
ORIGINAL ARTICLE

FCDS-DETR: detection transformer based on feature correction
and double sampling

Min Wang1 • Zhiqiang Jiao1 • Zhanhua Huang2 • Shihang Yu3

Received: 6 August 2023 / Accepted: 15 January 2024 / Published online: 9 February 2024
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract
The recently proposed semantic-aligned matching detection transformer (SAM–DETR model) accelerates the convergence

of the detection transformer (DETR) by mapping object queries into an identical embedding space as the encoder’s output

feature map. However, SAM–DETR model has the problem of low detection accuracy compared to other DETR variants.

We observe that the lower detection accuracy of SAM–DETR model is caused by the insufficient number of sample points

and the inaccurate localization of the sample points during re-sampling, which blurs the generated attention map. This

paper proposes an object detector based on a feature correction and double sampling DETR (FCDS-DETR) to solve this

problem. FCDS-DETR takes SAM–DETR model as a baseline and builds on it by adding a feature correction module and a

double sampling mechanism to achieve further improvement in detection accuracy with a limited number of additional

parameters without sacrificing convergence speed. Firstly, FCDS-DETR improves the sampling point localization accuracy

by adding a feature correction module to model the inter-channel dependence of the feature maps to be sampled. Secondly,

the number of sampled points is increased by the double sampling mechanism, and attention fusion is used to fuse the

attention weight maps corresponding to the two sets of sampled points to improve the recognizability of the attention

weight maps. The experimental results show that the average precision is improved by ?0.7 on the COCO dataset

compared with the SAM–DETR model, and the number of parameters is increased by only 10.34%, which improves the

detection performance of the model very well.
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1 Introduction

Object detection is one of the fundamental tasks of com-

puter vision and aims to predict a set of bounding boxes

and category labels for each object instance of interest [1].

According to the process of object bounding boxes from

nothing to something, we can divide into single-stage and

two-stage object detection. The two-stage object detection

algorithm in the first stage mainly uses anchors, region

proposals, and NMS [2] to find out where the object

appears and get suggestion bounding boxes. The second

stage uses classifiers to classify the suggestion bounding

boxes and finally realize the object detection process. The

R-CNN [3–6] family is the classical two-stage object

detection algorithm, among which fast R-CNN [7] and

faster R-CNN [8] are regularly used in the area of object

detection by virtue of their excellent capabilities. Although

these detection algorithms have high detection accuracy,

the detection speed is usually measured in frames per

second, and even the fastest high-accuracy detector, Faster-

R-CNN, can only run at 7 frames per second (FPS), making

it unsuitable for detection scenarios with high time

response requirements [9].

In order to solve the above problem, single-stage object

detection has emerged. It requires only one forward pass of

a single neural network model to predict objects’ class and

location information directly from the original image.
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Classical single-stage object detection algorithms include

YOLO [10–15], SSD [9], ResNet [16], etc. These classical

object detection algorithms must count on manual com-

ponents to accomplish the object detection process and

cannot achieve true end-to-end object detection.

With the continuous exploration of researchers in object

detection, Carion et al. [17] proposed an object detector

that regarded object detection as a direct set prediction

problem, named detection transformer (DETR), which

brought a new direction for the development of object

detection. DETR is based on encoder–decoder architecture

[18] and combined with the bipartite graph matching

algorithm, which eliminates the dependence on many

manual components and realizes end-to-end object detec-

tion. It effectively simplifies the process of object

detection.

Although DETR has a simple structure and achieves

end-to-end object detection without relying on manual

components, its training and inference still take a long

time. The effect is not very good when detecting small- and

medium-sized objects. Therefore, much subsequent

research on DETR has been devoted to speeding up its

convergence and improving detection accuracy.

Zhu et al. [19] attribute the slow convergence of DETR

to the fact that the attention module applies the same

attention weights to all pixels in the feature map in the

initial stage. It causes the model to take a lot of time to

learn the object distribution in the dataset to be detected.

Based on the above analysis, deformable DETR is pro-

posed. The problem of slow convergence of DETR is

alleviated. Meng et al. [20] concluded that the slow con-

vergence of DETR is because the query’s content embed-

ding must be matched with both the content embedding in

the key and the spatial embedding in the key when com-

puting cross-attention by visualizing the spatial attention

weight map of cross-attention in DETR. Therefore, DETR

needs a large number of epochs to improve the quality of

content embedding to locate the object precisely. Based on

the above analysis, the authors propose conditional DETR.

By decoupling the cross-attention module in the decoder,

the convergence speed of DETR is improved. Gao et al.

[21] propose a plug-and-play spatially modulated cross-

attention module named SMCA and apply it to DETR.

SMCA-DETR introduces a 2D spatial Gaussian-like dis-

tribution in the cross-attention mechanism. In this way, the

search range of each object query vector in cross-attention

is adjusted to a certain distance close to the target center,

thus accelerating the convergence speed of DETR. In

addition, the authors integrate multi-head attention and

scale-selective attention into SMCA to further improve the

detection accuracy of the model. Zhang et al. [22] proposed

a strong end-to-end object detection model DINO, which

improves the slow convergence speed of DETR-like

models and the unclear meaning of query vectors by using

a contrastive denoising training method, a hybrid query

selection mechanism, and twice forward propagation. In

2022, Zhang et al. [23] experimentally found that in the

DETR decoder, the object queries were mapped multiple

times in the self-attention module and FFN, resulting in a

lack of semantic alignment between the object queries and

image features, which affected the convergence of DETR.

Based on this analysis, Zhang et al. proposed a semantic-

aligned matching detection transformer (SAM–DETR

model), a model to accelerate DETR convergence by

semantic alignment matching. SAM–DETR model greatly

accelerates the convergence of DETR without sacrificing

accuracy.

Inspired by the effectiveness of the above multi-head

attention [18] and semantic alignment matching re-sam-

pling mechanism [23] in accelerating DETR convergence

and improving model detection performance, we propose a

DETR object detector based on feature correction and

double sampling (FCDS-DETR). It improves the detection

accuracy by improving the perception ability of the base-

line model to the target object. Specifically, we add a

feature correction module to SAM–DETR model, which

indirectly affects the position of sampling points in the

sampling area by explicitly modeling the inter-dependence

between feature channels. The ability of the model to

locate the edge and end of the detected object was

enhanced. At the same time, the double sampling mecha-

nism and feature map fusion method of FCDS-DETR can

improve the recognizability of the attention weight maps

and reduce the difficulty of subsequent matching tasks by

fusing the attention maps generated by the two sets of

sampling points. The specific contributions of this paper

are as follows:

1. We propose a high-accuracy end-to-end object detector

that utilizes the feature correction module and double

sampling mechanism to enhance the SAM–DETR

model’s ability to detect and localize targets, thereby

improving detection accuracy.

2. The reason behind the fuzziness of the attention map

generated by the SAM–DETR model is thoroughly

analyzed, and a novel attention fusion method is

proposed to enhance the recognizability of the attention

weight map and achieve more reliable object detection.

3. We evaluated our proposed model on the improved

FDDB [24] and COCO [25] datasets, conducting a

comprehensive assessment of its performance metrics,

including precision, recall, and model parameters,

through statistical measurements. The method is com-

pared with existing DETR-like models such as

deformable DETR and SAM–DETR model.
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2 Related Work

2.1 Transformer

In the field of natural language processing (NLP), recurrent

neural networks (RNNs) have long been one of the most

popular neural network architectures. Still, they often suf-

fer from long-term dependency problems when processing

long sequences, leading to unsatisfactory results. In order

to solve this problem, Vaswani et al. [18] proposed a new

deep learning model transformer. Compared with RNNs,

transformer is an attention mechanism-based neural net-

work model that can model long sequence data without

using the recurrent structure and has better parallel com-

puting capability and computational efficiency. The suc-

cess of transformer in the field of NLP has laid the

foundation for subsequent applications in image classifi-

cation [26–29], image generation [30–33], action recogni-

tion [34–36], and fault diagnosis [37, 38]. The transformer

structure exchanges information with all inputs by

employing key, query, and value. Through continuous

iterative learning, it establishes the connection between

each input and itself and the connection between each input

and other inputs. However, the transformer structure is

computationally quadratic in complexity, making it com-

putationally intensive in the learning process and requiring

a long time for model training. To address this problem, a

series of studies have been conducted by subsequent

scholars. Sparse transformer [39] uses sparse attention

instead of the dense attention of the traditional transformer,

reducing the complexity of the transformer from Oðn2Þ to

O(nlog(n)) . Linformer [40] proposes to remove the soft-

max function in the transformer and perform matrix mul-

tiplication between query and value first to achieve the

complexity from Oðn2Þ down to O(n) . In this paper, our

FCDS-DETR constructs the model by referring to the idea

of the original transformer. In future work, we will explore

efficient transformers in FCDS-DETR.

2.2 Siamese-based architecture for matching

Siamese-based architecture for matching, a deep learning

model for similarity comparison and matching, has a main

structure consisting of Siamese networks. By stitching two

identical neural networks together for training, they are

accelerated to learn to project the two input vectors into the

same feature space. The model projects two input vectors

into two new vectors through a neural network when per-

forming similarity matching. The similarity between these

two vectors is then determined by calculating the Euclidean

distance in the embedding space and other methods. This

method is widely used in text matching [41–43], image

matching [44–46], and face verification [47–49]. Mueller

[42] et al. proposed the Siamese Recurrent Architecture in

2016 and used it for text matching tasks. The advantage of

this model is its ability to learn the representation of text

adaptively and capture the semantic similarity between

texts. A good generalization capability was obtained by

training on a limited dataset. Chen [43] et al. proposed an

enhanced Siamese-based architecture model for natural

language inference tasks in 2017. The model is able to

handle diverse text types and lengths efficiently. Florian

[50] et al. proposed a method of training similarity from

data and used it for face verification. Koch [51] et al. used

Siamese networks for small-sample learning tasks, intro-

ducing distance metrics to solve the problem of small-

sample classification. Our FCDS-DETR achieves semantic

alignment matching by projecting object queries to the

same embedded space as the encoder output feature map.

2.3 Classical feature fusion method in object
detection

Feature fusion methods have been widely adopted in the

field of object detection due to their superior performance,

with the main goal being to enhance and optimize the

model’s detection accuracy for targets of varying scales

and perspectives. In 2017, Lin et al. [52] proposed the

feature pyramid network (FPN), an effective feature fusion

architecture that uses a top-down pathway and lateral

connections to integrate multi-scale and multi-level feature

information, thereby improving object detection perfor-

mance. Subsequently, PANet, proposed by Liu et al. [53],

adds a bottom-up pathway to the FPN, allowing feature

fusion to occur at each level and better integrating infor-

mation from lower and higher layers. Huang et al. [54]

designed DenseNet, which establishes dense connections

between all layers, offering an effective method for inte-

grating multi-scale and multi-level information, hence

improving the model’s generalization capability. In this

paper, we draw insights from these feature fusion methods

and apply them to the fusion process of cross-attention

weight maps, on the basis of which we propose an attention

fusion method. This innovative approach improves the

detection performance of the model FCDS-DETR from a

new perspective.

3 Proposed methods

3.1 Overview

The FCDS-DETR proposed in this paper aims to integrate

the feature correction module and the double sampling

mechanism into the Semantics Aligner module to improve
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the problem of insufficient sampling points and inaccurate

sampling point positioning in the re-sampling process of

SAM–DETR model. The model’s accuracy is enhanced

while keeping the number of parameters limited and

without sacrificing the convergence rate of the model. In

the following sections, we first review the basic architec-

ture of SAM–DETR model and then introduce the archi-

tecture of our proposed FCDS-DETR.

3.2 Review SAM–DETR model

SAM–DETR model uses ResNet-50 [16] as a feature

extraction network to extract feature maps F 2 RH�W�C

from the input image I 2 RH0�W0�3, where H0, W0, and H,

W represent the height and width of the input image and

output feature map, respectively. C represents the dimen-

sion of the output feature map. In the encoder part, the

feature map F is first combined with the sinusoidal position

encoding PE to obtain the feature map Fpe containing

spatial position information. The Fpe will be applied to

generate vectors K and Q, representing Key and Query in

the transformer, respectively. The sinusoidal position

encoding PE formula is shown in Eq. (1) and Eq. (2),

PEðpos; 2iÞ ¼Sinð pos

10000
2i
d

Þ ð1Þ

PEðpos; 2iþ 1Þ ¼Cosð pos

10000
2i
d

Þ ð2Þ

where pos represents the position coordinate of each pixel

of the feature map, 2i and 2iþ 1 represent each pixel’s

position in the corresponding position embeddings, and d is

the dimension of the position embeddings. V represents the

value obtained from F without position information. K, Q,

and V will be input to self-attention. In the calculation of

self-attention, the matrix dot product between Q and K is

used to obtain the output containing context information.

And then, after normalization and linearization, we get the

output of self-attention. Realize the information exchange

between features in all spatial locations. To increase fea-

ture diversity, K, Q, and V are divided into groups along the

channel dimension for MHSAttention (multi-head self-at-

tention). This MHSAttention formula is shown in Eq. (3),

MHSAttentionðQ;K;VÞ ¼ ConcatðSoftmaxðQiKi
ffiffiffiffiffi

dk
p ÞViÞWo

ð3Þ

where Qi, Ki, and Vi represent the ith feature groups of Q,

K, and V. The dk is the row dimension of Qi and Ki. W
o

represents the output transformation matrix. The output

result of MHSAttention is transformed and input to the

transformer’s decoder.

In the decoder part, SAM–DETR model adds a seman-

tics aligner before each multi-head cross-attention, as

shown in Fig. 1. This Semantics Aligner samples the

encoder output feature maps to generate new query, the

generation of which is shown in Fig. 2. The gray ellipse

represents the necessary input data for cross-attention,

while the orange rectangle depicts the process of creating a

new query vector. Subsequently, the cross-attention mod-

ule takes new query as input. The semantic aligner ensures

that key and query are semantically aligned in cross-at-

tention since both key and query are derived from the

SAM–DETR model encoder output feature maps. By

adding a semantic aligner to DETR, the convergence of the

model is accelerated, and the detection accuracy is

improved.

It is because of SAM–DETR model’s unique under-

standing of the problems of the classical DETR model that

it opens up a new direction to accelerate DETR conver-

gence. Using the re-sampling method to obtain object

query avoids the problem of semantic destruction caused

by multiple projections of object query generated by mul-

tiple decoder superposition. At the same time, the detection

accuracy of the model is improved to a certain extent.

However, the number of sampling points used by SAM–

DETR model in the re-sampling process of semantics

aligner is small, while the sampling points are not accurate

Fig. 1 Structure of SAM–DETR model. N denotes the number of

encoders in the transformer, and M denotes the number of decoders in

the transformer
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enough in locating the crucial positions of target objects,

resulting in low detection accuracy of the model.

3.3 Feature correction module

Feature correction is typically employed in feature

extraction networks to enhance the robustness and gener-

alization of the model by correcting and refining the fea-

tures in the middle layer of the model. Since the

transformer has the quality of multilayer decoder stacking,

we introduce the feature correction module of parameter

sharing into the basic decoder module. In a single iteration

of the model, the multilayer stacked decoder can complete

the recalibration of the input features by using the feature

correction module and constantly updating the coordinates

of the sampling points. CAM [55] is a classical squeeze-

and-excitation type of feature correction mechanism, which

can improve the quality of the feature representation of the

model by adding only a few parameters. Therefore, we use

it as a feature correction module to correct the features of

the ROI extraction region. Our core idea is to indirectly

affect the sampling points in the sampling area by using the

differences between the channels of the feature map to be

sampled. This indirect effect is mainly due to the fact that

the feature map to be sampled is recalibrated in the channel

dimension after adding the feature correction module.

When the recalibrated feature map to be sampled is used to

predict the offset of the re-sampled coordinate points, more

accurate prediction results are obtained. The model’s

ability to perceive the area to be detected and locate the key

points of the object is improved, which in turn leads to

improved detection accuracy. As shown in Fig. 3, E is the

feature map obtained by the transformer encoder image

feature after convolutional transformation. Eroi is the

potential region containing the object obtained by E after

ROI align [56]. Fsq completes the squeezing operation of

the global spatial dimension of the input features, which we

implement using global max pooling and global average

pooling. This operation describes the feature map channel

dimension by aggregating the input feature map spatial

dimensions. The Fsq formula is shown in Eq. (4),

FsqðEroiÞ ¼
1

HEroi
�WEroi

X

WEroi

x¼1

X

HEroi

y¼1

Eroiðx; yÞ

MaxðEroiðx; yÞÞ; x 2 WEroi
; y 2 HEroi

8

>

>

<

>

>

:

ð4Þ

where HEroi
represents the height of the ROI align output

feature map and WEroi
represents the width of the ROI align

output feature map.

We input the global average pooling and the global max

pooling results into the MLP to obtain two sets of 1 � 1 �
C feature vectors. After that, we add the two sets of feature

vectors and use the sigmoid function to implement the

excitation operation Fex. The weight set Wroi for each

feature channel corresponding to the feature map Eroi is

ultimately generated through the continuous iterative

learning of the MLP. Figure 3 shows that Fadject multiplies

the weight set Wroi with the original Eroi to obtain the

recalibrated feature map Eadj. The Fex and Fadject formulas

are shown in Eqs. (5) and (6),

FexðXÞ ¼ SigmoidðMLPðXÞÞ ð5Þ

FadjectðEroiÞ ¼ Eroi �Wroi ð6Þ

where X represents the output of Eroi after the global max

pooling and the average pooling.

3.4 Double sampling mechanism

The purpose of re-sampling is to find the most represen-

tative key points in the feature map containing potential

objects. In the semantics aligner module of SAM–DETR

model, the regions containing potential objects are first

extracted using ROI align, and a single re-sampling is

performed within the region. Then, the sampled results are

Fig. 2 Semantic aligner module generates new query vectors
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sent to multi-head cross-attention as object queries for the

dot product calculation of attention. Finally, an attention

weight map that reveals the matching degree between

object queries and the target region is generated. However,

while this single re-sampling scheme can speed up the

convergence of DETR, it suffers from under-sampling

when using fewer sampling points to locate the key points

of the target object in the reference box.

Based on the above analysis, this paper proposes a

double sampling mechanism to enhance the object per-

ception capability of the model by increasing the number of

sampling points, thus improving the detection accuracy.

First, a feature map containing inter-channel dependencies

is used to predict the offset of the two sets of sampling

points. Then, the bilinear interpolation algorithm is used to

double sample on the original feature map extracted by

ROI Align according to the offset of the generated sam-

pling points. Finally, two sets of query content embeddings

are generated. Let us denote the two sets of offsets as

Poffset i, where i ¼ 0; 1f g represents the group to which

they belong. As shown in Fig. 3, We obtain the offset of

the sampling points by passing the recalibrated feature map

Eadj to Conv, ReLU activation, and MLP. The formula is

shown in Eq. (7),

Poffset iðEadjÞ ¼ MLPðReLUðConvðEadjÞÞÞ ð7Þ

where Conv denotes the convolution operation, and ReLU

is the activation function.

Following that, we can easily obtain two sets of corre-

sponding key sampling points in the feature map to be

sampled using an interpolation algorithm based on Poffset i.

The purpose of grouping is to be compatible with the

number of multiple heads in cross-attention and to facilitate

attention fusion in subsequent attention fusion in Sect. 3.6.

We use FDs to represent the interpolation re-sampling. The

Q
0
cont i represents the re-sampling output of the corre-

sponding group. The formula is shown in Eq. (8).

Q
0

cont i ¼ FDsðEroi;Poffset iÞ ð8Þ

Poffset i is also used to update the coordinate boxes of the

ROI regions and generate a new position embedding

Q
0

pos i.

This paper does not discard the use of previous query

embedding in the semantics aligner module. Instead, the

number of weights generated by the linear projection is

increased to match the output of the double sampling. The

formula is shown in Eqs. (9) and (10),

Wpre i ¼ SigmoidðLinearðQpreÞÞ ð9Þ

Qnew cont i ¼ Wpre i � Q
0

cont i ð10Þ

Fig. 3 Overall structure of semantics aligner used in FCDS-DETR,

including the feature correction module and the double sampling

mechanism. The feature correction module improves the sampling

point localization accuracy by explicitly modeling the dependencies

between the feature channels to be sampled. The double sampling

mechanism samples on the feature region Eroi to generate the input of

multi-head cross-attention
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where Qpre represents the previous query embedding,

Wpre i represents the weight value of the previous query

embedding after linear projection and sigmoid function

activation and Qnew cont i represents the weighted query

content embeddings.

3.5 Sampling point coordinate information
acquisition and position embedding

Before performing sinusoidal position embedding on the

sample points, the coordinate information of the sample

points should be obtained according to the position offset

predicted by the MLP network in Eq. (7). Compared with

the offset prediction network of the original SAM–DETR

model, FCDS-DETR chooses to double the output channels

of the MLP in the last layer of the offset prediction network

to achieve the prediction of two sets of offsets. As shown in

Fig. 4, the yellow reference point Pðx center; y centerÞ is

the center point coordinate of the ROI aligner output fea-

ture map Eroi, which is used as the reference point in the

prediction of the model for the sample point. The red point

Aðxsp; yspÞ is the sample point. Dx, Dy denote the offset of

the sample point A relative to the reference point P in the x,

y direction. WEroi
and HEroi

denote the width and height of

the feature map Eroi. The formula for calculating the

sampling point A is shown in Eq. (11),

xsp ¼ x center þ Dx

ysp ¼ y center þ Dy

�

ð11Þ

The formulas for Dx and Dy are shown in Eq. (12),

Dx ¼ WEroi

2
� Poffset x

Dy ¼ HEroi

2
� Poffset y

8

>

<

>

:

ð12Þ

where Poffset x and Poffset y represent the outputs of the

MLP in the offset prediction network.

In this paper, we inherit the way of position embedding

in DETR and perform sinusoidal position encoding on the

position coordinates of sampling points to generate two

sets of corresponding query position embeddings Q
0

pos i.

We also increase the number of weights from the linear

projection of previous query embeddings to generate new

query position embeddings Qnew pos i.

3.6 Attention fusion

The cross-attention mechanism plays a crucial role in

SAM–DETR model, which achieves target matching and

feature extraction by using the sampled points from the

encoder output feature map as object queries. However, the

cross-attention weight map of SAM–DETR model is based

on a single re-sampling, which is affected by the accuracy

of sampling points, making the attention weight map

blurred and unable to locate the target object precisely.

Based on the above analysis, the attention fusion method is

proposed in this paper. The two sets of sampled points

obtained by the double sampling mechanism are fed into

the cross-attention module in parallel, and the resulting

cross-attention weight map is fused to improve the sensi-

tivity and detection accuracy of the model on the target

object.

We multiply the two sets Qnew cont i and the corre-

sponding Qnew pos i with their respective weight matrices

Wq cont i and Wq pos i, respectively. After that, the two

query vectors Qi can be obtained by summing. The formula

is shown in Eq. (13),

Qi ¼ ðWq cont i � Qnew cont iÞ þ ðWq pos i � Qnew pos iÞ
ð13Þ

where Wq cont i and Wq pos i represent the weight matri-

ces obtained after linearization and sigmoid activation of

the self-attentive outputs in the decoder. Qi represents the

new query vectors generated after the semantic alignment

module. The grouping of object queries does not impact the

key and value in MHCAttention (multi-head cross-atten-

tion). We represent the attention weight map obtained by

multi-head cross-attention as Fwi
, with Eq. (14). After that,

the weight map Fw0
with Fw1

overlay is used to achieve

attention fusion.

Fig. 4 Sampling point acquisition method
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Fwi
¼ MHCAttentionðQi;K;VÞ ¼ Soft maxðQiK

T

ffiffiffiffiffi

dk

p ÞV

ð14Þ

The fusion attention process is shown in Fig. 5, where (a)

is Fw0
, (b) is Fw1

, and (c) is the cross-attention weight map

generated after Fw0
and Fw1

are fused. Looking at subfig-

ure (c) in Fig. 5, it is clear that the weight map, after

attentional fusion, has richer boundary and content infor-

mation compared to subfigures (a) and (b). This is partic-

ularly evident for the medium and small targets enclosed

by the red box in the figure. Attention fusion helps to

distinguish these targets from others, thereby reducing the

training pressure on the subsequent FFN.

4 Experiment

4.1 Image dataset preparation

In this paper, experiments are conducted on the improved

FDDB dataset and the COCO 2017 dataset. The improved

FDDB dataset converts the elliptical face annotation of the

original FDDB dataset to an external rectangular annota-

tion and converts the interpretation file to COCO format to

fit the model’s requirements for the dataset. The improved

FDDB dataset contains 2100 training images and 745

validation images with a total of 5171 face targets. The

COCO 2017 dataset contains 118k training images and 5k

validation images. Each image has an average of seven

instances, and a single image in the training set contains up

to 63 instances, each annotated with bounding boxes.

4.2 Experimental setup

For the improved FDDB dataset, we explore the model’s

performance at 100 epochs. The initial learning rate of the

model is set to 1 � 10�5, and the learning rate decreases to

1/10 of the initial value at the 80th epoch. The batch size is

set to 8. For the COCO dataset, we first experiment with 12

epochs, which is widely used in the ConvNet detector [8],

and second, we also experiment with 50 epochs based on

the transformer detector [19, 20]. The initial learning rate

for these two sets of experiments is set to 1 � 10�5, and the

AdamW [57] optimizer is used. The batch size is set to 6.

We use a configuration of 4�Nvidia GeForce RTX 3090

GPUs to train our model, considering the requirement of

GPU computing power for the transformer-based model in

the learning process. When FCDS-DETR employs multi-

scale in the encoder, the batch size is reduced to 2 due to

the significant CUDA memory required. For the compar-

ison experiment under 12 epochs, the model kept the initial

learning rate unchanged. In the comparison experiment

under 50 epochs, the learning rate decreases to 1/10 of the

initial value at the 40th epoch. The input image size is set

between 480*480 and 1333*1333 pixels, and the data are

enhanced using random cropping and horizontal flipping.

4.3 Evaluation indicators

Both datasets we used for our experiments are in the

annotated format of the COCO dataset. Therefore, we use

the COCO evaluation indicators to evaluate the model’s

detection performance objectively. Among them, we pay

more attention to the detection of average precision and

Fig. 5 Attention weight map of the cross-attention output. The first

and second rows show the attention weight maps generated by the

query vectors corresponding to the two sets of re-sampling points

after performing cross-attention, and the third row shows the weight

maps generated by the attention fusion method
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average recall. The performance indicators and their

meanings are shown in Table 1.

4.4 Analysis of experiment result

Table 2 shows the training results of the proposed FCDS-

DETR model and the recently studied DETR variant model

on the improved FDDB data set. As observed in Table 2,

DETR performs poorly on the improved FDDB dataset and

has the lowest AP and AR100 relative to the DETR variant.

FCDS-DETR significantly improves the detection perfor-

mance of DETR: ?6.8 AP, ?2.2 AP0.5, and ?6.0 AP0.75

for 100 epochs, respectively. For the medium- and small-

scale object detection, FCDS-DETR showed substantial

improvements relative to DETR with ?13.1 APM and

?12.5 APS, respectively. The black bolded rows in the

table indicate the experimental results of our proposed

FCDS-DETR model and its application at multiple scales.

The FCDS-DETR model also has significant performance

advantages compared to the baseline model SAM–DETR

model, with ?1.4 AP, ?1.1 AP0.5, and ?3.0 AP0.75,

respectively. The most significant improvements are found

on APM and APS with ?2.7 and ?5.7, respectively. This

demonstrates the effectiveness of the feature correction

module and the double sampling mechanism in Sect. 3.3

feature correction module and Sect. 3.4 double sampling

mechanism in improving the detector’s performance. The

performance of FCDS-DETR is even better than all the

variants of DETR in the table. In addition, we can find that

FCDS-DETR and the baseline model are similar in

GFLOPs metrics, with FCDS-DETR increasing GFLOPs

by a small amount (?7%). Figure 6 shows the detection

results of FCDS-DETR with the baseline model SAM–

DETR model on the improved FDDB dataset. Both models

use ResNet-50 as the feature extraction network for 100

epochs. One of the (a) shows the original image, (b) shows

the SAM–DETR model detection results, and (c) shows the

FCDS-DETR detection results.

Meanwhile, we also conducted experiments on the

COCO dataset, and the results are shown in Table 3. It can

be observed that the convergence speed of FCDS-DETR at

12 epochs is not reduced compared to the baseline model

but is improved considerably to some extent, which is a

surprise to us. We posit that this improvement may be

attributed to the enhancing effect of the feature correction

module on the model’s convergence during the early stages

of training. FCDS-DETR improved by ?5.3 AP, ?6.0

AP0.5, and ?6.0 AP0.75, respectively, compared to the

original DETR after 50 epochs of training. It still performs

outstandingly under 50 epochs of training, obtaining 39.0

AP, a ?0.7 AP improvement over the baseline model. With

the addition of multi-scale, the detection accuracy of

FCDS-DETR is further improved, and 39.6 AP is obtained.

Thanks to the high-quality sampling points and double

sampling mechanism of FCDS-DETR, the model can per-

ceive the position of the object to be detected more sharply

during the training process. The convergence curves of

each comparison model trained for 50 epochs on the

COCO dataset are shown in Fig. 7. A large number of

experiments fully demonstrate the effectiveness of our

method. Figure 8 shows the detection results of FCDS-

DETR with the baseline model SAM–DETR model on the

COCO dataset. Both models use ResNet-50 as the feature

extraction network for 100 epochs. One of the (a) shows

the original image, (b) shows the SAM–DETR model

detection results, and (c) shows the FCDS-DETR detection

results.

In addition, it is worth noting that the FCDS-DETR

model and the SMCA-DETR [21] model in Table 2

achieve similar scores on the AP metrics after 100 epochs

of training, 76.4 and 76.5, respectively. We believe that the

reason for the small difference in the performance of the

two models is affected by the size of the dataset and the

complexity of the scenes in the images. The improved

FDDB dataset has 2.1k training images, the dataset size is

small, and the complexity of the scene in which the target

exists is low. After 100 epochs of training, both models can

achieve better detection results. However, in Table 3, the

performance gap between the models starts to appear when

the two models undergo the same training epochs on the

COCO dataset (118k training images) with complex

scenes. FCDS-DETR achieves 39.0 AP after 100 epochs of

training on the COCO dataset, which is an improvement of

?0.6 over the SMCA-DETR model.

Table 1 Evaluation indicators

Index Description

AP" Average precision at IoU = 0.50: 0.05: 0.95

APx " Average precision at IoU=x

APL " Average precision for large objects

APM " Average precision for medium objects

APS " Average precision for small objects

AR100 " Average recall rate given 100 detections per image

ARL " Average recall rate for large objects

ARM " Average recall rate for medium objects

ARS " Average recall rate for small objects

" means bigger is better,and # means smaller is better
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4.5 Ablation analysis

To validate the role and contribution of the various com-

ponents proposed in this paper for FCDS-DETR, we con-

ducted an ablation study to assess the importance of the

proposed feature correction module and the double sam-

pling mechanism. Additionally, we compared the results

with the baseline SAM–DETR model.

We used ResNet-50 as the feature extraction network for

SAM–DETR model and FCDS-DETR. To eliminate vari-

ability, we performed 24 epochs of the baseline and FCDS-

DETR models with different components added. The initial

learning rate was 1 � 10�5, the learning rate decreased to

1/10 of the original value after 16 epochs, and the number

of object queries was set to 100. The experimental results

are shown in Table 4. SAM–DETR model can achieve an

AP of 34.4 after 24 epochs.

Table 2 Comparison experiments—improved FDDB dataset

Model Multi-

scale

Epochs Params(M) GFLOPs AP AP0:5 AP0:75 APS APM APL AR100 ARS ARM ARL

DETR-R50 [17] 100 41 86 69.6 91.0 80.7 3.0 56.7 82.4 76.2 18.2 67.5 87.4

Deformable DETR-

R50 [19]

100 34 78 74.3 91.5 82.0 10.4 66.4 83.7 78.2 19.8 73.0 90.5

Conditional DETR-

R50 [20]

100 43 195 72.8 92.8 83.3 7.7 63.1 84.0 77.8 17.4 70.7 88.1

SMCA-DETR-R50

[21]

100 42 86 76.5 93.1 86.9 15.8 69.5 86.3 81.1 22.0 75.9 89.8

SAM–DETR model

[23]

100 58 100 75.0 92.1 83.7 9.8 67.1 85.5 79.9 79.3 73.2 89.8

FCDS-DETR-
R50(Ours)

100 64 107 76.4 93.2 86.7 15.5 69.8 86.2 81.3 21.1 75.0 91.1

FCDS-DETR-
R50*(Ours)

p
100 61 186 77.7 93.2 88.0 20.8 71.2 86.5 82.3 27.9 77.0 90.8

* Denotes the addition of multi-scale to the encoder, that is, the encoder in deformable DETR replaces the conventional transformer encoder

Fig. 6 On the improved FDDB dataset, our FCDS-DETR is more sensitive to the target objects, so the detection results are more accurate than

the baseline model SAM–DETR model
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4.5.1 Effectiveness of feature correction module

As shown in Table 4, after ensuring the same learning rate,

number of epochs, and training schedule as the baseline

model, we obtain the results by adding different feature

correction methods to the semantic alignment module. It

can be observed that the improved models after adding the

feature correction module all have different degrees of

improvement in accuracy compared with the baseline

model. The addition of SENet [58] improves the model

accuracy by ?0.5 AP, ?0.7 AP0.5, and ?0.7 AP0.75,

respectively. Adding CAM [55] improves the model

accuracy by ?1.0 AP, ?1.1 AP0.5, and ?1.4 AP0.75,

respectively. The addition of CBAM [59] improves the

model accuracy by ?0.1 AP, ?0.6 AP0.5, and ?0.2 AP0.75.

The improved model corresponding to CBAM has limited

improvement to the model when the number of epochs is

small because it needs to learn two dimensions of channel

and space. The results show that adding the feature cor-

rection module improves the detection accuracy of the

Table 3 Comparison experiment—COCO dataset

Model Multi-

scale

Epochs Params(M) GFLOPs AP AP0:5 AP0:75 APS APM APL AR100 ARS ARM ARL

DETR-R50 [17] 12 41 86 16.8 33.1 15.4 4.3 16.3 28.8 36.4 10.5 38.3 61.5

Deformable DETR-

R50 [19]

12 34 78 24.2 43.1 24.4 8.7 27.6 37.0 41.7 15.9 46.6 65.0

Conditional DETR-

R50 [20]

12 43 195 24.4 43.3 24.4 8.3 26.6 38.8 42.6 15.7 46.9 67.9

SMCA-DETR-R50

[21]

12 42 86 24.4 44.2 23.8 9.3 27.2 36.8 42.9 16.9 47.6 67.9

SAM–DETR model

[23]

12 58 100 28.0 48.5 27.9 9.9 30.7 45.0 44.5 16.9 49.2 71.5

FCDS-DETR-
R50(Ours)

12 64 107 29.3 50.0 29.3 10.9 32.3 46.7 45.3 19.0 49.8 70.9

FCDS-DETR-
R50*(Ours)

p
12 61 186 36.2 54.6 38.2 19.5 39.7 50.5 53.5 29.6 57.4 75.9

DETR-R50 [17] 100 41 86 33.7 55.0 34.2 13.4 36.2 52.5 50.7 22.8 55.5 76.6

Deformable DETR-

R50 [19]

100 34 78 37.2 58.0 39.4 17.9 41.0 53.7 53.6 27.6 58.8 77.4

Conditional DETR-

R50 [20]

100 43 195 38.3 59.4 40.2 17.7 41.6 56.8 54.7 27.1 60.1 79.7

SMCA-DETR-R50

[21]

100 42 86 38.4 59.5 40.6 18.3 41.5 57.0 54.8 28.8 60.1 79.8

SAM–DETR model

[23]

100 58 100 38.3 60.2 39.9 17.7 41.8 57.9 53.8 26.9 59.5 78.9

FCDS-DETR-
R50(Ours)

100 64 107 39.0 61.0 40.2 18.1 42.3 59.6 54.4 28.0 60.1 79.6

FCDS-DETR-
R50*(Ours)

p
100 61 186 39.6 61.3 41.1 19.8 43.2 60.4 54.9 30.3 61.1 79.9

*Denotes the addition of multi-scale to the encoder, that is, the encoder in deformable DETR replaces the conventional transformer encoder

Fig. 7 Convergence curves of FCDS-DETR with other DETR

variants trained on the COCO dataset for 50 epochs. Compared with

the original DETR, FCDS-DETR significantly improved AP while

outperforming other DETR variants

Neural Computing and Applications (2024) 36:6793–6808 6803

123



model while maintaining the advantage of the baseline

model in terms of convergence speed.

4.5.2 Effectiveness of the double sampling mechanism

As shown in Table 4, we added a double sampling mech-

anism to the semantic alignment module for double sam-

pling within the region containing potential objects. We

used the attention fusion method described in Sect. 3.6 to

accommodate the attention map fusion problem due to

doubling the number of sample points for double sampling.

A comparison with the baseline model shows that the

improved model with the inclusion of the double sampling

mechanism improves the detection accuracy by ?0.9% AP

for the same number of epochs. This is a very impressive

result and strongly supports our view that the double

sampling mechanism improves the sensitivity of the model

to target objects.

4.6 Visualization

Figure 9 visualizes the bounding boxes predicted by

FCDS-DETR and the corresponding key points searched

by applying the double sampling mechanism. Among

them, the first set of sampling points is marked with green,

and the second set of sampling points is marked with blue.

Meanwhile, to show the advantage of FCDS-DETR in

extracting object features, we also visualize the weight

maps generated by the FCDS-DETR and SAM–DETR

models after 50 epochs on the COCO dataset. Figure 10

visualizes the attention fusion method by visualizing the

Fig. 8 Detection results of FCDS-DETR and baseline model on COCO dataset. FCDS-DETR can detect small- and medium-sized objects in the

image, and the positioning of the bounding box is more accurate

Table 4 Ablation experiments

Row FCDS SENet CAM CBAM Double Sampling AP AP0:5 AP0:75 APS APM APL AR100

1 34.4 55.9 35.2 15.3 37.9 53.0 49.1

2
p p

34.9 56.6 35.9 15.6 38.0 54.3 51.3

3
p p

35.4 57.0 36.6 15.9 38.5 55.0 51.4

4
p p

34.5 56.5 35.4 14.4 37.8 53.5 50.4

5
p p

35.3 57.0 36.8 16.1 38.2 54.8 51.5

6
p p p

35.9 57.2 37.3 16.5 39.1 55.7 51.7
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Fig. 9 Detection results and weight maps obtained on the COCO

dataset. The first row shows the original image to be detected. The

second row visualizes the location of the bounding boxes. The third

row visualizes the localization of the sampling points in the bounding

boxes. The fourth row visualizes the final generated weight maps. Our

FCDS-DETR can locate the edge and end of the object more

accurately, making the bounding boxes localization more accurate

Fig. 10 Attentional fusion method
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weight maps generated by the multi-head cross-attention

module.

It can be observed that double sampling on feature maps

to which the feature correction module is applied allows

more sampling points to be accurately located at the edges

or ends of the objects to be detected. These sampling areas

with important features play a crucial role in the subse-

quent object localization and recognition. Meanwhile, the

comparison of the attention weight maps generated by the

cross-attention modules of the two models shows that the

weight maps obtained using the attention fusion method

can clearly separate the object to be measured from the

background. Therefore, this model can sensitively perceive

and locate the object in the image and improve the accu-

racy of object detection. In contrast, the original SAM–

DETR model has more scattered and sparse sampling

points when a single re-sampling is performed, which

cannot locate the edges and ends of the object well. It can

be observed from the generated weight maps that SAM–

DETR model is also less sensitive to the objects. Such

results are consistent with our analysis above that fewer

sampling points and a blurred attention map are the main

reasons for SAM–DETR model’s low detection accuracy.

5 Conclusion

In this paper, we discuss the reasons for the unsatisfactory

detection accuracy of SAM–DETR model when perform-

ing object detection, i.e., fewer sampling points and blurred

attention. We propose FCDS-DETR to solve the above

problems and obtain better performance. The core idea of

FCDS-DETR is to improve the accuracy and number of

sampling points localization by adding a feature correction

module and double sampling mechanism, thus improving

the recognizability of the attention map output by the

model. We demonstrate the effectiveness of the model

through a large number of experiments.

The limitations of our proposed FCDS-DETR model are

shown in two aspects. On the one hand, the output of the

cross-attention module may superimpose the background

noise existing in the two attention weight maps when

performing feature fusion, which may adversely affect the

detection performance of the model. On the other hand, the

Semantics Aligner module does not implement the com-

bination with other improved DETR model methods for the

time being, which affects the further improvement of

model detection performance. To address the above limi-

tations, we will continue to explore more effective noise

reduction algorithms for application in the attention fusion

process in the future. At the same time, we will continue to

investigate the fusion between FCDS-DETR and other

excellent improvements to achieve more excellent detec-

tion performance.
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