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Abstract
Colorectal cancer (CRC) is a malignant condition that affects the colon or rectum, and it is distinguished by abnormal cell

growth in these areas. Colon polyps, which are abnormalities, can turn into cancer. To stop the spread of cancer, early

polyp detection is essential. The timely removal of polyps without submitting a sample for histology is made possible by

computer-assisted polyp classification. In addition to Locally Shared Features (LSF) and ensemble learning majority

voting, this paper introduces a computer-aided decision support system named PolyDSS to assist endoscopists in seg-

menting and classifying various polyp classes using deep learning models like ResUNet and ResUNet?? and transfer

learning models like EfficientNet. The PICCOLO dataset is used to train and test the PolyDSS model. To address the issue

of class imbalance, data augmentation techniques were used on the dataset. To investigate the impact of each technique on

the model, extensive experiments were conducted. While the classification module achieved the highest accuracy of 0.9425

by utilizing the strength of ensemble learning using majority voting, the proposed segmenting module achieved the highest

Dice Similarity Coefficient (DSC) of 0.9244 using ResUNet?? and LSF. In conjunction with the Paris classification

system, the PolyDSS model, with its significant results, can assist clinicians in identifying polyps early and choosing the

best approach to treatment.

Keywords Colorectal cancer � Paris classification � Transfer learning � Ensemble learning � Deep learning �
Locally shared features

1 Introduction

Colorectal cancer is a prevalent type of neoplasm world-

wide and is adapted to either the rectal region or colon.

This type of tumor causes critical illness, contributing

significantly to fatality rates concerning carcinomas

globally. The second-most likely cancer that leads to death

in the US is colorectal cancer. By 2023, approximately

153,020 people are expected to have CRC, and of those,

52,550 will pass away from this disease, with 19,550 cases

and 3750 deaths occurring among people under the age of

50 [1, 2]. Therefore, understanding this disease through

research gains importance due to its common occurrence

tendency, prevention through early diagnosis potential and

need for efficacious curative modalities available. Polyps

are abnormal formations that form within the wall of one’s

colon or rectum. Often beginning as small polyps with no

cancer indications (known as adenomatous polyps) [3, 4],

these developments can become life-threatening if ignored

and progress to full-blown colorectal cancer. The size,

quantity, and type of affected growths all have an impact

on polyp-to-cancer transformation. Certain types of ade-

nomas, in particular, have a higher proclivity to progress to

malignancy than other types. Regular screenings, such as

colonoscopies, are routine practices that ensure timely
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identification and removal of these problematic adenoma-

tous growths, lowering the chances of developing col-

orectal cancer. Medical decision support systems have a

significant impact on the treatment of colorectal cancer by

providing timely, evidence-based recommendations and

information to healthcare professionals [5, 6]. These sys-

tems use cutting-edge computer models and algorithms to

analyze patient data. These systems’ capacity to enhance

clinical decisions, lessen diagnostic blunders, and enhance

healthcare outcomes is a key characteristic. Medical deci-

sion support systems have the potential to completely

transform colon cancer care by enabling patients to receive

the most appropriate and effective treatments based on

their own specific demands. These systems have the

capacity to analyze complex data and provide real-time

line guidance. A significant role is played by computer-

aided diagnosis (CADx), a medical imaging and diagnosis

technology, particularly in colonoscopy [7]. Using machine

learning and deep learning methods, CADx helps medical

professionals analyze anomalies or possible diseases in

images such as colonoscopy images [8]. Through the

investigation of numerous datasets and complex patterns,

CADx systems can provide valuable insights while also

improving diagnosis accuracy and efficiency [9]. CADx

can aid in the detection of polyps, lesions, or other

abnormalities within the colon during a colonoscopy,

assisting clinicians in identifying potential precursors to

colorectal cancer. Transfer learning models have evolved

to be extremely efficient tools in all areas of machine

learning, and their applicability in the classification of

polyps is no exception. Identification and characterization

of abnormal gastrointestinal growths are critical tasks for

polyp classification, which is an important imaging task.

Models developed using massive datasets like ImageNet

can be fine-tuned on smaller, domain-specific datasets

containing polyp images using transfer learning, which

contributes to overcoming the limitations of large medical

datasets because the cost of acquiring data and annotation

is high. Transfer learning is used when there is insufficient

training data for a model. On many different samples, deep

neural networks are trained for new tasks using transfer

learning, and the weights are inherited. According to [10],

the Paris classification is crucial for the precise and con-

sistent classification of polyps. It gives doctors access to

superb information that they can use to decide on the best

course of treatment. The Paris classification helps surgeons

identify potential risks and predict the likelihood of cancer

by categorizing polyps based on their external appearance

and features, such as size, shape, or surface features. In

order to facilitate collaboration among healthcare profes-

sionals and allow for consistency in reporting, the classi-

fication system offers a common language for doctors and

scientists. A standardized classification allows physicians

to more precisely identify the best management strategies,

such as surveillance intervals, endoscopic resection pro-

cedures, or surgical intervention referrals. Our goal is to

create a computer-aided decision support system (CADSS)

that will classify polyps into six categories based on the

Paris classification: 0-Ip, 0-Ips, 0-Is, 0-IIa, 0-Ila/c, and

0-Ilb. Correct classification of these categories, assessment

of the main decisions about removing or resecting polyps,

and identification of removal techniques if a dangerous

polyp is present will help colonoscopists in their treatment.

Two modules are proposed in this study. The first module

is a segmentation module that improves image features by

combining Residual U-Net (ResUNet) and Residual U-Net

Plus Plus (ResUNet??) with Locally Shared Features

(LSF). The model segments the images, and the resulting

masks are used to draw an outline around the polyp-con-

taining area. The first module’s output is then used to

classify polyps using a transfer learning model called

EfficientNet. Data augmentation techniques such as flip-

ping, random rotation, scaling, contrast modification, and

zooming are employed to compensate for the imbalance of

existing classes. Independently, five variations of Effi-

cientNet models are trained, and a majority voting method

is used to combine predictions from various models to

make predictions more accurately. Due to its unique

combination of U-Net and ResNet characteristics, ResU-

Net?? is a perfect choice for medical image segmentation.

Its capacity to capture fine-grained information using skip

connections, as well as its multi-scale context integration

via densely coupled skip pathways, makes it extremely

proficient at reliably segmenting objects of varied sizes and

shapes in complex medical images. Furthermore, its proven

record of delivering state-of-the-art performance in seg-

mentation tasks, as well as its fine-tuning competences for

coping with specific medical datasets, demonstrates its

applicability for the challenging field of medical imaging.

EfficientNet provides valuable benefits for image classifi-

cation in the medical area, stressing both efficiency and

speed, which are critical for quick and accurate diagnoses.

Its scalability is ensured by the compound scaling method,

which ensures that model size corresponds to computa-

tional resources and dataset complexity. Furthermore, the

model makes use of transfer learning by expanding on its

highly effective feature extraction skills from ImageNet

pretraining, allowing for rapid adaptation to the require-

ments of medical image classification. Furthermore, the

robust generalization of EfficientNet to numerous medical

image different shapes, anatomical structures, and diseases

makes it a good solution for the diverse and complicated

nature of medical image analysis tasks. The main contri-

butions of this paper are:
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1. A novel two-module medical decision support system

for segmenting and classifying polyps.

2. Addressing the problem of image shortages using

image augmentation and transfer learning models.

3. Using Paris classification as a reference, we classify

polyps into six classes: 0-Ip, 0-Ips, 0-Is, 0-IIa, 0-Ila/c,

and 0-Ilb.

4. Providing a concise summary of the nature of the

polyps based on endoscopic appearance, class, number

of images in each class, description, view, risk

assessment, and proper resection technique.

5. Five EfficientNet model variations were trained, tested,

and evaluated in order to find the most efficient model

for classifying polyps.

6. Employing the ensemble learning technique with

majority voting to enhance the accuracy and the

model’s robustness.

1.1 Paper organization

The structure of the paper is organized as follows: Sec-

tion 2 introduces medical image processing approaches and

the Paris classification system. Section 3 introduces the

literature survey of prior studies. Section 4 presents the

dataset, applied methods and proposed model in detail.

Section 5 discusses implementation details, model evalu-

ation methodology, evaluation metrics, experiments and

discussion, comparison with existing methods, and finally a

detailed analysis of the ablation studies. The graphical user

interface (GUI) and its evaluation are viewed in Sect. 6.

Section 7 presents the limitations and expected future work

for this study. All ethical considerations are discussed in

Sect. 8. Finally, in Sect. 9, the study conclusion is

presented.

2 Background

This section provides an overview of the key components

of our research. Fundamentals of image segmentation and

classification concepts are presented. The section also

delves into the Paris Classification System, which acts as

the framework for colorectal polyp management and

treatment. These key components are critical for under-

standing the novel approaches and findings provided in this

research.

2.1 Medical image processing

Image segmentation and classification are vital methods in

medical imaging, especially when addressing colorectal

polyps. Image segmentation is the accurate demarcation

and identification of regions or objects within an image,

which allows the polyps to be separated from the tissue

around them. This procedure assists in the localization and

quantification of polyps, which is necessary for appropriate

diagnosis and treatment planning. The U-Net architecture

is a well-known option for medical image segmentation. It

is a convolutional neural network (CNN) [11] created for

biomedical image processing. It comprises a contracting

path for capturing context and a broadening symmetric

path for exact localization. Image classification, on the

other hand, seeks to classify these segmented regions,

deciding whether the discovered polyps are benign,

cancerous, or belong to a certain type or class. Deep

learning models such as AlexNet, which learns complex

image features using a deep convolutional layer [12], and

Visual Geometry Group Net (VGG), which consists of

small-sized convolutional filters that are easy to adapt and

implement for different image classification tasks, while

DenseNet aids in feature reuse and improves gradient flow

for precise feature extraction. The previously described

models can aid in classification by assessing the shape,

texture, and other characteristics of the segmented polyps,

allowing for early detection and accurate risk estimation.

Together, these methods serve a critical role in the

advancement of colorectal polyp identification and therapy,

eventually leading to improved patient experiences and

healthcare effectiveness.

2.2 Paris classification

In the field of gastrointestinal disorders, the Paris classifi-

cation is a crucial approach, especially for the detection

and management of colorectal polyps. By establishing a

standard method of categorizing polyps based on traits like

morphology, size, and other traits, it enables doctors to

choose effective treatments. There are two methods for

removing polyps: endoscopic mucosal resection (EMR)

and endoscopic submucosal dissection (ESD) [13, 14] as

Fig. 1 Operation procedures for EMR compared to ESD [18]
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shown in Fig. 1. EMR includes preparation in which the

patient is typically sedated or anesthetized. The endoscope

is inserted into the target area of the digestive tract. Fol-

lowing that, an injection of a solution, usually a saline

solution mixed with medication, into the submucosal layer

beneath the lesion is performed. Finally, a wire loop, or

snare, is inserted through the endoscope and placed around

the lesion. The loop is then tightened, allowing the lesion to

be cut and removed from the underlying tissue. In ESD, the

patient is prepared and sedated or anesthetized, as with

EMR. The endoscope is inserted into the digestive tract and

placed near the lesion of interest. The lesion’s border is

marked with a needle or other tools to create a demarcation

line to guide the subsequent dissection, and solution is

injected below the lesion to create a fluid padding and lift

the lesion, allowing for a clearer working space for dis-

section. Finally, the lesion is carefully separated from the

underlying tissue by carefully dissecting the submucosal

layer. After making an incision along the marked border,

the submucosal layer is exposed. By evaluating the Paris

classification, physicians can estimate the risks of malig-

nancy associated with polyps and decide which approach is

appropriate. The classification system is intended to

improve treatment outcomes by assisting healthcare pro-

fessionals in selecting the best method for polyp removal,

promoting effective management of colon tumors, and

reducing the need for invasive procedures. We created a

table that contains both PICCOLO dataset details based on

Paris classification as well as the potential risk and resec-

tion technique for each polyp class, as shown in Table 1

[15–17].

3 Literature survey

This section delves into a thorough analysis of previous

studies, an essential journey through the process of

research that has formed the foundations for the current

understanding of the problem at hand. This investigation

not only gives important background information, but it

also acts as a stepping stone for examining the advance-

ments and gaps in the current body of knowledge.

In 2021, Hsu et al. [19] extracted features using a CNN

model that included convolution, batch normalization,

implementing ReLU functions and performing max pool-

ing operations. They came up with an accurate, mobile-

friendly computer-aided diagnostic system. The authors

used colonoscopy images provided by the CVC Clinic [20]

and Chang Gung Medical Hospital’s Department of Gas-

troenterology and Hepatology. The CVC Clinic dataset

includes 612 continuous images derived from 29 white-

light (WL) images. Using the YOLOv2 and YOLOv3

models, the authors’ study achieved an overall accuracy of

94.9% and 94.4% for polyp detection, respectively. In

terms of recognizing polyps, the findings showed that

narrow-band imaging (NBI) images were more precise than

WL images, with an accuracy of 82.8% for NBI and 72.2%

for WL.

In 2022, Lo et al. [21] used various approaches to

contrast the performance variations between deep learning

with deep convolutional neural networks (DCNN) features

and machine learning with texture features, the perfor-

mance variations between different DCNN architectures,

and the performance variations between DCNN models

trained from scratch and transfer learning, respectively.

They also used gray-level co-occurrence matrix (GLCM)

and gabor textures to extract features, which they then

combined in various classifiers to create polyp classifica-

tion models. In addition, to manage the many features, they

used principal component analysis as the feature selection

method. The authors analyzed colonoscopy images from

1991 patients who had colonoscopies between January 1,

2018 and July 27, 2018. Among these patients, biopsy

results showed that 206 adenocarcinomas, 732 adenomas,

and 1053 hyperplastic polyps were present. The authors

discovered that DCNN can achieve significant performance

Table 1 PICCOLO dataset description based on Paris classification in addition to the risk and resection technique

Paris classification polyp classes

Endoscopic appearance Class Description No. of images Risk Resection technique

Protruded lesions 0-Ip Protruded, pedunculated 384 Low-moderate EMR

0-Ips Sub pedunculated 300 Low-moderate EMR

0-Is Protruded, sessile 640 Low-moderate EMR or ESD

Flat elevated lesion 0-IIa Slightly elevated (flat) 1364 High EMR or ESD

0-Ila/c Flat elevation with central depression (flat) 174 High ESD

Flat lesion 0-Ilb Flat mucosal change (completely flat) 106 High ESD

N/a N/a N/a 465 – –
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and that, in the case of good-quality image data, training

and building a model from nothing is an appealing

approach. They also discovered that AlexNet trained from

scratch had the highest accuracy of 96.4%, while GLCM

texture features in the B channel had 75.6% accuracy. One

of the study’s limitations is that training from scratch may

take longer in clinical use than transfer learning, although

there is a significant accuracy difference. For future work,

they suggested that the CAD system can assist gastroen-

terologists in determining the types of polyps as part of

colonoscopy and that additional CAD systems for gas-

trointestinal inflammatory conditions like crohn’s syn-

drome and colitis with ulceration may be evolved.

In 2023, Krenzer et al. [22] developed several novel

methods for automated polyp classification, including

transfer learning with various classification strategies (1-

nn, centroid, support vector machine (SVM)), supervised

pretraining, and transferring styles as a step in augmenta-

tion. Convolutional Neural Networks (CNNs), one type of

deep learning technique, were also used to identify and

categorize polyps. They also introduced a two-step process

for classifying polyps based on the Paris classification

scheme, which involves locating and cropping the polyp on

the image, followed by classifying the polyp using a

transformer on the cropped area. They also created a strong

and an effective system for classifying polyps using the

NICE criteria that can classify polyps in a precise and

consistent manner. The study describes two datasets that

were used in the analysis. The SUN database [23], which is

a colonoscopy videos from an openly available database

served as the initial dataset. The dataset contains 100

colonoscopy videos, each lasting about 10 minutes. The

dataset contains 48 polyps that have been classified using

the Paris classification system. The EndoData dataset,

created by the document’s authors at the University Clinic

of Würzbug [24], is the second dataset used. Colonoscopy

videos were annotated using a framework for faster endo-

scopic annotation in the dataset. The dataset contains 100

cases with a total of 23,154 polyp images. The polyps are

classified according to the NICE classification system and

are divided into four types: Is, Ip, Isp, and IIa. With an

accuracy of 89.35%, the Paris classification system out-

performed all previous papers in the literature in terms of

state-of-the-art performance on clinical data. The NICE

classification system proved the practicality of the few-shot

learning approach in unavailable data environments in the

endoscopic domain with a competing accuracy of 81.34%.

The lack of readily available data is one of the study’s

major obstacles, particularly for uncommon conditions and

incidents, as well as the cost and time required to obtain

expert annotations. Another challenge is selecting a trans-

fer learning dataset that aligns with the target domain’s

similarity notions. The authors also pointed out that the

accuracy of the models is restricted by the shortage of

labeled datasets for the polyp area of study. Furthermore,

the image distribution on the test datasets was unbalanced,

which may reduce the significance of the test results. The

authors proposed that random image flipping appears to be

important in polyp characterization and should be investi-

gated further in future research.

In 2023, Yue et al. [25] proposed a CAD method for

automatic classification of endoscopic images by feeding

them to the deep neural network (DNN) in order to obtain

representative features and processing them with a global

average pooling procedure and a novel cost-sensitive loss

function called the class-imbalanced (CI) loss for endo-

scopic image classification, which can adapt to focus more

on hard samples and address the challenges posed by

imbalanced and hard samples in endoscopic image classi-

fication. In their study, the authors used two datasets. The

first dataset was a gastrointestinal dataset collected from

Baerum Hospital in Norway during gastroscopy and colo-

noscopy procedures. It contains 10,662 JPEG-formatted

labeled images containing anatomical landmarks, patho-

logical findings, and normal esophageal and colonic find-

ings. This dataset’s data have an imbalance ratio of 191;

the data distribution is very skewed. The second dataset

was the Hyper-Kvasir dataset [26], which is a large mul-

ticlass public dataset with 23 categories, including various

stages of esophagitis, ulcerative colitis. This dataset poses a

difficult classification problem and is highly imbalanced.

As it relates to the binary class classification task, the

authors developed a polyp dataset that consists of 22,935

images with rich parts and contents that were gathered

from Shenzhen University General Hospital between 2019

and 2021. The study’s findings revealed that when imple-

mented in pyramid vision transformer version 2(PVTv2-

B1), their proposed class imbalance (CI) loss function

outperformed other competing loss functions when evalu-

ating the binary class classification task using six metrics

for evaluation and five evaluation metrics in the multiclass

classification task, with the highest accuracy of 94.75% in

binary classification and 90.82% in multiclass classifica-

tion. While using the Inception-v3 model, they achieved

the highest accuracy of 91.55% in multiclass classification.

They propose that future work could enhance the perfor-

mance of the model by combining the dynamically

weighted balanced (DWB) loss with an exponential func-

tion in the CI loss term.

In 2023, Shen et al. [27] used deep learning (DL) models

(CNN and EfficientNet-b0) to detect and classify polyps in

colonoscopy images. They used a large hospital-based

dataset derived from several hospitals to improve the DL

models’ accuracy, and they compared results of the model

classification to those of a group of pathologists. The

models were put into an interactive GUI (graphical user
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interface) and given the name EndoAim TM system. For

their study, the authors used a large hospital-based dataset

from three hospitals. Each hospital contributed 50 colo-

noscopy videos to the dataset, for a total of 150 colono-

scopy videos. They also collected 385 images of narrow-

band imaging (NBI) and single polyp images. The NBI

images contained 193 images of non-adenoma tissue and

192 images of adenoma tissue, in addition to a dataset for a

preliminary study that contains 10,000 images of colono-

scopy polyps [28]. For hospitals A, B, and C, the model

performance for polyp detection averaged 0.9516, with

lesion-based sensitivity values of 0.9817, 0.9389, and

0.9360, respectively. With respect to polyp classification,

the system achieved a mean average precision (mAP) of

0.89 and a sensitivity of 0.92. The authors promised to

validate models on other patients from different medical

organizations in a future study.

In 2023, Lewis et al. [29] proposed polyp segmentation

network (PSNet), which is a dual encoder–decoder archi-

tecture used in medical image segmentation. The PS

encoder, a novel CNN-based encoder, and a transformer-

based encoder make up the dual encoder. For their study,

the authors used five publicly available datasets: Kvasir-

SEG [30], CVC-ClinicDB [20], CVC-ColonDB [31], ETIS

[32], and EndoScene [33]. Using training, validation, and

test datasets, they assessed the performance of their model

in comparison with other recent models. According to the

authors, their model produced average mean dice (mDice)

and mean intersection over union (mIoU) scores of 0.863

and 0.797 for each of the five datasets. They addressed

important issues like model overfitting and accurately

capturing polyp characteristics like size and texture in their

insightful research.

In 2023, Zhu et al. [34] presented a new feature

extraction module called the global-local context module

(GLCM) and a multi-modality cross-attention (MMCA)

module for integrating background data, polyp regions, and

boundary areas. These modules have been incorporated

into CRCNet, a foundational network for polyp segmen-

tation. Pyramid networks (FPN) are a feature of the

architecture of CRCNet, which uses an altered variant of

the standard U-Net as its foundation. It has an evenly

distributed encoder-decoder architecture and a total of five

layers. The authors of the study used two datasets: Kvasir-

SEG [30] and CVC-ClinicDB [20]. There are 1,000 dif-

ferent colonoscopy images in the Kvasir-SEG collection,

each with a unique size, angle, and texture. All images are

expertly labeled by experienced professionals to precisely

meet clinical requirements. CVC-ClinicDB contains 612

colonoscopy images. A number of metrics, including dice

coefficient, mIoU, recall, precision, accuracy, and F2-

score, were used to evaluate CRCNet’s performance. In

terms of segmentation accuracy, the results showed that

CRCNet performed better than other state-of-the-art

methods, with dice scores on the Kvasir-SEG and CVC-

ClinicDB datasets of 91.59% and 95.02%, respectively.

They mentioned that one of the limitations of their study

was the extremely small amount of data that were used,

which had an impact on the model’s performance and

necessitated optimization. In order to calculate the cost and

size of the model, they will also try to integrate it with

system clinics. In the future, the author plans to use satu-

ration modification, edge-aware blind deblurring, and

object elimination techniques to enhance the level of

accuracy of edge segmentation and polyp localization.

Model quantization and distillation techniques can be used

to shrink existing models and incorporate high-resolution

hardware devices such as medical endoscopes.

In conclusion, the proposed study represents a substan-

tial advance in the field of coloscopy by tackling a variety

of principal limitations mentioned in prior research. In the

beginning, we addressed the issue of limited datasets by

applying data augmentation methods and utilizing transfer

learning models. This not only enriches the accessible data

but also improves the generalizability of the proposed

approach. Furthermore, PolyDSS accurately detects small

polyps, including those with flat characteristics, which

were frequently missed in previous studies. The proposed

segmentation and classification model surpasses prior

attempts, making it a more robust tool for coloscopy spe-

cialists. One of the study’s most notable accomplishments

is the development of a user-friendly graphical interface

that merges decision support system capabilities with

computer-aided diagnosis. This integration empowers

endoscopists by providing them with important insights

and recommendations, thereby enabling more accurate and

rapid decision-making during procedures. Furthermore, the

PolyDSS model excelled at classifying polyps using the

standard Paris classification method, allowing for more

informed decisions about resection techniques. This not

only assists in the prevention of colorectal cancer, but it

also aids in early detection.

In summary, the proposed study fills significant gaps in

the coloscopy field highlighted in Table 2 by improving

data availability, segmentation and classification accuracy,

and practical decision support. By addressing the limita-

tions of earlier studies, we present a comprehensive method

to greatly enhance patient outcomes.

4 Materials and methods

This section presents a comprehensive view of the dataset

used in this study, as well as a broad spectrum of tech-

niques and methods used to support the PolyDSS model.
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Table 2 Summary of literature survey

Author

(s)

Dataset Preprocessing Methodology Evaluation

tools

Advantage Disadvantage

Hsu

et al.

[19]

–CVC Clinic

–Linkou

Chang Gung

Medical

Hospital

–RGB images to

gray images

–Feature extraction

using CNN

–Polyp detection using

YOLOv2, YOLOv3

–Polyp classification

–Accuracy

–Precision

–Recall

–F1-

measure

–F2-

measure

–Improved patient outcome

Avoided unnecessary

polypectomy

–Reduced misdiagnosisrate of

endoscopists

–Polyps in images

less than 1,600

pixels are missed

–Hard to distinguish

Neoplastic and

Hyperplastic

polyps than 1,800

pixels

Lo et al.

[21]

Taipei

Medical

University

–Joint

Institutional

dataset

–GLCM to extract

features

–PCA to reduce

feature dimension

–Feature extraction

–Built polyp

classification model by

combining features

–Accuracy

–Sensitivity

–Specificity

DCNN can accomplish significant

performance and training from

scratch

Dataset is limited

Krenzer

et al.

[22]

–SUN

database

–Endo Data

dataset

–Detected and

cropped polyp

–Classified the

polyp by

transformer

–Used FSL for data

scarcity

Two pretrained CNN

models and a

pretrained transformer

were used for Paris

classification

F1-score 81.34% illustrating the FSL

approach’s efficacy in data-

scarce scenarios

–Shortage of

labeled datasets

–Test datasets were

unbalanced

–High cost and time

for expert

annotations

Yue

et al.

[25]

–Hyper-

Kvasir

dataset

–Baerum

Hospital

–Shenzhen

University

Hospital

DNN to extract

features from

images

A DNN-based

classification method

consists of a feature

extractor and a

classifier

–ACC

–BACC

–AUC

–MCC

–Kappa

–G-mean

–F1

Class imbalance (CI) loss

reweighting scheme to pay more

attention to the minority classes

Some hard samples

can lower the

classification

accuracy

Shen

et al.

[27]

Dataset

derived

from several

hospitals

Blurry and Low-

contrast images

removed

An AI-based system for

the detection and

classification of

polypsusing

colonoscopy images

–Accuracy

–Sensitivity

–Specificity

–AUC

–F1-score

–mAP

–ROC

Models are deployed into an

Olympus CV290 machine, which

is ready to use in clinical practice

Small validation

size, affected

model’s accuracy

and robustness

Lewis

et al.

[29]

–Kvasir

–SEG

–CVC

–ClinicDB

–CVC

–ColonDB

–ETIS

–EndoScene

–Images resized to

512 � 512

–Encoder and

decoder as a

merge module

–Used LFE module

and CCM

Dual encoder-decoder

architecture

–mDice

–mIoU

Polyps of a wider variety of

shapes, colors, and sizes have a

significant effect on the accuracy

of the model

Models need to be

simplified

Zhu

et al.

[34]

–Kvasir

–SEG

–CVC

–ClinicDB

–Used GLCM to

capture global and

local information

–Applied MMCA

module to

integrate

background data,

and boundary

areas

Encoder-decoder

framework for polyp

segmentation

–Dice

coefficient

–mioU

–Recall

–Precision

–Accuracy

–F2-score

In comparison with traditional

methods, the proposed model is

very competitive in terms of

accuracy and computing

efficiency

–Extremely small

amount of data

that was used

–The size of the

model and cost of

testing must be

reconsidered
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4.1 Dataset

The PICCOLO dataset [35] was used in this study. The

dataset was obtained from Hospital Universitario and

contains a total of 3433 precisely annotated images, which

are divided into two primary categories: narrow-band

images (1302) and white-light images (2131), which were

taken from 76 lesions and 40 patients, respectively. Addi-

tionally, the dataset is associated with metadata that

includes the number of polyps that were present throughout

the operation, their sizes, two polyp classification systems

(Paris and Nice), preliminary and final diagnosis, and his-

tological stratification. The dataset is divided into six

classes: 0-Ip, 0-Ips, 0-Is, 0-IIa, 0-Ila/c, and 0-Ilb. Table 3

presents the number of images in each class, while Fig. 2

shows the polyp class distribution, and finally, Fig. 3 shows

a representative image for each class. Along with the

clinical metadata, the dataset contains train, test, and val-

idation folders, as well as masks and polyps folders within

each folder. We encountered the issue that the images are

not classified into classes or categorized based on any

classification system. This issue was handled by applying a

simple preprocessing algorithm that matched the video

code column, the Paris classification column, and the

image name in the existing folders. This enabled us to

classify each image into its own class based on the Paris

classification system.

4.2 Methods

In this section, the study introduces the methods used to

improve the performance of image segmentation and

classification tasks. Deep learning models, notably ResU-

Net and ResUNet??, are used, and they are combined

with locally shared features. Furthermore, multiple Effi-

cientNet model versions (B0, B1, B2, B3, B4, and B5) are

used to provide a strong foundation for the classification

tasks. Furthermore, ensemble learning is used, with a

majority voting procedure, to collectively improve the

predictive skills of the EfficientNet model versions.

4.2.1 Data augmentation techniques

In this study, we used various data augmentation tech-

niques to overcome class imbalances and improve the

performance of deep learning models [36]. These aug-

mentation techniques were chosen based on a combination

Table 3 The number of images in each class in the train, validation,

and test sets [35]

Class Train Set Validation Set Test Set

0-Ip 274 81 29

0-Ips 245 41 14

0-Is 433 176 31

0-IIa 1052 263 49

0-Ila/c 27 122 25

0-Ilb - 48 58

Fig. 2 Polyp class distribution (total number of images in train,

validation, and test sets)

Fig. 3 PICCOLO Dataset polyp image samples from each class
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of actual findings and acknowledged best practices in the

fields of computer vision and image processing. The goal

was to include diversity and variability in the training data

while keeping the enhanced data representative of the

underlying classes. Here is a complete overview of the data

augmentation techniques that used, as well as how they

were chosen and implemented:

1. Flipping Images were flipped or horizontally mirrored.

When working with polyp images, flipping can be

advantageous. Because polyps can develop in many

orientations inside the colon, rotating the images

horizontally can assist provide more training samples

to guarantee the model learns to recognize polyps

regardless of their orientation.

2. Random rotation To imitate images from various

angles, random rotation was used. Polyps can be found

inside the colon at a variety of angles and orientations.

Random rotation augmentation is required for training

the model to be insensitive to polyp orientation

fluctuations. This is especially crucial when it comes

to increasing the model’s ability to recognize polyps in

endoscopic images where the camera angle varies.

3. Scale augmentation The process of scaling augmenta-

tion entailed resizing images to varied dimensions,

whether larger or smaller than the original size. Polyps

can differ in shape and size based on the scale of the

image. Scaling augmentation is useful for training the

model to recognize polyps of varying sizes, making it

more resistant to polyps that appear differently in

different endoscopic examinations.

4. Contrast modification Images were subjected to con-

trast modification, which altered the intensity of pixel

values. Contrast adjustment enables the model to

accommodate variations in lighting and precisely

detect and classify polyps in images with varying

levels of illumination.

5. Zooming In order to segment and classify polyps, the

model must focus on the region of interest within the

image. By focusing on polyp regions within a larger

endoscopic image, zooming augmentation is useful for

training the model to recognize and classify polyps.

Previous work in the field and its relevance to the specific

problem being addressed in this study influenced the

selection of these augmentation strategies. These strategies

were used to increase dataset diversity while maintaining

class features such as polyp forms and attributes. They

were used during the training data preprocessing to gen-

erate augmented versions of the original images, thereby

extending the training dataset. These augmentation tech-

niques were used with proper parameter settings to guar-

antee a fair representation of the classes and to minimize

overfitting. In addition, we used rigorous testing and cross-

validation to identify the most successful combination of

augmentations.

In conclusion, we chose data augmentation techniques

based on their capability to mitigate class imbalance,

increase model generalization, and make the model more

resistant to fluctuations in input data. These techniques

were used and verified to improve the overall performance

of the deep learning model.

4.2.2 Deep learning models

Two deep learning models were used in segmenting

polyps: ResUNet and ResUnet??. The ResUNet archi-

tecture combines the U-Net architecture with residual

learning, which relies on the idea of residual blocks [37].

Residual blocks introduce skip connections, which facili-

tate the ability of the model to get past certain layers,

allowing information to flow directly from the initial layers

to later layers. ResUNet?? is a ResUNet broadening that

improves the skip connections to collect deeper contextual

information [38]. It presents several routes or branches in

the network’s encoder and decoder sections, enabling the

model to learn features at various scales [39]. ResUNet and

ResUNet?? have both been used effectively for polyp

segmentation in medical image analysis [40–43]. Their

ability to utilize skip connections and residual learning has

enabled them to handle complex and diverse image data-

sets effectively. So, in the segmentation module, we used

the two models to segment the polyps, which will be used

as input for the classification module.

4.2.3 Locally shared feature (LSF)

The concept of benefiting from information from adjacent

regions in an image to boost segmentation performance is

referred to as locally shared features (LSF) [44]. Locally

shared features play a vital role in polyp segmentation,

where accurately defining polyp boundaries are critical.

The model is able to better represent the shape, texture, and

spatial relationships between pixels by taking into account

the contextual information surrounding a polyp region,

resulting in more precise segmentation results. Integrating

LSF with ResUNet and ResUNet?? improves segmenta-

tion abilities by taking into account spatial relationships

and contextual information near polyp regions. The LSF

equation can be donated as follows:

Li;j ¼ / Xi;Wlscð Þ ð1Þ

Li;j donates the feature representation at a specific position

in the resulting segmentation map, / expresses the function

used to apply LSF, and finally, Wlsc represents the locally

shared convolutional weights along the positions in the
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output map, while Xi represents the image or feature map.

When compared to fully connected layers, this enables the

model to capture spatial dependencies and context infor-

mation while minimizing the number of parameters. We

developed the LSF as a convolutional block that uses a

convolutional operation through exactly the same number

of weights at various spatial locations in order to integrate

it with ResUNet and ResUNet??. The feature maps that

originate from these layers are then combined with the

equivalent feature maps from the ResUNet or ResUNet??

architecture. This fusion is accomplished by shifting and

concatenating the feature maps from the locally shared

convolutional layers with the already-existing feature

maps. The locally shared features are then integrated with

the remaining parts of the network by passing the fused

feature maps through additional convolutional layers.

4.2.4 Transfer learning models

For improving performance and effectiveness in the field of

polyp classification, transfer learning is essential. A col-

lection of convolutional neural network (CNN) models

called EfficientNet was created in order to achieve out-

standing performance while minimizing computational

costs and model size [45]. The architecture of EfficientNet

is based on a compound scaling technique that steadily

increases the depth, width, and resolution of the network

[46–48]. Known for their effectiveness and accuracy,

EfficientNet variants can be used as pretrained models in

transfer learning for polyp classification tasks. This con-

siderably reduces the requirement for large data collections

and training time. Transfer learning with EfficientNet

variations helps the model reap the benefits of the gener-

alization power of the pretrained models, resulting in

improved polyp classification accuracy, more rapid

convergence, and better computational resource utilization.

These pretrained models are capable of identifying relevant

features from polyp images even when relatively little data

is available for training by utilizing knowledge learned

from large-scale datasets and complex tasks. In this study,

we used five EfficientNet variants: B0, B1, B2, B3, and B4.

For significant performance and efficiency, it is crucial that

there be a sufficient number of layers and parameters in the

EfficientNet models, especially those from B0 to B4. The

number of layers in EfficientNet models allows for the

capture of complex patterns and representations from the

input data, whereas the number of parameters in Effi-

cientNet models influences the model’s capacity to learn

and represent information. Table 4 compares the number of

layers and parameters of various EfficientNet models.

4.2.5 Ensemble learning and majority voting

Ensemble learning is an effective machine learning tech-

nique that brings together various models to make better

Table 4 The number of layers and parameters of different Effi-

cientNet model architectures

Model Number of layers Number of parameters

B0 132 5.3 million

B1 186 7.9 million

B2 186 9.2 million

B3 210 12.3 million

B4 258 19.5 million

B5 312 30.6 million

B6 360 43.3 million

B7 438 66.7 million

Algorithm 1 WAEL
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predictions [49–51]. Majority voting is one of the most

common approaches in ensemble learning. Ensemble

learning can be used to improve the performance of the

classifiers [52–55] in regards to polyp classification using

EfficientNet variations. We generated an ensemble of classi-

fiers by training multiple EfficientNet models with different

initializations or hyperparameters. During inference, each

classifier predicts a polyp image, and the class with the most

votes is chosen as the final prediction. This method reduces

any biases or restrictions of individual models, resulting in

enhanced accuracy and robustness for polyp classification

tasks. To compute the majority vote, ŷ is the class label to be

predicted, and CmðxÞ is the number of classifiers.

ŷ ¼ mode C1ðxÞ;C2ðxÞ; . . .;CmðxÞf g ð2Þ

Assume we have six class labels to predict in our case

study: 0-Ip, 0-Ips, 0-Is, 0-IIa, 0-Ila/c, and 0-Ilb labeled as

class 0, class 1, class 2, class 3, class 4, and class 5, and we

have five classifiers B0, B1, B2, B3, and B4. If the clas-

sifier results are as follows:

• B0 predicts 0-Ip (class 0)

• B1 predicts 0-Is (class 2)

• B2 predicts 0-IIa (class 3)

• B3 predicts 0-IIa (class 3)

• B4 predicts 0-IIa (class 3)

ŷ ¼ modef0; 2; 3; 3; 3g ¼ 3 ð3Þ

Using Eq. (2), we would classify the final output class

sample as ‘‘class 3’’ using a majority vote, which is 0-IIa,

thereby making it a flat elevated lesion. Assume the fol-

lowing classifier results:

• B0 predicts 0-Ip (class 0)

• B1 predicts 0-Is (class 2)

• B2 predicts 0-IIa (class 2)

• B3 predicts 0-IIa (class 3)

• B4 predicts 0-IIa (class 3)

We can observe a tie here, and we cannot decide the final

predicted class. In this case, the predictions of various

individual models or learners in an ensemble are combined

using the weighted average ensemble learning (WAEL)

technique demonstrated in Algorithm 1, which is utilized in

deep learning and statistics. This method uses a weighted

average of all the various model predictions to determine

the final prediction which can be calculated as follows:

FinalP ¼ ðW1� P1þW2 � P2 þ : :

þWN � PNÞ ðW1 þ W2 þ : : þ WN
ð4Þ

where FinalP is the final prediction for a given data point since

it represents the ensemble’s prediction for that data point after

merging the predictions from several individual models. As for

the weights given to each individual model in the ensemble,

they are represented byW1,W2, andWN, while the predictions

that each individual model in the ensemble makes for the same

data point are represented by PN. Each model provides its own

prediction based on its learned patterns and characteristics. The

purpose of assigning weights is to give greater significance or

influence to specific models in the ensemble based on their

performance or reliability. Higher weights are often given to

models that are more dependable or have higher confidence in

their predictions, whereas lower weights or even exclusion

from the ensemble may be given to less reliable models.

4.3 Proposed model for polyp segmentation
and classification

In this section, the PolyDSS model for polyp segmentation

and classification consists of four phases and is shown in

Figure 4. A detailed explanation of each phase is presented

below.

Fig. 4 An overview of the PolyDSS model flow for polyp segmen-

tation and classification
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4.3.1 Phase 1: dataset preprocessing

Several essential tasks were carried out during the dataset

preprocessing phase to set up the data for later analysis and

deep learning model training. The initial dataset included a

clinical information file as well as three core folders: train,

test, and validation, with subfolders masks and polyps for

masks and associated polyp images in each. These images

were initially disorganized and unclassified. To address

this, images were classified using a simple algorithm into

their proper class using the clinical metadata’s frame

number and class information based on the Paris classifi-

cation system. Image format and size were standardized to

maintain consistency and compatibility, with all images

shrunk to 512� 512 pixels and converted to the PNG

format. Furthermore, data augmentation techniques were

used to increase the diversity of the dataset and improve

model robustness. Flipping, random rotation, scale aug-

mentation, contrast change, and zooming were among the

techniques used. Experiments were run using three differ-

ent levels of augmentation, yielding datasets with 500,

1364, and 2000 images per experiment. The goal of this

modification in dataset design was to make it easier to train

more resilient and generalizable deep learning models for

tasks like polyp detection and analysis.

4.3.2 Phase 2: segmentation module

The segmentation phase began with the use of two primary

inputs: the preprocessed original medical image and its

related mask image. These images were used to lay the

groundwork for subsequent segmentation tasks. To achieve

reliable polyp segmentation within medical images, deep

learning models, notably the ResUNet and ResUNet??

architectures coupled with the LSF approach, were used as

segmentation models trained on the dataset. This technique

produced predicted mask pictures that outlined the regions

of interest, especially the polyps. A contour-finding algo-

rithm was then used to improve the visual interpretability

of the results. This algorithm compares the original image

to the anticipated mask image to determine the polyp

boundaries. Following that, a green outline was placed on

the original image, precisely outlining the area of interest,

which in this case was the location and form of the polyps.

This stage was critical in distinguishing and visualizing

polyp regions within medical imaging, allowing for sub-

sequent analysis and classification tasks.

4.3.3 Phase 3: classification module

During the classification phase, the process began with the

utilization of the original medical image, which featured a

distinct green contour outlining the area of interest, which

corresponded to the polyps. This highlighted image was

used as the input for the classification module. To properly

classify the highlighted images and detect various polyp

types, a set of five EfficientNet versions (B0, B1, B2, B3,

and B4) were trained on the given dataset. An ensemble

learning approach, specifically the majority voting tech-

nique, was used to boost the overall performance and

dependability of the classification models. The predictions

provided by the multiple EfficientNet models were used in

this technique, and the final classification decision was

based on a majority vote. This ensemble learning method

not only enhanced classification accuracy but also reduced

the risk of overfitting, resulting in a precise and reliable

classification of the discovered polyps.

4.3.4 Phase 4: model comparison and evaluation

During the model comparison and evaluation phase, the

classification models were thoroughly evaluated using

well-established evaluation metrics such as accuracy, pre-

cision, recall, and F1-score. This meticulous assessment

sought to assess the models’ ability to correctly classify the

indicated medical images. In addition to individual model

evaluations, a comparative study was performed to com-

pare the performance of the ensemble learning model with

the majority voting technique to individual models. The

evaluation’s findings were then presented to healthcare

professionals as recommendations for their input cases.

These recommendations included key information such as

predicted polyp class, class risk, and resection recom-

mendations, which provided valuable assistance for

healthcare professionals in their clinical decision-making

processes. Finally, based on the system’s recommenda-

tions, healthcare professionals made final decisions,

leveraging the potential of AI-driven classification and

recommendations to improve the precision and quality of

their diagnostic and treatment planning efforts.

5 Experimental results

In this section, we will present experimental implementa-

tion details, evaluation metrics used to evaluate the models,

results comparisons and discussions, and finally ablation

studies.

5.1 Implementation details

The PolyDSS model was trained on a system equipped

with an 11th Gen Intel (R) Core (TM) i7-11800H @ 2.30

GHz processor, 16 GB of Random Access Memory

(RAM), a NVIDIA GeForce RTX 3060 Graphical Pro-

cessing Unit (GPU), and 1 Terabyte (TB) of Solid State
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Drive (SSD) storage. The Anaconda 2.0 environment,

Windows 10 Pro as an operating system, and the Python

3.7 programming language were used for all of the

experiments. The data were split into 80% training, 10%

validation, and 10% testing, and the PyTorch framework is

utilized to implement each model.

5.2 Proposed model evaluation methodology

In our study, we used multiple evaluation metrics, includ-

ing the Dice Similarity Coefficient (DSC), accuracy, pre-

cision, recall, and the F1-score. These metrics were

selected due to their ability to provide a complete assess-

ment of the effectiveness of our polyp segmentation and

classification model. The selection of these metrics was

intentional, as they each serve various roles in assessing the

model’s effectiveness. DSC measures the spatial overlap

between predicted and ground truth polyp areas, which is

necessary for determining segmentation accuracy. DSC is

especially appropriate for polyp segmentation since it

compensates for both erroneous positives and false nega-

tives. Polyp areas can vary in size and form, and DSC is

sensitive to these changes. Accuracy, an important metric

for classification, assesses overall correctness, whereas

precision focuses on avoiding false positives, a critical

aspect in polyp classification to avoid unneeded clinical

interventions. Recall, also known as sensitivity, assesses

the ability of the model to gather all polyp instances and

guarantee that they are not missed. Finally, particularly

dealing with class imbalance, the F1-Score provides a

balanced evaluation as an ideal blend of precision and

recall. These measures, when combined, provide a strong

foundation for assessing the model’s performance in polyp

segmentation and classification, addressing the task’s

unique problems and requirements.

5.2.1 Evaluation metrics

Dice Similarity Coefficient (DSC), Precision, and Recall

were used to measure the performance of different model

variations in the segmentation module, while Accuracy,

Precision, Recall, and F1-Score were used in the classifi-

cation module. DSC is commonly used to evaluate the

output of image segmentation operations because it mea-

sures the similarity between two sets of data. The following

Eq. (4) defines DSC:

DSCðA;BÞ ¼ 2j A \ Bj
jAj þ jBj ð5Þ

DSC is twice the overlapped area between A and B divided

by the number of pixels in each image. The accuracy

metric is used to assess the classifier’s performance in

accurately predicting the class labels of a given dataset. It

is calculated by dividing the total number of instances in

the dataset by the number of correctly classified instances.

Precision is the percentage of positive samples that match

the image ground truth, while recall assesses the model’s

accuracy in detecting the number of captured positive

samples. The F1-score combines a classifier’s precision

and recall into a single measurement by calculating their

harmonic mean. Equations (5)–(9) define dice Similarity

coefficient, accuracy, precision, recall, and f1-score,

respectively.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð6Þ

Precision ¼ TP

TPþ FP
ð7Þ

Recall ¼ TP

TPþ FN
ð8Þ

F1-score ¼2� Precision � Recall

Precision þ Recall
ð9Þ

In this case study, TP stands for true positive (the number

of patients who were correctly identified as having polyps),

TN stands for true negative (the number of patients who

were correctly identified as healthy and free of polyps), FP

stands for false positive (the number of patients who were

incorrectly identified as having polyps), and FN stands for

false negative (the number of patients who were incorrectly

identified as healthy and free of polyps).

5.2.2 Results and discussion

In this section, we will demonstrate the experiments and

the results. The B4 model demonstrates the highest accu-

racy of 0.7000, as shown in Table 5, after expanding the

dataset to 500 images per class. Additionally, it indicates

good precision, recall, and F1-score values of 0.7952,

0.7021, and 0.7458, respectively. With an accuracy of

0.6400 and a relatively high F1-score of 0.6687, the B3

model follows closely. Compared to the more advanced

models (B2, B3, and B4), the B0 and B1 have lower

Table 5 Performance of EfficientNet versions on the PICCOLO

dataset’s various classes after adding 500 additional images per class

Model Accuracy Precision Recall F1-Score

B0 0.5333 0.6328 0.4655 0.5364

B1 0.5800 0.8598 0.4532 0.5935

B2 0.6267 0.7820 0.5561 0.6500

B3 0.6400 0.7267 0.6193 0.6687

B4 0.7000 0.7952 0.7021 0.7458

Ensemble learning 0.7500 0.8164 0.8204 0.8184
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accuracy and F1-scores. This is because larger models can

learn more patterns and representations from the data,

improving classification performance.

Referring to Table 6, all EfficientNet models perform

better with the addition of 1364 images per class. The B4

model has the highest accuracy of 0.9034, high precision of

0.9594, high recall of 0.9285, and a high F1-score of

0.9437. The B3 model performs exactly well, with accu-

racy of 0.8570, high precision of 0.9480, and recall of

0.8728 values. In comparison with the B2, B3, and B4

models, the B0 and B1 models are less accurate. This is due

to the core concept of EfficientNet, which is based on the

idea of compound scaling, which entails scaling the mod-

el’s width, depth, and resolution all at once. The number of

layers and the quality of feature maps increase as the model

versions advance from B0 to B4. As a result, the models

are better able to distinguish between various classes

because they can capture more tiny details and progres-

sively extract features at various levels.

Table 7 shows that the B4 model maintains the highest

accuracy of 0.8458 and also indicates high values for

precision of 0.9645, recall of 0.8404, and F1-score of

0.8982 after expanding the dataset to 2000 images per

class. With an accuracy of 0.8325, a precision of 0.9599,

and an F1-score of 0.8870, the B3 model follows closely.

The performance of the EfficientNet models improves

practically as the dataset size increases when compared to

the initial dataset in Table 8. In comparison with the lower

versions (B0 and B1) of EfficientNet models, the higher

versions (B2, B3, and B4) more frequently achieve better

accuracy and F1-scores. The findings indicate that larger

datasets help more complex models perform better on

classification tasks. Figure 5 displays the segmentation

module’s qualitative analysis, showing the segmentation

output using ResUNet ? LSF and ResUNet?? ? LSF

compared to ground truth and the classification output

using ensemble learning majority voting of EfficientNet

variations. Due to the use of LSF, which makes it simpler

to combine high-resolution information with global con-

text, the PolyDSS can distinguish small polyps from

background tissue as shown in polyp class 0-llb that shares

the same color, which is more challenging. This allows the

network to gather the local detailed features and contextual

information required for precise segmentation.

5.2.3 Comparison with existing methods

Table 9 provides a comparative analysis of multiple

methods in the field of coloscopy that evaluates the per-

formance of various models on diverse datasets. Lo et al.

[21] investigated several models, including AlexNet,

Inception-V3, ResNet-101, and DenseNet-201, with accu-

racy scores ranging from 78.2% to 87.7%. Nevertheless,

they did not mention precision or F1-score. Krenzer et al.

[22] applied their model to the SUN and EndoData data-

sets, achieving accuracy scores of 89.35% and 87.42%,

respectively, with precision and recall values in the 80%

range. On the HYPER-KVASIR dataset, Yue et al. [25]

used MobileNet-v2, Inception-v3, and PVTv2-B1, achiev-

ing accuracy scores above 90%, but precision and recall

values were not provided. Huang et al. [56] used their

model to get an accuracy score of 87.1% while maintaining

balanced precision and recall values on the Chang Bing

Show Chwan Memorial Hospital dataset. Notably, the

proposed method, an EfficientNet ensemble learning model

on the PICCLO dataset, outperformed earlier studies with a

remarkable accuracy of 94.25%. Also, the PolyDSS model

has a good precision of 98.78% and recall of 95.03%,

Table 6 Performance of EfficientNet versions on the PICCOLO

dataset’s various classes after adding 1364 additional images per class

Model Accuracy Precision Recall F1-Score

B0 0.7347 0.8092 0.7676 0.7879

B1 0.7579 0.8596 0.7495 0.8008

B2 0.8227 0.9206 0.8392 0.8780

B3 0.8570 0.9480 0.8728 0.9088

B4 0.9034 0.9594 0.9285 0.9437

Ensemble learning 0.9425 0.9878 0.9503 0.9687

Table 7 Performance of EfficientNet versions on the PICCOLO

dataset’s various classes after adding 2000 additional images per class

Model Accuracy Precision Recall F1-Score

B0 0.7250 0.8961 0.6831 0.7752

B1 0.7642 0.9201 0.7352 0.8173

B2 0.8117 0.9456 0.7987 0.8660

B3 0.8325 0.9599 0.8245 0.8870

B4 0.8458 0.9645 0.8404 0.8982

Ensemble learning 0.8667 0.9757 0.8647 0.9168

Table 8 Performance of EfficientNet versions on the PICCOLO

dataset’s various classes before augmentation

Model Accuracy Precision Recall F1-Score

B0 0.6094 0.6164 0.6405 0.6282

B1 0.7441 0.7814 0.7989 0.7901

B2 0.7845 0.8653 0.8146 0.8392

B3 0.7912 0.8529 0.8447 0.8488

B4 0.8114 0.8498 0.8829 0.8660

Ensemble learning 0.8316 0.8784 0.8945 0.8864

5044 Neural Computing and Applications (2024) 36:5031–5057

123



Fig. 5 Analysis of the segmentation and classification module’s results

Table 9 Comparing the results of the PolyDSS model with the existing models, significant values are in bold

Author (s) Model Dataset Accuracy Precision Recall F1-score

Lo et al. [21] Alex Created by authors 81.3 – 90.4 –

Inception-V3 78.2 – 67.0 –

ResNet-101 85.3 – 81.9 –

DenseNet-201 87.7 – 83.0 –

Krenzer et al. [22] [22] SUN 89.35 84.76 79.10 81.28

EndoData 87.42 80.09 78.83 79.45

Yue et al. [25] MobileNet-v2 HYPER-KVASIR 90.44 – – 65.12

Inception-v3 91.55 – - 62.84

PVTv2-B1 90.82 – – 62.54

Huang et al. [56] [56] Chang Bing Show Chwan Memorial Hospital 0.871 0.859 0.896 0.875

Saad et al. PolyDSS PICCLO 0.9425 0.9878 0.9503 0.9687
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yielding an impressive F1-score of 96.87%. This demon-

strates the efficacy of our approach to polyp segmentation

and classification, providing a potentially valuable contri-

bution to the area of interest by addressing some of the

limitations noted in prior studies, such as data scarcity and

low accuracy.

5.2.4 Ablation studies

In the section that follows, we are going to discuss how

different parts of our model affect the outcome of our final

output. Data augmentation has become a critical method

for resolving issues with small datasets in deep learning

applications. The performance of the segmentation and

classification can be enhanced when segmenting or clas-

sifying a specific disease with only a limited amount of

data. This is done by enhancing the dataset. In this ablation

study, we primarily looked into how data augmentation

affected the segmentation and classification of six classes

related to colorectal cancer. Three distinct levels of data

augmentation were used in each experiment. In the first

experiment, 500 images from each class were added using

a variety of augmentation methods, including flipping,

random rotation, scaling, contrast modification, and

zooming. In the second experiment, all classes were

expanded to 1364 images, creating a larger dataset for

training and evaluation. The third experiment, in the same

manner, produced 2000 images for each class in an effort

to further enhance the data. The main criteria for this

augmentation approach are class balance, model general-

ization, and data quality. The rationale behind the choices

to augment the number of images in the dataset is that

initial class distribution is very unbalanced, with 106 to

1364 images per class, depending on the class. A minimum

amount of data augmentation would be to increase each

class to 500 images. The dataset size is increased without

being overinflated, which could be computationally

expensive and result in overfitting if not handled appro-

priately. When compared to more severe augmentation

algorithms, the augmentation of 500 images is computa-

tionally manageable and does not require a lot of compu-

tational power. The number of augmented images per class

in the following experiment equals the largest number of

original images 1364. By guaranteeing that each class

contains an equal number of original and augmented ima-

ges, this decision helps maintain the distribution of the

original data. A moderate augmentation technique can

involve enhancing to match the original images with the

most original image counts. It does not add synthetic data

that significantly outweigh the original data, which can be

desired in medical imaging scenarios where synthetic data

adds ambiguity. Additionally, because the distribution of

the augmented data matches that of the original data, we

will have greater confidence in its quality and relevance.

Increasing the number of images in each class to 2000 is a

bold data augmentation tactic. This decision may be

advantageous because it greatly expands the dataset size

and exposes the model to a wider range of data variances.

Aggressive augmentation may improve generalization

since it exposes the model to a wider variety of samples

during training. In addition to working with complex

medical images that could have different lighting condi-

tions, orientations, or other factors, which is the case in

polyps, this may be extremely helpful. The class imbalance

problem can be addressed by augmenting 2000 images,

which reduces the likelihood that the model will favor

overrepresented classes in its predictions. Finally, our goal

was to carry out extensive experiments to find the optimal

augmentation approach for accurate segmentation and

classification as well as investigate how different levels of

data augmentation affected the system’s performance. The

segmentation module’s performance was evaluated using

DSC, precision, and recall, while the classification mod-

ule’s performance was evaluated using accuracy, precision,

recall, and the F1-score.

5.2.5 Ablation study 1: how data augmentation affects
the segmentation module

We used the augmented dataset to train, validate, and test

our model for each experiment, and then, we reported the

results. Without data augmentation, the ResUNet ? LSF

model generated preliminary findings with a Dice Simi-

larity Coefficient (DSC) of 0.7890, as shown in Table 10.

When the dataset was increased to 500 images, the model

significantly improved, with the DSC increasing by about

7.35%, from 0.7890 to 0.8625, as shown in Table 11. The

segmentation accuracy has increased by 7.35%, which is a

significant improvement. The ResUNet?? ? LSF model’s

DSC increased by roughly 9.7%, from 0.8071 to 0.9041, as

shown in Table 11, indicating an even more impressive

improvement that signifies a notable 9.7% increase in

segmentation accuracy. In the second experiment, where

the dataset was increased to 1364 images, both models

displayed improvements. The ResUNet ? LSF model’s

DSC was 0.8994, which is an improvement of about 3.69%

Table 10 Performance of the segmentation module for the PICCOLO

dataset using ResUNet ? LSF and ResUNet?? ? LSF before

augmentation

Model DSC Precision Recall

ResUNet ? LSF 0.7890 0.7580 0.7964

ResUNet?? ? LSF 0.8071 0.7836 0.7694
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over the outcomes of the earlier experiment, as shown in

Table 12. Similar improvements were seen in the ResU-

Net?? ? LSF model, with the DSC rising from 0.9041 to

0.9244, indicating a 2.03% increase in segmentation

accuracy, as shown in Table 12. The models performed

differently in the third experiment, where the dataset was

expanded to 2000 images. The DSC for the ResUNet?? ?

LSF model decreased to 0.8574, while the DSC for the

ResUNet ? LSF model was 0.8345, which, respectively,

represents a decrease of 6.49% and 6.7% as shown in

Table 13 compared to the previous experiment; we believe

this is the result of over-augmentation.

5.2.6 Ablation study 2: how data augmentation affects
the classification module

The models’ accuracy, precision, recall, and F1-score

varied in the initial results without data augmentation for

the classification module. The performance metrics

underwent significant changes after the dataset was

expanded to 500 images. While some models’ accuracy

declined, others’ precision, recall, and F1-score increased

in some circumstances. For instance, B1 showed a signif-

icant improvement in classification precision, increasing by

about 7.82% from 0.7814 to 0.8596, as shown in Fig. 6.

Further advancements were seen across a number of met-

rics in the second experiment, where the dataset was

expanded to 1364 images. Compared to the prior experi-

ment, the models showed improved accuracy, precision,

recall, and F1-score. Notably, B4’s accuracy increased

significantly by about 9.2%, reaching 0.9034, as shown in

Table 6. Additionally, B3’s precision increased by roughly

9.51% to 0.9480, demonstrating a significant improvement

Table 11 Performance of the segmentation module for the PICCOLO

dataset using ResUNet ? LSF and ResUNet?? ? LSF after 500

augmented images per class

Model DSC Precision Recall

ResUNet ? LSF 0.8625 0.8417 0.8156

ResUNet?? ? LSF 0.9041 0.8912 0.8778

Table 12 Performance of the segmentation module for the PICCOLO

dataset using ResUNet ? LSF and ResUNet?? ? LSF after 1364

augmented images per class

Model DSC Precision Recall

ResUNet ? LSF 0.8994 0.8797 0.8615

ResUNet?? ? LSF 0.9244 0.8839 0.8827

Table 13 Performance of the segmentation module for the PICCOLO

dataset using ResUNet ? LSF and ResUNet?? ? LSF after 2000

augmented images per class

Model DSC Precision Recall

ResUNet ? LSF 0.8345 0.8163 0.7653

ResUNet?? ? LSF 0.8574 0.8289 0.8048

Fig. 6 EfficientNet models precision metric evaluation
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in classification precision, as shown in Fig. 6. The models

maintained a rise in performance in the third experiment,

which increased the dataset to 2000 images. In comparison

with the earlier experiments, the accuracy, precision, recall,

and F1-score improved. From 0.9034 in the second

experiment to 0.8458 in the third, B4’s accuracy did not

increase, as shown in Tables 6 and 7. B2’s precision

increased significantly as well, rising by about 2.5% to

0.9456, as shown in Fig. 6, demonstrating an improvement

in classification precision. The overall effects of data

augmentation on the classification performance of the

models are shown by the results. Accuracy, precision,

recall, and F1-score all increased as the dataset was

expanded, demonstrating the models’ improved capacity

for accurate prediction.

5.2.7 Ablation study 3: how majority voting enhances
classification predictions

In all experiments, using the majority voting method in the

classification module produced notable benefits. The

ensemble learning approach outperformed the individual

models, achieving an accuracy of 0.8316 without any data

augmentation, as shown in Table 8. The ensemble attained

values of 0.8784, 0.8945, and 0.8864, respectively, as

shown in Fig. 7 for precision, recall, and F1-score, showing

that this improvement was consistent across a number of

metrics. These findings show how the various models

perform individually and how the majority voting method

can contribute to each model’s advantages. When the

dataset was expanded to 500 images, ensemble learning

with majority voting maintained its significant advantages.

As compared to the individual models, the accuracy

increased to 0.7500, demonstrating an improvement in

classification performance, as shown in Table 5. Addi-

tionally, the precision and recall rates were improved, as

evidenced by precision, recall, and F1-score values of

0.8164, 0.8204, and 0.8184, respectively, as shown in

Fig. 7. The majority voting method’s advantages were

evident in its ability to take into account different points of

view from different models, obtaining predictions that were

more precise and reliable. As the dataset was expanded to

1364 and 2000 images, ensemble learning with majority

voting consistently outperformed the individual models. In

the experiment with 1364 augmented images, the ensemble

attained an accuracy of 0.9425, demonstrating a substantial

enhancement in performance, as shown in Table 6. Out-

standing precision and recall rates could be seen by looking

at the precision, recall, and F1-score values of 0.9878,

0.9503, and 0.9687, respectively, as shown in Fig. 7. The

ensemble also achieved an accuracy of 0.8667 in the

experiment with 2000 augmented images, demonstrating

the continued benefit of majority voting, as shown in

Table 7. The ensemble’s capacity for making accurate and

reliable classifications was shown by the precision, recall,

and F1-score values of 0.9757, 0.8647, and 0.9168,

respectively, as shown in Fig. 7. In conclusion, the

majority voting method outperformed the individual mod-

els in all experiments in terms of accuracy, precision,

recall, and F1-score when compared to the use of

Fig. 7 Comparison of majority voting throughout various experiments
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EfficientNet separately, as shown in Fig. 8. Comparing the

previous results, the ensemble learning approach improved

the performance of the classification module, producing

more precise and reliable predictions by taking advantage

of the collective decisions made by the individual models.

5.2.8 Ablation study 4: investigate the impact of using
segmentation module prior to the classification
operation

Prior to the classification process, the use of a segmentation

module and the use of an outline contour to highlight

polyps are crucial for correctly identifying and classifying

polyps. The segmentation module is essential for clearly

defining the polyp boundaries. Medical professionals and

automated systems can benefit from enhanced classifica-

tion performance and greater insight into polyp character-

istics by successfully excluding and focusing on the polyp

regions of interest. So, we chose the experiment with 1364

augmented images, which achieved the highest classifica-

tion performance. The accuracy of the classification results

throughout the three experiments has significantly

improved with the combination of a segmentation module

with EfficientNet. On the 500 augmented images experi-

ment, EfficientNet’s average accuracy was 0.5731 without

the segmentation module. The average accuracy improved

to 0.6160, as shown in Table 14, after the segmentation

module was added, indicating a clear improvement in the

model’s capacity to correctly classify the augmented ima-

ges. Similar to this, EfficientNet achieved an average

accuracy of 0.7522 in the 1364 augmented images exper-

iment without the segmentation module. However, the

average accuracy significantly increased to 0.8151, as

Fig. 8 Comparison of EfficientNet models for average precision, recall, and f1-score across multiple experiments, excluding majority voting

Table 14 Results of the ablation study experiment performed on 500

augmented images before and after using the segmentation module

and EfficientNet

Model Average accuracy

EfficientNet 0.5731

EfficientNet ? segmentation module 0.6160

Table 15 Results of the ablation study experiment performed on 1364

augmented images before and after using the segmentation module

and EfficientNet

Model Average accuracy

EfficientNet 0.7522

EfficientNet ? segmentation module 0.8151

Table 16 Results of the ablation study experiment performed on 2000

augmented images before and after using the segmentation module

and EfficientNet

Model Average accuracy

EfficientNet 0.7156

EfficientNet ? segmentation module 0.7958

Neural Computing and Applications (2024) 36:5031–5057 5049

123



shown in Table 15, after the segmentation module was

added. This significant improvement demonstrates how

well the segmentation module works to improve Effi-

cientNet’s classification performance. Last but not least,

EfficientNet achieved an average accuracy of 0.7156 in the

experiment with 2000 augmented images without the seg-

mentation module. However, the segmentation module’s

addition increased the average accuracy to 0.7958, as

shown in Table 16, highlighting its beneficial influence on

the model’s classification abilities, as shown in Tables 14,

15, and 16.

6 Graphical user interface (GUI)
for the PolyDSS model

A GUI was developed to implement the PolyDSS and

make it practical for clinical use, assisting medical pro-

fessionals in segmenting and classifying polyps quickly

and effectively. The user of the GUI does not need to be

concerned about the complexity of the deep learning

models because they can handle them as a black box, and

for further information, the user can view a brief tutorial

video illustrating how the system operates by hitting the

help button. The upload Image button can be used to

upload a patient image sample, as shown in Fig. 9, and the

output will be two images: segmented and classified image.

The following steps show the detailed sequence of the

PolyDSS model:

steps 1: By clicking the upload button and browsing

for the file’s location, the user loads the

patient’s image.

steps 2: The input image is sent in sequence to the

segmentation module and then to the classi-

fication module after pressing the analyze

button.

steps 3: Following model processing, the user is

provided with four important pieces of infor-

mation that are not editable: the case number

(randomly generated by the system), predicted

class, class risk, and resection recommenda-

tion, and a folder is created on the local disk

with the patient case number containing the

processed images.

Fig. 11 The final step that displays the user’s recorded decision on the

final image

Fig. 9 GUI design to aid medical professionals in segmenting and

classifying polyps

Fig. 10 GUI in action (output) where the segmented and classified

image appears supplemented by the predicted class value, class risk,

resection recommendation, and doctor’s final decision
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steps 4: The user takes the system’s recommendations

into account before making his final decision.

steps 5: The final decision is then recorded on the

output image and saved in the patient’s file, as

shown in Figure 11, and the complete GUI is

shown in Figs. 9 and 10.

steps 6: Finally, the user can check the patient history

by going to the patient cases screen and

selecting a certain date to see all cases on that

date, or by searching for a specific case using

the patient case number as shown in Figs. 12

and 13.

6.1 GUI evaluation

GUI evaluation is essential in the healthcare field, partic-

ularly in computer-aided decision support systems like the

one under consideration. We conducted a thorough evalu-

ation of the Graphical User Interface (GUI) developed for

PolyDSS model in this study. The GUI is an important

component of the system, allowing user interaction and

affecting the system’s overall effectiveness in clinical

practice.

6.1.1 Survey structure and respondent profile

The survey was sent to a varied number of medical spe-

cialists with specialized knowledge, including consultant

gastroenterologists and hepatologists, internist endo-

scopists, and prominent professors of medicine and sur-

gery. This diversity guaranteed that the feedback collected

represented a wide range of opinions from people with

different levels of medical and technological knowledge.

The survey framework addresses a variety of issues con-

cerning GUI usability and effectiveness, such as ease of

use, satisfaction with functionality, and areas for sustain-

able development and improvement. For the purpose of

collecting thorough input from respondents, the survey

combines both quantitative (eight select one question) and

qualitative (two open-ended questions) methodologies.

6.1.2 Survey results and discussions

The survey was prepared with Google Forms and dis-

tributed electronically to respondents. The survey results

were analyzed, and a summary of the findings is shown in

Figs. 14 and 15.

Figure 14, sub-figures (a) and (b), show the demo-

graphics of our participants in the survey, which include

gastroenterologists, hepatologists, internists, and surgeons,

as well as their years of experience. These data are critical

in contextualizing the comments we received on our GUI.

Notably, we found a broad range of responses, with 50%

identified as consultant gastroenterologists, 30% as inter-

nist endoscopists, and a smaller percentage as hepatologists

and professors of medicine and surgery. This range of

professional backgrounds increases both the depth and

breadth of our survey’s insights, guaranteeing that the

feedback we obtained encompasses perspectives from dif-

ferent fields within the health care sector. The distribution

Fig. 12 Patient cases screen, from which the user can retrieve patient

files after selecting a specific date or search by patient case number

Fig. 13 Patient cases screen output showing the retrieved case after

selecting a specific date
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of years of experience among our respondents is also worth

mentioning. It displays an evenly distributed blend, with

30% having less than 20 years of experience, 20% having

between 20 and 30 years, 40% having between 30 and 40

years, and 10% having more than 40 years of experience.

This distribution emphasizes the inclusiveness of our study,

Fig. 14 a Respondents medical profession b Respondents years of experience c Polyp detection familiarity d GUI navigation

Fig. 15 a GUI and layout organization b Task efficiency c Polyp segmentation and classification accuracy satisfaction d Information

organization
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which includes the perspectives of experienced specialists

as well as individuals who are new to their respective areas

of study.

Moving on to Fig. 14, sub-figures (c) and (d) demon-

strate our respondents’ familiarity with polyp identification

as well as their experiences with GUI navigation. An

impressive 70% of respondents said they were quite

familiar with polyp identification, highlighting the utility

and relevance of our GUI in their professional setting.

Furthermore, 70% of respondents gave the GUI navigation

a flawless 5 rating, indicating an exceptional level of user-

friendliness and effective system interaction.

Sub-figures (a) and (b) of Fig. 15 investigate respon-

dents’ satisfaction with GUI layout and organization, as

well as their efficiency in accomplishing medical tasks

using the system. 80% of users were highly impressed with

the structure and organization of the GUI, emphasizing its

intuitiveness and effectiveness. Also, 100% of respondents

indicated good task completion efficiency, demonstrating

that our GUI successfully supports users’ decision-making

processes.

Finally, Fig. 15 including sub-figures (c) and (d) provide

information about the accuracy of polyp segmentation and

classification, as well as the readability of information

presented on the screen. A remarkable 80% of respondents

indicated great satisfaction with the GUI’s polyp segmen-

tation and classification accuracy, confirming its potential

to improve clinical decision assistance. Furthermore, 70%

believed the arrangement of information on the screen was

extremely obvious, while 30% believed that it was barely

so, indicating space for additional improvement in infor-

mation display in the future. Based on the findings of the

two open-ended questions, respondents advised that offer-

ing a basic tutorial video for first-time users would be

advantageous, as well as considering enlarging the dis-

played information on screen and accessing the history of

the patient cases. All the previously mentioned findings

were considered and the GUI developed carefully and

iteratively.

In conclusion, our respondents’ diversified backgrounds

and considerable experience, combined with their high

familiarity with polyp identification and positive feedback

on GUI usability and accuracy, highlight the promising

potential of our computer-aided decision support system.

These findings emphasize the necessity of taking into

account user perspectives and needs, proving the relevance

of comprehensive GUI evaluation in the creation of med-

ical technologies that meet the specific needs of healthcare

professionals.

7 Limitations and future work

In this section, we explore the specific limitations found

during the course of this research and present a plan for

further investigation.

7.1 Limitations

We have discussed our suggested model’s design, imple-

mentation, and evaluation in the sections above, empha-

sizing its promising performance and prospective

applications. Even the most promising research initiatives

have inherent limitations and potential for improvement,

which must be acknowledged. As indicated earlier in

Table 4 where it is observed that most contemporary

models contain a significant number of layers and param-

eters, one constraint of our current technique is that it may

not fully harness the benefits of even larger models. The

B5, B6, and B7 models could not be investigated due to

computational limitations (GPU memory). Another data

restriction that PolyDSS model shares with many others, is

the availability and quality of training data, which may

have an impact on how well the proposed deep learning

models perform. For the deep learning models used in the

study, there are not many training samples available, hence

the dataset (PICCLO) suffers from data sacristy. Addi-

tionally, there is a class imbalance in the dataset, with more

members of the minority classes than those from the

majority class. Furthermore, we focused on one ensemble

learning strategy, such as majority voting.

7.2 Future work

Consider larger model versions like the B5, B6, and B7; as

a first limitation, we were unable to try them due to a lack

of computational resources. In addition to optimizing our

training pipeline, our future plans to address the mentioned

limitation include applying model pruning approaches,

which entail removing less important weights and con-

nections from the neural network in order to reduce its size

without significantly degrading performance. Another

strategy is to take into account distributed or cloud-based

computing platforms. The on-demand availability of GPU

and TPU resources from cloud providers is common and

can be particularly helpful for training larger models like

Amazon SageMaker. The second limitation was the small

number of training samples, which was handled in our

study by using several augmentation techniques. In the

future, we would like to work with medical institutions to

get more diverse and high-quality datasets to help with

model generalization enhancement. Finally, we will
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investigate more ensemble learning techniques, such as

weighted average and bootstrap aggregation.

7.2.1 Clinical validation plan

The PolyDSS model uses deep learning to increase the

accuracy and efficiency of polyp segmentation and classi-

fication in endoscopic images, which is an important part

of early gastrointestinal disease diagnosis. However, the

conversion of this type of technology from research to

clinical practice demands a thorough clinical validation

plan. This plan is critical for ensuring the model’s safety

and usefulness in real-world medical scenarios. A detailed

plan for clinical validation is shown in Fig. 16. Clinical

validation is a critical step in determining the practical

usability of a polyp segmentation and classification model

in medical contexts. It starts with gaining ethical approvals

and compiling a broad, representative dataset of endo-

scopic images and patient data that has been thoroughly

annotated by medical specialists. The model’s performance

is evaluated using conventional metrics after data prepa-

ration and model training. After that, the clinical utility of

the model is improved via an iterative feedback loop that

includes fine-tuning based on expert input, and then clinical

specialists actively contribute, providing domain-specific

insights and assessing model predictions with the help of

Explainable AI, such as heat and saliency maps, which

make the model’s decisions understandable to medical

professionals. Once a model has been verified, it is inte-

grated into clinical workflows (ex. the Olympus CV290

machine) with continuous monitoring and updates, as well

as full compliance with patient consent and privacy rules.

8 Ethical considerations

In this study, we have placed considerable focus on prin-

ciples of ethics that support the proper use of data and

models. In this section, critical ethical considerations are

highlighted regarding data privacy, informed consent, and

possible biases in our dataset and model.

8.1 Data privacy

Data privacy is critical in the digital age. This research

relied on various types of data sources, and we took pre-

cautions to ensure that the data was anonymized. Any

personally identifiable information that might jeopardize

the privacy of individuals in the dataset is deleted.

8.2 Informed consent

In situations in which data gathering concerned human

individuals, we sought informed consent while following

standard ethical principles. Participants in the survey were

sent a document detailing the goal of the study, as well as a

link to the survey. This document offered information on

the study’s nature, focused on GUI evaluation in accor-

dance with the study’s objectives. All parties’ informed

consent are valued and prioritized transparency and ethical

data handling throughout the research process in the fol-

lowing sect. 8.2.1.

8.2.1 Survey on GUI evaluation

The survey was conducted to evaluate the Graphical User

Interface (GUI) of the PolyDSS medical system. This

survey’s ethical considerations included:

• Ensuring that participants submitted their informed

agreement to participate in the GUI evaluation survey

by signing at the end of the survey using their names.

Fig. 16 Flowchart of clinical validation steps
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Before taking part in the survey, participants were told

of its objectives and willingly gave their consent.

• Protecting survey respondents’ privacy by masking data

collected throughout the survey. To protect survey

participants’ privacy, all replies were treated discreetly,

and personally recognizable data was removed.

• Following ethical guidelines to guarantee that the

survey serves respondents while avoiding harm or

anguish. Steps were taken to ensure that the survey was

performed in a respectful and minimally disruptive

manner, putting survey participants’ psychological

well-being first throughout the review process.

8.3 Potential biases

Considering bias in data and models is a serious ethical

issue, we admitted that the number of image samples in the

PICCLO dataset differs across classes. Such disparities in

class distribution might result in model bias, as classes with

more samples may dominate minority classes. This issue

may result in biased model performance and decision-

making, particularly in applications where all classes are of

similar relevance. To reduce the possibility of bias, we

used a variety of approaches, including data augmentation

and conducting several experiments. Data augmentation

techniques were used to augment the minority classes,

balancing the dataset. In addition, a number of experiments

were performed to assess the model’s performance under

various class distributions, confirming that the model’s

predictions were both accurate and impartial across all

classes. These steps were taken to mitigate potential bias

and ensure that all classes in the dataset and the model’s

predictions were fairly represented.

9 Conclusion

In this paper, a model is introduced to segment and classify

colorectal polyps. Colorectal cancer can spread less quickly

if polyps are identified and classified correctly. Segmen-

tation and classification are the two main components of

the suggested model. The ResUNet and ResUNet??

models use a segmentation module followed by a classifi-

cation module to perform precise and reliable image

analysis. Prior to the classification step, segmentation

performance is improved using a locally shared feature

mechanism. The output of the segmentation module is then

passed to the classification module, which uses five ver-

sions of EfficientNet (B0, B1, B2, B3, and B4) to classify

images into six main polyp classes (0-Ip, 0-Ips, 0-Is, 0-IIa,

0-Ila/c, and 0-Ilb). According to experimental findings, our

suggested model successfully segmented polyps using

ResUNet?? and LSF, with DSC, precision, and recall

scores of 0.9244, 0.8839, and 0.8827. Experiments were

conducted using the PICCOLO dataset, which has a

noticeable class imbalance. To address the class imbalance,

data augmentation techniques were used. After data aug-

mentation, results significantly improved, and the ResU-

Net?? ? LSF model’s DSC, precision, and recall

increased from 0.8071 to 0.9244, 0.7836 to 0.8839, and

0.7694 to 0.8827, respectively. B4 had the highest accuracy

and f1-score for classifying polyps, emerging at 0.9034 and

0.9437, respectively. EfficientNet models were made more

reliable and efficient by combining the strengths and fea-

ture representations of each model when ensemble learning

with majority voting was used. By using ensemble learning

majority voting, the 1364 augmented image level yielded

the highest accuracy, precision, recall, and f1-score values

of 0.9425, 0.9878, 0.9503, and 0.9687, respectively. We

believe that the suggested model and positive findings from

the experiments will assist endoscopists in classifying

polyps and provide recommendations in the case of

resection using EMR or ESD in accordance with Paris

classification guidelines, besides developing an easy-to-use

GUI that puts the model into practice in the field of

coloscopy.
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