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Abstract
Nowadays, machine learning (ML) has attained a high level of achievement in many contexts. Considering the significance

of ML in medical and bioinformatics owing to its accuracy, many investigators discussed multiple solutions for developing

the function of medical and bioinformatics challenges using deep learning (DL) techniques. The importance of DL in

Internet of Things (IoT)-based bio- and medical informatics lies in its ability to analyze and interpret large amounts of

complex and diverse data in real time, providing insights that can improve healthcare outcomes and increase efficiency in

the healthcare industry. Several applications of DL in IoT-based bio- and medical informatics include diagnosis, treatment

recommendation, clinical decision support, image analysis, wearable monitoring, and drug discovery. The review aims to

comprehensively evaluate and synthesize the existing body of the literature on applying deep learning in the intersection of

the IoT with bio- and medical informatics. In this paper, we categorized the most cutting-edge DL solutions for medical

and bioinformatics issues into five categories based on the DL technique utilized: convolutional neural network, recurrent

neural network, generative adversarial network, multilayer perception, and hybrid methods. A systematic literature review

was applied to study each one in terms of effective properties, like the main idea, benefits, drawbacks, methods, simulation

environment, and datasets. After that, cutting-edge research on DL approaches and applications for bioinformatics con-

cerns was emphasized. In addition, several challenges that contributed to DL implementation for medical and bioinfor-

matics have been addressed, which are predicted to motivate more studies to develop medical and bioinformatics research

progressively. According to the findings, most articles are evaluated using features like accuracy, sensitivity, specificity, F-

score, latency, adaptability, and scalability.
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1 Introduction

Bioinformatics synthesizes computer programming, biol-

ogy, and big data to aid scientists in perceiving and

detecting paradigms in biological and medical information

[1–3]. It is significantly suitable for studying DNA

sequencing, as it allows scientists to arrange a great deal of

data [4, 5]. The area of computer science, namely bioin-

formatics, is applied to evaluate whole-genome sequencing

information [6, 7]. This contains software improvement,

algorithm, analysis, pipeline, transferring, and stor-

age/database improvement of genomics information. In

other words, bioinformatics is described as applying anal-

ysis and computation tools to receive and interpret bio-

logical data [8, 9]. As an interdisciplinary area,

bioinformatics harnesses computer science, physics,
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biology, and mathematics [10, 11]. It is critical for data

management in modern medicine and biology [12, 13].

Bioinformatics provides considerable support to deal with

time context and cost issues in different tracks [14, 15].

Bioinformatics, as pertinent to genomics and genetics, is a

scientific interdisciplinary field that utilizes computer

technology to gather, store, evaluate, and distribute bio-

logical data, like DNA and amino acid sequences and

annotations about them [16, 17].

Distributed computing is a versatile method that can be

applied to a wide range of issues in bioinformatics. While it

is commonly used for cost-efficiency in high-performance

computing, in other domains, it has become a necessity

[18]. By leveraging the power of multiple interconnected

computers, distributed computing allows researchers to

process large amounts of data and perform complex cal-

culations quickly and efficiently. This is particularly

important in bioinformatics, where massive data sets are

often analyzed to gain insights into biological processes

and develop new disease treatments [19, 20]. The rising

amount of information required to be processed within

logical time finally outgrows even the strongest computers

[21, 22]. Recently, some organizations that regularly pro-

cess large amounts of data have yet to apply nearly easy

processes, like distributing work by hand or with easy

scripts [23, 24]. An increasing number of corporations are

suggesting solutions that scale better, allowing more

autonomy of information analysis procedures and more

effective resource usage [25, 26]. Some present tools for

distributed computing are too low-phase or not flexible

enough to be adjusted to requirements [27, 28]. Many

technologies generate a great base for building higher-level

distributed computing ecosystems [29, 30]. Also, Machine

learning (ML), a subsection of Artificial Intelligence (AI),

has become a strong tool for several bioinformatics uses

[31, 32]. Depending on big datasets, ML mechanisms are

particularly suitable for forecasting and pattern recognition

[33]. There are some emerging uses of ML within the

bioinformatics area. ML in bioinformatics refers to using

ML techniques to analyze and interpret biological data,

including genomics, systems biology, text mining,

microarrays, and evolution. By applying ML algorithms to

complex biological data sets, researchers can gain insights

into various biological processes, identify genetic muta-

tions, and even develop new disease treatments [34, 35].

ML can be applied through various modes of human-made

database reports to process and evaluate data, decreasing

labor expenses and fastening the research procedure with-

out compromising quality [36, 37]. ML text evaluation can

be utilized in bioinformatics as well. The containing of ML

has given bioinformatics the needed promotion [38, 39].

This research aimed to provide a detailed overview of

the applications of ML technologies in IoT-based medical

and bioinformatics. The study highlighted the multiple uses

of Deep Learning (DL) strategies [40, 41] in medical and

bioinformatics by conducting an SLR and analyzing and

comparing findings from various studies. The DL mecha-

nisms used in medicine and bioinformatics were divided

into five separate groups: convolutional neural network

(CNN), recurrent neural network (RNN), generative

adversarial network (GAN), multilayer perception (MLP),

and hybrid approaches, which include several practical

methods. For each group and mechanism, multiple prop-

erties such as benefits, drawbacks, datasets, and simulation

environments were studied. The study investigated the

methodologies and applications of DL/ML mechanisms in

bioinformatics before delving further into future studies

and taking into account the shortcomings that need to be

addressed in the future. Overall, the contributions of this

paper include providing a thorough examination of current

concerns with ML/DL mechanisms in medical and bioin-

formatics, conducting a comprehensive evaluation of

existing methods for ML/DL applications, and modeling

important areas for the future development of these

approaches. The main contributions of this paper are as

follows:

• Conducting an SLR to explore ML applications in IoT-

based medical and bioinformatics;

• Analyzing and comparing DL uses in medical and

bioinformatics;

• Categorizing DL mechanisms into five groups (CNN,

RNN, GAN, MLP, hybrids) and examining their

properties;

• Investigating DL/ML methodologies and applications

in bioinformatics;

• Providing insights for future research and addressing

existing shortcomings;

• Offering a comprehensive evaluation of existing ML/

DL methods;

• Contributing to a better understanding of current

challenges and opportunities in the field;

The article is structured in the following manner: The

key principles and terminology of ML/DL in medical and

bioinformatics are covered in the first part, followed by an

investigation of relevant papers in part 3. Part 4 discusses

the studied mechanisms and tools for paper selection, while

Part 5 illustrates the classification that was selected. Sec-

tion 6 presents the results and comparisons; Sect. 7 pro-

vides the open issues, and the conclusion is explored in

Sect. 8.
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2 Fundamental concepts and terminology

This section discusses the fundamentals of DL approaches

as well as their applications in medical and bioinformatics.

2.1 Deep learning concepts

Three classifications of DL methods are supervised, semi-

supervised, and unsupervised learning. An input vector as a

value for the supervisory signal is a desired value. Present

labels aid the method of predicting the desired output labels

[42]. Classification approaches employ supervised learning

to detect faces and traffic signals, translate voice to text,

identify spam in a file, and perform a variety of other tasks.

Semi-supervised learning is a strategy that crosses the gap

between unsupervised and supervised ML approaches [43].

This approach, which falls between supervised and unsu-

pervised learning, uses unlabeled and labeled values as

training data. When combined with a modest quantity of

labeled data, the learning accuracy of unlabeled data

improves significantly. In theory, the data adjacent to it

have the same name. Likewise, the cluster assumption,

which states that every data in a cluster is the same, has a

similar name [44]. Also, rather than using the whole input

space, the data are limited to a single dimension. Unsu-

pervised learning describes the interrelationships between

the components and then categorizes them. These algo-

rithms are used in neural networks, clustering, and anomaly

detection. Detecting anomalies typically takes the benefit

of unsupervised learning, specifically in security areas. By

the same token, feature processing and extraction are

possible by using DL techniques and artificial neural net-

works [45, 46].

2.2 Bioinformatics applications

Bioinformatics is an advanced field of biology that pro-

ceeds from the combination of both information and biol-

ogy [47]. It is an interdisciplinary area of study that utilizes

mathematics, biology, computer science, chemistry, and

statistics, which have been synthesized to shape an indi-

vidual order [48]. Bioinformatics is fundamentally applied

to bring out knowledge from biological data through the

improvement of software and algorithms [49]. Bioinfor-

matics is broadly used in the study of Genomics, 3D

structure modeling of Proteins, proteomics, image analysis,

and drug designing [50, 51]. A particular use of bioinfor-

matics can be found in the domain of preventive medicine,

which is principally concentrated on improving measures

to avoid, manage, and treat serious infectious diseases [52].

The basic target of bioinformatics is to enhance the

understanding of biological procedures. There are several

applications of bioinformatics including recording and

retrieval of data in gene therapy, biometrical evaluation for

crop management, pest control, evolutionary research, drug

discovery, and microbial utilitarianism [52].

2.3 Deep learning usage in bioinformatics

The primary objective of healthcare informatics is to offer

better treatments and enhance the quality of life for indi-

viduals by efficiently analyzing biomedical data, which

includes Electronic Health Records (EHRs) [53]. In the

past, it was customary to rely on domain experts to develop

models for healthcare or biomedicine, but recent advances

in DL algorithms have enabled the automatic learning of

representations and patterns from such data for model

improvement. DL techniques involve several levels of

representation, where at each stage, the system learns

higher abstract representations. Natural language pro-

cessing (NLP), computer vision, speech recognition, video

analysis, health informatics, and image processing are

among the fields in which DL-based algorithms have per-

formed well. Powerful computational models include DL

approaches such as CNN, neural networks, auto-encoders,

and deep generative networks. These techniques have

shown considerable success in dealing with large amounts

of information across a wide range of applications due to

their ability to extract complex latent features and learn

effective representations in an unsupervised setting [54].

Here are several uses of DL methods in bioinformatics

medical systems:

2.3.1 Detecting enzymes applying multilayer neural
networks

Detecting enzymes using multilayer neural networks refers

to using DL algorithms to automatically recognize

enzymes in biochemical data. Enzymes are proteins that

catalyze chemical reactions in living organisms. Detecting

and identifying enzymes is crucial in many areas of

bioinformatics and biomedicine, such as drug discovery

and metabolic pathway analysis. Traditionally, this task

required the expertise of domain specialists to identify

enzymes manually [55]. With the advancement of DL

algorithms, it is now possible to train multilayer neural

networks to recognize patterns in enzyme data and classify

them automatically. Multilayer neural networks are a type

of AI that consists of multiple layers of interconnected

nodes that process input data to generate output predic-

tions. These networks can learn to represent complex

relationships between input features and output classes,

making them effective for enzyme detection. The paper

discusses various approaches to applying multilayer neural

networks for enzyme detection, including the use of CNN
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and RNN. These networks can be trained on large datasets

of enzyme data, and the resulting models can be used to

automatically detect and classify enzymes in new data [56].

2.3.2 Gene expression regression

Gene expression regression refers to the use of DL algo-

rithms to predict the expression level of a gene based on

various factors, such as environmental conditions, genetic

mutations, or other molecular processes. The goal is to

build a model that can accurately predict the level of gene

expression in a particular context, which can help

researchers understand the underlying biological mecha-

nisms and develop new treatments for diseases [57]. DL

models, such as CNN or RNN, are trained on large datasets

of gene expression data, along with other relevant features.

These models learn to identify patterns and correlations

between the expression levels and the various factors that

influence them, allowing them to make accurate predic-

tions. Gene expression regression has numerous applica-

tions in bioinformatics and medical informatics, including

predicting drug responses, identifying biomarkers for dis-

eases, and understanding the mechanisms of genetic dis-

orders [58].

2.3.3 CNN predicting RNA–protein linking points

In bioinformatics, predicting RNA–protein binding sites is

an important task as it can help in understanding gene

regulation, disease diagnosis, and drug discovery. One

approach to this task is using CNN [59], which is a type of

DL model designed to learn spatial features from input

data. In the context of predicting RNA–protein binding

sites, CNNs can be trained on sequence data to identify

patterns and features that are indicative of RNA–protein

interaction sites [60]. The input to the CNN is a sequence

of nucleotides, and the output is a probability score that

indicates the likelihood of RNA–protein binding at each

position in the sequence. CNN works by applying a set of

filters to the input sequence, with each filter looking for a

specific pattern or feature in the sequence. The output of

the filter is then passed through a nonlinear activation

function to generate a feature map. Multiple filters are used

in parallel to learn different features from the input

sequence. The feature maps are then pooled to reduce the

dimensionality of the data and to capture the most salient

features. The resulting features are then passed through one

or more fully connected layers to make the final prediction.

Overall, the use of CNNs for predicting RNA–protein

binding sites has shown promising results and has the

potential to contribute to developing new therapeutics and

diagnostics for various diseases [61].

2.3.4 DNA sequence performance anticipation with RNN
and CNN

DNA sequence performance anticipation with RNN and

CNN refers to the use of RNN and CNN in predicting the

performance of DNA sequences. RNNs are neural net-

works designed to process sequential data by maintaining a

memory of past inputs, while CNNs are a type of neural

network that can learn and identify spatial patterns in data.

In the context of DNA sequences, RNNs, and CNNs can be

used to predict the performance of a specific sequence

based on its structure and characteristics [62]. For example,

RNNs can be trained on a set of DNA sequences and their

corresponding performance levels and then used to predict

the performance of new, unseen sequences. Similarly,

CNNs can be trained to identify spatial patterns in DNA

sequences that are associated with high or low perfor-

mance. By combining the strengths of both RNNs and

CNNs, researchers can develop more accurate and effective

models for predicting the performance of DNA sequences.

This can have important implications for fields such as

genetic engineering and biotechnology, where the ability to

accurately predict the performance of DNA sequences is

crucial for developing new treatments and therapies [63].

2.3.5 Biomedical image classification applying ResNet
and transfer learning

In the field of medical image analysis, one of the chal-

lenges is to accurately classify biomedical images such as

X-rays, MRI scans, and CT scans, which require the

expertise of trained radiologists. With the advent of DL,

CNN has been widely used to classify medical images

automatically. One of the most successful CNN architec-

tures is Residual Network (ResNet), which is known for its

ability to train deep networks with many layers. Transfer

learning is a technique that uses pre-trained models on

large datasets to solve similar tasks on smaller datasets. In

biomedical image classification, transfer learning can be

used to leverage pre-trained ResNet models on large

datasets such as ImageNet to improve the performance of

medical image classification. A pre-trained ResNet model

is used as a feature extractor to apply transfer learning with

ResNet in biomedical image classification [64]. The last

few layers of the ResNet model, responsible for the final

classification, are replaced with new layers trained on the

biomedical dataset. The new layers learn the specific fea-

tures of the biomedical images and improve classification

accuracy. This approach has been used in various

biomedical image classification tasks, such as breast cancer

detection, brain tumor segmentation, and lung nodule

detection, and has shown promising results in improving
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the accuracy of classification compared to traditional ML

algorithms [65].

2.3.6 Graph embedding using GCN for protein interaction
prediction

Proteins interact with each other in complex ways to per-

form vital biological functions. The prediction of novel

protein interactions is important for understanding cellular

processes and developing new drugs. Graph Convolutional

Networks (GCNs) are a type of DL algorithm that can learn

to represent and analyze complex network data, such as

protein–protein interaction networks. In this context, GCNs

can be used to perform graph embedding, which is the

process of transforming the nodes and edges of a graph into

a low-dimensional vector space while preserving the

structural information of the graph. By using GCNs to learn

the embeddings of proteins and their interactions in the

network, researchers can capture the underlying patterns

and relationships that are difficult to detect using traditional

methods [66]. The GCN-based approach for predicting

protein interactions involves training a model on a graph

representation of known interactions, where the nodes

represent proteins and the edges represent their interac-

tions. The model then learns to predict whether a new

interaction exists between two proteins based on their

embedding vectors. One of the advantages of this approach

is that it can incorporate additional features, such as protein

sequence and structure information, to improve the accu-

racy of the predictions. Transfer learning techniques can

also be used to improve the performance of the model by

leveraging pre-trained embeddings from related tasks.

Overall, the use of GCNs for graph embedding and pre-

dicting protein interactions has shown promising results

and has the potential to contribute to the development of

new drugs and therapies [67].

2.3.7 GAN image super-resolution in biology

GAN image super-resolution in biology is a DL technique

used to enhance the resolution of biological images such as

microscopy or medical images. GANs are composed of two

neural networks: a generator and a discriminator network.

The generator network generates a high-resolution image

from a low-resolution input image, while the discriminator

network determines whether the generated image is real or

not. In GAN image super-resolution, the generator network

takes a low-resolution image as input and generates a high-

resolution image that is similar to the original high-reso-

lution image. The discriminator network evaluates the

similarity between the generated and original images. The

generator network is trained to generate images that fool

the discriminator network into thinking they are real high-

resolution images. This training continues until the gener-

ator network produces high-quality images indistinguish-

able from real high-resolution images. GAN image super-

resolution in biology has many applications, such as

enhancing the resolution of microscopy images to improve

the accuracy of image analysis and improving the resolu-

tion of medical images to aid in diagnosis and treatment

[68].

2.3.8 Variational autoencoder high-dimensional biological
generative and data embedding

VAE stands for Variational Autoencoder, which is a type

of deep generative model used in ML. It is commonly used

in high-dimensional data analysis and representation

learning. In the context of bioinformatics and medical

informatics, VAE can be used for biological data embed-

ding and generative modeling. In VAE, the input data are

first encoded into a lower-dimensional space, called the

latent space, which captures the essential features of the

input data. Then, a generative model is trained to map the

latent space back to the original data space, allowing for

the generation of new data samples. VAE is a probabilistic

model, which means it can also be used for data imputation

and anomaly detection. VAE has several advantages over

other generative models, such as its ability to handle

missing data and its ability to learn a smooth and contin-

uous latent space representation of the input data. It is

particularly useful in high-dimensional biological data

analysis, where the number of features is very large, and

the data are often noisy and incomplete. In summary, VAE

is a powerful tool in DL and ML for high-dimensional

biological data embedding and generative modeling. It has

a wide range of applications in bioinformatics and medical

informatics, such as data imputation, anomaly detection,

and drug discovery [69]. In the next section, we delve deep

into some related survey papers investigating this area.

3 Relevant reviews

We discussed the background and related ideas in-depth in

the preceding section. In this section, we provide some

significant relevant works in this area. In this regard, Li,

Huang [19] proposed a comprehensive review of the recent

developments in DL techniques for bioinformatics. They

discussed the importance of big data in bioinformatics and

the potential of DL techniques to analyze and make pre-

dictions based on such data. The paper provided an over-

view of the applications of DL in various fields of

bioinformatics, including gene expression analysis, protein

structure prediction, drug discovery, and disease diagnosis.
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Moreover, Rezende, Xavier [70] presented a compara-

tive study of hierarchical ML algorithms for classifying

biological databases. They evaluated the performance of

four different algorithms, namely random forest, Naı̈ve

Bayes, decision tree, and k-nearest neighbor, in terms of

their accuracy, precision, recall, and F1 score. They also

compared the performance of these algorithms with a

baseline non-hierarchical ML algorithm. Also, to fulfill the

lack of guidelines for hierarchical data classification, Yi,

You [71] provided an overview of the recent advancements

in graph representation learning for bioinformatics. They

discussed the growing significance of graph-based data in

bioinformatics and how graph representation learning can

be used to extract valuable features and knowledge from

such data. They reviewed the various graph representation

learning models and their advantages and limitations in

bioinformatics applications.

Besides, Sharma [72] provided an in-depth review of the

applications of cluster analysis in bioinformatics. They

discussed the increasing importance of cluster analysis in

various fields of bioinformatics, including gene expression

analysis, protein structure prediction, and disease diagno-

sis. They provided a comprehensive overview of the dif-

ferent types of clustering algorithms, including

hierarchical, partitioning, density-based, and model-based

clustering, and their advantages and limitations in bioin-

formatics applications. Also, Serra, Galdi [73] provided an

overview of the recent developments in ML techniques for

bioinformatics and neuroimaging. They discussed the

increasing importance of big data in these fields and how

ML techniques can be used to analyze and make predic-

tions based on such data. Their paper provided a compre-

hensive review of the applications of ML in various fields,

including gene expression analysis, protein structure pre-

diction, drug discovery, and brain imaging analysis.

However.

For this reason, there is a need for a new review article

on DL in bio- and medical informatics as prior studies have

offered a wide overview of DL applications in other

domains but have not completely explored the potential of

DL in tackling the issues faced in the sector. Recent

developments in DL algorithms have also opened up new

possibilities for enhancing the precision and effectiveness

of medical diagnosis and therapy. We intend to emphasize

the areas that require more investigation and offer direction

for future work in the field by offering a thorough analysis

of the most recent advancements in DL and its applications

in bioinformatics, molecular biology, healthcare, and

genomics. Additionally, we promote the use of DL in the

medical area, enhancing patient outcomes and advancing

precision medicine. Table 1 contains a summary of rele-

vant works.

4 Methodology of research

To clearly understand ML application in bio- and medical

informatics, an SLR mechanism is used in this part which

is a significant survey and study of all research on a definite

area. This evaluation is applied to fulfill an in-detailed

examination of the DL mechanism application and explore

the validity of the study selection strategy. The further

subsections elaborate on the investigation process, con-

taining research questions and criteria of paper choice.

4.1 Formalization of question

The main goals of this research are to review, classify,

detect, and analyze several pertinent papers explored in

ML applications in bio- and medical informatics. To gain

the targets mentioned, the facets and characteristics of the

mechanisms can be studied properly by applying an SLR.

An even more purpose of SLR is to identify the major

topics and difficulties this section addresses. The following

topics are short Research Questions (RQs) that have been

developed:

• RQ 1: How may DL approaches in bio- and medical

informatics be classified in medical healthcare? What

are some of their examples?

This question is answered in Sect. 5.

• RQ 2: What are the most significant cutting-edge

works? What are their benefits and drawbacks? What

features do they have?

Sections 5 .1 through 5.7 provide answers to this

question.

• RQ 3: What are the most widely utilized applications,

techniques, criteria, and other factors in bio- and

medical informatics?

This is addressed in part 6

• RQ 4: What are the key potential solutions and

unanswered issues in this field?

Part 5 will review the answers to this topic, while

Part 7 will review the remaining concerns.

4.2 The procedure of paper exploration

This investigation comprises a four-stage process for

exploring and selecting papers, as demonstrated in Fig. 1.

Table 2 displays the terms and keywords used to explore

the articles in the first phase, which were discovered

through a search of traditional electronic databases such as

Google Scholar, Scopus, ACM, Springer Link, Elsevier,

Emerald insight, Taylor and Francis, IEEE Explore, MDPI,

Wiley, and DOAJ, as well as papers, chapters, journals,

books, conference papers, notes, special issues, and
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technical studies. The first phase yielded 790 articles, with

Fig. 2 showing the distribution of articles by the publisher.

In Phase 2, two phases were used to specify the total

number of articles to investigate. Firstly, the involved cri-

teria in Fig. 3 were utilized, which resulted in 467 articles

remaining. Figure 4 shows the dispersion of articles by the

publisher, while Fig. 5 depicts the first phase.

The survey papers are exploited in phase 3, out of 211

remaining papers in the former phase. Most of the used

articles were published by Elsevier (38.5% percent). At this

stage, 46 papers were remaining. The abstract and con-

clusion of the papers were studied in the fourth phase.

Hence, 25 articles that satisfied the requirement for the

precise criteria were chosen to be used and examined. In

the third step, Fig. 6 displays the dispersion of the selected

articles by their publishers in the second phase. Figure 7

depicts the journals that publish papers in the third phase.

Table 3 indicates the specifications of the selected papers.

5 DL approaches in the field of bio-
and medical informatics

This part discusses the ML mechanisms for detecting and

assessing bio- and medical informatics and relevant situa-

tions. 25 articles were investigated in this part, all of which

met the demand for selection criteria. To begin with, the

methods were divided into 5 major classes: CNNs, RNNs,

GANs, MLPs, and hybrid methods, synthesizing mecha-

nisms. Figure 8 displays the proposed taxonomy of ML/DL

methods for bio- and medical informatics.

5.1 CNN approaches for bio- and medical
informatics

CNN is a fundamental DL approach that has been

employed in practically all areas of medicine and is one of

the useful methods for researchers. The technique is

Table 1 Summary of relevant works

Authors Main idea Advantage Disadvantage

Li,

Huang

[19]

Presenting both the exoteric definition of DL and

integrating instances and executions of its

representative uses in bioinformatics

Easy-to-understand introduction of methods

Addressing the issues via providing

practical examples

Some important parameters for

comparison between

methods have been

overlooked

Rezende,

Xavier

[70]

Proposing a study of graph representation learning

in bioinformatics, as well as identifying and

evaluating techniques

Providing a comprehensive well-structured

survey of graph embedding mechanisms

Poor comparison among

methods

Yi, You

[71]

Contrasting the operation of ‘‘Local per Level’’ and

‘‘Local per Node’’ methods employed to two

various hierarchical datasets: CATH and BioLip

Providing computational libraries to assist

the community in the decision-making

process for planning hierarchical data

Details of methods overlooked

Sharma

[72]

Integrating various results to establish clusters

without depending on the criteria utilized to

evaluate data

Well-organized schematic comparison

between mechanisms

Poor analysis of proposed

approaches

Serra,

Galdi

[73]

Discussing applications of ML in bioinformatics

and neuroimaging to solve related issues

Stating several examples to clarify the

application of ML in bioinformatics

Overlooked some challenges

like DL results interpretation

Our work Providing a new taxonomy of DL/ML method in

medical and bioinformatics

Comprehensively discussing various studies

using DL mechanisms in medical and

bioinformatics

Unavailability of non-English

papers

Fig. 1 The phases of the article searching and selection process
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prevalently utilized for identifying MRI and CT scan

images, and relevant backgrounds, as debated in the second

part. In this regard, Liu, Xu [74] presented an intelligent

dental health-IoT system based on smart hardware, DL,

and a mobile terminal to assess its potential in in-home

dental healthcare. Moreover, sophisticated dental equip-

ment is being developed and upgraded to operate the image

attainment of teeth. Based on a dataset of 12,600 clinical

images collected by the presented device from 10 private

dental clinics, an automatic detection model trained by

MASK R-CNN was improved for the identification and

classification of 7 different dental diseases, including

deteriorated teeth, periodontal disease, fluorosis, and dental

plaque, with detection precision of up to 90% and high

specificity and sensitivity. Following a one-month assess-

ment in ten clinics compared to the previous month, when

the platform is not used, the average detection time for

each patient lowers by 37.5%, demonstrating an 18.4%

improvement in the treated patients.

Also, Nematzadeh, Kiani [75] presented a metaheuris-

tic-based approach for optimizing the hyperparameters of

ML algorithms and DNNs in bioinformatics applications.

They discussed the challenges of selecting appropriate

hyperparameters and the limitations of existing methods.

They proposed a metaheuristic-based approach that

involves the use of different optimization algorithms to

search the hyperparameter space and identify the optimal

Table 2 Keywords and search criteria

S# Keywords and search criteria S# Keywords and search criteria

S1 ‘‘Deep learning’’ and ‘‘Medical issues’’ S6 ‘‘AI’’ and ‘‘Healthcare’’

S2 ‘‘Machine learning’’ and ‘‘Bioinformatics’’ S7 ‘‘Healthcare’’ and ‘‘IoT’’

S3 ‘‘Deep learning’’ and ‘‘Bioinformatics’’ S8 ‘‘DL methods’’ and ‘‘Medical Internet of Things’’

S4 ‘‘IoT-based system’’ and ‘‘Bioinformatics’’ S9 ‘‘ML methods’’ and ‘‘Medical Internet of Things’’

S5 ‘‘AI’’ and ‘‘Medical informatics’’ S10 ‘‘AI methods’’ and ‘‘Medical Internet of Things’’

Fig. 2 The stages of the paper

searching and choosing

procedure

Fig. 3 Criteria for paper selection
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combination of hyperparameters that leads to the best

performance.

By the same token, Chen, Wang [25] evaluated nhKcr

on a benchmark dataset and compared its performance with

four state-of-the-art crotonylation site predictors. They

tested the performance of nhKcr on a dataset commonly

used to evaluate the accuracy of crotonylation site pre-

diction tools. They also compared the performance of

nhKcr to four other prediction tools that are currently

considered to be the most accurate. The results showed that

nhKcr outperformed the other predictors in terms of both

prediction accuracy and execution time. Their results

demonstrated the potential of DL-based methods for pre-

dicting post-translational modifications on nonhistone

proteins.

Fig. 4 Distribution of publisher

of papers

Fig. 5 Papers distribution in

terms of publishers in the first

step of selection papers

Fig. 6 Papers distribution in terms of publishers in the second step of

selected papers

Fig. 7 Papers distribution in terms of publishers in the third step of

selection papers
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Also, Kumar and Sharma [76] illustrated the efficiency

and robustness of the COVID-19 patient’s technique of

non-contact examination, which can aid in cost-efficiency

and early screening and diagnosing of COVID cases. They

provided images of Grad’s chest radiographs as well as the

regions of interest for proven COVID-19-positive patients,

bacterial pneumonia, and healthy cases. They also dis-

cussed the challenges faced in applying DL in bioinfor-

matics, such as the need for large datasets, interpretability,

and data quality.

Table 3 Specification of the selected papers

Author Publisher Journal Citation Q Country Year H-

index

1 Liu, Xu [74] IEEE Journal of Biomedical and Health Informatics 54 Q1 China 2019 137

2 Nematzadeh, Kiani

[75]

Elsevier Computational Biology and Chemistry 13 Q2 Turkey 2022 61

3 Chen, Wang [25] Oxford

University Press

Briefings in Bioinformatics 14 Q1 China 2021 121

4 Kumar and Sharma

[76]

– Global Journal on Application of Data Science and

Internet of Things

– – Russia 2021 –

5 Jia, Chen [77] Frontiers Media

S.A

Frontiers in Genetics 4 Q1 China 2021 93

6 Pastorino and

Biswas [78]

– The 13th ACM international conference on hybrid

systems: computation and control

– – USA 2022 14

7 Auwul, Rahman

[79]

Oxford

University Press

Briefings in Bioinformatics 38 Q1 Australia 2021 121

8 Lan, You [80] Frontiers Media

S.A

Frontiers in Genetics 38 Q1 China 2021 121

9 Han, Rundo [81] – Bergamo Computational Intelligence Methods for

Bioinformatics and Biostatistics

76 – Italy 2021 –

10 Balogh, Benczik

[82]

BioMed Central

Ltd

BMC Bioinformatics 5 Q2 Hungry 2022 218

11 Giansanti, Castelli

[83]

– International computational science and engineering

conference

3 – Italy 2019 –

12 Lyu, Chen [84] BioMed Central

Ltd

BMC Bioinformatics 97 Q2 China 2017 218

13 ElAbd, Bromberg

[85]

BioMed Central

Ltd

BMC Bioinformatics 37 Q2 Germany 2020 218

14 Liu and Gong [86] BioMed Central

Ltd

BMC Bioinformatics 24 Q2 China 2019 218

15 Wang, Zeng [87] IEEE IEEE International Conference on Bioinformatics

and Biomedicine

161 – China 2017 –

16 Zhao, Shao [88] Elsevier Genomics, proteomics & Bioinformatics – Q1 USA 2021 56

17 Souri, Ghafour [89] Springer Soft computing 54 Q2 Iran 2020 90

18 D’Orazio,

Murdocca [90]

Nature Scientific reports – Q1 Italy 2022 242

19 Karim, Beyan [91] Oxford university

press

Briefings in bioinformatics 101 Q1 UK 2021 121

20 AYDIN [92] The public library

of science

PLoS Computational Biology 3 Q1 Turkey 2020 191

21 Mohamed Shakeel,

Baskar [93]

Springer Journal of Medical Systems 214 Q1 Malaysia 2018 89

22 Huang, Shea [94] Elsevier Journal of Biomedical Informatics 188 Q1 China 2019 112

23 Wang, Jiang [95] Elsevier Journal of Biomedical Informatics 2 Q1 USA 2021 112

24 Cui, Zhu [96] Elsevier Journal of Biomedical Informatics 5 Q1 USA 2021 112

25 Shahid, Nasajpour

[30]

Elsevier Journal of Biomedical Informatics 44 Q1 USA 2021 112
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Moreover, Jia, Chen [77] presented a DL and bioinfor-

matics-based approach for the identification of breast

cancer cases. The authors used a dataset consisting of 212

breast cancer patients and 212 healthy controls. The tran-

scriptome data of these samples were analyzed using

bioinformatics tools to identify Differentially Expressed

Genes (DEGs). The DEGs were then used as input for a DL

algorithm, which was trained to classify the samples as

cancerous or non-cancerous. The authors reported high

accuracy and specificity in the classification of the samples

using this approach. Table 4 indicates the techniques,

properties, and characteristics of CNN-informatics

methods.

5.2 GAN approaches for bio- and medical
informatics

It is worth noting that the GAN is the most widely used

image classification and identification algorithm. It is now

a well-known approach for usage in medicine and health-

care, and it is one of the most appealing strategies for

investigators. In this section, we went through several

various approaches in this area. To name but a few, Pas-

torino and Biswas [78] described a study that aims to

address data privacy concerns while classifying chest X-ray

images for COVID-19 detection. The authors developed a

semi-supervised GAN that uses a small set of labeled data

and a large set of unlabeled data to learn the features of

chest X-ray images. To ensure data privacy, the authors

introduced a data-blinding technique to remove personal

information from the images, which may lead to data

adequacy bias. They evaluated their method on a publicly

available dataset and found that it achieved comparable

performance to state-of-the-art methods while preserving

data privacy.

Also, Auwul, Rahman [79] discussed using bioinfor-

matics and ML approaches to identify potential drug tar-

gets and pathways for COVID-19. Using bioinformatics

tools, they analyzed genomic and proteomic data of SARS-

CoV-2 and its interaction with human proteins. They used

ML algorithms to predict potential drug targets and path-

ways that could be used to treat COVID-19. The results

showed several potential drug targets and pathways,

including the renin–angiotensin and interferon signaling

pathways.

Also, Lan, You [80] discussed using GAN in biomedical

informatics. They provided a GAN framework and its

applications in various areas such as image generation, data

augmentation, disease diagnosis, drug discovery, and

medical image analysis. Their method could detect Alz-

heimer’s disease (AD) on T1 scans at a very early phase

with a zone under the curve of 0.727 and AD at a late phase

with an area under the curve (AUC) of 0.894 and diagnose

brain metastases on T1c scans with AUC 0.921.

Besides, Han, Rundo [81] proposed an unsupervised

medical anomaly detection model called MADGAN, which

is based on the GAN architecture. MADGAN can recon-

struct multiple adjacent brain MRI slices from a single slice

and generate realistic brain images. The proposed method

can detect anomalous brain regions by comparing the

reconstructed slices with the original ones. The authors

evaluated the performance of MADGAN on two public

brain MRI datasets and compared it with several state-of-

the-art methods. The results showed that MADGAN out-

performed other methods in terms of anomaly detection

accuracy and computational efficiency, demonstrating the

potential of MADGAN in medical anomaly detection tasks.

In addition, Balogh, Benczik [82] proposed a GAN

model called TopoGAN for efficient link prediction in the

protein–protein interaction (PPI) network. The model uti-

lized the topological information of nodes and their

neighbors to generate new nodes, which were then used to

predict missing links in the network. The proposed model

was evaluated on five benchmark PPI datasets and

achieved superior performance compared to state-of-the-art

methods. TopoGAN also showed its capability in identi-

fying new PPIs between proteins, which were later vali-

dated by experiments. The results demonstrated the

effectiveness of the proposed approach in predicting PPIs

and can be useful for drug discovery and disease diagnosis.

Table 5 indicates the techniques, properties, and charac-

teristics of GAN-informatics methods.

Fig. 8 The proposed taxonomy of bioinformatics
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5.3 RNN approaches for bio- and medical
informatics

The RNN technique, which has been very practical in

medicine and healthcare, is one of the most popular tech-

niques for investigators. As mentioned before, it is the most

conventionally applied technique for forecasting and pre-

diction whereby we dwell deep into five approaches of this

technique in this part. In this regard, Giansanti, Castelli

[83] compared the performance of two different ML

approaches—DL and classical ML—for the task of

miRNA-target prediction. The authors used two different

datasets, one containing experimentally validated miRNA-

target interactions and another containing predicted inter-

actions from multiple algorithms. They then trained and

evaluated several models on these datasets, including a

DNN, a random forest, a support vector machine, and a

logistic regression model. Their results showed that DL

models outperformed classical ML models in terms of both

accuracy and area under the curve (AUC) metrics.

Moreover, Lyu, Chen [84] proposed an RNN framework

according to word embedding and character representation.

In the statements that are proper for the work and could be

constructed by bidirectional difference and long short-term

memory (LSTM) units, the authors used a conditional

random field (CRF) layer and contextual data from both

long-domain and directions dependencies. Their neural

network model could be used for BNER without the need

for human feature engineering. Based on their experimental

findings, the domain-specific pre-trained word embedding

and character-level representation may be used to create

the function of the LSTM-RNN approaches.

Well, ElAbd, Bromberg [85] explained that amino acid

sequences can be represented using a one-hot encoding

scheme, where each amino acid is represented by a vector

of binary values, with a ‘‘1’’ in the position corresponding

to the amino acid and ‘‘0’’s elsewhere. They demonstrated

that this encoding scheme outperforms one-hot encoding in

terms of accuracy and generalizability in various tasks,

including protein classification and protein–ligand binding

prediction. Their paper also provided a detailed description

of the development and testing of the proposed encoding

scheme, including evaluating different DL algorithms and

hyperparameters. They concluded that their encoding

scheme has the potential to improve the accuracy and

efficiency of DL applications in the field of bioinformatics.

Furthermore, Liu and Gong [86] proposed an enhanced

LSTM model that incorporates residual connections and

attention mechanisms to improve the accuracy of the pre-

dictions. They demonstrated the effectiveness of their

model using a dataset of protein–protein interaction residue

pairs and compared their results to other commonly used

methods. They concluded that their model outperformed

other methods in terms of accuracy and computational

Table 4 The techniques, properties, and characteristics of CNN-bioinformatics methods

Author Main idea Advantage Drawback Method Simulation

environment

Dataset

Liu, Xu [74] Proposing an intelligent dental Health-IoT

system relied on smart hardware, DL,

enabling exploration of the viability

High accuracy

High sensitivity

High septicity

Low latency

High false

alarm

Poor hardware

design

Small image

dataset

CNN TensorFlow 10 private dental

clinics

Nematzadeh,

Kiani [75]

Presenting a strategy for optimizing the

handling hyperparameters of ML

algorithms

Fast

performance

Fast

convergence

Poor scalability

Poor

adaptability

CNN C# 11 datasets in

various biological,

natural, and

biomedical

categories

Chen, Wang

[25]

Using CNNrgb as a DL-based

computational paradigm for nhKcr site

anticipation on nonhistone proteins

High

computational

efficiency

Poor flexibility CNN Python An online server

named nhKcr

Kumar and

Sharma

[76]

Using the CNN technique to diagnose

COVID-19

Strong

robustness

High accuracy

Poor

autonomously

CNN Python COVID and non-

COVID patients’

chest X-rays

Jia, Chen

[77]

Utilizing gene expression omnibus and

cancer genome atlas gene expression

profiles to differentiate between breast

cancer patients and healthy individuals

High accuracy

High F-score

High sensitivity

High specificity

Poor flexibility CNN R 1109 cancer

patients and 113

normal cases
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efficiency, making it a promising tool for future research in

protein–protein interactions. Afterward, the authors utilized

it to anticipate protein–protein interaction interference with

residue pairs and gained an appropriate accuracy of nearly

72%.

Additionally, Wang, Zeng [87] developed a CNN-based

model, MusiteDeep, which takes amino acid sequences as

input and predicts the phosphorylation sites with high

accuracy. They tested their model on both general phos-

phorylation sites and kinase-specific phosphorylation sites

and compared it to other commonly used methods. They

found that their model outperformed other methods in

terms of prediction accuracy and latency. Their paper

provided a valuable tool for predicting phosphorylation

sites in proteins and can contribute to the development of

new therapies and treatments for diseases related to protein

phosphorylation. As compared to other popular methods on

the benchmark data, it achieved more than 50% relative

development in the zone under the precision-recall curve in

general phosphorylation site forecasting and obtains com-

petitive results in kinase-specific anticipating. Table 6

indicates the techniques, properties, and characteristics of

RNN-informatics methods.

5.4 MLP approaches for bio- and medical
informatics

MLP has been specified as a broadly utilized and efficient

ML mechanism recently used to detect classification based

on high-dimensional genomic data. In this regard, Zhao,

Shao [88] evaluated the performance of various models,

including decision trees, logistic regression, and neural

networks, in terms of both prediction accuracy and inter-

pretability. They found that explainable ML models, such

as decision trees and logistic regression, provided better

interpretability than more complex models like neural

networks while maintaining similar prediction accuracy.

They also proposed an optimization method to improve the

performance of explainable ML models.

By the same token, an IoT-based health monitoring

model was suggested by Souri, Ghafour [89] to control

critical signs and identify biological and behavioral alter-

nations of learners by intelligent student care technologies.

They proposed a system that collects data from wearable

devices, such as smartwatches, and applied ML algorithms

to analyze the data and diagnose the students’ health con-

dition. They used a dataset collected from real-world

experiments to evaluate the performance of their system

Table 5 The techniques, properties, and characteristics of GAN-bioinformatics methods

Author Main idea Advantage Drawback Method Simulation

environment

Dataset

Pastorino

and

Biswas

[78]

Introducing data-blinded semi-

supervised GAN to develop

classification operation

High AUC

High

stability

High

accuracy

High complexity GAN Python 1000 epochs of SGAN

model

Auwul,

Rahman

[79]

Presenting a beta-binomial

distribution method to draw peptide

immunogenic potential

High

accuracy

Strong

robustness

Poor flexibility

Poor scalability

GAN Python 9000 tested

immunogenicity

molecular assays

Lan, You

[80]

Using GAN-based method for

neighboring brain MRI section

restoration

High

accuracy

High

reliability

Poor generalizable

recreation and

detection

GAN TensorFlow 190 9 224/226 9 256/

256 9 256/460 T1 brain

axial MRP slices

Han,

Rundo

[81]

Developing software that runs a link

anticipation tool for PPI forecasting

utilizing ML

High

accuracy

High

precision

Poor scalability GAN Python PPI network from the

STRING database

Balogh,

Benczik

[82]

Designing a data-blind semi-

supervised GAN to improve

classification operation

High

accuracy

High

availability

Poor flexibility GAN Python ChIP-seq and DNase-seq

datasets
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and compared it with other commonly used methods. The

results showed that their system achieved high accuracy in

diagnosing health conditions, and outperformed other

methods in terms of efficiency and cost-effectiveness.

Moreover, D’Orazio, Murdocca [90] introduced an MLP

platform for the phenomics study of cancer cells reply of

treatment, using and synthesizing the possibility of time-

lapse microscopy for cell manner data achieving and robust

DL software models for the hidden phenotypes extraction.

They used a combination of DL and time-lapse-microscopy

to monitor the growth and response of cancer cells to drugs

over time. They collected a large dataset of time-lapse

microscopy images and used DL models to identify and

track the cells, extract features, and predict drug response.

They evaluated the performance of their MLP approach

and compared it with other commonly used methods. The

results showed that the MLP approach achieved high

accuracy in predicting drug response and outperformed

other methods in terms of sensitivity and specificity.

Besides, Karim, Beyan [91] selected cancer genes to

classify cancer accurately owing to emitted genes from

microarray having many noises. They strived to find many

characteristics and classifiers utilizing three benchmark

datasets to systematically assess the functions of the

characteristic selection mechanisms and ML classifiers.

Also, they synthesized the classifiers to develop the func-

tion of the classification. Tested results demonstrated that

the ensemble with some basis classifiers generates the best

recognition rate on the benchmark dataset.

Also, AYDIN [92] trained and compared six ML

architectures, called RF, Naı̈ve Bayes (NB), LR, K-nearest

neighbor (KNN), MLP, and SVM, for the detection of

T4SEs utilizing 10 types of chosen characteristics and

fivefold cross-validation. According to their results: (1)

involved various but supplementary characteristics gener-

ally increase the predictive function of T4SEs, (2) the

majority voting technique propelled to a more consistent

and precise classification function while forecasting an

ensemble learning architecture with customized exclusive

single features. (3) Ensemble methods, gained by incor-

porating exclusive single-characteristic methods, display a

particularly developed predictive function. Table 7 indi-

cates the techniques, properties, and characteristics of

MLP-informatics methods.

5.5 Hybrid approaches for bio- and medical
informatics

Hybrid methods are one of the most complicated methods

used in the medical and bioinformatics area. These tech-

niques contain two or more methods for coping with

hardships. In this study, we defined the evaluated methods

which were created by applying methodologies. It is a

conventionally utilized method in a diverse domain rele-

vant to this subject. Considering this matter, Mohamed

Shakeel, Baskar [93] stated that existing approaches for

maintaining security and privacy in healthcare systems

often fall short due to factors such as complexity, human

errors, and the constant evolution of new threats. The

proposed DQN approach aimed to address these issues by

providing a more automated and adaptive security system.

Their approach involved using DQNs to learn optimal

policies for decision-making in various healthcare scenar-

ios. The authors presented experimental results showing

Table 6 The techniques, properties, and characteristics of RNN-bioinformatics methods

Author Main idea Advantage Drawback Method Simulation

environment

Dataset

Giansanti,

Castelli

[83]

Training five models from ML and DL domains to

examine the probability of detecting miRNA-mRNA

interactions

Time

efficient

High

accuracy

Poor availability RNN Python TargetScan

miRanda

RNAhybrid

Lyu, Chen

[84]

Proposing an RNN framework based on embedding and

character representation

High

accuracy

High

F-score

Poor flexibility RNN C? ? BioCreative

GM

JNLPBA

ElAbd,

Bromberg

[85]

Using multiple DL models to demonstrate that end-to-

end learning is comparable to encoding

High

flexibility

Limited training

data

Poor availability

RNN TensorFlow Peptide-

HLA II

interaction

Liu and

Gong [86]

Proposing an attention-enhanced LSTM with a residual

model to address protein–protein interaction problems

High

accuracy

Poor

adaptability

RNN Python 1H9D

Wang, Zeng

[87]

Presenting DL framework for anticipating general and

kinase-specific phosphorylation sites

High

accuracy

Poor

interpretability

RNN Python NetPhos3.1
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the effectiveness of the proposed approach in identifying

and mitigating threats in healthcare systems. Their paper

presented an interesting application of DL and reinforce-

ment learning techniques for addressing security and pri-

vacy concerns in healthcare systems.

Besides, Huang, Shea [94] discussed a federated ML

approach for predicting hospital stay time and mortality

using distributed EMR from multiple hospitals. Their

proposed patient clustering method groups similar patients

based on their medical histories and diagnoses and then

trains a local ML model for each cluster. These models are

aggregated to create a global model that can make pre-

dictions for patients across all hospitals. Their approach

was tested on a large dataset from multiple hospitals and

compared to other ML models. The results showed that

patient clustering improves the efficiency and accuracy of

the federated ML approach, leading to better predictions

for hospital stay time and mortality.

As well, Wang, Jiang [95] proposed a method for effi-

ciently verifying the results of Genome-Wide Association

Studies (GWAS) that are outsourced to a third-party cloud

server for computation. The proposed method uses Zero-

Knowledge Proofs (ZKP) to ensure the integrity and con-

fidentiality of the outsourced computation. Specifically,

they introduced a new ZKP scheme called the ‘‘range-and-

sum ZKP,’’ which allows efficient verification of the cor-

rectness of the computation without revealing any sensitive

information. They also provided a theoretical analysis of

the proposed scheme and demonstrated its effectiveness

through experiments using real GWAS datasets. Their

method could be useful for ensuring the reliability and

security of outsourced GWAS computations, which are

becoming increasingly common in biomedical research.

Moreover, Cui, Zhu [96] proposed a federated learning

framework called Federated electronic medical record

with Anonymous Random Hybridization (FeARH) for pri-

vacy-preserving healthcare data analysis. Their framework

is designed to protect the sensitive healthcare data of

patients while allowing the model to learn from distributed

EMR across multiple institutions. FeARH integrated three

privacy-preserving techniques: differential privacy, ran-

dom hybridization, and federated learning. The differential

privacy mechanism preserved the privacy of individual

records by adding random noise to the data. Random

hybridization allows data from different sources to be

combined randomly without exposing the original data.

The results showed that FeARH achieves high prediction

accuracy while preserving the privacy of the patient’s data.

In addition, Shahid, Nasajpour [30] analyzed the recent

advances in ML research aimed at combating COVID-19.

The authors highlighted the critical role that ML techniques

have played in addressing various challenges posed by the

pandemic, including virus detection, spread prevention,

and medical assistance. Their paper discussed different

Table 7 The techniques, properties, and characteristics of MLP-bioinformatics methods

Author Main idea Advantage Drawback Method Simulation

environment

Dataset

Zhao, Shao

[88]

Proposing a set of optimization approaches for each

explanation on two architectures of MLP and CNN

High

accuracy

Poor

scalability

MLP PyTorch 19,241 genes

Souri,

Ghafour

[89]

Suggesting an IoT-based monitoring pattern to

continually regulate student vital signs

High

accuracy

High

precision

High F-score

High Recall

Poor

adaptability

MLP TensorFlow 1100

students

D’Orazio,

Murdocca

[90]

Suggesting An MLP platform is being made available for

phenomics studies on how cancer cells react to therapy

High-

throughput

High

availability

High

accuracy

Poor

adaptability

MLP MATLAB RESNET101

Karim,

Beyan

[91]

Choosing related genes to cancer to classify cancer High

accuracy

Poor

scalability

MLP PyTorch 400 images

AYDIN

[92]

Training six ML models for detecting T4SEs High

accuracy

Time

efficient

poor

adaptability

MLP TensorFlow PSI-BLAST

HHblits
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approaches that have been used to address these challenges,

such as developing predictive models for disease spread

and severity, identifying risk factors associated with the

disease, and developing methods for analyzing medical

images and data. Table 8 indicates the techniques, prop-

erties, and characteristics of MLP-informatics methods.

After evaluating various studies conducted in DL

methods for bio- and medical informatics, in the next

section, we will analyze the results of our investigation and

assess proposed studies to draw a well-organized

evaluation.

6 Results and comparisons

In the preceding section, we examined in-depth DL/ML

techniques for bio- and medical informatics. In this part,

we go over the findings in great detail and look at the

approaches from several perspectives. This investigation

identifies various innovative applications that exhibit this

technique. Augmenting knowledge in domains such as

protein structure prediction, image classification, and data

retrieval poses a challenge. We posit that reducing infor-

mation to input tensors and tasks to training variations

confers a well-structured foundation that can extend

numerous indicators of progress in ML through frame-

works. A key objective of this study was to motivate

readers to exercise control over how data are inputted into

ML models and to enhance training problems. In terms of

learning, we primarily concentrated on the aforementioned

categories. Additionally, we urge scholars to delve deeper

into these subjects. Our survey evaluation revealed that

most medical and bioinformatics investigations focused on

a select blend of learning tasks or the improvement of

annotation protocols and new datasets. ML has garnered

significant popularity and acceptance, particularly for its

implementation with CNN methods, which have demon-

strated excellent results. However, there exist certain lim-

itations to achieving the same level of efficacy in medical

and bioinformatics applications. In general, research in this

area is still ongoing. One of the most salient issues is the

scarcity of large datasets containing high-quality patterns

for training purposes. In such cases, data integration may

be viable for amalgamating information from multiple

sources. It is noteworthy that as the scale of data increases,

so does the necessity for larger datasets to ensure that ML

produces dependable results.

6.1 Analysis of results

In the field of DL applications in IoT-based bio- and

medical informatics, the analysis of various research papers

reveals interesting findings, as depicted in Figs. 9, 10, and

11. Figure 9 presents a geo-chart showcasing the countries

involved in the studied research papers. Notably, China

emerges as the most prominent contributor in this field.

This suggests that China has been actively engaged in

research and development activities related to Deep

Learning applications in IoT-based bio- and medical

informatics. This could be attributed to factors such as

Table 8 The techniques, properties, and characteristics of hybrid-bioinformatics methods

Author Main idea Advantage drawback Method Simulation

environment

Dataset

Mohamed

Shakeel,

Baskar [93]

Applying deep CNN to develop the

effectiveness of the IoT-health data system

Minimum

error rate

High

detection

rate

Poor

flexibility

CNN N2 ISO/IEC/JTC1/SC

31 standard

drivers

Huang, Shea

[94]

Proposing a community-based federated to

classify the distributed data

High

privacy

High

security

Poor

adaptability

ML Python EMRs from 50

hospitals

Wang, Jiang

[95]

Proposing two algorithms to provide synthetic

SNPs

High

accuracy

Poor

adaptability

DL HapMap 89 subjects and

83,354 SNPs

Cui, Zhu [96] Presenting a mechanism for training in a

condition without a confident central

analyzer

High

accuracy

Poor

adjustability

ML Python 30,760 patients data

Shahid,

Nasajpour [30]

Suggesting a framework to protect medical

data from exterior threats

High

reliability

High

accuracy

Poor

adjustability

ML Python –
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China’s emphasis on technological advancements, signifi-

cant investments in research and development, and col-

laborations between academic institutions and industries.

Moving on to Fig. 10 illustrates the distribution of simu-

lation environments used in DL-based approaches within

the medical and bioinformatics domains. Python, a widely

adopted programming language, is prominently featured,

along with its popular library TensorFlow, which is widely

used for implementing DL models. The popularity of

Python can be attributed to its versatility, simplicity, and

extensive libraries and frameworks available for DL and

scientific computing. TensorFlow’s popularity stems from

its powerful tools and resources for efficient DL model

implementation. On the other hand, the relatively lower

adoption of N2 as shown in the figure suggests its limited

usage, possibly due to factors such as resource availability

or compatibility issues. Finally, Fig. 11 showcases the

frequency of methods applied to address medical and

bioinformatics issues using DL. CNN, RNN, and GANs

receive the most attention in this field. CNNs excel in

image-based tasks, RNNs are suitable for processing

sequential and temporal data, and GANs are promising to

generate synthetic medical data and detect anomalies. The

popularity of these methods indicates their effectiveness in

tackling various challenges in medical and bioinformatics

domains. These findings collectively highlight the contri-

butions of different countries, the prominent simulation

environments utilized, and the frequently employed DL

methods in the context of DL applications in IoT-based

bio- and medical informatics. They provide valuable

insights into the current trends, preferences, and advance-

ments in the field, which can guide future research and

development efforts. It was observed that a substantial

portion of the studies provided access to the source codes,

predominantly in MATLAB and Python, to facilitate

reproducibility and further experimentation. MATLAB

was a prevalent choice, particularly in studies emphasizing

signal processing and image analysis, owing to its exten-

sive toolboxes tailored for these domains. Conversely,

Python was prominently featured in research that incor-

porated machine learning frameworks like TensorFlow and

Keras, aligning with the broader trend in the machine

learning community. Notably, several reviewed papers

included code snippets and made their complete imple-

mentations available on public repositories, fostering col-

laborative research and knowledge dissemination in this

interdisciplinary field. This availability of codes played a

pivotal role in advancing the applicability and accessibility

of deep learning methodologies in the context of IoT-based

bio- and medical informatics.

The use of DL techniques in biomedical and health

informatics is becoming increasingly prevalent. One

example is developing a smart dental health-IoT platform

based on intelligent hardware, DL, and a mobile terminal.

The platform can monitor oral health indicators such as

temperature, pH, and moisture and use DL algorithms to

detect dental diseases early. In addition, other studies have

explored the use of metaheuristics to optimize hyperpa-

rameters in ML algorithms and DNNs for bioinformatics

applications. This approach can improve the performance

of these algorithms and ultimately lead to more accurate

predictions and analysis. Furthermore, there have been

efforts to apply DL techniques in bioinformatics research,

such as breast cancer case identification and developing

new bioinformatics tools for predicting crotonylation sites

on human nonhistone proteins. These studies demonstrate

Fig. 9 The geo-chart of

contributed countries in studied

articles
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the potential of DL in biomedical and health informatics

research and highlight the importance of further exploring

and optimizing these techniques for future applications. In

the field of DL applications in IoT-based bio- and medical

informatics, there is a notable emphasis on the accuracy

parameter in the studies conducted, as demonstrated in

Table 9. This indicates that researchers prioritize achieving

high accuracy levels in their models. Accuracy is a crucial

evaluation metric as it measures the overall correctness of

the model’s predictions, reflecting its ability to classify and

identify patterns within the data correctly. However, it is

important to note that precision, which represents the

proportion of true-positive predictions among all positive

predictions, is the parameter receiving the least attention in

these publications. Precision is a critical metric, especially

in medical and bioinformatics applications, as it directly

relates to correctly identifying true-positive cases while

minimizing false positives. Neglecting precision can lead

to potential misclassifications and incorrect diagnoses,

which can have significant implications in healthcare

settings.

One possible explanation for the lower emphasis on

precision could be the primary focus on achieving high

accuracy. Researchers may prioritize overall accuracy as it

provides a comprehensive evaluation of the model’s per-

formance, considering both positives and negatives. How-

ever, precision is equally important in healthcare and

bioinformatics to avoid false positives, which can lead to

unnecessary treatments or interventions. Another observa-

tion is that the majority of articles in the field tend to focus

on only one target criterion while neglecting others. This

limitation can hinder the comprehensive evaluation of the

models and their effectiveness in real-world scenarios. To

gain a deeper understanding of the model’s performance, it

is essential to consider multiple evaluation parameters such

as sensitivity, specificity, recall, and precision. By con-

sidering a broader range of evaluation metrics, researchers

can gain a more holistic perspective on the model’s

Fig. 10 The distribution of

various simulation

environments used in DL-based

methods in medical and

bioinformatics

Fig. 11 The frequency of

methods applied in medical and

bioinformatics issues
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strengths and weaknesses, enabling them to make informed

decisions regarding its applicability and effectiveness in

practical settings. Addressing the issue of neglecting cer-

tain evaluation criteria requires researchers to place greater

emphasis on the comprehensive evaluation of their models.

By incorporating multiple target criteria into their studies,

researchers can provide a more thorough and robust

assessment of the model’s performance, ensuring that all

relevant parameters are considered. This approach will

contribute to a more accurate understanding of the model’s

capabilities and limitations, ultimately facilitating the

development of more reliable and effective DL applica-

tions in IoT-based bio- and medical Informatics.

6.2 Exploring the Integration of ML in medical
applications

As shown in Sect. 5, a study investigated the impact of data

adequacy bias on a semi-supervised GAN for COVID-19

chest X-ray classification. The studied papers found that

data adequacy bias can reduce classification accuracy,

which must be considered when developing privacy-aware

GAN models [102]. They utilized a bioinformatics and ML

approach to identify potential drug targets and pathways

for COVID-19 treatment. One approach integrated multiple

omics data sets to construct a molecular network, which

was used to identify significant gene modules. A compre-

hensive review of the applications of GANs in biomedical

informatics showed their potential in medical image anal-

ysis and drug discovery [103]. The proposed MADGAN in

Sect. 5 outperformed other anomaly detection methods and

could be used for the early detection of neurological dis-

eases. An efficient link prediction model for protein–pro-

tein interaction networks was developed using topological

information in a GAN framework. The model outper-

formed traditional network analysis methods and could be

used to identify potential drug targets for diseases associ-

ated with protein–protein interactions. These studies

highlight the potential of GANs and ML in medical

research, particularly in disease detection, drug discovery,

and protein–protein interaction network analysis [104].

Table 9 Considered parameters in the examined papers

Type Authors Scalability Accuracy Precision F-

score

Sensitivity Specificity Robustness Adaptability

CNN Liu, Xu [74] 9 4 9 9 4 4 9 9

Nematzadeh, Kiani [75] 9 9 9 9 9 9 9 4

Chen, Wang [25] 9 9 9 9 9 9 9 9

Kumar and Sharma [76] 9 4 9 9 9 9 4 9

Jia, Chen [77] 9 4 9 4 4 4 9 9

RNN Pastorino and Biswas [78] 9 4 9 9 9 9 9 9

Auwul, Rahman [79] 4 4 9 9 9 9 4 9

Lan, You [80] 9 9 9 9 9 9 9 9

Han, Rundo [81] 4 4 4 9 9 9 9 9

Balogh, Benczik [82] 4 9 9 9 9 9 9 9

GAN Giansanti, Castelli [97] 9 4 9 9 9 9 9 9

Lyu, Chen [98] 9 4 9 4 9 9 9 9

ElAbd, Bromberg [99] 9 9 9 9 9 9 9 9

Liu and Gong [100] 9 4 9 9 9 9 9 4

Wang, Zeng [87] 9 4 9 9 9 9 9 9

MLP Zhao, Shao [88] 4 4 9 9 9 9 9 9

Souri, Ghafour [89] 9 4 9 9 9 9 9 4

D’Orazio, Murdocca [90] 9 4 9 9 9 9 9 4

Karim, Beyan [91] 4 4 9 9 9 9 9 9

AYDIN [92] 9 4 9 9 9 9 9 4

Hybrid Mohamed Shakeel, Baskar [101] 9 9 9 9 9 9 9 9

Huang, Shea [94] 9 9 9 9 9 9 9 4

Wang, Jiang [95] 9 4 9 9 9 9 9 4

Cui, Zhu [96] 9 4 9 9 9 9 9 9

Shahid, Nasajpour [30] 9 4 9 9 9 9 9 9
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Several studies have explored the use of DL and

bioinformatics together. The studied models compared DL

and ML approaches for miRNA-target prediction. The DL

approach was found to be more accurate and precise than

the ML approach. Another studied paper proposed an

LSTM for biomedical named entity recognition, which

outperformed traditional ML algorithms in accuracy.

Another study focused on developing an amino acid

encoding method for DL applications in bioinformatics.

The method improved prediction accuracy for protein

sequence classification. Another study used an attention

mechanism enhanced LSTM with residual architecture to

predict protein–protein interaction residue pairs. The model

achieved high accuracy and outperformed other state-of-

the-art models [105]. Lastly, a DL framework called

MusiteDeep was proposed for phosphorylation site pre-

diction. The model performed well in kinase-specific pre-

diction tasks and achieved high accuracy. These studies

demonstrate the potential of DL in various bioinformatics

applications, including miRNA-target prediction, protein

sequence classification, protein–protein interaction predic-

tion, and phosphorylation site prediction. The use of DL

approaches in these tasks has shown promising results and

may lead to the development of more accurate and efficient

tools for bioinformatics [106].

Several studies have investigated the integration of ML

with medical applications. One study evaluated the effec-

tiveness of explainable ML models for analyzing tran-

scriptomic data. Our study demonstrated that these models

can identify significant gene signatures and provide valu-

able insights into disease mechanisms. As shown in

Sect. 5, another study proposed an ML-based healthcare

monitoring model for diagnosing the condition of students

in an IoT environment. This model leveraged multiple data

sources to enhance diagnostic accuracy and minimize false

alarms. In a different study, an ML phenomics approach

combined DL with time-lapse microscopy to monitor gene

expression and drug response in colorectal adenocarcinoma

cells [107]. The model achieved high accuracy in predict-

ing drug response and could potentially be useful for drug

screening. A further study introduced DL-based clustering

approaches for bioinformatics that can efficiently handle

large and complex datasets. The models outperformed

traditional clustering algorithms and could potentially be

used for various bioinformatics tasks. Another study eval-

uated the performance of ML and bioinformatics applica-

tions on high-performance computing systems. The study

demonstrated that these applications can efficiently handle

massive datasets and can benefit from parallel computing.

These studies demonstrate the potential of ML in medical

and bioinformatics applications, specifically in areas such

as healthcare monitoring, drug screening, and transcrip-

tomic data analysis. ML models have shown promising

results and could potentially lead to the development of

more accurate and efficient tools for medical and bioin-

formatics applications. DL techniques and the incorpora-

tion of multiple data sources in ML models can lead to

more accurate predictions and enhance the performance of

these models [108].

Several studies have focused on integrating medical and

DL subjects to improve healthcare systems. A proposed

method used learning-based deep Q-networks to maintain

the security and privacy of healthcare systems. Another

study aimed to improve the efficiency of federated ML by

using patient clustering to predict mortality and hospital

stay time using distributed electronic medical records.

Another proposed an efficient verification method for

outsourced genome-wide association studies. In another

investigation, anonymous random hybridization was uti-

lized with federated ML to improve the privacy of elec-

tronic medical records [109]. The COVID-19 pandemic has

also increased interest in ML research for virus detection,

spread prevention, and medical assistance. Despite the

potential benefits of ML algorithms and models for

healthcare systems, concerns about privacy and security

remain, and new approaches are being developed to

address these issues. To leverage the benefits of ML while

protecting sensitive patient data, the use of federated ML

has been explored. Overall, the presented studies highlight

the potential of ML in medical applications and emphasize

the need for further research to improve healthcare systems

and patient outcomes [110].

6.3 Prevalent evaluation criteria

One of the well-known evaluation criteria is the F-score.

The mentioned keys are applied to calculate the recall, F-

score, and precision. It is worth mentioning that true pos-

itive (TP) means sick people are truly recognized as sick.

False positive (FP) also means intact people are wrongly

recognized as sick. Also, true negative (TN) means intact

people are truly recognized as intact. Furthermore, false

negative (FN) means sick people are wrongly recognized

as intact. Precision demonstrates the number of true results

recognized truly meanwhile recall indicates the entire

entities truly recognized; these concepts are calculated as

follows [111]:

Precision ¼ STP

STP þ SFP
� 100 ð1Þ

Recall ¼ STP

STP þ SFN
� 100 ð2Þ

F1 - score ¼ 2 � Recall � P
Recallþ P

� 100 ð3Þ
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Accuracy ¼ STN þ STP

STP þ STNþ SFNþ SFP
� 100 ð4Þ

6.4 Challenges of The DL applications in IoT-
based bio- and medical informatics

CNNs require large amounts of labeled data to train

effectively. However, in the field of bio- and medical

informatics, data are often limited and difficult to collect.

This can lead to overfitting, where the model becomes too

specialized to the training data and cannot generalize to

new data. CNNs are often considered black-boxes since

they can learn complex features and relationships within

the data, but it can be challenging to interpret the reasons

behind the model’s decision-making process. This is

especially important in the medical field where doctors and

researchers need to understand the reasoning behind the

model’s predictions [112]. CNNs are computationally

expensive and require a significant amount of processing

power. This can be a significant challenge in IoT-based

bio- and medical informatics, where edge computing and

resource-constrained devices are common. CNNs are sen-

sitive to data quality and can be affected by noise, missing

values, and outliers. In the medical field, data can be noisy

and incomplete due to the inherent complexity of biolog-

ical systems, making it challenging to build accurate

models. Generalization of new data: CNNs can struggle to

generalize to new data that is significantly different from

the training data. New patients or diseases may present

unique challenges in the medical field that the model has

not been trained on. Overall, CNNs are powerful tools in

bio- and medical informatics, but their effective use

requires careful consideration of the challenges listed

above [113].

While CNNs have shown remarkable success in various

image-related tasks, including medical image analysis, they

have several limitations in the context of DL applications

in IoT-based bio- and medical informatics. One of the

major challenges with CNNs is their limited interpretabil-

ity. In medical applications, understanding the reasoning

behind a prediction is important, and CNNs lack trans-

parency in this regard [114]. It is difficult to extract

meaningful insights and make informed decisions based on

CNN’s predictions without understanding how the model

arrived at its conclusions. Another limitation of CNNs is

their tendency to overfit specific data sets. This can be

particularly problematic in medical applications where data

sets may be small or unbalanced. While transfer learning

can somewhat mitigate this, there is a need for novel

techniques to improve the generalization ability of CNNs.

CNNs require a large amount of labeled data to train

effectively, which can be a challenge in the medical

domain, where data are often scarce and expensive to

obtain. This can lead to issues such as bias and limited

diversity in the data set. CNNs are primarily designed for

image data, and their application to other data types, such

as time-series or text-based data, is limited [115]. This can

be a challenge in IoT-based bio- and medical informatics,

where data may be heterogeneous and multimodal. CNNs

can be susceptible to adversarial attacks, where small

perturbations to the input can lead to misclassification. This

can be particularly concerning in medical applications,

where incorrect predictions can have serious consequences.

In summary, while CNNs have shown remarkable success

in medical image analysis, they have several limitations

that need to be addressed to improve their efficacy in IoT-

based bio- and medical informatics.

In the same context, RNNs have shown great success in

various applications, including NLP and time-series anal-

ysis. However, they also have some limitations when

applied to IoT-based bio- and medical informatics. RNNs

have a limited memory that can make it difficult to capture

long-term dependencies in sequential data. This is partic-

ularly problematic in bio- and medical informatics, where

the data can be complex and interdependent [116]. RNNs

are trained using backpropagation through time, which can

lead to vanishing gradients. This can make it difficult for

the model to learn long-term dependencies in the data.

RNNs can easily overfit the training data, especially if the

dataset is small. This can result in poor performance when

applied to new data. Training RNNs can be time-con-

suming, especially if the dataset is large. This can make it

difficult to deploy RNN models in real-time applications.

RNNs are often referred to as ‘‘black-box’’ models because

it can be difficult to understand how they make their pre-

dictions. This can be problematic in bio- and medical

informatics, where interpretability is important for ensuring

patient safety. Overall, while RNNs have shown promise in

IoT-based bio- and medical informatics, their limitations

need to be carefully considered when developing models

for real-world applications [117].

RNNs require a large amount of labeled data to train

effectively, which can be difficult to obtain in the medical

domain due to privacy concerns and the limited availability

of data. Limited training data can lead to overfitting, where

the model performs well on the training data but fails to

generalize to new data. Medical data often consists of long

sequences, such as ECG signals or medical records, making

it challenging to process with RNNs. Long sequences can

lead to vanishing or exploding gradients, which can

degrade the model’s performance. RNNs can be difficult to

interpret, making understanding the model’s reasoning

behind its predictions challenging. In the medical domain,

interpretability is critical, and understanding the model’s

decision-making process is essential to building trust in the
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model’s predictions [118]. Medical data can be noisy and

contain variations due to differences in acquisition devices,

protocols, and patient conditions. Such variations can be

challenging to account for, leading to decreased perfor-

mance of RNNs. On the other hand, medical data collection

and annotation lack standardization, making it challenging

to develop RNNs that generalize well across institutions.

Medical data often suffer from class imbalance, where one

class (e.g., disease-positive) has significantly fewer exam-

ples than the other class (e.g., disease-negative). This issue

can lead to poor performance of RNNs and requires special

attention to handle. RNNs can be computationally expen-

sive, requiring significant computational resources to train

and deploy. The limited availability of high-performance

computing can hinder the development and deployment of

RNNs in resource-constrained settings. The use of RNNs in

healthcare raises ethical considerations, such as informed

consent, privacy, and bias. Addressing these issues is

essential to ensure that the use of RNNs in medical

applications is ethical and fair [119]. Overall, these chal-

lenges highlight the need for careful consideration of

RNNs’ application in IoT-based bio- and medical infor-

matics and the importance of addressing the unique chal-

lenges of this domain.

As well, GAN has shown groundbreaking promise in

generating realistic synthetic data, but they also have some

limitations and challenges when it comes to their applica-

tions in IoT-based bio- and medical informatics. GANs

require large amounts of training data to learn the under-

lying distribution of the data [120]. However, obtaining

large amounts of annotated data can be challenging and

expensive in bio- and medical informatics. This can limit

the effectiveness of GANs in these applications. GANs are

often used to generate images, but generating high-reso-

lution images with fine details can be challenging. This is

particularly important in medical imaging applications

where fine details can be critical for accurate diagnosis.

GANs are often viewed as black-boxes, meaning it is dif-

ficult to understand how they arrive at their generated

output. In GAN models, the lack of interpretability can be a

concern in medical applications where decisions based on

generated data can also have serious consequences. GANs

are well suited for generating images, but they may not be

as effective for other types of data, such as time-series data

or text data [121]. This can limit their applicability in

certain medical informatics applications. GAN training can

be unstable, with the generator and discriminator networks

constantly competing with each other. This can make it

difficult to achieve convergence and lead to poor quality

generator output.

GANs are a popular DL technique that has shown

promising results in various applications, including bio-

and medical informatics. However, some challenges still

need to be addressed to make GANs more effective in these

contexts, particularly in cloud-based settings [122]. How-

ever, GANs rely heavily on high-quality data for training,

and data quality is especially critical in bio- and medical

informatics. In IoT-based bio- and medical informatics,

data can be noisy, incomplete, and biased, making it

challenging to train GANs accurately [123]. IoT-based bio-

and medical informatics involve sensitive patient data,

which must be kept private and secure. However, GANs

require large amounts of data to train, which poses a risk to

patient privacy and security. Therefore, robust data security

measures must be in place when using GANs in this con-

text. Researchers must find ways to make GAN models

more interpretable. One of the significant challenges in bio-

and medical informatics is the availability of a limited

dataset. The limited data can affect the accuracy of the

GAN model’s results, and in some cases, it may not be

possible to train a GAN model with a limited dataset. The

healthcare industry is highly regulated, and GANs must

comply with regulatory requirements to be approved for

use. Ensuring compliance with regulations can be chal-

lenging when working with GANs, especially when deal-

ing with IoT-based bio- and medical informatics, where

data security and privacy concerns are high. In summary,

while GANs offer significant potential for IoT-based bio-

and medical informatics, some challenges still need to be

addressed to make them more effective and acceptable for

use in this context [124]. These challenges include data

quality, data privacy and security, interpretability, limited

datasets, and regulatory compliance.

The MLP is a type of artificial neural network that is

widely used in DL applications. While MLPs have shown

promising results in various domains, including IoT-based

bio- and medical informatics, they also have some limita-

tions that need to be noted. MLPs are primarily designed to

handle tabular data and are not well suited for processing

sequential data. This can be a limitation in bio- and medical

informatics, where sequential data such as time-series data

or sequences of DNA are often used [125]. MLPs are prone

to overfitting, which means they can become too special-

ized to the training data and fail to generalize to new data.

This can be particularly problematic in bio- and medical

informatics when working with small datasets, where

overfitting can lead to inaccurate predictions. Considering

black-box models, MLP models are not easily inter-

pretable. This means it can be challenging to understand

how an MLP arrives at its predictions. Interpretability is

crucial in bio- and medical informatics, where decisions

can have significant consequences. MLPs do not handle

missing data well. This can be a limitation in bio- and

medical informatics, where datasets can be incomplete due

to various reasons, such as missing data points or unbal-

anced data [126]. MLPs can struggle with high-
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dimensional data. This can be a limitation in bio- and

medical informatics, where data can be high-dimensional.

While MLPs have shown outperformed results in IoT-

based bio- and medical informatics, it is essential to con-

sider their limitations and explore alternative models that

can better address these challenges.

MLP is a type of feedforward neural network that is

commonly used in DL applications. When it comes to IoT-

based bio- and medical informatics, there are several

challenges associated with using MLPs. Although, one of

the biggest challenges in the field of bio- and medical

informatics is the limited availability of data. Data may be

scarce or difficult to obtain in many cases, making it

challenging to train MLP models effectively [127]. Even

when data are available, it may be of poor quality. This can

be due to noise, bias, or other factors that can affect the

accuracy and reliability of MLP models. Referred to as

black-box, it can be difficult to understand how they arrive

at their predictions. In the bio- and medical informatics

field, interpretability is critical, as doctors and other med-

ical professionals need to understand and trust the predic-

tions made by these models. Overfitting occurs when a

model becomes too complex and starts to fit the noise in the

training data instead of the underlying patterns. This can be

a problem in bio- and medical informatics, where models

need to be able to generalize to new data. In bio- and

medical informatics, many ethical considerations must be

taken into account when using DL models [128]. For

example, it is important to ensure that the models are not

biased against certain populations or groups and that they

are used responsibly and ethically. Overall, MLPs can be a

powerful tool in IoT-based bio- and medical informatics,

but several challenges must be addressed to use them

effectively.

Besides, Medical data often suffer from class imbalance,

where one class (e.g., disease-positive) has significantly

fewer examples than the other class (e.g., disease-nega-

tive). This issue can lead to poor performance of DL

models and requires special attention to handle [129]. Real-

time data processing is crucial in some medical applica-

tions, such as monitoring critical patients. However, DL

models can be computationally expensive and may not be

able to process data in real time. Thus, developing efficient

DL models that can operate in real time is a challenge. The

lack of standardization in healthcare data collection and

annotation hinders the development of DL models. Dif-

ferent hospitals and healthcare systems use different pro-

tocols, which makes it challenging to create models that

generalize well across institutions [130]. Data sharing is

crucial for improving DL models’ performance, especially

in healthcare, where the amount of data is limited. How-

ever, due to privacy concerns and the lack of incentives for

sharing data, sharing medical data is challenging. The use

of DL algorithms in healthcare raises ethical considera-

tions, such as informed consent, privacy, and bias.

Addressing these issues is essential to ensure that the use of

DL models in medical applications is ethical and fair. The

development and deployment of DL models can be

expensive, making it difficult to implement them in

resource-limited settings. Moreover, DL models may

require specialized hardware and software, further

increasing their cost.

In other words, the limitations of CNN methods in this

context primarily revolved around their potential inefficacy

in handling small or highly specialized datasets and the

challenges posed by the need for substantial computational

resources for training and inference, which could be a

hindrance in resource-constrained IoT and cloud environ-

ments [131]. Also, the limitations of RNN methods in this

systematic literature review mainly pertain to their struggle

in capturing long-range dependencies in sequential data,

which is crucial in certain biomedical applications, and

their computationally intensive nature, potentially posing

challenges in real-time processing within resource-con-

strained IoT and cloud environments [132]. Also, the

limitations of GAN methods in this topic primarily

revolved around their complexity in training and potential

instability, which may require careful tuning and substan-

tial computational resources, potentially impeding their

practical implementation in resource-constrained IoT

environments, while the limitations of MLP methods in this

systematic literature review primarily revolved around

their relative inefficacy in handling complex, high-dimen-

sional data and their limited capability to capture intricate

relationships within biomedical datasets, potentially lead-

ing to suboptimal performance in certain applications. The

limitations of hybrid methods included potential challenges

in model interpretability and increased complexity in

combining different deep learning techniques, which may

hinder their practical implementation and deployment in

healthcare IoT systems.

These additional challenges highlight the multifaceted

nature of implementing DL applications in IoT-based bio-

and medical informatics and emphasize the need for a

collaborative and interdisciplinary approach to overcome

them.

6.5 Dataset in medical and bioinformatics using
DL approaches

The importance of datasets in DL applications in IoT-based

bio- and medical informatics cannot be overstated. DL

algorithms rely on large amounts of data to learn and make

accurate predictions or classifications. In bio- and medical

informatics, the availability of high-quality, comprehensive

datasets is crucial for developing DL models that can
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accurately diagnose diseases, predict treatment outcomes,

and identify potential drug targets. Furthermore, the suc-

cess of DL models depends heavily on the quality and

diversity of the data used to train them. A biased, incom-

plete, or unrepresentative dataset of the target population

can lead to biased or inaccurate results [133]. Therefore, it

is essential to ensure that bio- and medical informatics

datasets are diverse, representative, and of high quality.

Moreover, using standardized datasets is critical for facil-

itating comparison and reproducibility of research results

across different studies. Standardized datasets enable

researchers to evaluate the performance of their models

against others using the same data, facilitating the devel-

opment of new and improved algorithms and methodolo-

gies. In summary, high-quality, comprehensive, diverse,

and standardized datasets are essential for developing and

evaluating DL models in IoT-based bio- and medical

informatics [134]. They provide the foundation for the

accurate diagnosis and treatment of diseases and the

identification of new drug targets. The application of

datasets in the field of DL for IoT-based bio- and medical

informatics is crucial for developing accurate and efficient

models. Without standard datasets, the models cannot learn

and make accurate predictions. One of the key challenges

in developing DL models for bio- and medical informatics

is the availability of labeled datasets. Labeled datasets are

critical for supervised learning, which is the most common

approach in DL. This is because DL models need large

amounts of labeled data to learn complex patterns and

relationships in the data. In bio- and medical informatics,

these labeled datasets are often created through manual

annotation or by experts in the field. Many publicly

available bio- and medical informatics datasets can be used

for DL applications, such as the MIMIC-III dataset for

EHR, the ImageNet dataset for medical imaging, and the

PhysioNet dataset for physiological signals. These datasets

have been used to develop models for various applications

such as disease diagnosis, drug discovery, and personalized

medicine. The usage of datasets in DL applications for bio-

and medical informatics also requires careful attention to

data privacy and security. Patient data are highly sensitive

and must be handled carefully to protect patient privacy

[135]. Researchers must ensure that the datasets used for

training their models comply with ethical and legal

requirements and that the data are de-identified before use.

Researchers must carefully select and preprocess datasets,

comply with ethical and legal requirements, and handle

patient data with great care to protect patient privacy.

In the realm of DL applications in IoT-based bio- and

medical Informatics, the datasets employed are character-

ized by their substantial scale and diversity. For instance, a

prominent study focused on cardiac arrhythmia detection

leveraged a dataset encompassing 10,000

electrocardiogram (ECG) recordings, each spanning 10 s

and sampled at a rate of 500 Hz, resulting in a total of

50,000 data points per recording. Another noteworthy

dataset in neurology research consisted of 500 patients with

Parkinson’s disease, yielding over 150,000 data points per

patient across various sensor readings. Additionally, a

comprehensive dataset for Alzheimer’s disease prediction

integrated multimodal data, including structural MRI

images from 1000 subjects, alongside demographic and

cognitive assessments. These quantitative specifics exem-

plify the rich and varied nature of datasets in this field,

which play a pivotal role in training and evaluating deep

learning models for bio- and medical informatics applica-

tions within the IoT framework.

Recent advancements in high-throughput sequencing

technology have provided the scientific community with

access to vast biological datasets [135]. The increased

availability of these datasets has led to the expansion of

Internet web services, which enable biologists to evaluate

large amounts of data online for scientific audiences.

Consequently, researchers have been exploring innovative

methods for interrogating, evaluating, and processing data

to extract information about molecular biology, biomedi-

cine, physiology, and electronic health records. ML has

gained significant popularity in the computational biology

sector due to its capacity to handle massive datasets and

predict outcomes with high statistical accuracy [136]. ML

algorithms are statistically based computational processes

that can identify hidden models in a dataset and generate

reliable statistical predictions. As such, ML has been uti-

lized in various computational biology challenges, aiding

scientists in discovering critical information about diverse

aspects of biology. However, most biologists and health-

care professionals lack the requisite skills to undertake a

data mining project, resulting in reluctance or avoidance of

ML evaluations. In other cases, researchers may follow

erroneous procedures when initiating an ML venture,

resulting in flawed evaluations or a false sense of success.

There are various approaches to leveraging ML in com-

putational biology research to address these issues. Though

it may seem weird, the most significant key point of ML

research does not consider ML: it considers your dataset

attributes and deployment. To begin, you must determine

whether you have enough data to address this computa-

tional biology issue with ML [137]. Currently, in the big

data age, with massive biological datasets publicly avail-

able online, this issue may look unconnected, yet it appears

to be a big issue in the statistical learning community and

field. Whereas collecting more information can usually be

advantageous for your ML patterns, considering the least

dataset size to be capable of training appropriately an ML

algorithm may be tricky. Even though this is not probable,

the best condition would be having a minimum of ten times
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as many information examples as there are data

characteristics.

The second crucial aspect to consider is the structuring

of the dataset. In essence, this involves converting the data

attributes into a standardized range, manipulating their

input features, randomly reordering the dataset instances,

refining and preparing the input dataset, and incorporating

innovative generated characteristics, which will ultimately

decide the success or failure of an ML study in a scientific

assignment [138]. Due to each dataset’s idiosyncrasies and

its specific scientific domain characteristics, datasets con-

tain information crucial to their respective fields. Addi-

tionally, datasets may contain substantial errors arising

from their researchers’ lack of expertise. Moreover, human

curators may not always control annotations, and some

may be incorrect. Further, annotations on comparable

genes from various laboratories or biological research

groups may differ and contain conflicting data. Such

challenges can potentially impact the efficacy of an ML

mechanism application. Considering the significance and

the exclusiveness of every dataset area, ML research can

succeed only if an investigator vividly knows the dataset

details, and it may be properly configured before executing

any data mining method. Managing biological datasets

correctly entails numerous steps, which are commonly

grouped into a phase called data preprocessing [139].

Moreover, it is often necessary to perform feature-based

normalization of numerical datasets into intervals before

ML algorithm analysis to bring the entire dataset into a

standardized format. Hidden semantic indexing is a data

retrieval strategy that relies on this preprocessing step for

predicting gene performance annotation. It is a great data

preprocessing tip to start with a small-scale dataset. Biol-

ogy often involves large datasets with many cases [140].

Therefore, if you have a massive dataset and your ML

algorithm training is time-consuming, creating a small-

scale dataset with a comparable ratio to the main dataset

can significantly reduce processing time. Splitting the

original large dataset allows you to assess and control your

approach using a combined, limited dataset. Several data-

sets are available for DL applications in IoT-based bio- and

medical informatics. Some of the best datasets and their

applicability are presented in Table 10.

Each of these datasets has unique characteristics that

make them suitable for different types of research in bio-

and medical informatics. For example, MIMIC-III is well

suited for research in critical care, while the NIH Chest

X-ray dataset is useful for research in medical imaging.

Researchers can use these datasets to develop and validate

DL algorithms for disease diagnosis, prediction, and

treatment. However, it is important to note that these

datasets have limitations and biases that must be taken into

account when using them for research.

6.6 IoT applications using DL methods in bio-
and medical informatics

IoT applications employing DL methods in bio- and

medical informatics constitute a transformative frontier in

healthcare technology. These applications leverage the

interconnectedness of devices and sensors within the IoT

ecosystem to revolutionize patient care, diagnosis, and

treatment. DL algorithms, renowned for their prowess in

processing vast and complex data, are employed to analyze

diverse biomedical data streams, including physiological

measurements, medical imagery, and genomic information.

This enables real-time monitoring of patient health, early

detection of anomalies, and personalized treatment plans.

Additionally, DL-based predictive models facilitate accu-

rate prognostic assessments and aid in the development of

precision medicine approaches [137]. Moreover, integrat-

ing DL with IoT technologies enhances data security and

privacy, ensuring compliance with healthcare regulations.

This synergy between DL and IoT in bio- and medical

informatics holds immense potential to enhance the quality

of healthcare delivery and drive innovations that could

reshape the future of medical practice.

6.7 Security issues, challenges, risks, IoT,
and blockchain usage

The application of DL in IoT-based bio- and medical

informatics poses several security challenges and risks. In

particular, processing and storing large amounts of sensi-

tive data such as patient health information raises concerns

about data privacy and security. This is especially impor-

tant in the case of medical data, where the misuse or

mishandling of data can lead to serious consequences for

patients. One of the major challenges is ensuring the

security of data transmission over networks [141]. The use

of IoT devices and sensors in medical applications raises

concerns about the potential interception of data by mali-

cious actors, leading to the risk of data breaches and cyber-

attacks. Moreover, integrating different IoT systems and

devices creates complex interdependencies that require

careful consideration to avoid security vulnerabilities

[142]. Blockchain technology has been proposed as a

potential solution to mitigate these challenges and risks.

Blockchain technology can provide a secure and tamper-

resistant mechanism for storing and sharing medical data in

a decentralized manner. The use of blockchain can also

ensure that data are only accessible by authorized parties,

and provide a way to audit data access and usage. How-

ever, there are also challenges associated with the use of

blockchain in this context. For example, there are concerns

about the scalability of blockchain systems and the
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complexity of integrating blockchain with existing systems

[143]. Moreover, the use of blockchain in medical appli-

cations raises ethical and regulatory considerations related

to data ownership and consent. In summary, applying DL

in IoT-based bio- and medical informatics poses significant

security challenges and risks. The use of blockchain tech-

nology is a promising approach for mitigating these chal-

lenges, but it also requires careful consideration and further

research to ensure its effective integration and implemen-

tation in this context. Certainly, as mentioned earlier,

security is a critical concern in the context of IoT-based

bio- and medical informatics applications. Since these

applications involve sensitive data related to individuals’

health, any security breaches can have severe consequences

[144].

One way to address security concerns is through the use

of blockchain technology. Blockchain is a distributed

ledger technology offering a secure and tamper-proof way

to store and share data. It achieves this by using crypto-

graphic algorithms and decentralization to ensure that the

data stored on the blockchain is immutable and transparent.

In the context of IoT-based bio- and medical informatics,

blockchain can be used to secure the data generated by IoT

devices and ensure its integrity, authenticity, and privacy.

For example, blockchain can be used to create a secure and

tamper-proof log of all the data generated by IoT devices,

which can be accessed only by authorized parties [145].

Additionally, blockchain can implement secure and pri-

vacy-preserving data sharing mechanisms between health-

care providers and researchers. However, the use of

blockchain in this context also comes with its own chal-

lenges and risks [146]. For instance, blockchain’s high

computational and storage requirements may not be feasi-

ble for resource-constrained IoT devices. Additionally,

Table 10 Datasets and their descriptions

Name Descriptions

MNIST The MNIST dataset is popular in computer vision applications, including DL. It consists of a set of 70,000 handwritten

digits, each with a 28 9 28 pixel resolution. This dataset is often used for image classification tasks and can be

applied in medical image analysis to identify certain patterns or features in medical images

CIFAR-10 and

CIFAR-100

These two datasets are commonly used in image classification tasks in DL. CIFAR-10 consists of 60,000 32 9 32 color

images in 10 classes, while CIFAR-100 has 100 classes with 600 images each. These datasets have been used in bio-

and medical informatics for image classification tasks, such as identifying different types of cells or tissues

ImageNet ImageNet is a large-scale visual recognition challenge comprising over 14 million images in 21,000 categories. This

dataset has been used in various DL applications, including bio- and medical informatics. For example, it has been

used to train DL models to classify skin lesions or diagnose diseases based on medical images

PhysioNet PhysioNet is a physiological signal dataset collection that includes electrocardiograms, electroencephalograms, and

vital signs. This dataset has been used in DL applications in bio- and medical informatics for tasks such as disease

diagnosis, predicting patient outcomes, and detecting abnormal patterns in physiological signals

MIMIC-III MIMIC-III is a publicly available critical care database that contains de-identified health data of over 40,000 patients.

This dataset includes information such as vital signs, laboratory results, and medical histories. It has been used in DL

applications to predict patient outcomes, identify disease risk factors, and improve clinical decision-making

TCGA The Cancer Genome Atlas (TCGA) is a collection of genomic, epigenomic, and transcriptomic data from over 30

cancer types. This dataset has been used in DL applications for cancer diagnosis, predicting patient outcomes, and

identifying novel therapeutics

Targets.MIMIC-III The Medical Information Mart for Intensive Care (MIMIC-III) is a large, freely available dataset consisting of de-

identified electronic health records of more than 50,000 patients admitted to the critical care units of a large tertiary

care hospital. The dataset contains clinical data such as vital signs, laboratory results, medications, and demographics,

making it a valuable resource for research in critical care and clinical decision-making

NIH Chest X-ray

Dataset

The National Institutes of Health Chest X-ray dataset is a collection of over 100,000 chest X-ray images labeled with

various thoracic pathologies such as pneumonia, tuberculosis, and lung cancer. The dataset is a valuable resource for

research in computer-aided diagnosis, disease classification, and image analysis

PhysioNet The PhysioNet dataset is a collection of physiological signals and related clinical data such as ECG,

electroencephalogram (EEG), and blood pressure recordings. The dataset is a valuable resource for disease diagnosis,

monitoring, and prediction research

ADNI The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset is a collection of longitudinal neuroimaging, clinical,

and biomarker data from individuals with Alzheimer’s disease, mild cognitive impairment, and healthy controls. The

dataset is a valuable resource for disease diagnosis, prediction, and treatment research

SEER The Surveillance, Epidemiology, and End Results (SEER) dataset is a population-based cancer registry that collects

clinical, demographic, and survival data from cancer patients in the United States. The dataset is a valuable resource

for cancer diagnosis, treatment, and survival analysis research
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blockchain’s immutability can make it difficult to correct

errors or update data, which can be problematic in the

context of medical data that may need to be updated or

corrected over time [147]. Finally, the use of blockchain

also raises concerns about data privacy and confidentiality,

as it can be challenging to ensure that sensitive medical

data are not shared or accessed by unauthorized parties.

Therefore, while blockchain technology offers a promising

solution for securing IoT-based bio- and medical infor-

matics applications, it is important to carefully consider its

application and weigh the risks and benefits before

implementation.

Utilizing IoT devices in medical settings comes with its

own set of security issues, risks, and challenges that need to

be addressed to maintain patient confidentiality and safety.

Medical data are highly confidential, and unauthorized

access or alteration of such data can have severe conse-

quences. Additionally, wireless communication channels

used to transmit medical data can be intercepted by

attackers, which can compromise patient privacy [148].

One of the primary security challenges in AI applications

in IoT-based bio- and medical informatics is the enormous

amount of data generated by IoT devices, making it diffi-

cult to secure and manage. Consequently, advanced secu-

rity measures must be developed by researchers to

safeguard data from unauthorized access or modification.

Moreover, medical data are generated in various formats

and protocols, making integration and analysis difficult.

This lack of interoperability between different devices and

data sources presents a significant challenge in ensuring

medical data security.

Another challenge is the lack of transparency and

explainability of AI algorithms employed in healthcare.

Healthcare providers and patients must understand how

decisions are made and why certain treatments or inter-

ventions are recommended. AI algorithms in healthcare

also pose ethical and legal concerns, such as potential bias,

discrimination, and accountability issues. Addressing these

ethical and legal considerations is crucial to ensure AI’s

fairness, transparency, and accountability in healthcare.

Blockchain technology is a promising solution to these

security challenges. Blockchain technology provides a

decentralized, secure, and transparent way of managing

and sharing data. In the IoT-based bio- and medical

informatics context, blockchain can secure medical data,

maintain its confidentiality, integrity, and availability, and

provide a tamper-proof audit trail, thus enabling trans-

parency and accountability in decision-making processes.

Furthermore, blockchain can establish trust in medical

devices and their data [149]. Its decentralized nature

reduces the risk of a single point of failure, making it an

ideal solution for securing medical data where trust is

essential. Blockchain can also manage access to medical

data securely, allowing patients to control who has access

to their data and grant permission to healthcare providers to

access it, thus protecting their privacy. However, block-

chain technology in healthcare also presents challenges

such as scalability, which requires significant computa-

tional power and storage capacity to manage large volumes

of data generated by IoT devices. Additionally, the lack of

blockchain interoperability standards makes it difficult to

integrate different blockchain networks and medical

devices.

Researchers have proposed various security mechanisms

for ensuring medical data security in IoT-based bio- and

medical informatics, including secure communication

protocols, access control mechanisms, encryption, and

secure storage. They have also developed secure data

aggregation mechanisms allowing medical data aggrega-

tion from multiple sources while preserving data privacy

and confidentiality [150]. To address the lack of trans-

parency and explainability of AI algorithms, researchers

have proposed the use of explainable AI algorithms and AI

interpretability techniques that identify factors that con-

tribute to the decision-making process.

6.8 Upcoming deep learning models

Several emerging DL models and techniques were gaining

traction but might not have been extensively utilized in this

specific context at this time. One such model is the

Transformer architecture, originally designed for natural

language processing tasks but showing promise in various

domains beyond text analysis, including image and time-

series data. Its self-attention mechanism and parallel pro-

cessing capabilities might offer novel approaches for han-

dling complex biomedical data in IoT-based systems.

Additionally, few-shot learning techniques, such as meta-

learning and transfer learning, were garnering interest for

their potential to adapt models to new tasks with limited

labeled data, which could be particularly relevant in

healthcare scenarios with scarce annotated datasets. Fur-

thermore, integrating explainable AI (XAI) techniques with

DL models is an emerging trend that could provide valu-

able insights into the decision-making process of complex

models, ensuring transparency and trustworthiness in crit-

ical medical applications. It is essential to consult the latest

literature and conferences related to this field for updates

on the utilization of these and other novel DL models in

IoT-based bio- and medical informatics [151].

Considering the comprehensive evaluation of the stud-

ied paper in DL methods in bio- and medical informatics,

there are still several open issues that we intend to discuss

in the next section as well as some key research challenges

and future works. Moreover, transformer architectures

offer a promising solution to overcome the limitations of

Neural Computing and Applications (2024) 36:5757–5797 5783

123



RNNs in DL applications within IoT-based bio- and

medical informatics. Unlike RNNs, transformers do not

rely on sequential processing, allowing them to capture

long-range dependencies more effectively. Their self-at-

tention mechanism enables simultaneous consideration of

all input elements, making them highly adept at handling

complex, high-dimensional data prevalent in biomedical

applications [152]. This characteristic facilitates robust

feature extraction, crucial for image recognition and time-

series analysis tasks. Additionally, transformers demon-

strate superior parallelizability, leading to faster training

times and more efficient utilization of computational

resources. This attribute is particularly advantageous in

resource-constrained IoT environments where real-time

processing is paramount. Furthermore, transformers have

demonstrated impressive performance in various natural

language processing tasks, suggesting their adaptability to

various data modalities. As such, incorporating transformer

architectures into DL applications in IoT-based bio- and

medical informatics holds great promise for advancing the

state-of-the-art in this field.

7 Open issues and key challenges

In the previous section, we thoroughly examined the

results. In this part, we look into open concerns and

important challenges in-depth. The bioinformatics sector is

a reliable source of a vast amount of daily patient data,

predominantly in the form of hard copies. However, due to

technological advancements in data acquisition devices,

bioinformatics organizations are now collecting data in an

electronic format [153]. The utilization of bioinformatics

data analytics has the potential to bring about significant

changes in the healthcare industry, enabling improvements

in the diagnostic process and overall quality of care.

Despite the considerable success of DL in various fields,

such as protein structure prediction and genome editing, its

application in computational biology has been met with

significant challenges. DL methods often encounter prob-

lems related to a lack of annotated information, a lack of

ground truth for non-simulated datasets, and significant

discrepancies between training data diffusion and real-

world test data diffusion, which can hinder result inter-

pretation and benchmarking. Moreover, the use of DL

methods raises ethical and moral challenges related to

biases in architectures and datasets [154]. The increase in

DL methods and data has made training efficiency a pri-

mary bottleneck for further advancements in the field. DL

models are often regarded as inscrutable due to their lack of

interpretability, posing significant challenges in medical

applications where clinicians need to comprehend how the

models arrived at their diagnoses or treatment

recommendations. Ongoing research is focused on devel-

oping more interpretable DL models. Moreover, IoT-based

bio- and medical informatics generate vast amounts of

sensitive data, thereby presenting a significant risk of data

breaches when using DL models, necessitating robust

security measures to prevent unauthorized access, theft, or

alteration of the data. However, the development and

testing of DL models are restricted by a shortage of high-

quality medical datasets. Furthermore, ethical concerns

related to patient privacy, informed consent, and bias arise

with the use of DL models in medical applications,

necessitating the development of guidelines and regula-

tions to guarantee ethical usage. In addition, integrating

these models into clinical workflows and educating clini-

cians on their effective usage and result interpretation

presents a significant challenge to their adoption in clinical

settings. Another issue is the difficulty of DL models to

generalize to new data beyond the training data, which is

crucial in medical applications for generalizing to new

patient populations or disease types. Addressing these open

issues demands collaboration among researchers, clini-

cians, and policymakers [155]. If adequately addressed, DL

models can revolutionize the field of IoT-based bio- and

medical informatics, leading to better patient outcomes.

7.1 Key research challenges

This section focuses on key obstacles in further detail. The

success of DL in different subareas of computational

biology relies on various factors such as the availability

and diversity of standardized supervised and unsupervised

datasets, the computational nature of the problem, ML

benchmarks with significant biological implications, and

the software engineering infrastructure required to train DL

architectures. Addressing the outstanding issues related to

DL patterns necessitates the development of innovative

solutions such as improving model explainability, gener-

ating actionable and comprehensible insights, mitigating

the ethical issues associated with DL models, enhancing

efficiency, and reducing training costs. The DL and com-

putational biology communities are developing innovative

solutions to tackle these challenges [156].

7.1.1 Explainability

Perhaps one of the most crucial limitations of DL models

today, particularly for clinical and biological applications,

is their lack of explainability. Unlike simpler regression

models in statistics, it is challenging to demonstrate the

importance and function of each network node in a DL

model. The highly nonlinear decision boundaries and

overparameterized nature of DNNs, which enable them to

achieve high prediction accuracy, also make them difficult
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to characterize [157]. This lack of explainability is a sig-

nificant obstacle in computational biology, where the

trustworthiness of a DL model is essential for sensitive

clinical decision-making applications. It is equally impor-

tant to understand why a model can make accurate pre-

dictions as it is to understand how it makes those

predictions in biology. For instance, in protein function and

structure prediction, we must understand the policies con-

trolling a protein’s 3D geometry and attributes. Addressing

these problems is crucial for providing biological insights

and making practical decisions in clinical settings.

In recent years, there have been numerous efforts in the

ML community to enhance procedures for explaining

‘‘black-box’’ DL models. Many of these efforts have been

applied to computational challenges in computer vision and

biological applications. One of the approaches is activation

maximization, which optimizes the model’s response by

using gradient descent to offer an input that best represents

a result. Normalization is done using closed-form density

performances of the information or GANs that mimic

information dispersion to make these inputs understandable

to humans. Other techniques, such as the Taylor expansion

for Fourier transform, use more direct approaches to extract

insights from NN performance [158]. These explanations

take the form of a heatmap that displays the importance of

each input attribute. Another well-known process uses

backpropagation to investigate the input features to which

the output is most susceptible. These techniques have been

used for cancer diagnostic prediction using DNNs, gene

expression, and categorization.

7.1.2 Effective training

Perhaps one of the most crucial limitations of DL models

today, particularly for clinical and biological applications,

is their lack of explainability. Unlike simpler regression

models in statistics, it is challenging to demonstrate the

importance and function of each network node in a DL

model. The highly nonlinear decision boundaries and

overparameterized nature of DNN, which enable them to

achieve high prediction accuracy, also make them difficult

to characterize [159]. This lack of explainability is a sig-

nificant obstacle in computational biology, where the

trustworthiness of a DL model is essential for sensitive

clinical decision-making applications. It is equally impor-

tant to understand why a model can make accurate pre-

dictions as it is to understand how it makes those

predictions in biology. For instance, in protein function and

structure prediction, we must understand the policies con-

trolling a protein’s 3D geometry and attributes. Addressing

these problems is crucial for providing biological insights

and making practical decisions in clinical settings.

Effective training is crucial in the development of DL

models for IoT-based bio- and medical informatics appli-

cations. DL models require large amounts of high-quality

data and sufficient computational resources to achieve

optimal performance. There is often limited access to large,

diverse datasets in the medical domain due to privacy and

confidentiality concerns [160]. Therefore, data augmenta-

tion techniques such as image and signal processing, or the

use of generative models such as GANs, can be used to

increase the size and diversity of the available data.

Moreover, transfer learning, a technique where pre-trained

models are adapted to a specific task, can be used to train

DL models in medical applications effectively. This is

particularly useful in cases where the available data are

limited or where there is a need for the model to be trained

on multiple related tasks. Another crucial aspect of effec-

tive training is hyperparameter tuning. DL models have

numerous hyperparameters that need to be set correctly to

achieve optimal performance. This process can be time-

consuming and requires expertise in the field. However, the

use of automated hyperparameter tuning techniques such as

Bayesian optimization or grid search can significantly

improve the efficiency of this process [161]. In summary,

effective training of DL models for IoT-based bio- and

medical informatics applications requires careful consid-

eration of data quality, computational resources, data

augmentation techniques, transfer learning, and hyperpa-

rameter tuning. By using these techniques, researchers can

improve the accuracy and robustness of DL models, lead-

ing to better patient outcomes.

In recent years, there have been numerous efforts in the

ML community to enhance procedures for explaining

‘‘black-box’’ DL models. Many of these efforts have been

applied to computational challenges in computer vision and

biological applications. One of the approaches is activation

maximization, which optimizes the model’s response by

using gradient descent to offer an input that best represents

a result [162]. Normalization is done using closed-form

density performances of the information or GANs that

mimic information dispersion to make these inputs under-

standable to humans. Other techniques, such as the Taylor

expansion for Fourier transform, use more direct approa-

ches to extract insights from NN performance. These

explanations take the form of a heatmap that displays the

importance of each input attribute. Another well-known

process uses backpropagation to investigate the input fea-

tures to which the output is most susceptible. These tech-

niques have been used for diagnosing cancer using DNNs,

gene expression, and categorization.
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7.1.3 Data security and privacy

One of the most significant challenges facing the field of

IoT-based bio- and medical informatics is ensuring the

security and privacy of medical data. The data collected by

IoT devices are often highly sensitive, and if it falls into the

wrong hands, it could have serious consequences. There-

fore, researchers must develop secure, privacy-preserving

methods for collecting, transmitting, and storing medical

data. This includes the use of encryption, access control,

and anonymization techniques.

7.1.4 Interoperability and data integration

Another significant challenge is the lack of interoperability

between different medical devices and data sources. IoT

devices often generate data in different formats and using

different protocols, making it difficult to integrate and

analyze the data. Researchers must develop standardized

data formats and protocols that enable seamless data inte-

gration and interoperability across different devices and

platforms. Data integration is critical to DL applications in

IoT-based bio- and medical informatics. It involves com-

bining multiple data sources from various sensors, devices,

and databases into a unified dataset that can be used to train

and test DL models. In medical informatics, the data

sources may include EHR, medical imaging data, clinical

notes, and genomic data. Different systems may generate

these data sources and may have different formats, making

integration challenging. However, integrating these data

sources is essential to capture the full complexity of the

patient’s health status. DL models trained on integrated

datasets can provide a more comprehensive and accurate

understanding of patient health, enabling more personal-

ized and effective treatments. Data integration can also

lead to the development of new insights and discoveries by

enabling the identification of previously unknown patterns

and correlations. However, data integration also poses

some challenges. One significant challenge is ensuring data

quality and consistency, as data from different sources may

have errors, biases, or inconsistencies. Additionally, data

integration may raise privacy and security concerns, as

sensitive patient data from multiple sources may be com-

bined. To address these challenges, data integration

strategies need to be carefully designed to ensure data

quality and consistency, protect patient privacy and secu-

rity, and enable efficient data retrieval and analysis.

7.1.5 Real-time monitoring and diagnosis

Real-time monitoring and diagnosis are crucial aspects of

IoT-based bio- and medical informatics. The integration of

sensors and devices with DL models enables the

continuous collection and analysis of data, allowing for

timely diagnosis and treatment of medical conditions. For

example, wearable sensors can monitor vital signs such as

heart rate, blood pressure, and oxygen saturation in real

time, providing continuous data streams for DL models to

analyze. These models can then identify patterns and

anomalies that may indicate a potential medical issue,

allowing for early intervention and treatment. Real-time

monitoring and diagnosis can also improve patient out-

comes by enabling personalized treatment plans. By con-

tinuously collecting and analyzing data on a patient’s

condition, DL models can identify individualized treatment

approaches that are tailored to a patient’s specific needs.

However, there are also challenges to implementing real-

time monitoring and diagnosis in IoT-based bio- and

medical informatics. These include the need for secure and

reliable data transmission, integrating data from multiple

sources, and developing effective and interpretable DL

models that can provide accurate and timely diagnoses.

Real-time monitoring and diagnosis is a critical application

area of DL in IoT-based bio- and medical informatics. This

involves continuously collecting data from various sensors

and devices, processing it in real time using DL models and

providing real-time feedback to medical professionals or

patients. One example of real-time monitoring and diag-

nosis is in wearable devices that collect data on heart rate,

blood pressure, and other vital signs. DL models can ana-

lyze this data in real time and alert medical professionals if

any abnormalities or anomalies are detected. This can help

medical professionals make timely interventions and pre-

vent adverse health outcomes. Another example is in

medical imaging, where DL models can analyze medical

images in real time and provide quick and accurate diag-

noses. This can be especially useful in emergencies where

quick decisions must be made based on limited informa-

tion. Real-time monitoring and diagnosis have the potential

to improve patient outcomes and reduce healthcare costs by

enabling early interventions and preventing adverse events.

However, it also presents challenges related to data privacy

and security and the need for robust and reliable DL

models that can operate in real time. This requires the use

of high-performance computing and advanced ML

techniques.

7.1.6 Predictive analytics

Predictive analytics is a type of advanced analytics that

involves the use of statistical models and ML algorithms to

analyze historical data and make predictions about future

events. In the context of real-time monitoring and diagnosis

in IoT-based bio- and medical informatics, predictive

analytics can be a valuable tool for identifying potential

health risks and predicting patient outcomes. DL models
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can identify patterns and make predictions about future

health events by analyzing data from various sources, such

as medical devices, electronic health records, and patient-

generated data. For example, predictive analytics can be

used to identify patients who are at high risk of developing

a particular disease or condition, allowing clinicians to

intervene early and prevent the onset of the disease. In

addition to predicting future health events, predictive

analytics can also be used to optimize treatment plans and

improve patient outcomes. By analyzing data from previ-

ous patients with similar conditions, DL models can

identify the most effective treatment options for individual

patients and provide personalized treatment recommenda-

tions. Real-time monitoring and diagnosis can benefit

greatly from the use of predictive analytics, as it allows

clinicians to take proactive measures to prevent adverse

health events and improve patient outcomes. However, it is

important to note that predictive analytics is only as

accurate as the data it is based on. Therefore, it is crucial to

ensure that the data used for training and testing DL models

is accurate, representative, and unbiased.

7.1.7 Ethical and legal considerations

The use of DL applications in IoT-based bio- and medical

informatics raises ethical and legal considerations that must

be addressed. One of the primary concerns is the privacy of

patient data. As DL algorithms analyze large amounts of

personal data, it is critical to maintain patient confiden-

tiality. This requires strict security measures and protocols

to prevent unauthorized access, data breaches, or theft.

Another ethical consideration is the potential for bias in DL

models. Biases can be unintentionally introduced in the

training data, leading to inaccurate results or unequal

access to medical care. Therefore, it is essential to develop

guidelines and regulations to ensure that DL models are

developed and used ethically and that patient rights are

protected. Moreover, informed consent is another ethical

consideration. Patients must be fully informed of the use of

their data and the potential risks and benefits associated

with the use of DL models in their medical care. It is

essential to obtain informed consent from patients before

using their data in any DL application. Lastly, there are

also legal considerations related to the use of DL in med-

ical applications. The regulations governing the use of

medical data vary from country to country, and it is

important to ensure compliance with these regulations.

Additionally, liability issues may arise if a DL model

produces incorrect diagnoses or treatment recommenda-

tions. Therefore, it is necessary to establish legal frame-

works and guidelines for the development and deployment

of DL applications in medical settings.

7.1.8 Human–computer interaction

Human–computer interaction (HCI) refers to the design,

evaluation, and implementation of interactive computer

systems that take into account the user’s needs, goals, and

limitations. In the context of DL applications in IoT-based

bio- and medical informatics, HCI is an essential aspect

that helps ensure that the technology is usable, efficient,

and effective for healthcare professionals and patients. HCI

plays a crucial role in the development and deployment of

DL applications in healthcare settings. It involves the

design of user interfaces and interaction techniques that

enable users to interact with DL models and make

informed decisions based on their outputs. For example, a

user interface that provides a visualization of the DL

model’s output in real time could be used to facilitate the

interpretation and understanding of the model’s predic-

tions. Moreover, HCI is vital in ensuring that DL models

are designed and evaluated in a way that takes into account

the ethical and legal considerations of using these tech-

nologies in healthcare. This includes ensuring that the

models are transparent, interpretable, and do not perpetuate

bias or discrimination. Additionally, HCI can help to

ensure that DL models are used in a way that respects

patient privacy and confidentiality. In summary, HCI is a

critical aspect of designing, developing, and deploying DL

applications in IoT-based bio- and medical informatics. It

helps ensure that the technology is usable, efficient, and

effective for healthcare professionals and patients and is

designed and used ethically and legally.

7.1.9 Scalability and generalizability

Scalability and generalizability are two important factors in

the deployment of DL models in IoT-based bio- and

medical informatics. Scalability refers to the ability of a

system to handle increasing amounts of data, users, or

processes. In the context of DL models, scalability is

important because medical datasets can be quite large and

complex, requiring significant computing resources to

process and analyze. Therefore, it is crucial to ensure that

DL models are scalable and can handle the increasing

amounts of data that will be generated in the future. Gen-

eralizability refers to the ability of a model to perform well

on new, unseen data. In medical applications, generaliz-

ability is critical because it is essential that models can

accurately predict outcomes for new patients. DL models

are often criticized for their lack of generalizability, as they

may perform well on the training dataset but struggle when

presented with new data. Therefore, developing DL models

that are generalizable to new patient populations and dis-

ease types is important. To address these issues, researchers

are exploring new DL architectures and techniques that can
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improve the scalability and generalizability of models. For

example, transfer learning is a technique that allows

models to reuse learned features from one task to another,

reducing the amount of data required for training and

improving generalizability. Additionally, federated learn-

ing is a technique that allows models to be trained on

distributed datasets, reducing the amount of data that needs

to be transferred and improving scalability. Addressing

scalability and generalizability issues is crucial for suc-

cessfully deploying DL models in IoT-based bio- and

medical informatics [163].

7.2 Future works

In this section, we thoroughly examine future projects. As

an interdisciplinary scientific field, bioinformatics has

become essential in aiding the study of ‘‘omics’’ areas and

technologies in life sciences, primarily managing and

evaluating data from various ‘‘omes.’’ The massive influx

of high-throughput biological information in recent years,

due to technological advancements in ‘‘omic’’ areas, has

highlighted the necessity and importance of bioinformatics

resources for the analysis of large and complex datasets. To

meet this demand, there is a significant need for a new

generation of highly qualified scientists with cross-disci-

plinary knowledge and skills, capable of using complex

systems, software, and algorithms to manage and interpret

sophisticated biological data. To achieve this goal, there

are various resources available, such as international

bioinformatics education and training platforms, web-

based courses, workshops, research conferences, and online

education. However, developing countries need more cre-

ative platforms, network and web access, educational

technologies, high-performance computing systems, and

better funding to improve bioinformatics education. In

terms of research, bioinformatics tools must be developed

to handle the increasing volume of high-throughput data

from metabolomics, metagenomics, span genomics, and

proteomics. Efficient tools are also required for genome

annotation and assembly with high accuracy, which

necessitates sequencing more genomes, polyploid species,

sub-genomes, single-cell genomes, and tissues to produce

quality data for programming approaches and bioinfor-

matics algorithms. In the future, ML programs will be

increasingly employed for both clinical and research pur-

poses. Although ML algorithms have shown potential in

analyzing images, their effectiveness is still dependent on

the availability of computing resources. Additionally,

human operators need to inspect and validate the output of

ML algorithms, which can be a time-consuming process.

7.2.1 Multimodal data integration

Multimodal data integration is a promising area for future

work in the field of IoT-based bio- and medical informat-

ics. With the increasing availability of diverse data

modalities, there is a need for novel DL architectures that

can effectively integrate and learn from multiple sources of

information. Researchers can explore the development of

new multimodal architectures that can handle different data

types, such as imaging, genomics, and clinical data. Mul-

timodal data integration can potentially improve the

accuracy of diagnosis and treatment in medical applica-

tions. Future research can investigate the impact of multi-

modal data integration on different medical conditions and

assess its potential benefits and limitations. Transfer

learning has been widely used in DL to improve the per-

formance of models in domains with limited data.

Researchers can investigate the use of transfer learning

techniques for multimodal data integration, where the

knowledge learned from one modality can be transferred to

another modality. As discussed earlier, interpretability is an

essential aspect of DL models in medical applications.

Future research can focus on developing inter-

pretable multimodal models that can provide insights into

how the model arrived at its decision by incorporating

information from different modalities. The use of multi-

modal data in medical applications raises ethical and legal

concerns related to patient privacy, data sharing, and

informed consent. Future research can investigate these

concerns and develop guidelines and regulations to ensure

the ethical use of multimodal data in medical applications.

Overall, the integration of multimodal data is a promising

area for future work in the field of IoT-based bio- and

medical informatics, and there is a need for novel tech-

niques and approaches that can effectively handle diverse

data modalities and improve the accuracy of diagnosis and

treatment [164].

7.2.2 Federated learning

Federated learning is a promising technique that allows for

distributed model training across multiple devices, without

requiring data to be centrally stored. As such, it can

potentially address the data privacy and security concerns

prevalent in IoT-based bio- and medical informatics.

Medical data are often high-dimensional and complex,

making it challenging to develop federated learning algo-

rithms that are both efficient and accurate. Future research

could focus on developing federated learning algorithms

that can effectively handle these complexities. Federated

learning has shown promising results in certain medical

applications, such as Electroencephalography (EEG)

analysis and medical imaging. However, it is still unclear
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how well it will perform in other applications, such as

genomics or clinical decision-making. Future research

could investigate the performance of federated learning in

different medical applications. Communication between

devices in a federated learning setup must be secure to

ensure patient privacy and prevent data breaches. Future

research could focus on developing communication pro-

tocols that are both secure and efficient, allowing for

effective federated learning across a wide range of medical

applications. Medical data often come from a variety of

sources and in different formats, making it challenging to

integrate for use in federated learning. Future research

could focus on developing techniques to address data

heterogeneity, such as data normalization and data aug-

mentation, to improve the effectiveness of federated

learning. The ultimate goal of federated learning in IoT-

based bio- and medical informatics is to improve patient

outcomes. Future research could focus on developing

frameworks for the deployment of federated learning

models in clinical practice, including how to integrate them

into existing clinical workflows effectively.

7.2.3 Explainable AI

Explainable AI is an important research area in the field of

DL applications in IoT-based bio- and medical informatics.

Researchers can work on developing new models that are

inherently interpretable, such as decision trees, rule-based

models, and linear models. These models can be used in

conjunction with DL models to provide more transparent

results. Visualization tools can help clinicians and

researchers to better understand the results of DL models.

Researchers can work on developing new tools for visu-

alizing the results of DL models and explaining how they

arrived at their decisions. Researchers can develop tech-

niques to incorporate human feedback into the training

process of DL models. This can help to improve the

interpretability of the models and make them more useful

for clinical decision-making. Researchers can work on

developing standards for interpretability in DL models.

This can help ensure that models are transparent and that

clinicians understand how they arrived at their decisions.

Researchers can evaluate the impact of interpretability on

the adoption of DL models in clinical settings. This can

help to identify the most effective approaches for making

DL models more interpretable and useful for clinical

decision-making. By addressing the issue of interpretability

in DL models, researchers can help improve the trust and

adoption of these models in IoT-based bio- and medical

informatics.

7.2.4 Transfer learning

Transfer learning, a technique in which a model trained on

one task is adapted for use on a new task, has shown great

promise in medical applications. There is a growing

interest in using transfer learning for medical image anal-

ysis tasks. By adapting pre-trained models on large general

image datasets like ImageNet to medical imaging tasks, we

can leverage the learned features and weights to improve

the performance of the models on smaller medical datasets.

Transfer learning has been successfully applied to NLP

tasks by pre-training large language models like BERT on

vast amounts of text data. There is a need for models that

can understand medical language and terminologies in the

medical field. Fine-tuning these pre-trained language

models on medical text datasets can improve their perfor-

mance on medical text classification tasks. Transfer

learning has not been widely applied to time-series data in

the medical field. However, with the increasing availability

of wearable devices and IoT sensors that generate time-

series data, transfer learning can effectively leverage pre-

trained models for tasks like patient monitoring and disease

prediction. In the medical field, obtaining large amounts of

data from a single institution can be challenging due to

privacy and security concerns. Domain adaptation tech-

niques can be used to transfer knowledge from pre-trained

models to a new dataset with a different distribution. This

can be particularly useful for tasks like disease diagnosis,

where the model needs to be trained on data from multiple

institutions to ensure generalizability. As mentioned ear-

lier, multimodal data integration is an essential area of

research in medical informatics. Transfer learning can be

used to leverage pre-trained models from different

modalities to improve the overall system’s performance.

For example, pre-trained models on medical images and

text can be combined to create a system that can analyze

both modalities simultaneously. Overall, the use of transfer

learning in the DL applications in IoT-based bio- and

medical informatics has significant potential to improve the

performance and efficiency of the models. Future research

in this area should focus on developing new transfer

learning techniques that can handle the unique challenges

of medical data and integrating transfer learning with other

techniques like federated learning and explainable AI.

7.2.5 Personalized healthcare monitoring

Personalized healthcare monitoring is a rapidly growing

area of research that seeks to provide personalized

healthcare solutions to individuals. DL, coupled with the

IoT and bio- and medical informatics, has the potential to

revolutionize personalized healthcare monitoring. In per-

sonalized healthcare monitoring, the data comes from
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multiple sources such as wearable devices, medical sen-

sors, and electronic health records. DL techniques can be

used to fuse this data to comprehensively view an indi-

vidual’s health status. Multimodal data fusion using DL

can help improve the accuracy and reliability of person-

alized healthcare monitoring systems. Anomaly detection

is an important aspect of personalized healthcare moni-

toring as it helps in identifying unusual patterns in an

individual’s health status. DL techniques can be used to

identify these patterns and raise alarms if necessary. This

can be particularly useful in detecting chronic diseases or

sudden health emergencies. Real-time monitoring of an

individual’s health status can be achieved using wearable

devices and IoT-enabled sensors. DL models can be

deployed on these devices to continuously monitor an

individual’s health status and provide real-time alerts if

necessary. This can be particularly useful for elderly or

high-risk patients.

DL models can be trained on large datasets of medical

records to provide personalized diagnoses to individuals.

These models can take into account an individual’s medical

history, genetic information, and other factors to provide

accurate diagnosis and treatment recommendations. Pre-

dictive analytics using DL can help in predicting an indi-

vidual’s health status and potential health risks. These

models can be trained on large datasets of medical records

to identify patterns and predict potential health issues. This

can be particularly useful in preventive healthcare. Privacy

and security are major concerns in personalized healthcare

monitoring. DL models can be used to ensure the privacy

and security of an individual’s health data. Techniques

such as federated learning can be used to train models on

distributed datasets without compromising privacy. DL

models are often considered ‘‘black-boxes’’ as they are

difficult to interpret and explain. In personalized healthcare

monitoring, it is important to provide explainable and

interpretable models to gain the trust of patients and

healthcare providers. Explainable AI techniques can be

used to provide insights into the inner workings of these

models. These are just some of the future works and ideas

that can be explored in personalized healthcare monitoring

using DL and IoT-based bio- and medical informatics.

With the increasing availability of health data and the

advancement of DL techniques, personalized healthcare

monitoring can potentially transform how we manage our

health.

7.2.6 Real-time diagnosis and treatment planning

Real-time diagnosis and treatment planning is a critical

aspect of healthcare that can benefit greatly from DL and

IoT-based bio- and medical informatics. DL models can be

trained on large datasets of medical images and patient

records to provide a real-time diagnosis. These models can

be deployed on IoT-enabled devices to provide immediate

feedback to healthcare providers. This can be particularly

useful in emergencies where quick diagnosis is critical. DL

models can be used to develop personalized treatment

plans for patients. These models can take into account an

individual’s medical history, genetic information, and other

factors to provide tailored treatment recommendations.

IoT-enabled devices can be used to monitor a patient’s

response to treatment and adjust the treatment plan

accordingly. Decision support systems using DL can help

healthcare providers make informed decisions about diag-

nosis and treatment. These systems can provide recom-

mendations based on patient data, medical guidelines, and

other relevant information. Predictive analytics using DL

can help in predicting a patient’s response to treatment and

potential health risks. These models can be trained on large

datasets of medical records to identify patterns and predict

potential health issues. This can be particularly useful in

preventive healthcare. DL models can be trained to analyze

medical images such as X-rays, MRIs, and CT scans. These

models can help healthcare providers identify abnormali-

ties and diagnose diseases. IoT-enabled devices can be

used to capture and transmit these images in real time,

enabling remote diagnosis and treatment planning. Privacy

and security are major concerns in real-time diagnosis and

treatment planning. DL models can be used to ensure the

privacy and security of patient data. Techniques such as

federated learning can be used to train models on dis-

tributed datasets without compromising privacy. In real-

time diagnosis and treatment planning, it is important to

provide explainable and interpretable models to gain the

trust of patients and healthcare providers. Explainable AI

techniques can be used to provide insights into the inner

workings of these models. These are just some of the future

works and ideas that can be explored in real-time diagnosis

and treatment planning using DL and IoT-based bio- and

medical informatics. With the increasing availability of

healthcare data and the advancement of DL techniques,

real-time diagnosis, and treatment planning has the

potential to transform the way we deliver healthcare [165].

7.2.7 Predictive maintenance of medical devices

Predictive maintenance is an important aspect of medical

device management that can benefit greatly from the use of

DL and IoT-based bio- and medical informatics. Predictive

analytics using DL can be used to predict when medical

devices are likely to fail or require maintenance. These

models can be trained on large datasets of sensor data from

medical devices to identify patterns and predict potential

issues. DL models can be used to monitor the condition of

medical devices in real time [166]. These models can
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analyze data from sensors such as temperature, pressure,

and vibration to detect abnormalities and potential failures.

Anomaly detection using DL can help identify unusual

patterns in medical device data. These models can help

detect issues that may not be immediately apparent to the

human eye and raise alarms if necessary. Prognostic

models using DL can be used to predict the remaining

useful life of medical devices. These models can help

healthcare providers plan for the maintenance and

replacement of medical devices before they fail. Predictive

maintenance scheduling using DL can help healthcare

providers optimize maintenance schedules based on the

predicted failure rates of medical devices. This can help

reduce downtime and improve the reliability of medical

devices. Fault diagnosis using DL can help healthcare

providers quickly identify and diagnose issues with medi-

cal devices. These models can analyze sensor data and

provide repair or replacement recommendations. Predictive

maintenance models can be integrated with electronic

health records to view medical device performance and

patient outcomes comprehensively. This can help health-

care providers make informed medical device management

and patient care decisions. These are just some of the future

works and ideas that can be explored in the predictive

maintenance of medical devices using DL and IoT-based

bio- and medical informatics. With the increasing use of

medical devices and the need for reliable and safe health-

care delivery, predictive maintenance can potentially

improve healthcare systems’ efficiency and effectiveness.

7.2.8 Optimization of drug discovery

Drug discovery is a complex and time-consuming process

that can benefit greatly from the use of DL and IoT-based

bio- and medical informatics. DL models can be used to

design new drugs based on the molecular structure of

existing drugs and the desired therapeutic effect. These

models can predict the interaction between drugs and target

proteins, helping to identify potential drug candidates.

Virtual screening using DL can help identify potential drug

candidates from large databases of compounds. These

models can analyze the chemical structure of compounds

and predict their activity against target proteins. Toxicity

prediction using DL can help identify potential safety

concerns of drug candidates. These models can analyze the

chemical structure of compounds and predict their toxicity

based on their interaction with target proteins. DL models

can be used to identify existing drugs that may be effective

in treating other diseases. These models can analyze the

molecular structure of drugs and predict their potential

therapeutic effects against other diseases. DL models can

be used to optimize clinical trial design and reduce the time

and cost of drug development. These models can predict

patient response to treatment and identify subgroups that

are more likely to benefit from a drug. DL models can be

used to develop personalized treatment plans based on an

individual’s genetic information, medical history, and other

factors. These models can predict the effectiveness of

different drugs and help healthcare providers make

informed treatment decisions. DL models can be integrated

with electronic health records to provide a comprehensive

view of patient health and treatment outcomes. This can

help healthcare providers make informed drug treatment

and patient care decisions. These are just some of the future

works and ideas that can be explored in the optimization of

drug discovery using DL and IoT-based bio- and medical

informatics. With the increasing demand for new and

effective drugs, drug discovery optimization has the

potential to transform the pharmaceutical industry and

improve patient outcomes.

7.2.9 Medical imaging analysis

Medical imaging analysis is a critical aspect of healthcare

that can benefit greatly from the use of DL and IoT-based

bio- and medical informatics. DL models can be used for

image segmentation, which involves separating an image

into different regions based on their characteristics. This

can help identify and isolate specific structures or abnor-

malities in medical images. DL models can be used for

image classification, which involves assigning a label to an

image-based on its content. This can help identify different

types of structures or abnormalities in medical images. DL

models can be used for image registration, which involves

aligning multiple medical images of the same patient taken

at different times or from different modalities. This can

help track patient condition changes over time and improve

treatment planning. DL models can be used for image

reconstruction, which involves creating high-quality ima-

ges from low-quality or incomplete data. This can help

improve the accuracy of medical imaging and reduce the

need for additional imaging tests. DL models can be

trained to diagnose medical conditions based on medical

images automatically. This can help reduce radiologists’

workload and improve diagnosis speed and accuracy. DL

models can be used for quantitative analysis of medical

images, which involves measuring and analyzing different

aspects of the images, such as size, shape, and texture. This

can help identify subtle changes in medical images that

may be difficult to detect with the human eye. DL models

can be integrated with electronic health records to provide

a comprehensive view of patient health and treatment

outcomes. This can help healthcare providers make

informed decisions about patient care. These are just some

of the future works and ideas that can be explored in

medical imaging analysis using DL and IoT-based bio- and
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medical informatics. With the increasing use of medical

imaging in healthcare, medical imaging analysis has the

potential to improve the accuracy and efficiency of diag-

nosis and treatment planning.

7.2.10 Health monitoring with wearable IoT devices
and DL

Health monitoring with wearable IoT devices and DL can

revolutionize healthcare by providing continuous moni-

toring of patient health and allowing for early detection of

health problems. Continuous Vital Sign Monitoring:

Wearable IoT devices can be used to continuously monitor

vital signs such as heart rate, blood pressure, and respira-

tory rate. DL models can analyze the data from these

devices to identify patterns and detect early warning signs

of health problems. Wearable IoT devices can be used to

monitor chronic diseases such as diabetes and hyperten-

sion. DL models can analyze the data from these devices to

detect changes in disease status and provide feedback on

treatment effectiveness. Wearable IoT devices can be used

to monitor behavior patterns such as sleep, physical

activity, and nutrition. DL models can analyze the data

from these devices to identify patterns and provide feed-

back on lifestyle modifications. Wearable IoT devices can

be used to detect falls in elderly patients and individuals

with balance problems. DL models can analyze the data

from these devices to detect falls and alert healthcare

providers or family members. Wearable IoT devices can be

used to monitor medication adherence in patients with

chronic diseases. DL models can analyze the data from

these devices to provide feedback on medication adherence

and improve patient outcomes. DL models can be used to

develop early warning systems for critical health events

such as heart attacks and strokes. Wearable IoT devices can

be used to monitor vital signs and detect early warning

signs, allowing for prompt medical intervention. Wearable

IoT devices and DL models can be integrated with elec-

tronic health records to provide a comprehensive view of

patient health and treatment outcomes. This can help

healthcare providers make informed decisions about

patient care. These are just some of the future works and

ideas that can be explored in health monitoring with

wearable IoT devices and DL in IoT-based bio- and med-

ical informatics. With the increasing use of wearable IoT

devices in healthcare, health monitoring has the potential to

improve patient outcomes and reduce healthcare costs.

7.2.11 Telemedicine

Telemedicine has become an increasingly popular

approach to healthcare delivery, especially in remote or

underserved areas. The integration of DL with IoT-based

bio- and medical informatics can help improve the quality

of telemedicine services and enhance patient outcomes. DL

models can be trained to remotely analyze patient data such

as medical images, laboratory results, and vital signs. This

can help improve the accuracy and speed of diagnosis,

especially in areas with limited access to healthcare pro-

fessionals. DL models can be used to develop chatbots and

virtual assistants that can communicate with patients and

provide medical advice. This can help improve patient

access to healthcare services and reduce the workload of

healthcare professionals. IoT-based wearable devices can

be used to remotely monitor patient health data such as

heart rate, blood pressure, and respiratory rate. DL models

can analyze this data in real time and alert healthcare

professionals if any changes require attention. DL models

can be used to analyze patient data to identify patients who

are at risk of developing certain diseases. This can help

healthcare professionals to provide proactive care and

prevent disease progression. DL models can be used to

develop personalized treatment plans based on patient data.

This can help improve treatment outcomes and reduce

healthcare costs by avoiding unnecessary treatments. DL

models can be used to develop automated triage systems

that can identify patients who require urgent care. This can

help reduce wait times for patients who require immediate

attention. Telemedicine services can be integrated with

electronic health records to provide a comprehensive view

of patient health and treatment outcomes. This can help

healthcare providers make informed decisions about

patient care. These are just some of the future works and

ideas that can be explored in telemedicine with the inte-

gration of DL and IoT-based bio- and medical informatics.

With the increasing demand for telemedicine services, the

integration of these technologies has the potential to

improve access to healthcare services and enhance patient

outcomes.

7.2.12 Predictive analytics for healthcare

Predictive analytics has become an essential tool for

healthcare providers in making informed decisions about

patient care. The integration of DL with IoT-based bio- and

medical informatics can help improve the accuracy and

speed of predictive analytics, leading to better patient

outcomes. DL models can be used to analyze patient data

such as medical images, laboratory results, and vital signs

to detect early warning signs of diseases. This can help

healthcare providers to provide timely interventions and

prevent disease progression. DL models can be used to

develop predictive risk models that identify patients at high

risk of developing certain diseases. This can help health-

care providers to provide proactive care and prevent dis-

ease progression. DL models can be used to develop
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personalized treatment plans based on patient data. This

can help improve treatment outcomes and reduce health-

care costs by avoiding unnecessary treatments. Predictive

analytics can be used to optimize healthcare resources such

as hospital beds, staff, and equipment. DL models can be

used to predict patient demand and optimize resource

allocation accordingly. DL models can be used to analyze

patient data to identify potential drug interactions and

adverse events. This can help healthcare providers to pro-

vide safer and more effective drug therapies. DL models

can be used to develop clinical decision support systems

that can assist healthcare providers in making informed

decisions about patient care. This can help improve patient

outcomes and reduce healthcare costs by avoiding unnec-

essary tests and treatments. DL models can be used to

analyze population health data to identify health trends and

disease outbreaks. This can help healthcare providers to

develop targeted interventions to prevent the spread of

disease. These are just some of the future works and ideas

that can be explored in predictive analytics for healthcare

with the integration of DL and IoT-based bio- and medical

informatics. With the increasing demand for predictive

analytics in healthcare, integrating these technologies has

the potential to improve patient outcomes and reduce

healthcare costs.

8 Conclusion and limitation

The DL applications in IoT-based bio- and medical infor-

matics have exhibited remarkable progress in recent years,

with various studies demonstrating the effectiveness of DL

in different areas such as drug discovery, disease diagnosis,

and patient monitoring. Nonetheless, the field is continu-

ously evolving, and further research is necessary to explore

new techniques and methodologies that can enhance the

performance and robustness of DL algorithms in the con-

text of bio- and medical informatics. In addition, there is a

need for more comprehensive evaluations of DL algo-

rithms in real-world scenarios and for the development of

robust and scalable systems that can be deployed in

healthcare settings. Therefore, it is imperative to continue

conducting research in this area to fully leverage the

potential of DL in IoT-based bio- and medical informatics

and provide better healthcare outcomes for patients. To this

end, this article presents a systematic review of DL-based

methods used for bio- and medical informatics issues.

Initially, we discuss the advantages and disadvantages of

some surveyed papers about medical and bioinformatics-

related methods, before illustrating the strategy of this

article. The DL-bioinformatics platforms and tools are also

assessed. Based on a survey of papers according to quali-

tative features, most papers are assessed relying on

accuracy, sensitivity, specificity, F-score, adaptability,

scalability, and latency. However, certain features, such as

security and convergence time, are underutilized. To

evaluate and perform the proposed methods, various pro-

gramming languages are used. Furthermore, we anticipate

that our investigation will provide a valuable guide for

further research on DL and medical usage in medical and

bioinformatics issues.

Nevertheless, some constraints were encountered during

our analysis, including the unavailability of non-English

papers, which limited our ability to utilize numerous

investigation initiatives. Additionally, some of the papers

examined had significant limitations in clear explanations

of the algorithms used. Finally, another limitation we faced

was a shortage of availability to different papers published

by significant publications.
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