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Abstract
In this paper, an online event-triggered self-learning scheme based on adaptive dynamic programming (ADP) is developed

to address tracking control design for nonlinear systems with constrained input and uncertain disturbance. Firstly, the value

function with non-quadratic function is defined for the augmented nominal system, and the constrained robust tracking

problem is equivalent to the optimal control for solving the tracking event-triggered Hamilton–Jacobi–Bellman (ETHJB)

equation. Then, a single-critic network is developed to obtain the value function and control law related to the solution of

the tracking ETHJB equation, greatly reducing approximation errors and computational costs. To alleviate the requirement

for the entire state sampling, we propose a triggering rule that ensures system stability while limiting control updates.

Theoretical proof demonstrates that the tracking state of the closed-loop system and the weight approximation error of the

neural network are uniformly ultimately bounded (UUB). Finally, two examples are provided to validate the availability of

the proposed scheme.

Keywords Adaptive dynamic programming (ADP) � Event-triggered control (ETC) � Integral reinforcement learning

(IRL) � Tracking control � Neural network (NN)

1 Introduction

In practical engineering, the unknown environment and the

uncertain model commonly affect nonlinear systems

greatly. Therefore, it is necessary to design a suitable con-

troller to fulfill control quality for the plant with uncer-

tainty. Robust control not only guarantees the robust

stability of the closed-loop nonlinear systems, but also

optimizes some performance indicators, it has been widely

recognized by scholars [1–4]. There are two methods

available for solving robust control problems. The first

strategy is to design a nominal system to convert the robust

nonlinear control problem into the optimal control problem

by constructing a nominal system. The solution of the

optimal control problem is equivalent to the solution of the

original robust control problem [5, 6]. The other method is

the H1 control method, which transforms the robust

problem into an optimal control problem involving two

non-cooperative players in a game. Then, the robust

problem is equivalent to obtaining the solution of the

Hamilton–Jacobi–Bellman (HJB) equation in optimal

control [7–9]. We employ the first method to derive the

robust control law without solving the H1 optimal control

problem, avoiding the difficulties of determining whether

the saddle point of two-player exists in H1 control prob-

lems. Additionally, [10] solves optimal control problems

offline based on neural networks. In practice, solving the

robust control problem online remains difficult.

Considering that the HJB equation suffers from the

curse of dimensionality, direct solutions are nearly

impossible. As a self-learning method, the introduction and

application of adaptive dynamic programming (ADP)

[11, 12] have been widely recognized in tracking problems

[13], disturbance attenuation problems [14], and robust

control problems. ADP, reinforcement learning (RL) [15],

and adaptive critical learning (ACL) [16, 17] are
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considered analogous characteristics. One of the advan-

tages of ADP is that it uses function approximators, usually

neural networks (NNs), to estimate the ideal value function

related to the system performance. In [18], an ADP-based

robust controller is designed to stabilize the system and

efficiently reduce the effects of perturbations on system

functionality. However, it should be noted that the majority

of current ADP-based robust control systems merely

address the regulation problem [19, 20]. In practice, not

only does the designed controller need to satisfy the

robustness of the plant, but it also requires the plant to track

an anticipated trajectory, especially in noisy and uncertain

environments. This results in a robust tracking problem, in

which the goal is to track an expected trajectory with a

given value function in the presence of modeling

unknowns. [21] considers using policy iteration (PI)

methods to solve nonlinear tracking control systems with

uncertain dynamics. PI technique based on data-driven

strategy is applied to deal with the tracking problem for

nonlinear systems in [22]. However, the PI algorithm

requires a more accurate model and a larger estimate error

obtained by the neural network approximator. In [23], a PI-

based integral reinforcement learning (IRL) is used to solve

the tracking HJB equation of nonlinear systems. By adding

integral operations and recording reinforcement signals

from different time intervals, the weight values of NNs are

updated, which fully utilizes the collected data and avoids

dependence on known system information. By collecting

the data of the integral interval, integral reinforcement

learning technology is also applied in [24] to update the

weight values of the critic-actor network and solve the

optimal tracking control problem online. However, the

presence of uncertain dynamics and external disturbances

is not considered, and the designed multiple NNs approx-

imator may increase the computational complexity of the

system in previous studies. Therefore, the robust tracking

control law is obtained by a single-critic network approx-

imation in this paper.

When designing a tracking controller, we need to con-

sider not only the impact of disturbances on system sta-

bility, but also the safety and physical characteristics of the

controller (or actuator) [25]. One solution is to install

constraints on the controller (or actuator). Currently, in

theoretical research with input constraints, it is common to

design a non-quadratic function for a system, where the

control input is guaranteed to have a certain bound. Sym-

metrical input constraints are the most commonly consid-

ered constraints in [26–28], and numerous methods have

been advocated to deal with them. However, many non-

linear plants in reality are subject to asymmetric input

constraints, which adds challenges to the design of tracking

controllers. Therefore, addressing asymmetric input con-

straints is also a consideration factor in this paper.

The ADP-based method typically relies on transferring

data periodically with a fixed sampling period or time-

triggered control (TTC). However, this may result in a

large amount of transmitted data and increase the compu-

tational and storage burden of the control system [29–32].

To address this issue, event-triggered control (ETC) has

been introduced as an alternative to TTC in [33, 34]. ETC

executes non-periodically, which has better performance

than TTC in terms of reducing the computational burden.

In [35], an event-triggered ADP (ETADP) scheme is pro-

posed to address HJB equations related to zero-sum game

problems for nonlinear systems, which significantly redu-

ces computational costs. In [36], an event-triggered net-

work-based algorithm is utilized for input-constrained

nonlinear systems with external disturbances to reduce

unnecessary controller updates. In [37], for a class of

nonlinear continuous-time systems with external distur-

bances, a network-based ETC control method is proposed,

which can ensure the stability of the system and reduce the

number of controller updates. [38] provides an ETC-based

network learning method, which uses the optimal dis-

tributed control method to deal with approximately inter-

connected nonlinear systems, thereby reducing

computational costs and communication waste. Similarly, a

framework of the identified-critic network is constructed to

address the ETC-based decentralized for interconnected

nonlinear systems, which greatly saves communication

resources for each subsystem in [39]. The commonality of

the above studies is that ETC is well applied to optimal

regulation problems, but the optimal robust tracking

problem is not considered. To address this factor and

reduce computational complexity, we propose an approx-

imate optimal robust tracking control scheme for uncertain

nonlinear systems with input constraints using the event-

triggered self-learning method. Furthermore, a triggering

condition is designed to ensure control system stability

while updating the event-based robust control law. The

main contributions of this paper are summarized as

follows:

1. Different from [8, 11] to solve the H1 control problem,

we overcome the difficulty of predetermining the

existence of Nash equilibria points in non-cooperative

games. Moreover, we propose the method realized by

defining an augmented nominal system and only

solving a constrained event-based optimal control laws.

2. Rather than considering nonlinear systems with sym-

metric input constraints, we construct cost functions

with a discount factor and non-quadratic functions to

solve robust optimal control problems with asymmetric

input constraints.

3. An online neural network approximator is constructed

based on an event-triggered self-learning framework to
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avoid dependence on complete dynamics. Then, the

weights of a single-critic network are updated using

continuous integration interval information to obtain

the value function and control policy related to the

ETHJB equation. Based on an event-based mechanism,

the designed triggering rule limits control updates,

which reduces the computational cost and storage

burden.

The remainder of this paper is structured as follows. The

problem is described and transformed in Sect. 2. Section 3

is the introduction and implementation of the event-trig-

gered adaptive dynamic programming scheme. Section 4

provides theoretical proof of system stability. Section 5

gives the simulation examples of the bionic joint model and

the nonlinear system, and we provide the conclusion in

Sect. 6.

Notation. Some parameters are strictly defined in this

paper. R, Rm, and Rm�n are denoted the set of real matri-

ces, and m and m� n are the correlative dimension matrix.

kð�Þ is the minimum eigenvalue of the matrix. k � k is

expressed as the 2-norm. rV,oV=on is the derivative of

VðnÞ with respect to n.

2 Problem statement

The continuous-time dynamic system with uncertain dis-

turbances is considered as

_x ¼ f ðxðtÞÞ þ gðxðtÞÞuðtÞ þ gðxðtÞÞ �dðxðtÞÞ ð1Þ

where x 2 Rn is the state vector, f ðxÞ 2 Rn is the unknown

internal dynamics, and gðxÞ 2 Rn�m is the input dynamics.

uðtÞ 2 U � Rm is the input vector with asymmetric bounds,

which is expressed as U ¼ fðu1; u2; . . .; umÞ :
umin � ui � umax; i ¼ 1; 2; . . .;m; juminj 6¼ jumaxjg. �dðxÞ is an
uncertain disturbance with �dð0Þ ¼ 0. Let xð0Þ ¼ x0 as the

initial state of the system. Assuming that the uncertain item

satisfies �dðxÞT �dðxÞ� �dmðxÞT �dmðxÞ with �dmð0Þ ¼ 0, where
�dmðxÞ is a known function.

For the tracking problem, a bounded reference signal

xrðtÞ is given, and there exists a Lipschitz continuous

command generator GðxrðtÞÞ satisfying
_xrðtÞ ¼ GðxrðtÞÞ; Gð0Þ ¼ 0 ð2Þ

Then, the tracking error dynamic equation and its deriva-

tives are expressed as

erðtÞ ¼ xðtÞ � xrðtÞ ð3Þ

_erðtÞ ¼ _xðtÞ � _xrðtÞ ð4Þ

Define the augmented matrix with tracking error and

expected trajectory as nðtÞ ¼ ½eTr ; xTr �
T 2 R2n. Then, the

dynamic system after dimension is converted to

_n ¼ FðnÞ þ GðnÞuþ GðnÞ �DðnÞ ð5Þ

where FðnÞ ¼ f ðer þ xrÞ � GðxrÞ
GðxrÞ

� �
and

GðnÞ ¼ gðer þ xrÞ
0

� �
. The uncertain disturbance after

augmentation satisfies with k �DðnÞk ¼ k �Dðer þ xrÞk ¼
k �DðxÞk� �dmðxÞ ¼ �dmðer þ xrÞ, �dmðnÞ.

Assumption 1 [16, 17] The unknown dynamic FðnÞ is

Lipschitz continuous with f ð0Þ ¼ 0. GðnÞ and xr are

bounded, that is, kGðnÞk�LG and kxrk� bm with

LG [ 0 and bm [ 0.

The existence of unknown disturbances may affect the

stability of the tracking system (5). According to [5], we

transform the robust tracking control problem into the

optimal control problem for solving the HJB equation by

defining the following nominal system

_n ¼ FðnðtÞÞ þ GðnðtÞÞuðtÞ ð6Þ

Assuming that the system (6) is controllable for any

admissible input law u on the compact set X. Let Xðn; uÞ
be the basic utility function of optimal control and
�dmðnÞ[ 0 be the additional utility function related to

uncertain disturbances. To analyze the performance of the

system (6), the following value function with the discount

factor l[ 0 is defined as

VðnÞ ¼
Z 1

t

e�lðs�tÞ
�
X
�
nðsÞ; uðsÞ

�
þ k �dmðnÞk2

�
ds ð7Þ

where X ðn; uÞ ¼ nTQnþRðuÞ. RðuÞ is a non-quadratic

function subject to asymmetrically constrained input,

which is constructed as

RðuÞ ¼ 2a
Xm
i¼1

Z u

b0

H�1
� g� b0

a

�
Rdg ð8Þ

where a ¼ ðumax � uminÞ=2; b0 ¼ ðumax þ uminÞ=2, and

H�1ð�Þ is an odd monotonic function with H�1ð0Þ ¼ 0. To

get results, we use Hð�Þ ¼ tanhð�Þ ¼ ðex þ e�xÞ�1

ðex � e�xÞ. Q ¼ Q0 0

0 1

� �
, Q0 [ 0 and R[ 0.

Remark 1 Due to he influence of reference signals and

uncertain disturbances in the augmented state for the

tracking system, the control term is usually nonzero when

the state arrives at the equilibrium point n ¼ 0. Thus, the

involved decay term e�lðs�tÞ is introduced in the integral

term in (7). If we let l ¼ 0, the right side of (7) may be
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unbounded, and VðnÞ may be divergent. That is why we

consider using the discount factor l.

For any admissible input law uðnÞ 2 X, VðnÞ is assumed

to be a continuously differentiable value function, then the

optimal value function can be rewritten as

V�ðnÞ ¼ min
u2X

Z 1

t

e�lðs�tÞ
�
X
�
nðsÞ; uðsÞ

�
þ k �dmðnÞk2

�
ds

ð9Þ

The defined value function (9) includes the function �dmðnÞ
related to disturbances. Thus, the lemmas of equivalence

between the robust control of the system (5) and the opti-

mal control of the system (6) are provided.

Lemma 1 [40] Let n ¼ 0 be the equilibrium point of the

system (6). If the solution to the optimal control problem of

nominal system with value function (7) exists, then it is the

solution to the robust tracking system (5) as well.

Then, the Hamiltonian function is defined as

Hðn;rV�; uÞ ¼ rV�T�FðnÞ þ GðnÞu
�
� lV�

þnTQnþRðuÞ þ k �dmðnÞk2
ð10Þ

The optimal value V�ðnÞ satisfies V�ð0Þ ¼ 0. By optimal

Bellman’s principle, the tracking HJB equation is shown as

0 ¼ min
u2X

Hðn;rV�ðnÞ; uÞ ð11Þ

Then, the following optimal control law is obtained

0 ¼ oH

ou
) u�ðnÞ ¼ �aH

� 1

2a
R�1GTðnÞrV�ðnÞ

�
þ b

ð12Þ

where b ¼ ½b0; b0; . . .; b0�T 2 Rm.

Lemma 2 [41] For the nominal system with continuously

differentiable optimal value functions. The optimal control

u�ðnÞ in (12) can make the system asymptotically stable if

the condition l ! 0 holds.

Remark 2 The proofs of Lemma 1 and Lemma 2 are

similar in [40, 41], which not be presented here. Lemma 1

shows that robust control can be solved by obtaining the

solution of the HJB equation of nominal control. Based on

Lemma 2 in [41], the error dynamics can be locally

asymptotically stable when the discount factor l approa-

ches zero infinitely. Significantly, since the provided ref-

erence signal may not be asymptotically stable, the

discount factor needs to be introduced for the value func-

tion defined in the augmented system to ensure that (7) is

bounded (i.e., Remark 1).

According to (9)–(12), the optimal tracking HJB equa-

tion based on time-triggered for the nominal system

becomes

nTQnþR �aHð 1
2a

R�1GTðnÞrV�Þ þ b

� 	
þrV�TFðnÞ

þ �dmðnÞ


 

2þrV�TGðnÞb� arV�TGðnÞ

H
1

2a
R�1GTðnÞrV�

� 	
� lV� ¼ 0

ð13Þ

3 Solve the event-based tracking HJB
equation

3.1 Event-triggered self-learning scheme

It is observed that (13) is a time-triggered HJB equation

with locally uncertain dynamics FðnÞ. Then, the analytical
solution of the HJB equation is a challenge to solve the

optimal control problems. Meanwhile, the controller needs

a heavy computational burden and numerous storage

spaces by the time-triggered control with periodic sampling

time, which imposes higher communication requirements

on the actuator and plant. Thus, we prefer to propose an

event-triggered self-learning algorithm to address such a

problem.

To achieve online iterative learning and avoid depen-

dence on overall system dynamics, we use a self-learning

scheme known as integral reinforcement learning (IRL) to

relax the demand for drift dynamics FðnÞ. For the integral

time T [ 0, the Bellman equation in IRL form is shown as

V
�
nðt � TÞ

�
¼
Z t

t�T

e�lðs�tþTÞ

�
nTQnþRðuÞ þ k �dmðnÞk2

�
dsþ e�lTVðnðtÞÞ

ð14Þ

Noting that (14) does not contain the dynamics of the

tracking system.

Before introducing the event-triggered scheme, we

firstly define a forward time sequence related to the event

and express it as tq,ftq\tqþ1; q ¼ 0; 1; 2; � � �g. If an event

appears at a certain instant, the instant is defined as the

triggering instant tq. The current state nðtÞ is denoted as

sampling state n̂q at the triggering instant. Thus, define the

following triggering error as

eq ¼ n̂q � nðtÞ; t 2 ½tq; tqþ1Þ ð15Þ

Only at the triggering instant will eq ¼ 0 be satisfied.

However, during the non-triggered interval, there is a
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triggering error in the augmented nominal system (6), and

it converts to

_n ¼ FðnðtÞÞ þ GðnðtÞÞuðnðtÞ þ eqÞ t 2 ½tq; tqþ1Þ ð16Þ

Then, (9) and (12) are updated in a non-periodic sampling

manner by introducing the event-triggered control. Thus,

the IRL-based event-triggered adaptive dynamic program-

ming (ETADP) technology is shown in Algorithm 1.

Remark 3 In Algorithm 1, the selected integration interval

T is different from the traditional IRL Bellman equation in

(14). Equation (14) yields reinforcement signals in a con-

tinuous periodic interval time. However, the ETC-based

triggering interval Tq ¼ tqþ1 � tq is variable, and the event

obtains new jump dynamics at different triggering integral

instants. The implementation of the controller without

periodic update law is determined by the triggering con-

dition (or rule) in the event generator, which is the key to

achieving ETC.

If a triggering error violates a designed event-triggered

condition, an event occurs and obtains a new sampling

state. Transmit the collected signal to the controller to

generate a new control law at the triggering instant tq. In

flow dynamics, that is, during the interval time t 2 ðtq; tqþ1Þ
is not triggered. The sampling signal of the system comes

from the sampling state stored in the zero-order hold

(ZOH) at the last triggering instant and remains within the

interval time. Therefore, the control law is obtained in the

form of continuous segmented signals as follows

u�ðtÞ ¼
�aH

� 1

2a
R�1GTðn̂qÞÞrV�ðn̂qÞ

�
þ b; t 2 ½tq; tqþ1Þ

u�ðn̂qþ1Þ; t ¼ tqþ1

8><
>:

ð19Þ

Converting uðnÞ in (11) to u�ðn̂qÞ, the event-based tracking

HJB equation becomes

nTQnþR �aH
� 1

2a
R�1GTðn̂qÞrV�ðn̂qÞÞ

�
þ b

� 	

þrV�TFðnÞ þ k �dmðnÞk2

� arV�TGðnÞH
� 1

2a
R�1GTðn̂qÞrV�ðn̂qÞ

�

þrV�TGðnÞb� lV� ¼ 0

ð20Þ

Then, we need to design a triggering rule to implement

equation (19). The following assumptions need to be pro-

posed as [36–38]

Assumption 2 Let the optimal value function be contin-

uously differentiable. Then, V�ðnÞ and rV�ðnÞ are boun-

ded by V1 and V2 with V1 [ 0 and V2 [ 0.

Assumption 3

1. There has a constant K1 [ 0 satisfing the following

inequality

ku�ðnÞ � u�ðn̂qÞk�K1kn� n̂qk ¼ K1keqðtÞk ð21Þ

Algorithm 1 IRL-based ETADP algorithm
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2. Let FðnÞ þ GðnÞu�ðn̂qÞ be Lipschitz continuous on

X 2 Rn, and there exists positive constants LF and

LG that make the following inequality hold

kFðnÞ þ GðnÞu�ðn̂qÞk�LFknk þLGkeqk ð22Þ

Theorem 1 The value function (7) with a non-quadratic

function is defined for the nominal system (6). Let

Assumptions 2–3 hold. The event-based control law is

derived by (19), which can ensure the augmented system

(5) is uniformly ultimately bounded (UUB) if the following

triggering rule is satisfied

keqðtÞk�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� .2ÞkðQÞ

mK2
1

s
knk,Te ð23Þ

where m[ 0 in (28) and . 2 ð0; 1Þ in (30) are

adjustable parameters, and Te denotes triggering threshold.

Proof Construct the Lyapunov function as V�ðnÞ in (9)

and use the dynamic equation (5) with the event-based

optimal law u�ðn̂qÞ. The derivatives of V�ðnÞ respecting to

the time t are expressed as

_V
�ðnÞ ¼ rV�T�FðnÞ þ GðnÞu�ðn̂qÞ þ GðnÞ �DðnÞ

�
¼ rV�T FðnÞ þ GðnÞu�ðnÞ þ GðnÞ �DðnÞð Þ
þ rV�TGðnÞ

�
u�ðn̂qÞ � u�ðnÞ

� ð24Þ

According to (9)–(10), we have

rV�T FðnÞ þ GðnÞu�ðnÞð Þ
¼ �nTQn�Rðu�ðnÞÞ � k �dmðnÞk2 þ lV� ð25Þ

Then, convert (12) to

rV�TGðnÞ ¼ �2aRH�T
�
a�1ðu�ðnÞ � bÞ ð26Þ

Substituting (25) and (26) into (24), we obtain

_V
�ðnÞ ¼ �nTQn�Rðu�ðnÞÞ � k �dmðnÞk2

� 2aRH�T
�
a�1ðu�ðnÞ � bÞ �DðnÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

E1

þ 2aRH�T
�
a�1ðu�ðnÞ � bÞ

��
u�ðnÞ � u�ðn̂qÞ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

E2

þ lV�

ð27Þ

Introducing Young’s inequality ði:e:; 2aTb� a2=mþ mb2

with m[ 0Þ and Assumption 2, E1 and E2 can be trans-

formed as

E1 �
kaRH�T

�
a�1ðu�ðnÞ � bÞ

�
k2

m
þ mk �dmðnÞk2

E2 �
kaRH�T

�
a�1ðu�ðnÞ � bÞ

�
k2

m
þ mku�ðnÞ � u�ðn̂qÞk2

� 1

4m
krV�TGðnÞk2 þ mK2

1keqðtÞk
2

ð28Þ

According to (28), (27) can be translated to

_V
�ðnÞ� � nTQn�Rðu�ðnÞÞ þ lV� þ mK2

1keqðtÞk
2

ð29Þ

Assuming that the conditions nTQn	 kðQÞknk2 containing
the minimum eigenvalue of Q and �Rðu�ðnÞÞ� 0 defined

in (8) with the optimal control law are satisfied. Based on

Assumptions 1–2, we have

_V
�ðnÞ� � .2kðQÞknk2 � ð1� .2ÞkðQÞknk2

þ mK2
1keqðtÞk

2 þ lV1

ð30Þ

If the triggering rule is devised as (23), (30) converts to

_V
�ðnÞ� � .2kðQÞknk2 þ lV1 ð31Þ

so that _V
�ðnÞ\0 is valid when the following inequality is

not within the range of the set Kn related to the augmented

state as

Kn ¼ n 2 R : knk�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lV1

.2kðQÞ

s( )
ð32Þ

Thus, we can conclude the augmented nominal system state

is UUB by using the Lyapunov stability theorem. h

Remark 4 After the introduction of ETC, the nominal

system (6) includes both continuous sampling signals and

discrete sampling signals, which is known as the hybrid

system. The existence of Zeno behavior in hybrid systems

may result in infinite discrete sampling signals at finite

triggering intervals. The existence of the Zeno behavior

cannot ensure the stability of the system.

Theorem 2 Assuming that Assumption 3 holds, and the

triggering rule is designed as (23). Then, the minimal

triggering instant satisfies ðTqÞmin [ 0, where ðTqÞmin ¼
ðtqþ1 � tqÞmin is a lower bounded.

Proof Considering that �DðnÞ is bounded on X, then

kGðnÞ �DðnÞk�Dm for any n 2 X is defined with a positive

constant Dm. According to Assumption 3, the tracking

system (5) with the optimal event-based control law is

converted to
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k _nk ¼ kFðnÞ þ GðnÞu�ðn̂qÞk þ kGðnÞ �DðnÞk
�LFknk þLGkeqk þDm

ð33Þ

A sampling state n̂q ¼ nðtqÞ occurs at the triggering instant

t ¼ tq, and we obtain _eq ¼ � _nðtÞ. Thus, (33) is converted
to

k _eqk ¼ k _nk�LFkn̂q � eqk þLGkeqk þDm

�LFkn̂qk þ ðLF þLGÞkeqk þDm

ð34Þ

From (15), we obtain the triggering error eq ¼ 0 at the

triggering instant t ¼ tq. Accordingly, the solution of

equation (34) is

k _eqk�
LFkn̂qk þDm

LF þLG
eðLFþLGÞðt�tqÞ � 1
� �

ð35Þ

Based on Theorem 1, the tracking state is UUB. Hence, we

obtain the state knqþ1k 6¼ 0 at the triggering instant

t ¼ tqþ1. Then, (35) is converted into

Tq ¼ tqþ1 � tq 	
1

LF þLG
ln 1þM0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� .2ÞkðQ0Þ

mK2
1

s !

ð36Þ

where

M0 ¼
ðLF þLGÞkeqþ1k
LFkn̂qk þDm

[ 0 ð37Þ

According to (36) and (37), M0 is bounded by a minimum

constant Mmin [ 0. Then, we obtain

ðTqÞmin ¼
1

LF þLG
ln 1þMmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� .2ÞkðQ0Þ

mK2
1

s !
[ 0

ð38Þ

Therefore, there exists the minimum interval in the control

system that eliminates the Zeno behavior. h

3.2 A single-critic network approximate solver

The optimal value function and optimal control law of the

tracking nominal system can be approximated by a single-

critic neural network. Due to the universal approximation

principle of neural networks, the optimal value function (9)

and its derivative are reconstructed by

V�ðnÞ ¼ WT
cwðnÞ þ E0ðnÞ ð39Þ

rV�ðnÞ ¼ rwTðnÞWc þrE0ðnÞ ð40Þ

where Wc 2 Rl is a constant vector, l indicates the number

of hidden layer neurons, and wðnÞ is suitable basis function
vector. The approximate error E0ðnÞ and its gradient

rE0ðnÞ are confined by positive constants and satisfied

with kE0ðnÞk� Em and krE0ðnÞk� EM .

The correlated value function for the tracking Bellman

equation is approximated by the critic network. Then, the

tracking Belman error generated by NNs approximation is

obtained

�BðtÞ,
Z t

t�T

e�lðs�tþTÞ
�
2a
Xm
i¼1

Z u�

b0

H�1
� g� b0

a

�
Rdg

þ nTQnþ k �dmðnÞk2
�
dsþWT

cDwðnðtÞÞ

ð41Þ

where DwðnðtÞÞ ¼ e�lTwðnðtÞÞ � wðnðt � TÞÞ. �B is

bounded by a constant and satisfies by k�Bk� �M . Then, the

reinforcement reward in the integral domain is denoted as

pðtÞ ¼
Z t

t�T

e�lðs�tþTÞ
�
nTQnþRðu�ðnÞÞ þ k �dmðnÞk2

�
ds

ð42Þ

Combining (12) and (40), the optimal control law based on

neural network at triggering instant t ¼ tq by the mean

value theorem is represented as

u�ðn̂qÞ ¼ �aH
�
Wðn̂qÞ

�
þ bþ Euðn̂qÞ ð43Þ

where Wðn̂qÞ ¼ ðR�1GTðn̂qÞrwTðn̂qÞWcÞ=ð2aÞ.
Euðn̂qÞ ¼ �euðn̂qÞðR�1GTðn̂qÞrE0ðn̂qÞÞ=2 with euðn̂qÞ ¼

½1�H2ðd1ðn̂qÞÞ; . . .; 1�H2ðdmðn̂qÞÞ�T 2 Rm, and we

obtain the point diðn̂qÞ 2 R; i ¼ 1; 2; . . .;m within the

integration interval of Wðn̂qÞ and

Wðn̂qÞ þ ðR�1GTðn̂qÞrE0ðn̂qÞ=ð2aÞ.
We need to design a controller for the unknown value

function (39) and obtain the optimal value function by

adjusting the weight of the critic network to ensure con-

vergence. Since the ideal critic NN weight Wc obtained the

optimal approximate solution is unknown, and the current

weight Ŵc is applied to approximate

V̂ðnÞ ¼ ŴT
cwðnÞ ð44Þ

rV̂ðnÞ ¼ rwTðnÞŴc ð45Þ

Then, the approximate Bellman error equation is

dBðtÞ ¼ pðtÞ þ ŴT
cDwðnðtÞÞ ð46Þ

The error dB can be regarded as the corresponding error of

the time difference (TD) error of a continuous-time system

[42]. Therefore, we find the optimal value function by

adjusting the critic NN weight to minimize the TD error dB.

Define the objective function as EB ¼ ðdTBdBÞ=2, and the

adaptive turning law of the critic network is obtained
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_̂
Wc ¼ �ac

oEB

oŴc

¼ �ac
DwðnÞ

ð1þ DwTðnÞDwðnÞÞ2
dB

¼ �ac
DwðnÞ

ð1þ DwTðnÞDwðnÞÞ2
�
pðtÞ þ ŴT

cDwðnÞ
�

ð47Þ

Remark 5 The single-critic network is a three-level neural

network that includes input layers, hidden layers, and

output layers. The structure diagram of the principle is

shown in Fig. 1. Assuming that the activation function Dw
is continuously exciting in the interval ½t � T; t�. The

approximate weight Ŵc can be guaranteed to converge to

ideal weight Wc based on the persistent excitation (PE)

conditions [43]. In the simulation experiment, the PE

condition is composed of detection signals with different

amplitude function combinations.

The IRL-based event-triggered ADP is implemented in

an online manner by tuning the critic network. The optimal

control law is obtained by adjusting the weight of critic

NN. According to (19), the event-based control law can be

approximated by

ûðn̂qÞ ¼ �aH
� 1

2a
R�1GTðn̂qÞrwTðn̂qÞŴc

�
þ b ð48Þ

Then, the critic network approximation error can be defined

as ~Wc ¼ Wc � Ŵc. To make Ŵc ! Wc be satisfied,

define the control input errors as

du ¼u�ðn̂qÞ � ûðn̂qÞ ¼ aH
� 1

2a
R�1GTðn̂qÞrwTðn̂qÞŴc

�

� aHðWðn̂qÞÞ þ Euðn̂qÞ
ð49Þ

where Euðn̂qÞ is from (43). It is the ideal result du ¼ 0 to

get the optimal laws.

The system obtains new sampling signals during the

event-triggered integration interval depending on the trig-

gering condition. Therefore, the signal acquisition for

reinforcement rewards is obtained in a non-periodic man-

ner. Based on (41) and (42), the Bellman error with event-

based control laws is yielded by

�dBðtÞ ¼ �pðtÞ þ ŴT
cDwðnðtÞÞ ð50Þ

where

�pðtÞ ¼
R t
t�T e

�lðs�tþTÞ
�
nTQnþRðûðn̂qÞÞþk �dmðnÞk2

�
ds is

the reinforcement rewards in the triggering interval.

From (47), denote �DwðnÞ ¼ Dw=ð1þ DwTDwÞ and

mwðnÞ ¼ 1=ð1þ DwTDwÞ. Then, the critic weight error

dynamics can be given as

_~Wc ¼ � _̂
Wc ¼ �ac �Dw �DwT ~Wc þ ac �Dwmw�B ð51Þ

4 Stability analysis

To facilitate the stability analysis of the system, the fol-

lowing assumptions are given [27–29]

Assumption 4

1. Euðn̂qÞ is bouned by a positive constant with

kEuðn̂qÞk� cEu
.

2. wðnÞ and rwðnÞ are bounded by positive constants and

satisfied by wðnÞk k�wm and rwðxÞk k�wM .

Theorem 3 The initial control for the dynamical system

(6) is admissible. Let Assumptions 1–4 be valid, and the

optimal event-based control law u�ðn̂qÞ is implemant by

turning the weight dynamic (47) for the tracking nominal

system (6). The tracking system state n and weight

approximation errors ~Wc are UUB only when the trig-

gering condition (22) holds and the following inequality

satisfies

3ackð �Dw �DwTÞ � 16L2
Gw

2
MkR�1k2 [ 0 ð52Þ

where kð �Dw �DwTÞ is the minimum eigenvalue of �Dw �DwT in

(59), and ac is the learning rate of NNs.

Proof For the nominal system (6) with the optimal value

function (9), the following Lyapunov function is applied

for

LðtÞ ¼ L1ðtÞ þ L2ðtÞ þ L3ðtÞ ð53Þ

where L1 ¼ V�ðnÞ, L2 ¼ V�ðn̂qÞ, and L3 ¼ ð1=2Þ ~WT
c
~Wc.

Fig. 1 Proposed algorithm structure diagram
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Based on Remark 4, the discrete sampling state nðtqÞ
and the continuous sampling state nðtÞ are included in

hybrid systems due to the introduction of ETC. Thus, we

describe the following two situations.

Case 1. For the triggering condition is not satisfied, that

is, during the flow dynamic on t 2 ½tq; tqþ1Þ, we have

_L1ðtÞ ¼ _V
�ðnÞ ¼ rV�T�FðnÞ þ GðnÞûðn̂qÞ

�
¼ rV�T FðnÞ þ GðnÞu�ðnÞð Þ

þ rV�TGðnÞ
�
ûðn̂qÞ � u�ðnÞ

�
ð54Þ

Substituting equations (24) and (25) into (54), we obtain

_L1ðtÞ ¼ � nTQn�Rðu�ðnÞÞ � k �dmðnÞk2 þ lV�

þ 2aRH�T
�
a�1ðu�ðnÞ � bÞ

��
u�ðnÞ � ûðn̂qÞ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

E3

ð55Þ

Similar to (27) and using the inequality

2aTb�kak2 þ kbk2, E3 can be converted to

E3 �kaRH�T
�
a�1ðu�ðnÞ � bÞ

�
k2 þ ku�ðnÞ � ûðn̂qÞk2

� 1

4
krV�TGðnÞk2 þ ku�ðnÞ � ûðn̂qÞk2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

M1

ð56Þ

By using the function property j tanhðyÞj � 1 for 8y 2 R

and equation (49), we can get HðWðn̂qÞÞ� k0 with k0 � 1.

Based on Young’s inequality

(i:e:; ka
 bk2 � 2kak2 þ 2kbk2) and Assumptions 3–4,

M1 can be converted to

M1 ¼


u�ðnÞ � u�ðn̂qÞ þ u�ðn̂qÞ � ûðn̂qÞ



2
� 2ku�ðnÞ � u�ðn̂qÞk2 þ 2ku�ðn̂qÞ � ûðn̂qÞk2

� 2


aH� 1

2a
R�1GTðn̂qÞrwTðn̂qÞŴc

�

� aHðWðn̂qÞÞ þ Euðn̂qÞk2 þ 2K2
1keq



2
� 4a2kH

� 1

2a
R�1GTðn̂qÞrwTðn̂qÞŴc

�

�HðWðn̂qÞÞk2 þ 2K2
1keqk

2 þ 4kEuðn̂qÞk2

� 2kR�1GTðn̂qÞrwTðn̂qÞŴck2 þ 8a2k20

þ 2K2
1keqk

2 þ 4c2Eu

� 2K2
1keqk

2 þ 4c2Eu
þ 8a2k20 þ 2L2

Gw
2
MkR�1k2kŴck2

ð57Þ

According to (56) and (57), (55) is rewritten as

_L1ðtÞ� � nTQn�Rðu�ðnÞÞ þ 1

4
V2

2L
2
G þ 2K2

1keqk
2

þ 8a2k20 þ lV1

þ 2L2
Gw

2
MkR�1k2kŴck2 þ 4c2Eu

� k �dmðnÞk2

ð58Þ

During the no-triggered interval t 2 ½tq; tqþ1Þ, we obtain

_L2ðtÞ ¼ _V
�ðn̂qÞ ¼ 0. According to (51) and mw � 1, _L3ðtÞ

is given as

_L3 ¼ ~WT
c
_~Wc ¼ �ac ~WT

c
�Dw �DwT ~Wc þ ac ~WT

c
�Dwmw�B

� ac

� 1
4

~WT
c
�Dw �DwT ~Wc þ �TB�B

�
� ac ~WT

c
�Dw �DwT ~Wc

� � 3

4
ackð �Dw �DwTÞk ~Wck2 þ ac�

2
M

ð59Þ

According to nTQn	 kðQÞknk2 and combining (58) and

(59), the derivative of LðtÞ becomes

_LðtÞ� � .2kðQÞknk2 � ð1� .2ÞkðQÞknk2

� 3

4
ackð �Dw �DwTÞk ~Wck2

þ 2K2
1keqk

2 þ 2L2
Gw

2
MkR�1k2kWc � ~Wck2 þ lV1

þ 1

4
V2

2L
2
G þ 4c2Eu

þ 8k20a
2 þ ac�

2
M

ð60Þ

If the triggering condition is provided by (22), then we

have

_LðtÞ� �
� 3
4
ackð �Dw �DwTÞ � 4L2

Gw
2
MkR�1k2

�
k ~Wck2

� .2kðQÞknk2 þ C0

ð61Þ

where

C0 ¼ 4L2
Gw

2
MkR�1k2W2

c þ
1

4
V2

2L
2
G þ 4c2Eu

þ 8k20a
2

þ ac�
2
M þ lV1

. Thus, we can conclude that _LðtÞ is negative definite if one
of the following inequalities is not within the range of the

sets Xn and X ~Wc
as
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Xn ¼ n 2 R : knk�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0

.2kðQÞ

s( )

X ~Wc
¼ ~Wc : k ~Wck�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C0

3ackð �Dw �DwTÞ � 16L2
Gw

2
MkR�1k2

s( )

ð62Þ

Case 2. The event obtains a jump dynamic at the triggering

instant t ¼ tqþ1. Then, the difference of Lyapunov function

(53) is considered as

DLðtqþ1Þ ¼ DL1ðtqþ1Þ þ DL2ðtqþ1Þ þ DL3ðtqþ1Þ ð63Þ

where DL1 ¼ V�ðnðtqþ1ÞÞ � V�ðnðt�qþ1ÞÞ, DL2 ¼
V�ðn̂qþ1Þ� V�ðn̂qÞ, and DL3 ¼ 1

2
~WT
c ðtqþ1Þ ~Wcðtqþ1Þ�

1
2
~WT
c ðt�qþ1Þ ~Wcðt�qþ1Þ. There exists r 2 ð0; tqþ1 � tqÞ with

nðt�qþ1Þ ¼ lim
r!0þ

nðtqþ1 � rÞ and

~Wcðt�qþ1Þ ¼ lim
r!0þ

~Wcðtqþ1 � rÞ.
According to Case 1, we can conclude that the nominal

system state n is UUB during the no-triggered interval and

_LðtÞ\0 hold. Then, we have V�ðn̂qþ1Þ�V�ðn̂qÞ, that is,
DL2ðtqþ1Þ\0. Owing to the augmented state nðtÞ, the

weight approximation error ~Wc is continuous and L1and

L3 from (53) are strictly incremental during the triggering

interval t 2 ½tq; tqþ1Þ, and then we obtain

V�ðnðt�qþ1ÞÞ þ
1

2
~WT
c ðt�qþ1Þ ~Wcðt�qþ1Þ

¼ lim
r!0þ

V�ðnðtqþ1 � rÞÞ

þ 1

2
lim
r!0þ

~WT
c ðtqþ1 � rÞ ~Wcðtqþ1 � rÞ

	V�ðnðtqþ1ÞÞ þ
1

2
~WT
c ðtqþ1Þ ~Wcðtqþ1Þ

ð64Þ

that is, DL1ðtqþ1Þ þ DL3ðtqþ1Þ� 0. Thus, we can derive

that DLðtÞ\0 at the triggering instant t ¼ tqþ1 if only one

of the inequalities in (62) does not hold. Combining the

discussion of the two cases, the tracking system state n and

the weight approximation error ~Wc are UUB if n 62 Xn or

~Wc 62 X ~Wc
holds. h

5 Simulation results

In this part, the actionability of the proposed algorithm is

verified by applying the results of two examples. Firstly,

the antagonistic bionic joint is taken as the controlled

object to achieve optimal tracking results while reducing

the number of controller updates. Then, the optimal

tracking is obtained while ensuring the stability of a con-

tinuous-time nonlinear system in Sect. 5.2.

5.1 Example 1

Given that two pneumatic artificial muscles (PAMs) drive

the end load in a confrontational manner. From Fig. 2, one

PAM is used to release the air pressure, while the other

PAM is used to input the air pressure, which causes the

pulley to revolve by h. The total force exerted by each

PAM throughout an operation about the air pressure

coefficient can be expressed as FP1 and FP2. Assuming that

two PAMs are increased or decreased with the same air

pressure value p. The effective working length of the two

PAMs is shown as s1;2 ¼ s0 
 hR. The dynamic equation of

torque generated by two PAMs is

J€hþ c _hþMglsinh ¼ ðFP1 � FP2ÞRþ �dðxÞ ð65Þ

where J is the equivalent rotational inertia of the pulley and

joint. l is the length of joint, andM is the mass of pulley. c _h
means the joint damping term and R is the pulley radius.
�dðxÞ is unknown disturbance with a upper bound �dmðxÞ.
Define x1 ¼ h, x2 ¼ _h, and (65) can be transformed as

_x1 ¼ x2

_x2 ¼ f ðx1; x2Þ þ guðtÞ þ h �dðxÞ


ð66Þ

where f ðx1; x2Þ ¼ 2I�1ððb1 þ b2p0ÞR2 � 2I�1cÞx2�
2I�1ððk1 þ k2p0ÞR2x1 � ðMgl sin x1Þ=2Þ, g ¼ RI�1ðf2 �
k2s0Þ , and h ¼ I�1, pðtÞ ¼ uðtÞ. b1 and b2 are the damping

coefficients, k1 and k2 are the spring coefficients, and f1 and

f2 are the shrinkage force parameter of PAM. p0 indicates

the initial pressure. Other relevant parameters and refer-

ence values related to the model are given in Table 1. The

constrained control satisfies by

u 2 fu 2 R : �25� uk k� 30g. We analyze the system

performance at the unknown disturbances �dðxÞ ¼
p0x1 cos x2 with p0 2 ½�1; 1� and choose the function

related to disturbance as �dmðxÞ ¼ x.

The desirable trajectories are considered as xr1 ¼ sinðtÞ
and xr2 ¼ cosðtÞ. Give the initial augmented state

n ¼ ½er1; er2; xr1; xr2�T ¼ ½2;�2; 1; 0�T. The parameters

Table 1 Identified parameters of the model

Parameters Value Coefficients Value

Load mass/M 2 kg f1 14.89

Pulley mass/m 0.5 kg f2 2.73

Pulley radius/R 0.5 m k1 4.82

Arm length/L 0.5 m k2 1.32

PAM initial length/s0 0.3 m b1 1.22

Damping coefficient/c 0.2 b2 1.35
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related to the value function (9) are Q0 ¼ 100diagf1; 1g,
R ¼ 0:2 , and l ¼ 0:2. The learning rate of the NNs is

ac ¼ 5 and the detection signal is selected as nðtÞ ¼
1:69 sinðtÞ2 cosð2tÞþ

1:69 sinð2tÞ2 cosð0:1tÞ þ 0:3 sinð2:3tÞ4cosð7tÞ. The param-

eter of the triggering condition is determined in . 2 ð0; 1Þ.
The approximate NN weight vector is

Ŵc ¼ ½ŵc1; ŵc2; . . .; ŵc10�T, and the activation function

wðnðtÞÞ is selected as

wðnÞ ¼ ½e2r1; er1er2; er1xr1; er1xr2; e2r2;
er2xr2; x

2
r1; xr1xr2; x

2
r2�

T
ð67Þ

To demonstrate the performance of the proposed algorithm

in tracking accuracy and optimal control, the application of

sliding mode control (SMC) at biomimetic joints in [44] is

utilized for comparison. The tracking error of the PAMs

joint is shown in Fig. 3a and ultimately approaches zero

within a certain range. The angle error er1 and speed error

Fig. 2 Antagonistic bionic joint model

Fig. 3 Tracking errors and control laws

Fig. 4 Position tracking and speed tracking under three control methods
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er2 of SMC are greater than ETADP. The constrained input

laws based on TTC and ETC are shown in Fig. 3b. Com-

pared with the TTC and SMC, the ETC consumes the least

control decision. The tracking performances of position

and speed for the PAMs model are displayed in Fig. 4a, b.

After the online learning of 50 seconds under the PE

condition, the single-critic NN weights converge to

[0.5265, 0.2193, 0.4854, 0.5886, 0.8987, 0.3866, 0.4540,

0.4983, 0.5157, 0.5017�T in Fig. 5. The triggering condi-

tion and sampling interval are demonstrated in Fig. 6. In

addition, the horizontal coordinate is the sampling state

obtained at this instant, and the vertical coordinate repre-

sents the difference between adjacent triggering intervals.

According to the simulation results, the minimum sampling

interval is ðTqÞmin ¼ 0:2s. Thus, the Zeno behavior is

successfully avoided. Experiments show that the sampling

state under TTC and SMC is 1000, while the ETC only

needs 247 samples. The ETC-based system greatly reduces

the controller updates. Furthermore, the performance of the

three control methods is shown in Table 2. From Table 2, it

can be concluded that the advantages of the proposed

ETADP method are mainly reflected in control accuracy,

decreased controller updates, and reduced calculation

costs.

5.2 Example 2

Consider the following nonlinear continuous-time system

with uncertain disturbances

_x ¼ f ðxðtÞÞ þ guðtÞ þ g �dðxÞ ð68Þ

where f ðxÞ ¼ x2
�0:5x1 � 0:5x2 1� x21

� �� �
and g ¼ ½0; 1�T.

The two state vectors are denoted as x ¼ ½x1; x2�T. The
constrained control satisfies u 2 fu 2 R : �2� uk k� 4g.
Unknown item related to the disturbances is defined as
�dðxÞ ¼ p1x1 sinðx2 þ p2Þ with p1 2 ð�2; 2Þ and

p2 2 ð�1; 3Þ, which is satisfied with k �dðxÞk� �dmðxÞ.
Define the augmented state vector as n ¼ ½er1; er2; xr1; xr2�T.
Then, the desired trajectory xr ¼ ½xr1; xr2�T is provided by

_xr ¼
0 1

�1 0

� �
xr ð69Þ

Give the initial tracking state as xr ¼ ½1; 0�T. The

parameters are selected as Q0 ¼ 100I2 and R ¼ 0:5I1,

l ¼ 0:4, T ¼ 0:1, . 2 ð0; 1Þ. The activation function of the

single-critic NN and PE conditions are the same as in

Example 1. Then, the approximated weight vectors are

denoted as Ŵc ¼ ½ŵc1 ; ŵc2 ; . . .; ŵc10�T. For the

Fig. 5 The convergence trajectory of Ŵc

Fig. 6 a Event error keqk2 and triggering threshold kTek. b Triggering

intervals

Table 2 Performance

comparison of three control

methods

Methods er1 er2 Sampling states Minimum interval

SMC [44] 0.1217� 0.1972�/s 1000 0.1s

ADP 0.01� 0.0035�/s 1000 0.1s

ETADP 0.01� 0.0035�/s 247 0.2s
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determination of the unknown coefficients of the distur-

bance, we consider two cases as p1 ¼ 1; p2 ¼ 0 and

p1 ¼ �1; p2 ¼ 2.

Case 1: p1 ¼ 1; p2 ¼ 0

Give the initial state as x0 ¼ ½�3;�1�T. The error tra-

jectories of the tracking system are described in Fig. 7a.

The tracking errors fluctuate around zero and tend to sta-

bilize. The control laws uðn̂qÞ and uðnÞ are displayed in

Fig. 7b. We represent a comparative result of input laws

under TTC and ETC, and fewer controller updates under

ETC. From Fig. 7b, uðn̂qÞ and uðnÞ remain within the

asymmetric input ranges ðumin ¼ �2; umin ¼ 4Þ. The

tracking performance of the augmented robust system is

shown in Fig. 8. In Fig. 9, the single-critic NN weights can

be ensured to converge under the action of PE condition

after 50s, which maintain them at ½�0.7861, 9.4755,

1.3352, -0.4379, 2.7899, -1.4381, 0.8816, 0.9817,

1.4047, 1.0184�T. The trajectories of event error and the

triggering threshold are shown in Fig. 10a. It can be seen

intuitively that the event errors are always within the

triggering thresholds. The interval time between each

occurrence of a new event is shown in Fig. 10b. From

Table 3, there are only 166 sampling states performed

based on ETC. Instead, the system updates its states at

every instant under TTC. The minimal triggering interval

ðTqÞmin [ 0 is valid, and the Zeno behavior did not occur.

The trajectory of actual signals and desired signals is dis-

played in Fig. 11.

Case 2: p1 ¼ �1; p2 ¼ 2

Give the initial state as x0 ¼ ½�2;�1:5�T. The trajecto-

ries of tracking errors are described in Fig. 12a. It is

Fig. 7 a Tracking errors er1 and er2. b Control laws with asymmetric

constraints based on TTC and ETC ðp1 ¼ 1 and p2 ¼ 0Þ

Fig. 8 Actual trajectories x1; x2 and desired trajectories xr1; xr2 ðp1 ¼
1 and p2 ¼ 0Þ

Fig. 9 Weight trajectories of critic network ðp1 ¼ 1 and p2 ¼ 0Þ

Fig. 10 a Triggering rule. b Triggering gaps ðp1 ¼ 1 and p2 ¼ 0Þ
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obvious that er1 and er2 gradually converge to asymptoti-

cally stable. From Fig. 12b, we can obtain the ETC-based

input law uðn̂qÞ with constrained conditions

ðumin ¼ �2; umax ¼ 4Þ. Compared with TTC, the ETC-

based control laws are updated in a non-periodic sampling

manner. Figure 13 shows the tracking performance of the

nonlinear system. The NN can be ensured to converge

under the action of PE condition. Figure 14 demonstrates

the approximal critic weight vectors are converged to

[�4.9850, 2.5005, 6.3542, 0.2073, 1.4214, 2.3553,

-0.1263, -0.1712, 0.8905, 1.1092�T after online learning.

The relationship between event error and triggering

Table 3 Comparative results of

TTC and ETC
Performance Time-triggered control (TTC) Event-triggered control (ETC)

Case 1 Case 2 Case 1 Case 2

Sampling states 1000 1000 166 219

Minimal interval (s) 0.1 0.1 0.4 0.4

Error er1 0.0200 0.0154 0.0200 0.0154

Error er2 0.0325 0.0176 0.0325 0.0176

Average interval (s) 0.1 0.1 0.5977 0.4513

Fig. 11 Actual and desired tracking trajectory ðp1 ¼ 1 and p2 ¼ 0Þ

Fig. 12 a Tracking errors er1; er2. b Control laws with asymmetric

constraints based on TTC and ETC ðp1 ¼ �1 and p2 ¼ 2Þ

Fig. 13 The actual trajectories x1; x2 and desired trajectories xr1; xr2
ðp1 ¼ �1 and p2 ¼ 2Þ

Fig. 14 Weight trajectories of critic NN ðp1 ¼ �1 and p2 ¼ 2Þ
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threshold is shown in Fig. 15a, which demonstrates the

effectiveness of the designed triggering condition (23).

Figure 15b indicates the sampling gaps, and the number of

sampling states is shown in Table 3. Compared with the

sampling states of 1000 under TTC, only 219 sampling

states are performed based on ETC. The results indicate

that ETC can effectively reduce the controller updates,

thereby relaxing communication load and reducing com-

putational costs. From Table 3, considering ETC similarly,

disturbance in Case 1 requires fewer sampling states, while

the tracking accuracy and speed in Case 2 are better than in

Case 1. Similarly, the minimum triggering gap exists, so

we effectively avoid the Zeno behavior. In Fig. 16, the

actual trajectory and the desired trajectory are displayed.

6 Conclusion

An online event-triggered ADP method is suggested to

overcome the robust tracking control for nonlinear systems

with unknown dynamics and constrained inputs. The value

function with the non-quadratic function is constructed to

equate the robust tracking problem with the optimal

tracking control. Then, a single-critic network is applied to

approximate the ideal value function and obtain the solu-

tion of the HJB equation for the optimal control law action.

The designed ETC-based robust control law is updated in a

continuous segmented manner, which significantly reduces

the number of controller updates and relaxes computational

costs. Two examples are provided to verify the robustness

of the proposed algorithm for tracking control systems.

However, in practice, complicated nonlinear systems are

accompanied by model-free or uncertain mismatches, and

solving such problems is our future work.
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