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Abstract
Triangular fuzzy numbers (TFNs) are widely used for selection problems to determine expert opinions using linguistic

expressions. Some aggregation procedures are developed to determine expert opinions more accurately. However, there is

a need for a simple and more useful procedure to solve the selection problems more suitably. For this purpose, our study

offers a triangular, exparabolic, and parabolic area calculation-based approximation approach for TFNs to aggregate the

possible hedges (very and more or less) for TFNs. Hence, this aggregation procedure provides a tuning opportunity for

classical TFN expressions to capture possible tuning processes to reflect the hesitancies of experts. The technique for order

preferences by similarity to ideal solution (TOPSIS) method is applied in the two studies from extant literature, and

suitable alternatives are determined as a result of the ranking process. Finally, a comparative analysis is presented to

illustrate the efficiency of the proposed procedure. The conventional TOPSIS model’s ranking scores are very close for

exemplified examples (i.e., 0.5308, 0.4510, 0.4550 and 0.5304, 0.4626, 0.4940), but the proposed model’s result has

fluctuated for the same examples (i.e., 0.346, 0,669, 0,567 and 0.208, 0.991, 0.148). So, the main advantage of the proposed

aggregation procedure is the alternative ranking scores separation capability analyzed with their linguistic diversification.
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List of symbols
TFNs Triangular fuzzy numbers

TOPSIS The technique for order preferences by

similarity to ideal solution

MCDM Multi-criteria decision-making

GRA Grey relational analysis

VIKOR VIseKriterijumska Optimizacija I Kom-

promisno Resenje: multi-criteria opti-

mization and compromise solution

PROMETHEE Preference ranking organization method

for enrichment of evaluations

MOORA Multi-objective optimization on the basis

of ratio analysis

ai Alternative

Ci Criteria

n The number of criteria

k The number of alternatives

a Lover value of the parabolic or expara-

bolic shapes-based TFNs

b Medium value of the parabolic or

exparabolic shapes-based TFNs

c Upper value of the parabolic or expara-

bolic shapes-based TFNs

l Lover value of the TFN

m Medium value of the TFN

u Upper value of the TFN

A* Positive ideal solution

A- Negative ideal solution

D? Separation measure for positive ideal

solution

D- Separation measure for negative ideal

solution

I Benefit type measure

I0 Cost type measure

Ci
* Ranking score

W Criteria Weight

wj The aggregate criteria weight

Vij Weighted normalized decision matrix

& Yusuf Tansel Ic

yustanic@baskent.edu.tr

1 Department of Industrial Engineering, Baskent University,

06790 Ankara, Turkey

123

Neural Computing and Applications (2024) 36:7105–7117
https://doi.org/10.1007/s00521-024-09448-w(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-09448-w&amp;domain=pdf
https://doi.org/10.1007/s00521-024-09448-w


eD Fuzzy decision matrix

eA; eB Fuzzy triangular numbers

xij Aggregate value for the area

exij The TFN equivalent of the linguistic

performance value of the alternative

l(x) Membership function for the TFN

lAk
i
xð Þ Membership function for the exparabolic

or parabolic TFN

xN The characteristics for the selection

problem

Ak
N

The linguistic values used to discretize

the continuous value of the criteria

rs Spearman’s rank correlation coefficient

di The difference between the two ranks of

each observation

t The number of observations

A Total area for exparabolic shape TFN

B Cross lined segment area for special

segments

D Total area for more or less segment

C Semi-area for semi-parabolic area

segment

1 Introduction

Nowadays, selection problems are becoming a more

important problem type in multi-criteria decision-making

(MCDM) environments due to the sharp competition in the

different sectors. Selection problems are widely used in

many areas, such as machine-tool selection, robot selec-

tion, manufacturing process selection, supplier selection,

personnel selection, material selection, etc. Developments

of new technologies impact the products and human

capabilities to complete tasks more rapidly and efficiently.

So, alternative capabilities are rapidly growing, and rating

alternatives is a complex issue in the MCDM-based

selection problems. We must assign criteria weights and

determine alternatives’ ratings to set MCDM-based selec-

tion models. In these stages, expert opinions are very

crucial to select the most appropriate alternative. In the

criteria weight assignment and alternative ranking process,

linguistic expressions of experts are very critical to

assigning more accurate criteria weights and alternative

rating scores.

The fuzzy set theory-based applications are incorporated

into the MCDM models to cope with this complex issue. In

the literature, TFN-based aggregation methods are widely

used to assign experts’ linguistic expressions. For example,

Memari et al. [18] proposed an intuitionistic fuzzy TOPSIS

model to select the right sustainable supplier for automo-

tive spare parts producer firms. Their presented model

determined sustainable ranking scores of suppliers through

a case study. Rahimdel and Karamoozian [21] used the

technique for order preferences by similarity to the ideal

solution (TOPSIS) model with fuzzy set theory to select the

best primary crusher for the iron mine. Chu and Lin [8]

presented a fuzzy TOPSIS approach to robot selection

problems using TFN-based linguistic expressions. The

membership function of each weight was determined by

interval procedure for TFNs. Li et al. [14] presented an

indicator system and a method for data integration by

evaluating the specifications and role of third-party logis-

tics, for 3PL provider selection. They established a com-

prehensive analysis approach for 3PL suppliers based on

fuzzy sets. Lam et al. [13] proposed a fuzzy principal

component analysis approach for solving the material

supplier selection problem. They used TFNs to quantify the

experts’ expressions. Then, they employed principal com-

ponent analysis to compress the criteria data and eliminate

the multi-collinearity among them. Li et al. [15] developed

a fuzzy portfolio selection model with background risk

based on the definitions of the possibilistic return and

possibilistic risk. They used LR-type possibility distribu-

tion for the returns of assets. Amindoust et al. [1] deter-

mined the sustainable supplier selection criteria and sub-

criteria and presented an approach to rank suppliers. They

used the fuzzy inference system-based ranking model to

handle the subjectivity of experts’ expressions for the

selection problem. Liu [16] integrated fuzzy quality func-

tion deployment and the prototype product selection model

to develop a product design and selection. They adopted

the a-cut operation in the fuzzy quality function deploy-

ment model to determine the fuzzy set of each alternative.

Keršulien _e and Turskis [11] proposed a fuzzy MCDM

model using the fuzzy information fusion principles,

additive ratio assessment, and step-wise weight assessment

ratio analysis models to select an architect. Their aggre-

gation process was based on the unification of information

using fuzzy sets on a basic linguistic term set. Mougouei

and Powers [19] proposed a cost–value approach that

considers the impacts of value-related requirement depen-

dencies on the value of selected optimal requirements.

They exploited the algebraic structure of fuzzy graphs for

modeling value-related requirement dependencies and their

strengths. Chan and Prakash [5] proposed a maintenance

policy selection model at the level of the firm rather than

the equipment level. Some selection criteria were crisp

values, whereas others were obtained in linguistic terms.

They presented a distance-based fuzzy MCDM model to

select the appropriate maintenance policy. Their MCDM

model was suitable for integrating data, in the form of
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linguistic variables, TFNs, and crisp numbers, into the

analyzing study of maintenance policy alternatives. Chen

and Lin [7] proposed a fuzzy geometric mean decompo-

sition-based fuzzy MCDM method to enhance the flexi-

bility of the fuzzy decision matrix. They used fuzzy sub-

judgment matrices to diversify the original fuzzy judgment

matrix. Their presented approach was used to select the

smart technology applicant for supporting mobile health

care during and after the COVID-19 pandemic. Chai et al.

[4] developed a fuzzy MCDM model based on the cumu-

lative prospect theory, interval-valued fuzzy sets, and a

combination of intuitionistic fuzzy sets for supplier selec-

tion problems. Huang et al. [9] introduced the patent value

evaluation model. They considered the fuzziness of deci-

sion makers’ expressions and the uncertainty of patent

indicators and proposed a TFN-TOPSIS model based on

the possibility degree relationship model. Chisale and Lee

[3] prioritized barriers to renewable energy acceleration in

Malawi using the analytic hierarchy process (AHP) and

fuzzy TOPSIS combined model. They used TFNs to rep-

resent the expert’s subjective judgments. Zhang et al. [26]

used the fuzzy-TOPSIS model to obtain the hexagonal

close-packed metallic crystal best structure among all

structure alternatives when investigated under more than

one criterion evaluating the TFNs.

We can see from the literature that the aggregation

procedures in the selection problems using MCDM models

depend on the linguistic expressions of the expert opinions.

The fuzzy extensions of the TOPSIS model are developed

in the literature to overcome model uncertainty since

human judgments in real-life studies. They used aggrega-

tion procedures to aggregate different expert opinions in a

useful way. However, the presented procedures have some

disadvantages. They used fuzzy number characteristics-

based aggregation procedures and ignored the prefixed

membership function extensions or modifiers that were

‘‘very’’ and ‘‘more or less’’. In this work, we described an

exparabolic and parabolic shape area calculation based on

the TFN linguistic expression aggregating procedure for

fuzzy TOPSIS models to fill this gap. Furthermore, this

procedure provides the best alternative using extended

linguistic hedges for the linguistic expressions, hence

maintaining the descriptive capabilities of the fuzzy TFNs.

The proposed aggregating procedure is very simple,

reflects the classical TFN values in more extendable

judgments, and provides a more tolerable way. Also, the

provided aggregation procedure is capable of differentiat-

ing ranking results of alternatives that have more adjacent

scores among them in the classical TFNs-based fuzzy

TOPSIS models.

2 Methodology

2.1 Fuzzy TFN

In this study, triangular fuzzy numbers are used for lin-

guistic expressions (see Fig. 1) [6, 22]. The fuzzy numbers

are defined using the membership function (l(x)) ranging
from 0 to 1. A TFN is illustrated in Fig. 1, represented by

(l, m, u), where l, m, and u are the smallest, medium, and

largest possible values, respectively. The linear TFN can be

defined with a membership function as follows:

l xð Þ ¼

1; x ¼ m
x� l

m� l
; l� x�m

u� x

u� m
; m� x� u

0; otherwise

:

8

>

>

>

>

<

>

>

>

>

:

ð1Þ

Fuzzy arithmetic for TFNs are as follows:

(i) TFN operations [6]:

Let A
�
¼ (l1, m1, u1), and B

�
¼ (l2, m2, u2) are positive

TFN numbers, the arithmetic operations are as follows:

~A� ~B ¼ l1 þ l2; m1 þ m2; u1 þ u2ð Þ ð2Þ
~A� ~B ¼ l1 � l2; m1 � m2; u1 � u2ð Þ ð3Þ
~Aø ~B ¼ l1=u2; m1=m2; u1=l2ð Þ ð4Þ

2.2 The new exparabolic and parabolic area
calculation-based aggregation approach
for TFNs

Reflecting the optimal meaning and appropriate system

behavior for a given linguistic expression is difficult, even

for problem-trained experts. This is a decisive factor in

multi-criteria decision-making processes. The semantic

representation of linguistic expressions creates a numerical

value about the relevance of the concept that the expression

represents. The well-known prefixed membership function

modifiers are ‘‘very’’ and ‘‘more or less’’. The first modifier

Fig. 1 Triangular fuzzy number (TFN)
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causes a decrease in the membership degree of a value in

the fuzzy set. The second modifier is a ‘‘more or less’’

fuzzy expansion operator because it increases the degree of

membership [25]. These functions are

lveryA
k
i xð Þ ¼ lAk

i
xð Þ

� �2

ð5Þ

lmoreorlessA
k
i xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

lAk
i
xð Þ

q

ð6Þ

where x,…,xN are the characteristics for the selection

problem, Ak
1,…,Ak

N are linguistic values used to discretize

the continuous value of the criteria. The illustration of their

effects on a normalized fuzzy set with TFN is shown in

Fig. 2.

We can offer a new expression for the aggregation

procedure for ‘‘more or less’’ or ‘‘very’’ hedges using some

geometric properties of area elements (Fig. 3). These

properties use aggregation operations to convert linguistic

terms as crisp equivalents. Exparabolic and parabolic area

calculations are a suitable way to convert linguistic terms

to a crisp value.

Let eA=(a, b, c), a fuzzy triangular number, the aggre-

gated equivalent of exparabolic shape (Fig. 4) can be

expressed as follows:

Total area for exparabolic is

A ¼ b� a

3
þ c� b

3
¼ c� a

3
ð7Þ

To aggregation process, we can divide the medium

number of the TFN to this area:

Aggregate value for exparabolic area ¼ b=A

¼ b=
c� a

3

� �

ð8Þ

To calculate cross lined segment area (Fig. 5), we

express following equations:

B ¼ b� að Þ � 1ð Þ½ 	 � b� a

3
þ b� a

3

� �

ð9Þ

B ¼ b� að Þ � 1ð Þ½ 	 � 2b� 2a

3

� �

¼ 5

3
b� að Þ ð10Þ

Semi-area (Fig. 6) for aggregation can be calculated for

more or less is

C ¼ 5

3
b� að Þ þ b� a

3
¼ 2 b� að Þ ð11Þ

Fig. 2 Linguistic hedges

Fig. 3 Triangular (blue line) parabolic (green line) and exparabolic

(red line) shapes

Fig. 4 Exparabolic shape area

Fig. 5 Special segment area
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Finally, we can calculate total area for more or less total

area (Fig. 7) is as follows:

D ¼ 2 b� að Þ þ 2 c� bð Þ ¼ 2 c� að Þ: ð12Þ

To aggregation process, we can divide the medium

number of the TFN to this area:

Aggregate value for exparabolic area ¼ b= 2 c� að Þ½ 	:
ð13Þ

The same procedure can be developed for triangular

shape:

Aggregate value for triangular area ¼ b= c� að Þ=2½ 	:
ð14Þ

Now, we can develop the new fuzzy TOPSIS application

steps:

Step 1. Determine fuzzy decision matrix ( ~D)

~D ¼
~x11 ~x12 � � � ~x1n
~x21 ~x22 � � � ~x2n
~xk1 ~xk2 � � � ~xkn

2

4

3

5 ð15Þ

where the element exij represents the triangular fuzzy

number equivalent of the linguistic performance value of

the alternative. Here, m is expressed as (i = 1,2,…,k alter-

natives) and j = 1,2,…., n, criteria [2, 6, 10, 23, 24].

Step 2. Obtain aggregate TFN.

For triangular area:

Aggregate value for triangular area ¼ xij ¼ b=A

¼ b=
c� a

2

� �

: ð16Þ

For exparabolic area:

Aggregate value for exparabolic area ¼ xij ¼ b=A

¼ b=
c� a

3

� �

: ð17Þ

For parabolic area:

Aggregate value for exparabolic area ¼ xij ¼ b= 2 c� að Þ½ 	
¼ b= 2 c� að Þ½ 	:

ð18Þ

These aggregation operations provide better identifica-

tion of TFN-based expert opinions. Dividing the medium

value of the TFN (b) to the geometric shape area indicates

not only the importance of the criteria or alternative rating

but also the uncertainty degree of the linguistic expression.

The larger value is the better type of evaluation suitable for

assigning the criteria weights and alternative rantings.

Step 3. Set the normalized decision matrix using vector

normalization method [23]:

rij ¼
xij

Pk
i¼1 xij

ð19Þ

Step 4. Set the weighted normalized decision matrix

(vij):

Vij ¼ wj � rij ð20Þ

where wj is the aggregate criteria weight calculated from

triangular, exparabolic, or parabolic area calculation pro-

cedures in Eqs. (15–17).

Step 5. Calculate positive and negative ideal solutions:

A
 ¼ ðmax
i

vij j 2 IÞ; ðmin
i

vij j 2 I0j
	

	

	


 �

ð21Þ

A� ¼ ðmin
i

vij j 2 IÞ; max
ij

vij j 2 I0j
�	

	

	

	


 �

ð22Þ

where I is a benefit type measure and I0 is the cost type

measure.

Step 6. Calculate the separation measures:

Dþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

j¼1

ðvi � v
i Þ
2

v

u

u

t ð23Þ

D� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

j¼1

ðvi � v�i Þ
2

v

u

u

t ð24Þ

Step 7. Calculate the ranking scores:

C

i ¼

D�
i

D�
i þ Dþ

i

i ¼ 1; . . .; k ð25Þ

Fig. 6 Semi-parabolic area

segment

Fig. 7 More or less segment total area
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3 Examples

We applied the proposed methodology to the two selection

problems using the fuzzy TOPSIS method in the literature.

The first example is related to robot selection [8], and the

second example is related to software programmer selec-

tion [17]. Firstly, we applied the proposed methodology to

these problems and discussed the suitability and advan-

tages of the proposed methodology using a comparative

analysis in the following sections.

3.1 Example 1: Robot selection problem

The robot selection problem from Chu and Lin [8] is

applied to show the suitability of the proposed procedure.

Chu and Lin [8] assumed that a manufacturing firm

requires a robot to perform a material-handling task. Three

candidates, a1, a2, and a3, are selected for the study. The

four experts are set to evaluate the criteria weights and

alternative rating scores. The triangular, exparabolic

aggregation procedure-based solution and parabolic

aggregation procedure-based solution results are presented

in Tables 1, 2 and 3, respectively.

3.2 Example 2: Software programmer selection
problem

Mahdavi et al. [17] proposed a TOPSIS approach using

TFNs. They applied the measurement approach using fuzzy

distance values with a lower bound of alternatives. They

supposed that a software company desires to select a pro-

grammer. Three alternatives, a1, a2, and a3, are deter-

mined, and three experts are assigned for the evaluation

process. Mahdavi et al. [17] used five benefit criteria that

are considered emotional steadiness, oral communication

skills, personality, past experience, and self-confidence in

their study. The triangular, exparabolic aggregation

Table 4 Triangular area-based fuzzy TOPSIS model’s result for example 2

C1 C2 C3 C4 C5

A = (c - a)/2 0.150 0.050 0.115 0.050 0.100

0.7 0.9 1 0.9 1 1 0.77 0.93 1 0.9 1 1 0.43 0.63 0.83

b/A = W 6.000 20.000 8.087 20.000 6.300

Normalized weight 0.099 0.331 0.134 0.331 0.104

Alternatives Fuzzy decision matrix

a1 5.7 7.7 9.3 5 7 9 5.7 7.7 9 8.33 9.67 10 3 5 7

a2 6.3 8.3 9.7 9 10 10 8.3 9.7 10 9 10 10 7 9 10

a3 6.3 8 9 7 9 10 7 9 10 7 9 10 6.3 8.3 9.7

a1 1.800 4.278 2.000 3.500 1.650 4.667 0.835 11.581 2.000 2.500

a2 1.700 4.882 0.500 20.000 0.850 11.412 0.500 20.000 1.500 6.000

a3 1.350 5.926 1.500 6.000 1.500 6.000 1.500 6.000 1.700 4.882

8.789 21.172 13.712 23.877 8.129

Normalized matrix

a1 0.487 0.165 0.340 0.485 0.308

a2 0.555 0.945 0.832 0.838 0.738

a3 0.674 0.283 0.438 0.251 0.601

Weighted normalized matrix

a1 0.048 0.055 0.046 0.161 0.032

a2 0.055 0.313 0.111 0.277 0.077

a3 0.067 0.094 0.059 0.083 0.063

A* 0.067 0.313 0.111 0.277 0.077

A- 0.048 0.055 0.046 0.083 0.032

D? D- Ci
* Rank

a1 0.295 0.077 0.2079 2

a2 0.012 0.333 0.9658 1

a3 0.298 0.055 0.1549 3
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procedure-based solution and parabolic aggregation pro-

cedure-based solution results are presented in Tables 4, 5,

and 6, respectively.

3.3 Discussion of the examples’ results

We list the results in Table 7 and apply Spearman’s rank

correlation test [24] to analyze ranking differentiations.

The Spearman’s rank correlation calculation equation is as

follows:

rs ¼ 1� 6
P

d2i
t t2 � 1ð Þ ð26Þ

where di is the difference between the two ranks of each

observation, t is the number of observations.

Spearman’s correlation coefficient increases in impact

as two rankings become closer to being perfectly monotone

functions of each other. When two rankings are perfectly

matched, Spearman’s correlation coefficient will equal 1.

The ranking scores from the parabolic area calculation-

based TOPSIS model are different from triangular and

exparabolic area calculation-based TOPSIS results in Chu

and Lin’s [8] case problem. So, it is difficult to say which

alternative is exactly more suitable than the other. How-

ever, a2 is suitable for Chu and Lin’s [8] case problem due

to ranking first or second for all approaches. If we can see

the decision matrix of example 1, the expert evaluations are

very close to each other. So, the proposed aggregation

procedures provide two different results based on the

‘‘very’’ or ‘‘more or less’’ hedges for TFNs, and these new

procedures are capable of the two-way perspectives for

alternatives to select the more suitable one for the defined

expectations.

On the other hand, we obtain similar results in example

2. Mahdavi et al. [17] ranking scores results are very close

to each other (rs = 0.976). The only differentiation is in a1

and a3 ranking scores. Mahdavi et al. [17] study depends

on the small ranking score as a better type of methodology.

Table 5 Exparabolic area-based fuzzy TOPSIS model’s result for example 2

C1 C2 C3 C4 C5

A = (c - a)/3 0.100 0.050 0.115 0.050 0.100

0.7 0.9 1 0.9 1 1 0.77 0.93 1 0.9 1 1 0.43 0.63 0.83

b/A = W 9.000 20.000 8.087 20.000 6.300

Normalized

weight

0.142 0.316 0.128 0.316 0.099

Alternatives Fuzzy decision matrix

a1 5.7 7.7 9.3 5 7 9 5.7 7.7 9 8.33 9.67 10 3 5 7

a2 6.3 8.3 9.7 9 10 10 8.3 9.7 10 9 10 10 7 9 10

a3 6.3 8 9 7 9 10 7 9 10 7 9 10 6.3 8.3 9.7

a1 1.200 6.417 1.333 5.250 1.100 7.000 0.557 17.371 1.333 3.750

a2 1.133 7.324 0.333 30.000 0.567 17.118 0.333 30.000 1.000 9.000

a3 0.900 8.889 1.000 9.000 1.000 9.000 1.000 9.000 1.133 7.324

13.184 31.758 20.567 35.816 12.194

Normalized matrix

a1 0.487 0.165 0.340 0.485 0.308

a2 0.555 0.945 0.832 0.838 0.738

a3 0.674 0.283 0.438 0.251 0.601

Weighted normalized matrix

a1 0.069 0.052 0.043 0.153 0.031

a2 0.079 0.298 0.106 0.264 0.073

a3 0.096 0.089 0.056 0.079 0.060

A* 0.096 0.298 0.106 0.264 0.073

A- 0.069 0.052 0.043 0.079 0.031

D? D- Ci
* Rank

a1 0.282 0.074 0.2075 2

a2 0.017 0.317 0.9495 1

a3 0.284 0.056 0.1640 3
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Also, their ranking scores are very close to alternatives. But

the proposed aggregation procedures based on TOPSIS

ranking scores are differentiated. The Mahdavi et al. [17]

rankings present a smooth graph, but the proposed proce-

dures-based result has a fluctuated shape (Fig. 8). The main

advantage of the proposed aggregation procedure is the

alternative separation capability analyzed with their lin-

guistic diversification. They have modeling capability for

the selection problems that alternative ratings are very

closed. They used a geometrical area calculation procedure

for the aggregation operator. So, the linguistic differences

are much better modeled using developed procedures.

According to the comparative analysis results, we reach

the following outcomes about the advantages of the pro-

posed methodology:

i. If the expert’s linguistic evaluations are very close to

each other, the proposed procedure uses two-way

perspectives (‘‘very’’ or ‘‘more or less’’ hedges) for

alternatives to select the more suitable one for the

defined expectations.

ii. The fuzzy TOPSIS model’s ranking scores are very

close for exemplified three alternatives (0.5308,

0.451, 0.455) in the Chu and Lin [8] approach.

However, the proposed methodology’s result has

differentiated between each alternative for the same

example (0.346, 0.669, 0.567). In Mahdavi et al.’s

[17] ranking, scores are 0.5304, 0.4626, and 0.494,

respectively, in example 2. The proposed methodol-

ogy’s results, for example 2, are 0.208, 0.991, and

0.148, respectively. So, the main advantage of the

proposed aggregation procedure is the alternative

ranking scores separation capability modeled with

their linguistic diversification.

iii. The modeling capability of the proposed methodol-

ogy has an advantage when alternative ratings are

very close. The proposed methodology uses a simple

geometrical area calculation procedure for the

aggregation operation. So, it has much better

Table 6 Parabolic area-based fuzzy TOPSIS model’s result for example 2

C1 C2 C3 C4 C5

A = 2*(c - a) 0.600 0.050 0.115 0.050 0.100

0.7 0.9 1 0.9 1 1 0.77 0.93 1 0.9 1 1 0.43 0.63 0.83

b/A = W 1.500 20.000 8.087 20.000 6.300

Normalized weight 0.027 0.358 0.145 0.358 0.113

Alternatives Fuzzy decision matrix

a1 5.7 7.7 9.3 5 7 9 5.7 7.7 9 8.33 9.67 10 3 5 7

a2 6.3 8.3 9.7 9 10 10 8.3 9.7 10 9 10 10 7 9 10

a3 6.3 8 9 7 9 10 7 9 10 7 9 10 6.3 8.3 9.7

a1 7.200 1.069 8.000 0.875 6.600 1.167 3.340 2.895 8.000 0.625

a2 6.800 1.221 2.000 5.000 3.400 2.853 2.000 5.000 6.000 1.500

a3 5.400 1.481 6.000 1.500 6.000 1.500 6.000 1.500 6.800 1.221

2.197 5.293 3.428 5.969 2.032

Normalized matrix

a1 0.487 0.165 0.340 0.485 0.308

a2 0.555 0.945 0.832 0.838 0.738

a3 0.674 0.283 0.438 0.251 0.601

Weighted normalized matrix

a1 0.013 0.059 0.049 0.174 0.035

a2 0.015 0.338 0.120 0.300 0.083

a3 0.018 0.101 0.063 0.090 0.068

A* 0.018 0.338 0.120 0.300 0.083

A- 0.013 0.059 0.049 0.090 0.035

D? D- Ci
* Rank

a1 0.318 0.084 0.2082 2

a2 0.003 0.359 0.9912 1

a3 0.322 0.056 0.1475 3

Neural Computing and Applications (2024) 36:7105–7117 7115

123



modeling capability when the expert’s linguistic

expressions are very close.

4 Conclusions

In this work, we described an exparabolic and parabolic

shape area calculation-based TFN linguistic expression

aggregating procedure for fuzzy TOPSIS models. Fur-

thermore, this procedure provides the best alternative using

extended linguistic hedges for the linguistic expressions,

hence maintaining the descriptive capabilities of the fuzzy

TFNs.

We evaluated the results of different types of fuzzy

TFNs-based TOPSIS model in selecting the best alterna-

tive. Results from the examples provide only the best

alternative, so the presented new procedures consider the

extended expressions as hedges and capture the informa-

tion provided by overlapped expert opinions. The use of the

proposed aggregating procedures that consider the infor-

mation given by all the experts in the TFN expression

process increases the generalization ability of the aggre-

gating expressions. Nevertheless, it cannot determine a

unique aggregate value as the best suitable for any type of

problem, so it will be necessary to set aggregated TFNs for

the new problems. This specification is an advantage for

the modeling stage of the special TFNs for a specific

selection problem. In future work, we intend to extend the

application area to design a new kind of TFNs for the

different MCDM methods such as GRA, VIKOR, PRO-

METHEE, and MOORA. On the other hand, the proposed

model can be easily applied in different application areas

requiring fuzzy multi-criteria decision-making processes,

such as product or process quality improvement [12, 20],

via evaluating the performance of artificial intelligence

model-based predicted parameter values on the experi-

mental or real quality characteristics’ values.

Author contribution YTI was involved in conceptualization, super-

vision, methodology, validation, visualization, writing–review &

editing.

Table 7 Spearman’s rank correlation test results

Exm 1 I II III IV Rankings Ranking differences

Chu and Lin [8] Triangular Exparabolic Parabolic I II III IV I–II I–III I–IV II–III II–IV III–

IV

a1 0.5308 0.372706 0.400026 0.346 1 3 3 3 -2 -2 -2 0 0 0

a2 0.4510 0.593596 0.532969 0.669 3 2 2 1 1 1 2 0 1 1

a3 0.4550 0.603525 0.638537 0.567 2 1 1 2 1 1 0 0 -1 -1

di 6 6 8 0 2 2

rs -0.500 -0.500 -1.000 1.000 0.500 0.500

Exm 2 I II III IV Rankings Ranking differences

Mahdavi et al. [17] Triangular Exparabolic Parabolic I II III IV I–II I–III I–IV II–III II–IV III–

IV

a1 0.5304 0.208 0.208 0.208 3 2 2 2 1 1 1 0 0 0

a2 0.4626 0.966 0.950 0.991 1 1 1 1 0 0 0 0 0 0

a3 0.4940 0.155 0.164 0.148 2 3 3 3 -1 -1 -1 0 0 0

di 2 2 2 0 0 0

rs 0.976 0.976 0.976 1.000 1.000 1.000

Fig. 8 Comparison graphics for Mahdavi et al. [17] study
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