal of the game is to

maximize the goal score, which requires a long sequence of

perfect decisions and is challenging to achieve from ran-

dom starting points. Third, the GRF introduces stochas-

ticity into the environment, which improves agent

robustness but also makes training more difficult by ren-

dering the outcomes of specific actions uncertain.

Leading up to the competition, we tried to train the

proposed agent using the self-play method and the league-

learning method used by AlphaStar [3]. However, due to

the sparsity of the reward in the GRF environment, the self-

play algorithm does not converge well. The league-learning

method also cannot perform properly because it is difficult

to obtain multiple playing styles of multi-agent football AIs

to form an opponent pool. This phenomenon occurs

because the IEEE Conference on Games 2022 Football AI

Competition is, to our knowledge, the first multi-agent

football AI competition in which all players, excluding

goalkeepers, are controlled.

To tackle the aforementioned issues and achieve

promising outcomes in the 2022 IEEE Conference on

Games Football AI Competition, we propose a two-stage

reinforcement learning algorithm called mimic-to-coun-

teract reinforcement learning (MCRL), which utilizes

opponent demonstrations and policy distillation. This

algorithm aims to counter the participating agents in the

competition and creates two distinctive agents: sparring

partner and primary agent. Drawing from the historical

game logs of opponents, we encountered during the warm-

up session, the sparring partner functions similar to human

sparring partners in certain sports teams, whereby they

simulate opponents with diverse styles of play, enabling

primary players to practice against a range of policies, they

may encounter in real competitions and thus improve their

skills more effectively. Additionally, we developed multi-

ple mentor agents, each with distinct strategies to counter

the sparring partner. Their policies were subsequently

distilled into a potent primary agent.

The key contributions of this paper are summarized as

follows:

• This study represents a pioneering effort in building a

policy distillation-based AI system that can take over

the multi-agent GRF full game.

• By innovatively introducing the Wasserstein distance

into the distributed PPO algorithm, MCRL can effi-

ciently search for valuable strategies with stable updates

and balance the relationship between policy iteration

and policy style deviation.

• Through extensive experimentation, we demonstrate

that MCRL outperforms existing algorithms in chal-

lenging GRF full-game scenarios.

The rest of the paper is structured as follows. Section 2

provides a brief overview of related work and preliminar-

ies. Section 3 describes the MCRL algorithm in detail,

including the sparring partner and primary agent architec-

ture, deep reinforcement learning from demonstrations

Table 1 Comparison of some

popular DRL benchmarks
Game Competitive? Multi-agent? Stochastic? Sparse reward? Game length

Overcooked [11] 7 4 7 7 Typically 102

Atari games [12] 7 7 7 Uncertain Typically 102

Go [13] 4 7 7 4 102

ProcGen [14] 7 7 4 7 102

Honor of Kings [15] 4 4 7 7 103

GRF 11v11 [4] 4 4 4 4 103

GRF 11v11 has an extended game length and presents two major challenges for agent training: sparse

rewards and a stochastic environment
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approach, and policy distillation technique. Section 4 pre-

sents the experimental setup and results of the MCRL in

the Google research football environment. In Sect. 4.3, we

conduct an ablation study to analyze the effects of our

MCRL algorithm and its variants on RLChina AI Ranking.

Finally, Sect. 5 discusses the limitations and future direc-

tions of our work.

2 Related work and preliminaries

2.1 Related work

2.1.1 Multi-agent reinforcement learning

Multi-agent reinforcement learning (MARL) [20] is a

thriving research area, attracting significant attention

within the machine learning community. In MARL

[21, 22], agents work together or compete in complex

environments, addressing challenges related to coordina-

tion and resource efficiency in multi-agent settings. The

most mainstream training paradigm in MARL is central-

ized training with decentralized execution (CTDE) [23].

MARL algorithms are broadly categorized into two

types: value-based algorithms and policy-based algorithms.

Value-based algorithms estimate joint action-values [24].

This allows for decentralized execution [25], where each

agent can independently select actions based on its indi-

vidual Q-values [26]. Policy-based algorithms learn indi-

vidual policies based on local observations and a

centralized value function.

Current research in MARL aims to enhance multi-agent

coordination and scalability, often through novel algorithm

variants. For instance, MACKRL [27] extends CTDE with

attention mechanisms to improve coordination. Population-

based training methods like PBT [28] tune hyperparame-

ters during training by exploiting mutations across a pop-

ulation of agents, improving scalability. EvoMARL [29]

combines PBT with evolution strategies for large-scale

MARL. Hierarchical frameworks decompose complex

multi-agent tasks into high-level goals and low-level

actions. HiPPO [30] learns goal-conditioned policies via

hierarchical policy optimization, enhancing scalability

across tasks. Transfer learning methods like ROMA [31]

pretrain robust MARL policies in varied environments and

then transfer to the target task, accelerating training.

MATL [32] enables transfer at both the agent policy and

execution levels. MAL [33] proposes a multi-agent locus

algorithm to dynamically adjust agent behavior modes

during training via an intrinsic reward, improving adapta-

tion. STRAT [34] learns joint strategies over groups of

agents via a consistency loss, enabling emergent team

coordination. Works like MAGNet [35] incorporate agent-

wise graph attention layers into policy networks, enhancing

representation learning. In this work, we propose a new

variant of MARL, which utilizes opponent demonstrations

and policy distillation to train agents that can counter

diverse opponent strategies in a multi-agent setting.

2.1.2 Deep reinforcement learning from demonstrations

Deep reinforcement learning from demonstrations (DfD) is

a research area that aims to accelerate and enhance the

training of DRL agents by leveraging expert or demon-

strator data [36]. In DfD, the actor–critic architecture plays

a pivotal role [37] which consists of two components: the

actor and the critic. The actor determines the agent’s

actions based on the current state, representing its policy.

The critic evaluates the quality of these actions by esti-

mating the expected cumulative reward [38].

DfD uses optimization techniques [39] to update the

policy and value networks iteratively, maximizing the

expected cumulative reward and facilitating efficient

learning. Trajectories [40] are sequences of states, actions,

and rewards that agents experience during interactions with

their environments. In DfD, demonstrations are considered

Fig. 1 Three types of observation in GRF. The first type consists of

1280 � 720 RGB images that correspond to the displayed screen. The

second type is the super mini-map (SMM), which consists of four 72

� 96 matrices to record current situational data. The third sort of

observation is the RAW observations, which encompass a dict that

encapsulates the up-to-date information pertaining to the ongoing

game
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expert trajectories, providing valuable references for the

agent’s trajectory generation [41].

The current research in DfD focuses on refining tech-

niques, such as reward shaping, imitation learning, and

meta-learning [36], to seamlessly integrate demonstration

data into DRL training. DDPGfD proposes a novel two-

stage learning framework to identify an optimal restoration

strategy which builds on the deep deterministic policy

gradient from demonstrations [42]. CSGP proposes a

closed-loop safe grasp planning approach via attention-

based DRL from demonstrations [43]. We design a new

DfD method which tilizes opponent demonstrations to

learn how to counter their strategies, rather than acceler-

ating the training of agents with the same objectives as

experts from expert demonstrations.

2.1.3 AI for football games

Football environments are crucial for AI research, blending

multiple challenges such as control, strategy, cooperation,

and competition. Various simulators beyond GRF have

been introduced, including rSoccer [44] and JiDi Olympics

Football [17]. These platforms offer basic environments

where players, depicted as rigid bodies, perform limited

actions such as moving or pushing the ball. On the other

hand, GRF expands the action space to include additional

mechanics such as slide-tackling and sprinting.

Other platforms such as the RoboCup Soccer Simulator

[45, 46] and DeepMind MuJoCo Multi-Agent Soccer

Environment [47] prioritize low-level robotic control,

necessitating intricate manipulation of a player’s joints. In

contrast, GRF simplifies this, allowing agents to focus on

honing advanced behaviors and strategies. A 2020 com-

petition in the GRF environment on Kaggle drew over a

thousand teams. Participants were tasked with creating an

agent to control a single player, while a built-in AI man-

aged the teammates.

The winning team, WeKick [48], employed imitation

learning and distributed league training. Unlike this

arrangement, our system ambitiously undertakes the con-

trol of all 10 outfield players simultaneously in a decen-

tralized manner. The only preceding work with a similar

goal, TiKick [16], utilized a demonstration dataset from

WeKick and offline RL techniques for agent training.

TiZero [17], a modified version of TiKick, employs self-

play for training agents without the need for demonstration

data. In this work, we propose MCRL, a novel two-stage

MARL algorithm for GRF. MCRL distinctively employs

opponent demonstrations to create diverse sparring part-

ners, enhancing primary agents’ adaptability. Additionally,

it integrates the Wasserstein distance into the PPO algo-

rithm, ensuring efficient strategy updates and a balance

between policy iteration and style deviation.

2.2 Preliminaries

2.3 Reinforcement learning

MARL involves learning how to make decisions in a

decentralized and partially observable environment. This

type of learning is often formalized as decentralized par-

tially observable Markov decision processes (Dec-

POMDPs) [49]. In this framework, agents work together to

select joint actions that maximize the expected cumulative

reward over time. The Dec-POMDP is defined as a tuple

ðN ; S;A;P; r;O;G; cÞ, whereN � f1; . . .; ng is the set of n
agents, S is the state space, A is the action space, rðs; aÞ is
the global reward function, O is the observation space, and

c 2 ½0; 1Þ is the discount factor. At each time step, each

agent i 2 N receives an observation o 2 O according to the

observation function G(s, i) and selects an action ai 2 A to

form a joint action a. The environment then transitions to a

new state s0 based on the transition function P s0 j s; að Þ.
Each agent only has access to its own local observations

oi1:t and uses a policy function pi ai j oi1:t
� �

to decide what

action to take. A trajectory si ¼ s1; o
i
1; a

i
1; . . .

� �
for agent

i 2 N is a sequence of states, observations, and actions.

For multi-agent scenarios, the joint trajectory comprises

individual agent trajectories. The optimization objective of

MARL is to learn a joint policy p that maximizes the

expected cumulative reward Est ;at
P

t c
tr st; atð Þ

� �
over time.

In this work, we follow the standard actor–critic

framework. The actor, denoted as pðajs; hÞ, defines the

policy, mapping states s to actions a using parameters h.
The critic, Vðs;/Þ, estimates the expected return from state

s with parameters /. The actor’s objective function is given
by JðhÞ ¼ Epðajs;hÞ

P
t c

tr st; atð Þ
� �

, and the critic’s temporal-

difference error is represented as

dt ¼ rt þ cVðstþ1;/Þ � Vðst;/Þ. Using these, the actor–

critic framework adjusts h and / to optimize the policy and

value function, respectively.

2.4 Learning from opponent demonstrations

In this work, we apply DfD to train the sparring partners.

Rather than leveraging expert demonstrations to accelerate

and guide the learning process [50–53], we leverage

opponent demonstrations to learn how to counter their

strategies. Given opponent trajectories D ¼ ðst; atÞf gnt¼1, a

policy p is initialized via minh Eðst ;atÞ�D L pð�jst; hÞ; atð Þ½ �;
to mimic the policy demonstrated in D. Various f -diver-

gences [54, 55] and mean square error can be used to

measure the loss. In this work, we make

L pð�jst; hÞ; atð Þ ¼ 1
T

PT
t¼0 pð�jst; hÞ � at½ �2. Post-
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initialization, p is refined using DRL by maximizing the

expected cumulative reward Est ;at
P

t c
tr st; atð Þ

� �
over time.

To ensuring efficient strategy updates and a balance

between policy iteration and style deviation, it is necessary

to introduce a regularization term to measure the difference

between the original policy and the updated policy. Fol-

lowing WDAIL [56], we use Wasserstein distance [57, 58]

to weight the discrepancy of trajectory distribution between

the policy p and the expert policy l. The distance is for-

mulated as follows:

LWD ¼ sup
kfkL¼1

Ex2sp ½f ðxÞ� � Ey2sl ½f ðyÞ�
� �

ð1Þ

The Lipschitz function f, used to measure the disparity

between the two distributions sp and sl, should be

restrained by the 1-Lipschitz condition kfkL ¼ 1. In prac-

tice, the weight clipping and gradient penalty are the

effective methods for enforcing the L1-Wasserstein dis-

tance satisfying the 1-Lipschitz constraint.

2.5 Policy distillation

Policy distillation was first presented at the International

Conference on Learning Representations as a novel method

[59, 60] to extract the policy of a reinforcement learning

agent and train a new network that performs at the expert

level while being dramatically smaller and more efficient

[61]. In this work, we apply this algorithm to distill the

policies of the mentors into the primary agent. In the actor–

critic framework of policy distillation, the actor of the

mentor model, denoted as pmentorðajs; hÞ, dictates the policy
or action selection, and the critic of the mentor model,

represented as Vmentorðs;/Þ, estimates the value or advan-

tage of such actions, with h and / being the respective

parameters. Analogously, the student model has an actor

pstudentðajs; h0Þ and a critic Vstudentðs;/0Þ with parameters h0

and /0. Typically, the f -divergence,

Df pmentorð�js; hÞjjpstudentð�js; h0Þð Þ is employed for the actors

[62]. Simultaneously, for the critics, a mean squared error

ðVmentorðs;/Þ � Vstudentðs;/0ÞÞ2 elucidates the difference

[15]. To amalgamate these, the composite loss is delineated

as follows:

Ldistill ¼ Es Df pmentorð�js; hÞjjpstudentð�js; h0Þð Þ
�

þk
1

2
ðVmentorðs;/Þ � Vstudentðs;/0ÞÞ2

� ð2Þ

here k is a scalar weight adjudicating the trade-off between

actor and critic losses. In this paper, following WDAIL

[56], we innovatively employ the Wasserstein distance

[57, 58] as a yardstick, heralding a paradigm shift in dis-

cerning the nuances between the mentor and student actors.

The composite loss is renewed as follows:

Ldistill ¼ Es sup
kfkL¼1

Ex2spmentor
½f ðxÞ� � Ey2spstudent ½f ðyÞ�

n o
"

þk
1

2
ðVmentorðs;/Þ � Vstudentðs;/0ÞÞ2

# ð3Þ

3 Methodology

3.1 Overview of MCRL

3.1.1 Two distinctive agents

The objective of the IEEE Conference on Games 2022

Football AI Competition is to score more goals than the

opposition. Therefore, the proposed multi-agent football AI

must be able to manage opponents with various policies.

For example, if an opponent is running away from the

proposed player during a chase or face-off, it must be able

to predict that this player may be looking for space to

receive a pass from a teammate and then quickly intercept

the ball before it enters open space [16, 17].

Leading up to the competition, we assumed that if the

proposed multi-agent football AI is trained through self-

play, it will become self-improving through trial and error.

However, empirically, the outcomes of self-play using the

MAPPO algorithm were unsatisfactory [63, 64], which we

hypothesize and may result from the sparsity of reward in

the GRF environment. Thus, we used the league-learning

method used by AlphaStar [3]. However, in the IEEE

Conference on Games 2022 Football AI Competition, the

league-learning method was challenging because it was

difficult to obtain multiple playing styles of multi-agent

football AIs to directly train the proposed agent. This issue

occurred because the IEEE Conference on Games 2022

Football AI Competition is, to our knowledge, the first

multi-agent football AI competition in which all players,

excluding goalkeepers, are controlled.

Therefore, in MCRL, multiple single-agent football AIs

(henceforth referred to as the sparring partner) are intro-

duced, aiming to simulate opponents with various policies

that we may face in real competitions. The partners were

trained from opponent demonstrations as mentioned in

Sect. 2.2, whose strategic styles were similar to those of the

opponents we encountered in the IEEE Conference on

Games 2022 Football AI Competition warm-up session,

and to achieve a counter-policy effect, these sparring

partners were used to train a multi-agent football AI

(henceforth referred to as the primary agent), which will

learn to counter these partners’ strategies as the training

advances.
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3.1.2 Two stages of MCRL

TheMCRLmethodology unfolds in two pivotal stages, each

contributing to the robust training of multi-agent football AI,

ensuring that it is well-equipped to counter diverse opponent

strategies encountered in competitions such as the IEEE

Conference on Games 2022 Football AI Competition.

In the first stage, partners are meticulously trained uti-

lizing opponent demonstrations. This approach ensures the

assimilation of diverse strategic styles akin to those

encountered in formal competitions. The incorporation of

the Wasserstein distance and PPO-Clip loss within the

training paradigm guarantees the retention of policy style

while enabling effective policy iteration and updates. This

stage lays the foundational groundwork, preparing the

agents with a comprehensive understanding and adaptation

to varied strategic approaches.

The second stage embarks on the training of the primary

agent, leveraging the competencies and insights garnered

from the trained partners in the initial stage. Engaging in

self-play with these partners, the mentor agents undergo a

rigorous learning process, honing its ability to adeptly

counteract policy styles of partner. The employment of

policy distillation further augments this learning phase,

with mentor agents guiding the primary agent to seamlessly

adapt to multifaceted opponent strategies, ensuring its

preparedness and agility in formal competition scenarios.

3.2 Sparring partner training

3.2.1 Observation and model design

Creating observations is the initial stage in developing a

DRL model. Initially, the GRF environment offered three

types of observations. The first type consists of 1280 � 720

RGB images that correspond to the screen shown. The

second type is the super mini-map (SMM), which consists

of four 72 � 96 matrices to record current situational data.

The third type of observation is the RAW observations,

which encompass a dict that encapsulates the up-to-date

information pertaining to the ongoing game. There are two

variations of the 115-dimensional vector representation

that describes all the state information. To extract the

hidden features, the pixel-level and SMM representations

require increasingly complex depth models. Even using the

lightweight MobileNetV2 [65, 66] for feature extraction,

the real results showed that the model’s training pace and

memory consumption were inadequate. Therefore, the

input of the proposed deep model was RAW observations.

To extract hidden characteristics from the original input,

we constructed an actor and critic network with shared

parameters comprising five fully connected layers, one

convolutional layer, and a layer of LSTM [67–69]. An

overview of the model architecture is shown in Fig. 2.

Except for the final output layer, which uses softmax, all

hidden layers are followed by a ReLu. Similar to open AI’s

baseline and MAPPO [63, 64], the learning rate during

training is set to 1e� 5 and is fixed during training. The

network parameters were initialized using an orthogonal

matrix [70] and updated using the Adam optimizer [71].

3.2.2 Training partners from opponent demonstrations

The first stage of MCRL is training partners from opponent

demonstrations which adheres to the classical actor–critic

framework as mentioned in Sect. 2.2, where the actor

network and the critic network are analogous to the con-

testant and the judge, respectively. The actor network

infers the action distribution based on the current state,

while the critic network outputs the value of that state

under the current policy. The procedure of the first stage of

MCRL is shown in Fig. 3.

The historical game logs of multi-style opponents we

encountered during the warm-up session at the IEEE

Conference on Games 2022 Football AI Competition

constitute the training data Dp � fD1
p; . . .;D

i
pg for the

multi-style pre-trained model. And historical game logs

with the ith policy style are represented by a sequence of

state–action pairs of length n:

Di
p ¼ sit; a

i
t

� �� �n
t¼1

; ð4Þ

These game logs, which are in the form of dump files,

provide information about the actions taken by each player,

the state of the game at each time step, and any relevant

metadata, which can be used to train the pre-trained model

through the extraction and labeling of relevant features.

Our primary goal was to train a parameterized pre-trained

policy liwð� j sÞ that mimicked the implicit policy in the i-th

data, where w as a pre-trained policy parameter and is

updated using the mean squared error loss, computed only

on the demonstration examples for training the actor:

Lpre�trained ¼
1

Di
p

			
			T

X

s2Di
p

XT

t¼0

lw � j sit
� �

� ait
� �2

; ð5Þ

This loss is a standard component in imitation learning. For

actions, we apply an action mask to the pre-trained policy

liwð� j sÞ, preventing it from selecting built-in action (action

19), which is generated by the built-in agent of the GRF

environment and retrieved via rule-based strategies. All

non-designated players are assigned to built-in action (ac-

tion 19). The built-in action is solely used to create partners;

it was not used in the production of the primary agent.

The weights of pre-trained policy liwð� j sÞ were utilized
for the initialization of the actor model pihð� j sÞ, which can
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be used to expedite the training of sparring partners and

imbue them with similar policy styles to those of the pro-

posed opponents. These multi-style partners will be used to

teach the primary agent, which will learn how to counter

these opponents’ policies as the training advances.

Actor–critic framework-based single-agent sparring

partner training requires obtaining a parameterized policy

pihð� j sÞ and a parameterized value function Vi
/ðsÞ. h can be

updated by the PPO-Clip loss:

LPPO�Clip ¼
1

Di
k

		 		T

X

s2Di
k

XT

t¼0

min
pih � j sit
� �

pihk � j sit
� �Apihk

 

;

clip
pih � j sit
� �

pihk � j sit
� � ; 1� e; 1þ e

 !

A
pihk

!

ð6Þ

where training sample Di
k is generalized by running policy

pihk in the GRF environment. GAE was used to estimate the

advantage function A
pihk , with the discount factor c set to

0.993 and the parameter k set to 0.96. We empirically show

that the style of the policy pihð� j sÞ updated by the PPO-

Clip loss differs from the pre-trained policy liwð� j sÞ con-
tained in the pretrained model. This process influences the

counter-policy effect of the primary agent.

In this work, we employ the Wasserstein distance, as

opposed to the frequently utilized f-divergence, as a reg-

ularization term within this algorithm. Given that it is more

customary to employ gradient descent instead of ascent in

machine learning, by interchanging the variables x and y in

Eq. (1), we derive the result denoted as follows:

LWD ¼ inf
kfkL¼1

Ey2sl ½f ðyÞ� � Ex2sp ½f ðxÞ�
� �

¼ inf Ekdðx; yÞk1
¼ inf

c2P½sp;sl�
Eðx�yÞ2cðx�yÞkdðx� yÞk

ð7Þ

Furthermore, LWD can be reformulated in the form of the

cumulative distribution functions of probability distribu-

tions in the following equation:

LWD ¼ inf
c2P½sp;sl�

Z
jx� yjdcðx� yÞ ð8Þ

where x and y are random variables from policy distribu-

tion sp and expert distribution sl, respectively, and c
denotes the joint distribution. We replace the integral

infc2P½sp;sl�
R
jx� yjdcðx� yÞ with a sum over discrete

points

inf
c2P pihð�js

i
tÞ;liwð�js

i
tÞ

� �
X

x;y

cðx; yÞkx� yk:

The Wasserstein distance LWD of pih and liw can then be

expressed as follows:

LWD ¼ 1

Di
k

		 		T

X

s2Di
k

XT

t¼0

inf
c2P pihð�js

i
tÞ;liwð�js

i
tÞ

� �
X

x;y

cðx; yÞkx� yk;

ð9Þ

where pihð� j sitÞ and liwð� j sitÞ are policies denoting the

conditional action probabilities for state sit, with h and w as

their respective parameter sets.
P

x;y cðx; yÞkx� yk quan-

tifies the Wasserstein distance between two policy action

distributions in a trajectory s, reflecting their dissimilarity

in a latent space. inf
c2P pihð�js

i
tÞ;liwð�js

i
tÞ

� � finds the distribution c

that minimizes the Wasserstein distance between policies

pihð� j sÞ and liwð� j sÞ for each time step t, opponent policy

style i, and trajectory s.
The final actor training loss is the combination of the

PPO-Clip loss and the type-1 Wasserstein distance of pihð� j
sÞ and liwð� j sÞ:

Lactor ¼ LPPO�Clip þ gLWD; ð10Þ

where g is a distance balancing coefficient. Lactor forces the

values of the other actions to be at least a margin lower

than the value of the demonstrator’s action. Adding LWD

grounds the values of the unseen actions to reasonable

values and makes the greedy policy induced by the value

function imitate the demonstrator. The parameter / of

Vi
/ðsÞ is updated by the mean squared error loss:

Fig. 2 Overview of the

proposed model architecture
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Lcritic ¼
1

Di
k

		 		T

X

s2Di
k

XT

t¼0

Vi
/ sit
� �

� Ri
t


 �2
: ð11Þ

Initialized with the parameters of the pre-trained model, the

single-agent sparring partner was trained via a self-play

approach, which started training through the experiences

from the matches against itself. The models were saved

every 15,000,000 time steps, and these saved models form

a pool of opponents. The opponents are then sampled from

the pool. Fifty percent of the opponents come from the 20

most recent models, and the rest come from a uniform

random sampling of the entire pool. In the end, approxi-

mately 380 agents were in the pool. The training procedure

of the MCRL is summarized in Algorithm 1. In the next

section, the training method of our primary agent with the

counter-policy effect will be introduced.

Algorithm 1 MCRL

3.3 Primary agent training

3.3.1 Primary agent training with league learning

One baseline method for training game AI is league

learning [3], which was proposed by the Tencent AI Lab in

2021 in the form of WeKick. JueWu is a strategy cooper-

ative AI developed jointly by the Tencent AI Lab and

Honor of Kings, and the WeKick version was obtained

through the transfer of the complete JueWu body and tar-

geted adjustments for the football task. WeKick partici-

pated in the first Google Football Kaggle competition, and

in this world-class AI football competition, WeKick

defeated 1138 outstanding teams with an absolute advan-

tage of 1785.8 points to win the championship. In this

work, we developed a primary agent using this baseline

algorithm and compared its performance to an agent

trained by MCRL. We constructed a league (multiple
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policy pool) comprising sparring partners and the historical

iterations of the primary agent and trained the primary

agent based on this league. The process is shown in Fig. 4.

The stylized sparring partner agents focus on one

specific playing style, while the primary agent not only

faces its historical versions but also regularly includes

stylized sparring partner agents as opponents to ensure that

the primary agent can adapt to opponents with completely

different styles and achieve good results in competitions.

3.3.2 Primary agent training using MCRL

The second stage of MCRL is training primary agent using

policy distillation. To achieve the desired counter-policy

effect, the primary agent’s learning must be guided by a

paradigm. The concept of policy distillation [61, 73] for

multiple tasks motivated us to distill the knowledge of

n single-task networks. The student network selects data in

a different buffer in each episode for learning, which is

more efficient than allowing the student network to directly

learn in a multitasking environment. As shown in Fig. 5,

we performed the policy distillation mentioned in Sect. 2.2

based on each partner’s policy style. Firstly, the mentor

agents are trained to counteract the sparring partners. We

placed the partners into the opponent pool of these mentor

agents. To prevent overspecialization and maintain funda-

mental abilities, we also regularly treat historical versions

of the model as adversaries during the training process.

After 13 million timesteps, mentors can effectively coun-

teract opponents with specific policy styles, but they are

unable to cope with variations in policies.

Then, we distilled n counter-policies acquired by men-

tors against opponents of a specific policy style. Training

the primary agent with samples in a meaningful sequence

instills the primary agent with the mentor’s knowledge and

adapts it to opponents with completely different styles, thus

achieving the counter-policy effect. Distillation is a

supervised process based on the loss function in Eq. (12):

Ldistill ¼
1

Di
m

		 		T

X

mentori

X

s2Di
m

XT

t¼0

Lph0 þ kLV/0

h i
: ð12Þ

Equation (12) is another form of Eq. (3), utilized for dis-

cerning the nuances between the mentor and the student,

where k is a scalar weight adjudicating the trade-off between
losses. Following Eq. (3), we can know

thatLV/0 ¼ 1
2
Vi
x0 stð Þ � V/0 stð Þ

� �2
. And through algebraic

manipulations analogous to those from Eq. (7) to Eq. (9), we

can derive that Lph0 ¼ inf
c2P li

w0 ;ph0

h iP
x;y cðx; yÞkx� yk.

Fig. 3 The procedure of the first stage of MCRL. This procedure is

derived from the SEED RL [72], with the weights of the pre-trained

model utilized for the initialization of the actor model, and the

Wasserstein distance between the action distributions output by the

pre-trained model and the actor model is employed to ensure efficient

strategy updates and a balance between policy iteration and style

deviation. See Fig. 2 for a thorough architecture of the actor–critic

model

Fig. 4 Overview of the league-learning framework

Fig. 5 Overview of the

workflow for training the

primary agent using MCRL
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The training sample Di
m is generalized by running the i-th

mentor agents in the GRF environment, where liw0 and Vi
x0

are the actor and critic networks of the i-th mentor, and ph0
and V/0 refer to the actor and critic networks of the primary

agent, respectively. The training procedure of the MCRL is

summarized in Algorithm 1.

4 Experiment

4.1 Evaluation of sparring partner

In the first stage of MCRL, we developed a number of

multi-style single-agent football AIs (partners) that possess

similar policy styles to the opponents, we encountered in

the IEEE Conference on Games 2022 Football AI Com-

petition warm-up session. We thus simulate opponents with

various policies that we may face in real competition

within the multi-agent game environment of GRF. To

avoid stark differences in policy style between the partners

and the pre-trained agents, the Wasserstein distance of

phðat j stÞ and lwðat j stÞ was introduced into the loss

function. In this section, we demonstrate and explain the

effectiveness of the sparring partners in maintaining policy

style in the challenging scenario of the GRF 11v11 full

game rather than example scenarios. In these experiments,

partners were initialized with the pre-trained model

parameters and iterated 4,201,530 timesteps using MCRL.

Figure 6 shows the heatmaps of the partner trained using

MCRL at the initialization state and after 1 million and 3

million timesteps. After 4 million timesteps using MCRL,

the partner’s winning rate and reward against the hard

built-in AI were markedly improved, and its heatmap was

similar to that of the pre-trained agent. Introducing the

Wasserstein distance allowed the partner to retain policy

style similar to that of the pre-trained agent. Experimental

results thus demonstrate that MCRL can efficiently search

for valuable strategies with stable updates and balance the

relationship between policy iteration and policy style

deviation by introducing the Wasserstein distance into the

distributed PPO algorithm.

4.2 Evaluation of primary agent

In this section, we consider the challenging GRF 11v11

full-game scenario (rather than toy scenarios) to validate

the effectiveness of the proposed methods. We compare the

proposed method against the self-play method, the league-

learning method, and the method of playing against rule-

based agents. The mean and variance of the performances

of each method are presented using three random seeds.

4.2.1 RLChina AI ranking list

The official website of the RLChina community is an open

platform that contains rich resources and content [74]. The

website provides abundant literature about reinforcement

learning, including the latest research progress, academic

lectures, technical articles, code practices, and practical

cases, which are suitable for both beginners to quickly

obtain started and professionals to meet their in-depth

academic needs.

On the website, users can read a lot of content about

reinforcement learning, including research papers, techni-

cal articles, and industrial cases, to understand the latest

research progress and application scenarios. Users can also

participate in online activities, technical exchanges,

express personal opinions and experiences, and communi-

cate and discuss with other users.

In addition, the RLChina community provides open-

source reinforcement learning code libraries and examples,

as well as an open online algorithm competition platform

named Jidi [75], which provides users with many choices

of environments, high-quality competitions, real-time

Fig. 6 Performance of the sparring partners in the
GRF_11v11_Stochastic scenario. The weights of the pre-trained

agent were utilized for the initialization (0 mil) of the sparring

partners. The win rate and reward are evaluated via versus the built-in

hard AI of GRF, while the heatmaps are generated via versus the

built-in random AI of GRF
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discussions, and fair algorithm rankings. The platform

primarily offers five user functions:

• Jinbang (Ranking List) provides classification rankings

of algorithms in different environments, as well as

overall rankings, in real time. Users can view the

dynamic ranking of their submitted algorithms, replay

gameplays, and access detailed information in this

study.

• Kemou (Subject) provides different intelligent agent

environments for users to select and participate by

submitting algorithms. Algorithm submissions in sub-

jects are evaluated in real time and displayed in Jinbang

(Ranking List).

• Miji (Algorithm) provides commonly used and popular

intelligent agent algorithms, as well as detailed expla-

nations of how each algorithm works and how it can be

reproduced in applicable environments.

Fig. 7 Football_11v11_Stochastic subject on the Jidi platform by

RLChina. This subject uses the same scenario as the IEEE Conference

on Games 2022 Football AI Competition, which features a ranking

list at the bottom right corner displaying the Elo scores and rankings

of participating agents. The proposed agent achieved an Elo score of

4.00 and ranked 4/361 on the ranking list

Fig. 8 Comparison of the primary agent against baseline methods on

RLChina_AI_Ranking. We save the model every 1 million timesteps

and submit it to the ranking list for evaluation, which involves a 72-h

testing period consisting of 20 game matches, and record the final Elo

rating

Neural Computing and Applications (2024) 36:7203–7219 7213

123



• Leitai (Arena) offers high-quality competitions that

users can join based on their interests and obtain

corresponding rewards.

• Lundao (Discussions) is a real-time communication

platform where users can post topics for discussion,

share experiences, and find like-minded individuals.

The Jidi platform by RLChina serves as the official plat-

form for the IEEE Conference on Games 2022 Football AI

Competition [75], showcasing an AI ranking list that aligns

with the competition’s scenario, as shown in Fig. 7.

The proposed method is evaluated using two bench-

marks: the Football AI Ranking List by RLChina [74]

shown in Fig. 8, and the challenging 11v11 stochastic

Fig. 9 Comparison of the performance of the primary agent against baseline methods on the GRF_11v11_Stochastic scenario against easy,

medium, and hard built-in AI. Left. The winning rates. Right. The unshaped rewards

7214 Neural Computing and Applications (2024) 36:7203–7219

123



scenario of GRF shown in Fig. 9. The proposed method

ranks fourth on the Football AI Ranking List by RLChina

and advances to the top eight in the IEEE Conference on

Games 2022 Football AI Competition. In the experimental

scenario, the agents must coordinate their time and posi-

tioning to organize an attack, seize a brief opportunity, and

only receive a reward when scoring a goal. In the experi-

ments, we control all players except the goalkeeper of one

side, and the other side player is controlled by the GRF

game engine. The agent has a discrete action space of 19

actions, including moving in eight directions, sliding,

shooting, and passing. The observation includes the posi-

tions and movement directions of the self-agent, other

agents, and the ball. The z-coordinate of the ball is also

included.

4.2.2 Results and analysis

This article uses MCRL in conjunction with three baseline

methods (the self-play method, the league-learning

method, and the method of playing against rule-based

agents) to compare and assess the winning rate and

unshaped rewards (i.e., number of goals) against the easy,

medium, and hard built-in AI of the GRF 11v11 stochastic

scenario. The four methods had each been trained for 13

million timesteps. Each method is tested three times, with

each test consisting of 540 games.

In Figs. 8 and 9, we compare MCRL with the baseline

methods. MCRL outperforms the three baseline methods,

and the outcomes of the self-play method using the

MAPPO algorithm are suboptimal. Even after 13 million

iterations, there is no marked improvement in the agent’s

performance, which we believe is due to the sparsity of

rewards. The league-learning method seems to successfully

teach the agent a strategy against the entire league at the 8

millionth iteration but does not sustain it in subsequent

iterations. The method of playing against rule-based agents

requires more time to explore complex strategies. In con-

trast, the proposed method shows good pertinence to the

Football AI Ranking List by RLChina. By distillation of

Table 2 Ablation studies of the MCRL in RLChina_AI_Ranking

Method Rate Score

Win Draw Fail Goal Elo

MCRL-npd 0.65 0.10 0.25 1.0 �0.70

MCRL-np 0.25 0.30 0.45 1.8 �0.65

MCRL-nd 0.40 0.30 0.30 2.1 1.45

MCRL 0.90 0.10 0.00 4.8 4.80

Ablation studies of MCRL which shows a good pertinence to

RLChina_AI_Ranking and its three variants. Each evaluation involves

a 72-h testing period consisting of 20 game matches, and the average

winning rate, draw rate, failure rate, number of goals, and the final Elo

are recorded

Fig. 10 Ablation studies of the

MCRL and its three variants on

challenging

GRF_11v11_Stochastic
scenarios against easy, medium,

and hard built-in AI. Each

evaluation involves a 72-h

testing period consisting of 20

game matches, and the average

winning rate and the unshaped

reward are recorded
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each mentors’ strategy, the proposed method has learned

diverse but coordinated counteracting strategies.

As depicted in Fig. 9, a discernible observation is made

regarding the performance of various methods under the

GRF 11v11 stochastic scenario. When competing against

an easy built-in AI, the MCRL demonstrates a convergence

rate analogous to the other three baseline methodologies.

This parity in performance, however, deviates in a scenario

against a medium built-in AI. Here, both MCRL and self-

play achieve convergence at 8 million timesteps. Contrar-

ily, league-learning is ensnared in a local optimum, and

versus built-in fails to exhibit convergence. The scenario is

further intensified against a hard built-in AI. Within the

span of 13 million timesteps, all four methodologies remain

non-convergent. Despite this, MCRL stands out, show-

casing superior performance in both win rate and accrued

rewards, underscoring its convergence efficacy in more

challenging contexts.

4.3 Ablation study

MCRL trained diverse but coordinated counteracting

strategies for partners trained via the PTL method. In this

section, we analyze their effects through an ablation study.

From MCRL, we derive four variants, MCRL-npd, MCRL-

np, and MCRL-nd. MCRL-npd abandons partners and

policy distillation and makes the primary agent directly

compete with pre-trained agents of partners. MCRL-np

does not employ the second stage, bearing similarity to

league-learning, which makes the primary agent directly

compete with partners trained via the first stage of MCRL.

MCRL-nd abandons the first stage but retains the second

stage, where the mentors are trained to counteract pre-

trained partner agents. Then, using policy distillation with

mentor models, it distills the counter-policies acquired by

the mentors into the primary agent. We compare the per-

formance of MCRL with these three variants on two

benchmarks, the Football AI Ranking List by RLChina

[74] and the challenging 11v11 stochastic scenario of GRF

[4]. The evaluation results are reported in Table 2 and

Fig. 10.

We first conduct ablation studies on the RLChina AI

Ranking List to analyze which of the proposed novelties

led to better performance, as shown in Table 1. Ablating

each component of the MCRL results in a marked decrease

in performance. Among them, the ablation of the second

stage, which is policy distillation, has the least impact on

performance. MCRL-np performs the worst, indicating that

training the primary agent against weaker opponents can

actually harm the coordination of the primary agent’s own

strategy. MCRL-npd shows a promising winning rate, but

its average goal difference per game is poor, which affects

the final Elo rating, which suggests that although training

the primary agent to play against the coach agent can lead

to learning coordinated strategies, it may not effectively

counter the entire league.

We also conduct ablation studies on the challenging

GRF 11v11 stochastic scenario. In the matches against all

difficulty levels of built-in AI, MCRL generally outper-

forms these three variants. In matches against medium and

hard difficulty levels of built-in AI, both MCRL-np and

MCRL-npd achieve lower average winning rates and goal

scores, with large standard deviations in both metrics,

indicating that their competitiveness is highly unstable.

These results suggest that applying the MCRL can more

effectively improve the performance of the primary agent.

MCRL-nd achieves promising results; however, these

results are still inferior to those of MCRL, which demon-

strates the effectiveness of the policy distillation method.

5 Conclusion

In this paper, we propose a novel two stage reinforcement

learning algorithm named MCRL. This algorithm aims to

counter participating agents in the competition and creates

two distinctive agents: sparring partner and primary agent.

We applied the MCRL based on the historical game logs of

opponents, we encountered during the warm-up session

and formulated sparring partner functions similarly to

human sparring partners to simulate opponents with diverse

styles of policy, enabling primary players to practice

against a range of policies, they may encounter in real

competitions and thus improve their skills more effectively.

Also, we generated multiple counter-policies, distills them,

and amalgamates them to form a potent primary agent.

Empirical results show that the proposed MCRL algorithm

can efficiently search for valuable strategies with

stable updates and balance the relationship between policy

iteration and policy style deviation by introducing the

Wasserstein distance into the distributed PPO algorithm.

The proposed primary agent can also learn diverse but

coordinated counteracting strategies and ranks in the top

eight in the competition.

The MCRL algorithm demonstrates excellent targeting

for the league, which could be applied in the future to

enhance the league-learning algorithm employed by

AlphaStar [3]. During AlphaStar’s training, there are three

types of opponent pools (main agents, league exploiters,

and primary exploiters), with league exploiters being used

to compete with the league. We speculate that the MCRL

algorithm can train better-performing league exploiters.

Therefore, in the future work, we plan to use the proposed

approach to improve the league-learning algorithm.
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