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Abstract
Echo state networks (ESNs), a special class of recurrent neural networks (RNNs), have attracted extensive attention in time

series prediction problems. Nevertheless, the memory ability of ESNs is contradictory to nonlinear mapping, which limits

the prediction performance of the network on complex time series. To balance the memory ability and the nonlinear

mapping, an improved ESN model is proposed, named memory augmented echo state network (MA-ESN). When

designing MA-ESN, both linear memory modules and nonlinear mapping modules are introduced into the reservoir in a

new way of combination. The linear memory module improves the memory ability, while the nonlinear mapping module

retains the nonlinear mapping of the network. Meanwhile, the echo state property of MA-ESN has been analyzed in theory.

Finally, we have evaluated the memory ability and prediction performance of the proposed MA-ESN on benchmark time

series data sets. The related experimental results demonstrate that the MA-ESN model outperforms some similar ESN

models with a special memory mechanism.

Keywords Echo state networks � Memory-nonlinearity trade-off � Time series prediction

1 Introduction

Time series prediction is the task of predicting future val-

ues based on historical data, which has attracted extensive

attention in many fields in recent decades [1]. Due to the

rich dynamics, recurrent neural networks (RNNs) become

effective means for time series prediction problems [2].

However, due to gradient-based training algorithms for

weights, the conventional RNNs suffer from some prob-

lems, such as high computational cost and slow conver-

gence. Echo state networks (ESNs) are special RNNs,

which only transform the optimization of output weights

into a linear regression problem while the other weights do

not need to be optimized after initialization. Hence, ESNs

not only effectively overcome the above problems caused

by gradient-based algorithms but also has rich dynamics

[3]. The core component of ESNs is the random recurrent

layer with a large number of sparsely connected neurons,

named reservoir, which produces the richer dynamic

representation for input signals. At present, ESNs have

been widely used in scientific research and practical

application fields, such as time series prediction [4], control

[5], speech recognition [6], nonlinear signal processing [7],

and system modeling [8].

Memory is a very important characteristic of ESNs and

plays a crucial role in ESN-based time series prediction

problems. Memory capacity (MC) was defined to measure

the memory ability of ESNs, which is limited by the size of

the reservoir [9]. A larger reservoir means a larger MC. But

a larger reservoir would cause an overfitting problem. It is

necessary to enhance the MC of ESNs with the limited size

of the reservoir. Many efficient methods have been pro-

posed by researchers to improve the MC of ESNs. In [10],

a delay & sum readout is introduced to ESNs for obtaining

larger MC, the main idea of which is adding trainable

delays between the reservoir layer and the output layer. To

improve the MC, Shuxian Lun et al. proposed a variable

memory length echo state network (VML-ESN) whose

memory length is automatically determined by the auto-

correlation of input signals [11]. Qianli Ma et al. proposed

an echo memory-augmented network (EMAN) by intro-

ducing an attention mechanism with sparse learnable

weights to improve the long-term memory ability of ESNs

[12]. To improve the MC of ESNs, leaky integrator units
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are used to design the reservoir [13]. In [14], long short-

term echo state networks (LS-ESNs) were proposed to

improve the memory ability of ESNs, where different

skipping connections were introduced to different reser-

voirs. Although these methods mentioned above have

improved the memory ability of ESNs, they inevitably

added additional trainable parameters.

On the other hand, only increasing the MC of RNNs

does not lead to better prediction performance on complex

time series and it is necessary to maintain a certain non-

linear mapping ability [15]. There is a problem with the

trade-off between memory and nonlinearity in the reservoir

of ESNs [16]. To improve the ability of RNNs to learn

long-term dependencies in sequential data, a linear mem-

ory network (LMN) was proposed by explicitly separating

the recurrent layer into functional and memory compo-

nents, which can be optimized by a standard backpropa-

gation algorithm with a special initialization [17]. To

effectively balance the memory-nonlinearity trade-off

problem of ESNs, Butcher et al. proposed a novel archi-

tecture, named reservoir with random static projection

(R2SP) for time series prediction tasks, by combining a

reservoir and two feedforward layers [18]. In [19], the

memory-nonlinearity trade-off has been analyzed for

reservoir computing in theory and improved the informa-

tion processing ability by simultaneously introducing both

linear and nonlinear activation functions into a mixed

reservoir (mixture reservoir). The above literatures use the

idea of nonlinear mapping and memory separation to solve

the memory-nonlinearity trade-off problem.

Inspired by the above research, we propose an improved

ESN model to balance the contradiction between the non-

linear mapping ability and memory capacity of ESNs,

named memory augmented echo state network (MA-ESN).

To better predict the complex time series, there are two

interrelated tasks to be completed for prediction models,

one is to nonlinear map an input sequence to a memory

sequence which forms the outputs of the network, and the

other is to remember the historical states which are used for

nonlinear mapping. Based on the thought of the relative

separation of nonlinear mapping and memory, MA-ESN

introduces associated nonlinear mapping modules and lin-

ear memory modules, to simultaneously realize the non-

linear mapping and memory mechanisms in time series

prediction. The linear memory module is mainly respon-

sible for improving the memory capacity, while the non-

linear mapping module retains the nonlinear mapping of

MA-ESNs. In addition, the stability of the network is

analyzed in theory and a sufficient condition is developed.

Finally, we have given a detailed experimental analysis to

test the effectiveness of our method. The related experi-

mental results demonstrate that the MA-ESN model

outperforms the typical ESNs and some similar ESN

variants on memory capacity and prediction performance.

The contributions of this paper mainly include the fol-

lowing aspects:

1) A special design method of reservoirs is proposed for

ESNs to realize the memory-nonlinearity trade-off,

which improves the memory capacity while retaining

the nonlinear mapping ability.

2) The stability (ESP) of the proposed MA-ESN has

been analyzed in theory, and a sufficient condition is

given.

3) Compared with the typical ESNs and some ESN

variants with special memory mechanisms, the MA-

ESN model can obtain larger memory capacity and

better prediction performance on some benchmark

time series data sets.

The remainder of this article is organized in the fol-

lowing way. Section 2 has briefly reviewed the typical

ESNs. In Sect. 3, the proposed MA-ESN has been descri-

bed in detail, including the architecture, the training algo-

rithm, the stability analysis in theory, as well as the

computational complexity analysis. In Sect. 4, a detailed

analysis of the experimental results on benchmark time

series data sets has been given. Finally, Sect. 5 has con-

cluded this article.

2 Echo state networks

In this section, we will briefly review the typical ESNs,

including the basic architecture, the mathematical

description, the echo state property, the reservoir parame-

ters, and the memory capacity.

Figure 1 shows the basic architecture of typical ESNs. It

can be seen from Fig. 1 that, similar to RNNs, the typical

ESNs have three layers, including the input layer, the

recurrent layer, and the output layer. Usually, the recurrent

layer is named a reservoir layer, which consists of a larger

Fig. 1 Architecture of typical ESNs
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number of neurons with sparse and random recurrent

connections. Let K, N, and L denote the number of neurons

in the input layer, the reservoir layer, and the output layer,

respectively. uðtÞ 2 RK represents the input signal at time

step t, xðtÞ 2 RN and yðtÞ 2 RL respectively denote the

corresponding reservoir state and output signal.

t ¼ 1; 2; . . .; T , where T denotes the number of training

samples. Win 2 RN�K , Wres 2 RN�N , and Wout 2 RL�ðNþKÞ

represent the input weight matrix, reservoir weight matrix,

and output weight matrix, respectively. W in and W res are

fixed after random initialization with a certain degree of

scaling, and Wout needs to be trained for better perfor-

mance. After feeding the input signal to the network, the

computational model of the network can be described by

the following mathematical formulas.

xðtÞ ¼ f ðW inuðtÞ þW resxðt � 1ÞÞ ð1Þ

yðtÞ ¼ Wout uðtÞ; xðtÞ½ � ð2Þ

where f (usually tanh) denotes the activation function for

reservoir neurons and ½uðtÞ; xðtÞ� is the concatenation of

uðtÞ and xðtÞ.
After a certain number of initial training steps (washout

period), the influence of initial reservoir states gradually

disappears, then the remainder of reservoir states xðtÞ are

stored in a matrix X
_

. Let us store the desired output in a

matrix Y
_

, the optimal output weights can be computed by

solving a regression problem as follows.

min WoutX
_

� Y
_

�
�
�

�
�
�

2

2
ð3Þ

Wout ¼ Y
_

X
_T

ðX
_

X
_T

Þ�1 ð4Þ

However, overlarge reservoirs inevitably lead to the

overfitting problem, which will weaken the generalization

performance of the network. To solve this problem, a

regularization term is usually needed to calculate the output

weights Wout as follows.

Wout ¼ Y
_

X
_T

ðX
_

X
_T

þ kIÞ�1 ð5Þ

where I is the identity matrix and k is a regularization

coefficient.

Echo State Property (ESP) is a necessary feature for

ESNs to work well, which ensures the dynamic stability of

the reservoir. To hold the ESP, the reservoir weight matrix

is usually initialized as follows.

W res ¼ SR � W
_

kmaxðW
_

Þ
; 0\SR\1 ð6Þ

where SR is the spectral radius of Wres, W
_

is a sparse

random matrix, and kmaxðW
_

Þ denotes its eigenvalue with

the largest absolute value. Usually, the sparsity (SD) of the

matrix W
_

is set to 2–5%. In addition, the input scale factor

(IS) is another main parameter of ESNs, which is used to

scale the input weight matrix W in for satisfying the specific

activation range of reservoir units.

Memory is another important feature of ESNs, which

plays a crucial role in ESN-based time series prediction

problems. As a measure of memory ability, the memory

capacity (MC), is proposed to evaluate the ability of ESNs

to reconstruct a random input sequence, which is defined as

follows.

MCk ¼
cov2ðuðt � kÞ; ykðtÞÞ
varðuðtÞÞ � varðykðtÞÞ

ð7Þ

MC ¼
X1

k¼1

MCk ð8Þ

where MCk is named as the determination coefficient, u(t)

is the input signal of ESNs at time t, ykðtÞ is the corre-

sponding network output, k denotes the step size of delay,

cov and var respectively represent the covariance and

variance of the corresponding signals. It has been proved

that, if the linear activation function is used for reservoir

neurons, the MC of ESNs can reach its maximum under

certain conditions. However, the memory ability of ESNs

is contradictory to nonlinear mapping, which limits the

prediction performance of the network on complex time

series. Hence, it is a hot topic to solve the memory-non-

linearity trade-off problem for ESNs. Next, we will give

our work in detail to balance the memory ability and the

nonlinear mapping for ESNs, named memory augmented

echo state network (MA-ESN).

3 Memory augmented echo state network

To solve the contradiction between the nonlinear mapping

ability and memory capacity of ESNs, an ESN variant with

a special memory mechanism was proposed by dividing the

reservoir into nonlinear mapping modules and linear

memory modules, where two types of modules interact

with each other. We named it Memory Augmented Echo

State Network (MA-ESN).

3.1 Architecture of memory augmented echo
state network

It is known from Sect. 1 that, to solve the contradiction

between the nonlinear mapping ability and memory

capacity, ESNs need to perform two related assignments at

the same time: one is to nonlinear map an input sequence to

a memory sequence which forms the outputs of the
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network, and the other is to remember the historical states

serving for the nonlinear mapping. Inspired by the thought

of relatively separating the two associated assignments at

the architectural level, we proposed a separation mecha-

nism of memory-nonlinearity by designing two separate

modules in the reservoir, including a nonlinear mapping

module and a linear memory module. Figure 2 shows the

proposed separation mechanism of memory-nonlinearity,

where VInput, VHidden, V
0
Memory, VMemory, VOutput respectively

represent the input space, the hidden space, the memory

space of the last moment, the memory space of the current

moment, and the output space, the small black square in the

connection between V 0
Memory and VMemory denotes a time

delay. As shown in Fig. 2, the two modules work inde-

pendently and serve each other. The linear memory module

M is used as an autoencoder to remember the output

sequence of the nonlinear mapping module H, meanwhile,

the nonlinear mapping module combines the input signals

and the encoding outputs of the linear memory module to

form the new features by a nonlinear activation function.

The nonlinear mapping module works as a feedforward

neural network with a nonlinear activation function to

model the nonlinear characteristic of the input signals, and

the linear memory module acts as a linear reservoir to learn

the long-term dependence of the input sequence. The

proposed separation mechanism combines the nonlinear

feedforward network with a linear recurrent network in a

special way. Hence, by explicitly separating the two

modules, the reservoir can improve the memory capacity

while keeping stronger nonlinear mapping ability. In the

next, we will adopt the separation mechanism to balance

the memory ability and the nonlinear mapping for ESNs.

Based on the separation mechanism mentioned above,

the proposed MA-ESN separates its reservoir into two

parts, including a nonlinear mapping module and a linear

memory module. As shown in Fig. 3, these two modules

are relatively independent and communicate with each

other, where the linear memory module and the nonlinear

mapping module are respectively enclosed by blue dotted

lines and red dotted lines, and the small black square in the

edge represents a time delay.

The nonlinear mapping module is a feedforward neural

network that generates new features from the input signals

and the outputs of the linear memory module by a non-

linear activation function, meanwhile, the linear memory

module is responsible for memorizing the output sequence

of the nonlinear mapping module with a linear recurrent.

Finally, only the outputs of the linear memory module are

used to form the outputs of the network. Let Nx and Ny

respectively denote the number of input and output neu-

rons. The sizes of the nonlinear mapping module and linear

memory module are defined as Nh and Nm, respectively.

xt 2 RNx , ht 2 RNh , mt 2 RNm , and yt 2 RNy respectively

denote the input signals of the input layer, the nonlinear

mapping module, the linear memory module, and the out-

put signals of the output layer, among which ht, mt and yt

are calculated by Eqs. (9), (10), and (11), respectively.

ht ¼ f ðWxhxt þWmhmt�1Þ ð9Þ

mt ¼ Whmht þWmmmt�1 ð10Þ

yt ¼ Wmymt ð11Þ

where f (usually tanh) is a nonlinear activation function of the

neurons in the nonlinear mapping module, Wxh 2 RNh�Nx ,

Wmh 2 RNh�Nm , Whm 2 RNm�Nh , Wmm 2 RNm�Nm , and Wmy 2
RNy�Nm respectively denote the input weights, the connection

weights from the linear memory module to the nonlinear

mapping module, the connection weights from the nonlinear

mapping module to the linear memory module, the internal

weights of the linearmemorymodule, and the outputweights

of the network.

Fig. 2 The separation

mechanism of memory-

nonlinearity

Fig. 3 Architecture of memory augmented echo state network (MA-

ESN)
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Algorithm 1 Memory Augmented Echo State Network

3.2 Training algorithm for MA-ESN

The whole training process of MA-ESN mainly includes

three stages. The first stage is to randomly initialize the

weights, including the input weights Wxh, the connection

weights from the nonlinear mapping module to the linear

memory module Whm, and the connection weights from the

linear memory module to the nonlinear mapping module

Wmh, whose elements are randomly generated from [- 1,1]

under the uniform distribution. The internal weights Wmm

in the linear memory module are obtained as done in (6).

The second stage is to calculate the reservoir state. After

the input signal and the random initial state of the linear

memory module are fed into the nonlinear mapping mod-

ule, the outputs of the nonlinear mapping module are cal-

culated as done in (9) with a nonlinear mapping. Then, the

state of the linear memory module is updated to remember

the output sequence of the nonlinear mapping module as

done in (10). Finally, the outputs of the linear memory

module along with the input signals of the network are fed

into the output layer for forming the predicted outputs. The

third stage is to calculate the output weightsWmy as done in

(5) after washing out a certain number of steps. The

detailed training algorithm is listed in Algorithm 1.

3.3 Stability analysis

Echo State Property (ESP) is an important feature for the

reservoir to work with the attenuation of the dynamic

activity, which guarantees the dynamic stability of the

network. To hold its dynamic stability, MA-ESN as an

ESN-based variant must ensure the ESP. In the next, we

will give a sufficient condition to ensure the ESP of MA-

ESN. First, a definition of the Lipschitz condition is

introduced for the activation function f as follows.

Definition 1. Given an activation function f and a positive

constant L, for all y0; y00 2 X, such that.

f ðy0Þ � f ðy00Þj j � L y0 � y00j j ð12Þ

Then, the activation function f satisfies the Lipschitz

condition.

Let mt and ~mt be any two memory states of the linear

memory module and define the distance between mt and ~mt

as ytk k ¼ mt � ~mtk k. Then, the ESP of MA-ESN can be

equivalently defined as the distance between the memory

states of the linear memory module mt and ~mt satisfies the

shrinkage property over time, that is ytk k2! 0 when t !
1 for all right infinite input sequences uþ1 2 Uþ1. Based

on the definition mentioned above, we will give the suffi-

cient condition for the proposed MA-ESN to hold the ESP

by the following Theorem 1.

Theorem 1. Given the proposed MA-ESN model as shown

in (9) and (10), define the maximum singular value for

matrices Whm, Wmh, and Wmm as rmaxðWhmÞ, rmaxðWmhÞ
and rmaxðWmmÞ, respectively. If the following conditions

are satisfied:

1. The activation function f satisfies the Lipschitz condi-

tion with the Lipschitz coefficient L� 1;

2. rmaxðWhmÞrmaxðWmhÞ þ rmaxðWmmÞ\1.
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Then, the MA-ESN model holds the ESP, that is,

limt!1 ytk k2¼ 0 for all right infinite input sequences

uþ1 2 Uþ1.

Theorem 1 can be proved using a method similar to [3].

The detailed proof has been listed in Appendix A.

3.4 Computational complexity analysis

First, the computational complexity of the reservoir in the

MA-ESN is calculated as follows.

Cres ¼ Ch þ Cm ¼ O ðTNxNh þ 2TNhNm þ SDTN2
mÞ ð13Þ

where T , Nx, Nh, Nm and SD respectively represent the

length of signals, the number of input neurons, the size of

the nonlinear mapping module, the size of the linear

memory module, and the sparsity. The size of the MA-ESN

is Nm þ Nx. Therefore, the computational complexity of

output weights is calculated as follows.

Creg ¼ O ðTNyPþ ðT þ Pþ NyÞP2Þ ð14Þ

where Ny represent the number of output neurons and

P ¼ Nm þ Nx. Since the size of the linear memory module

is usually larger than the number of input neurons, we can

get Nm � Nx, so we have P � Nm. Moreover, the length of

signals is usually larger than the number of output neurons,

so we have T � Ny. Therefore, Eq. (14) can be rewritten

as:

Creg � O ððT þ PÞP2Þ � O ðTN2
m þ N3

mÞ ð15Þ

In the MA-ESN, the size of the nonlinear mapping

module is consistent with the size of the linear memory

module. Therefore, the computational complexity of the

MA-ESN is:

CMA�ESN ¼ Cres þ Creg

¼ O ðTNxNh þ 2TNhNm þ SDTN2
mÞ þ O ðTN2

m þ N3
mÞ

¼ O ðTNxNm þ 3TN2
m þ SDTN2

m þ N3
mÞ

� O ð3TN2
m þ N3

mÞ
ð16Þ

Moreover, the computational complexity of ESNs is:

CESNs ¼ Cres þ Creg � O ðTN2
m þ N3

mÞ ð17Þ

Therefore, the relationship between CMA�ESN and CESNs

is:

CMA�ESN

CESNs

¼ O ð3TN2
m þ N3

mÞ
O ðTN2

m þ N3
mÞ

\3 ð18Þ

Equation (18) shows that the computational complexity

of the MA-ESN is less than 3 times that of ESNs.

4 Experiments results and analysis

In this section, the performance of the proposed MA-ESN

model has been evaluated on benchmark time series data

sets. First, the memory ability of MA-ESN is tested on a

one-dimensional unstructured random sequence. Then, the

prediction performance of MA-ESN is tested on some

benchmark time series with different characteristic,

including the 10-order NARMA system, the Lorenz sys-

tem, the Sunspot time series, daily minimum temperatures

[20, 20], and the NCAA2022 data set [21]. For further

evaluation, the typical ESNs [3] and some ESN variants

with special memory mechanisms are used to compare with

the proposed MA-ESN, including R2SP [18], VML-ESN

[11], LS-ESNs [14], mixture reservoir [19]. Meanwhile, as

two state-of-the-art models, the long short-term memory

(LSTM) [22] and the chain-structure echo state network

(CESN) [23] are also used for comparisons. The MC is

calculated as (7) and (8) to evaluate the memory ability of

random series. Meanwhile, the root-mean-square error

(RMSE) is used to test the prediction performance on

benchmark time series, which is defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

A

XA

t¼1

ðy_t � ytÞ2
v
u
u
t ð19Þ

where A is the total length of the training or testing

sequence. y
_

t and yt are the predicted output and desired

output at time t, respectively. All simulations are carried

out using MATLAB 2022a on a laptop with CPU @

3.10GHz and RAM: 8.0GB.

4.1 Experiments on memory ability

The aim of the proposed MA-ESN is to improve the

memory ability of ESNs while maintaining a certain non-

linear mapping properties by separating a reservoir into a

nonlinear mapping module and a memory module. First,

the memory ability of MA-ESN is evaluated. Unstructured

sequences are usually used to test the memory ability of

ESNs. Hence, to test the memory ability of MA-ESN, a

one-dimensional random series with 6000 samples is gen-

erated from [- 0.8, 0.8] with uniform distribution, as

shown in Fig. 4. Before calculating the output weights, the

first 1000 samples are discarded. The number of output

neurons of MA-ESN is twice the size of the linear memory

module, where the kth output neuron is used to reconstruct

the past inputs with a k-step delay. The ridge regression

regularization is used for calculating the output weights of

networks as done in (5).

To investigate the role of nonlinear and memory mod-

ules in the memory capacity of the MA-ESN, we
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respectively fixed the size of the nonlinear modules as 50,

100, 150, 200, and gradually increased the size of the linear

modules from 30 to 200 with the interval of 10. Figure 5

shows the effect of nonlinear and memory modules with

different sizes on the memory capacity of MA-ESN. As

shown in Fig. 5, the memory capacity of the proposed MA-

ESN monotonically increases with the growth of nonlinear

and memory modules. The maximum increment of MC

caused by the growth of the linear memory module is 34,

while the maximum increment of MC caused by the growth

of the nonlinear mapping module is 17. It means that the

linear memory module plays a larger role in improving the

MC of MA-ESN than the nonlinear mapping module.

To further evaluate the memory ability of MA-ESN, the

typical ESNs and several variants with special memory

mechanisms are used for comparison. For the sake of

fairness, all comparison models have the same reservoir

parameters which are listed in Table 1, including the

reservoir size (N), sparsity (SD), regularization coefficient

(k), spectral radius (SR), input scale factor (IS), and

washout period (WP). It should be noted that the size of the

reservoir of MA-ESN is defined as the size of the linear

memory module. Meanwhile, linear memory modules and

nonlinear mapping modules of MA-ESN have the same

size. Figure 6 shows the k-delay MC (MCk) for all models

from k = 1 to k = 200, named forgetting curves, which

measure the ability of the network to recover the delayed

input signal. As shown in Fig. 6, the MA-ESN can recover

the delayed input sequence close to 100% for delays up to

19, while the other three models only recover the delayed

input sequence well with delays of less than 17. It means

our method is effective in improving the memory ability of

the network by separating reservoirs into nonlinear map-

ping modules and linear memory modules.

Table 2 lists the statistical comparison of the experiment

results over 30 runs, including the mean (Mean) of MC, the

standard deviation (Std) of MC, and the training time,

where the winners are marked in bold. As shown in

Table 2, compared with, the MC of the proposed MA-ESN

has increased by 49.8%, 74.6%, 7.7%, 48.1%, 12.5%,

7.2%, and 23.0% than those of the typical ESNs, LSTM,

R2SP, VML-ESN, LS-ESNs, mixture reservoir, and CESN,

respectively. It means that our method has greatly

improved the memory capacity of the network by sepa-

rating the reservoir into nonlinear mapping modules and

linear memory modules. Meanwhile, the smallest standard

Fig. 4 Random series
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Fig. 5 The effect of nonlinear and memory modules on the memory capacity of MA-ESN
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deviation means the proposed MA-ESN has the best sta-

bility. On the other hand, the training time of MA-ESN is

similar to that of ESNs, VML-ESN, and mixture reservoir

models.

4.2 Experiments on prediction performance

Usually, complex time series shows strong nonlinearity and

long-term dependency, which requires the nonlinear map-

ping and memory ability of prediction models. Hence, the

prediction performance of the proposed MA-ESN is tested

on some benchmark time series with strong nonlinearity

and long-term dependency. Better prediction performance

means strong nonlinearity and memory ability of prediction

models. First, the benchmark time series data sets used in

this experiment will be analyzed in detail, the main char-

acteristics of which are listed in Fig. 7 and Table 3.

4.2.1 Data sets

NARMA system: As shown in Eq. (20), the nonlinear

auto-regressive moving average (NARMA) system is a

discrete-time dynamical system with strong nonlinearity

and long-term memory. Hence, the time series generated

by the NARMA system is often used to test the prediction

performance of ESN variants. The 10th-order NARMA

system is given by

zðnþ 1Þ ¼ 0:3zðnÞ

þ 0:05zðnÞ
X9

j¼0

zðn� jÞ þ 1:5uðnÞuðn� 9Þ þ 0:1

ð20Þ

where the input sequence uðnÞ is randomly generated from

the interval [0,0.5] with uniform distribution, and the initial

state zðnÞ is set to 0 from n ¼ 0 to n ¼ 9. A sequence with

2400 points is generated with Eq. (20), the first 1800 of

which are used to train the network and the remainder is

used for testing.

Lorenz system: The Lorenz system is a multivariable

chaotic dynamic system with strong nonlinearity, which is

often used as a benchmark to evaluate the prediction per-

formance of ESN variants on time series. Usually, the

Lorenz system is defined by the following differential

equation,

dx

dt
¼ að�xþ yÞ

dy

dt
¼ bx� y� xz

dz

dt
¼ xy� cz

8

>>>>><

>>>>>:

ð21Þ

where a, b, and c are usually set to 10, 28, and 8/3 for

chaotic characteristics. After respectively setting the initial

state ðxð0Þ; yð0Þ; zð0ÞÞ and the step size to ð12; 2; 9Þ and
0.2, a time series with 2400 points is generated by the

Table 1 Reservoir parameter settings for all models in the experiment

on memory ability

Models N SD k SR IS WP

ESNs 100 0.026 10�9 0.9 0.1 1000

LSTM 100 – – – – –

R2SP 100 – 10�9 0.9 0.1 1000

VML-ESN 100 0.026 10�9 0.9 0.1 1000

LS-ESNs 100 0.026 10�9 0.9 0.1 1000

Mixture reservoir 100 0.026 10�9 0.9 0.1 1000

CESN 100 0.026 10�9 0.9 0.1 1000

MA-ESN 100 0.026 10�9 0.9 0.1 1000

Fig. 6 The forgetting curves of all comparison models

Table 2 Memory capacity for all comparison models

Models MC Training time (s)

Mean Std

ESNs 20.4518 1.0751 0.0463

LSTM 17.5439 0.3761 3.8429

R2SP 28.4519 3.3847 0.0556

VML-ESN 20.6793 1.1744 0.0497

LS-ESNs 27.2217 0.9311 0.1363

Mixture reservoir 28.5658 2.5941 0.0412

CESN 24.8983 1.1697 0.1176

MA-ESN 30.6323 0.2692 0.0549

Bold indicates the winners
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fourth-order Runge-Kutta method, the first 1800 points of

which are used to train the network and the remainder are

used as testing samples. It should be noted that the x-axis

sequence of the system is used in this experiment after

being normalized into [- 1, 1].

Sunspot data sets: The sunspot number series is the

dynamic characteristics of the high-intensity magnetic field

on the sun, which is usually used to measure the speckle

activity of the sun and has an important impact on the

earth. However, the potential solar activity has strong

uncertainty and nonlinearity, which makes the sunspot

number prediction very challenging. Hence, the sunspot

number is usually used as a benchmark to evaluate the

performance of ESN-based models on time series predic-

tion. In this experiment, we use the smoothed monthly

average number of sunspots to evaluate the performance of

MA-ESN on time series prediction. 3198 samples from

1749 to 2020 from the WDC-SILSO are divided into two

parts, the first 1800 of which are used to train the network

and the remainder are used for testing. Before being input

into the network, normalization is used on the total data set.

Daily minimum temperatures: Daily minimum tem-

peratures exhibit long memory behavior and strong non-

linearity, the prediction of which is a challenging task. In

this experiment, 3650 samples from January 1st, 1981 to

December 31st, 1990 in Melbourne are used to test the

performance of MA-ESN on time series prediction, the first

2500 of which are used as training samples and 2500 to

3500 are used for testing. The basic task is to directly

predict the minimum temperature of the next day in Mel-

bourne (one-step-ahead prediction). Before being input into

the network, the data is smoothed with a 5-step moving

window to reduce its nonlinearity and normalized to [- 1,

1].

NCAA2022 data set: NCAA2022 data set is compre-

hensive benchmark for fairly evaluating time series pre-

diction models, which is designed by transforming four

typical data sets with different characteristics into 16

Fig. 7 Benchmark time series data sets

Table 3 Information from five

benchmark time series data sets
Data sets Data set length Partly characteristics

NARMA system 2400 Nonlinearity and memory

Lorenz system 2400 Multivariable chaotic

Sunspot time series 2400 Uncertainty and nonlinearity

Daily minimum temperatures 3500 Long memory and nonlinearity

NCAA2022 data set I 7500 Low-pass

NCAA2022 data set V 7500 High-pass

NCAA2022 data set IX 7500 Band-pass

NCAA2022 data set XIII 7500 Band-stop
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prediction problems with different frequency characteris-

tics [24]. In this paper, the stock index with low-pass, high-

pass, band-pass, and band-stop frequency features is

selected from NCAA2022 data set to evaluate the predic-

tion performance of the proposed MA-ESN, i.e., the

NCAA2022 data set I, NCAA2022 data set V, NCAA2022

data set IX, and NCAA2022 data set XIII. Each sequence

includes 7500 data points, the first 5000 of which are used

for training and the remainder are used for testing. It should

be noted that the NCAA2022 data set is normalized into

½�1; 1� before being fed into the network.

4.2.2 Parameter settings

The prediction models covered in this subsection involve

the selection of several reservoir parameters which are

listed in Table 4, including the reservoir size (N), sparsity

(SD), regularization coefficient (k), spectral radius (SR),

input scale factor (IS), and washout period (WP). It is

worth noting that theWP is 200 in the NARMA system, the

Lorenz system, the sunspot time series, and the daily

minimum temperatures, and 1000 in the NACC2022 data

set. It should be noted that the size of the reservoir of MA-

ESN is defined as the size of the linear memory module.

4.2.3 Analysis of experimental results

To investigate the role of nonlinear and memory modules

in the prediction ability of the MA-ESN, we gradually

increased the size of modules from 50 to 300 with the

interval of 50. The testing RMSE of the MA-ESN with

different sizes of nonlinear mapping modules and linear

memory modules are shown in Figs. 8 and 9, respectively.

Specifically, Fig. 8 corresponds to the model with a fixed

size of linear memory modules and Fig. 9 corresponds to

the model with a fixed size of nonlinear mapping modules.

From the Figs. 8, we find that the testing RMSE

monotonically decreases with the increase in the nonlinear

mapping module over a range on most data sets, except for

the NCAA2022 data set I, V and IX. From Fig. 9, we can

see that the testing RMSE monotonically decreases with

the increase in the linear memory module on the Lorenz

system and NCAA2022 data sets. However, the testing

RMSE on the other data sets descends firstly then ascends

with the increase in the linear memory module, whose

minimum value is located at Nm ¼ 100. It means that both

the nonlinear mapping module and linear memory module

play a major role in time series predictions, and the MA-

ESN can independently control the nonlinear mapping

module and the memory module according to the charac-

teristics of the given data.

The desired outputs vs the prediction outputs of the eight

prediction models on all benchmark time series are shown

in Fig. 10, and the corresponding prediction errors are

listed in Fig. 11. As can be seen from Fig. 10 prediction

outputs of MA-ESN are closer to the desired outputs

compared to the prediction outputs of the other models. It

can be seen from Fig. 11 that the MA-ESN model has a

smaller error fluctuation compared to the remaining com-

parative models. Therefore, for all benchmark time series,

the proposed MA-ESN model has outperformed the other

seven models on prediction performance. This suggests

that the memory mechanism of MA-ESN outperforms the

remaining comparative models in prediction performance.

For each model, we conduct 30 independent experi-

ments on every time series, the statistical results of the

experiments are shown in Tables 5, 6, 7, 8, 9, including

training RMSE, testing RMSE, and training time, where

the winners are marked in bold. It can be seen from

Tables 5, 6, 7, 8, 9 that the MA-ESN has the smallest

training RMSE on the given data sets except for the

NCAA2022 data set I, V and IX, and has the smallest

testing RMSE on the given data sets except for the

NARMA system and NCAA2022 data set IX. This implies

that the MA-ESN has improved the learning and prediction

performance of ESNs by separating the reservoir into linear

memory modules and nonlinear mapping modules.

Although the training time of the MA-ESN is slightly

longer than that of the typical ESNs, VML-ESN and

mixture reservoir, it is much smaller than LSTM, LS-ESNs

and CESN. This is because only the connection weights

between the linear module and the output layer of the MA-

ESN need to be calculated, which does not increase the

computational burden too much. Meanwhile, the MA-ESN

has the smallest standard deviation of the testing RMSE on

most data sets except for NCAA2022 data sets I, IX and

XIII, which means better stability. Overall, in most cases, it

is effective to balance the memory and the nonlinear

mapping ability by separating the reservoir into the

Table 4 Reservoir parameter settings for all models in the experiment

on prediction performance

Models N SD k SR IS WP

ESNs 100 0.026 10�9 0.9 1 200 (1000)

LSTM 100 – – – – –

R2SP 100 – 10�9 0.9 1 200 (1000)

VML-ESN 100 0.026 10�9 0.9 1 200 (1000)

LS-ESNs 100 0.026 10�9 0.9 1 200 (1000)

Mixture reservoir 100 0.026 10�9 0.9 1 200 (1000)

CESN 100 0.026 10�9 0.9 1 200 (1000)

MA-ESN 100 0.026 10�9 0.9 1 200 (1000)
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relatively independent linear memory modules and non-

linear mapping modules.

5 Conclusion

For the typical ESNs, the nonlinear mapping ability is

contradictory to the memory capacity. To solve this prob-

lem, we propose a novel echo state network by separating

the reservoir into nonlinear mapping modules and linear

memory modules. The linear memory module improves the

memory capacity, while the nonlinear mapping module

retains the nonlinear mapping ability of the network.

Meanwhile, the echo state property of MA-ESN has been

analyzed in theory, and a sufficient condition has been

provided. Compared with the typical ESNs, the LSTM, the

R2SP, the VML-ESN, the LS-ESNs, the mixture reservoir,

and the CESN, the MA-ESN model has a larger memory

Fig. 8 The effect of nonlinear mapping modules on the prediction performance of MA-ESN

Fig. 9 The effect of linear memory modules on the prediction performance of MA-ESN
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Fig. 10 The desired outputs vs the prediction outputs of the eight models on the five benchmark time series (The blue solid and the red dashed

lines respectively denote the desired outputs and the prediction outputs of the prediction models)

Fig. 11 Prediction errors of the eight models on the five benchmark time series data sets (The red dashed line represents the prediction errors of

MA-ESN)
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Table 5 Experimental results on

NARMA system
Models Training RMSE Testing RMSE Training time (s)

Mean Std Mean Std

ESNs 0.0718 4.3749e-04 0.0792 8.3027e-04 0.0048

LSTM – – 0.0820 5.8874e-04 0.6317

R2SP 0.0717 2.7720e-04 0.0790 8.2767e-04 0.0043

VML-ESN 0.0714 1.8344e-04 0.0785 4.5687e-04 0.0058

LS-ESNs 0.0719 3.2013e-04 0.0788 3.8221e-04 0.0167

Mixture reservoir 0.0711 8.0702e-04 0.0754 8.9920e-04 0.0039

CESN 0.0700 3.0334e-04 0.0725 1.7074e-03 0.0280

MA-ESN 0.0699 1.8278e-04 0.0752 3.2471e-04 0.0063

Bold indicates the winners

Table 6 Experimental results on

Lorenz system
Models Training RMSE Testing RMSE Training time (s)

Mean Std Mean Std

ESNs 1.0757e-04 2.5555e-05 4.2764e-04 1.9849e-04 0.0055

LSTM – – 4.3026e-03 1.1842e-04 0.6308

R2SP 9.3091e-05 3.4029e-05 3.7251e-04 2.2445e-04 0.0055

VML-ESN 9.6953e-05 1.7785e-05 4.1558e-04 2.0023e-04 0.0045

LS-ESNs 7.5386e-05 1.0139e-05 2.9253e-04 7.5811e-05 0.0166

Mixture reservoir 9.6202e-05 6.0527e-05 2.7432e-04 1.9423e-04 0.0056

CESN 4.4111e-05 1.5531e-05 2.5760e-04 1.0356e-04 0.0530

MA-ESN 3.5636e-05 8.5330e-06 9.0707e-05 2.5622e-05 0.0046

Bold indicates the winners

Table 7 Experimental results on

sunspot time series
Models Training RMSE Testing RMSE Training time (s)

Mean Std Mean Std

ESNs 1.3634 0.0142 1.6242 0.0186 0.0084

LSTM – – 12.6289 6.8552 0.8167

R2SP 1.2805 0.0139 1.5378 0.0294 0.0046

VML-ESN 1.3222 0.0190 1.5523 0.0291 0.0029

LS-ESNs 1.2547 0.0156 1.5543 0.0215 0.0153

Mixture reservoir 1.3119 0.0536 1.5244 0.0657 0.0034

CESN 1.3087 0.0168 1.5759 0.0235 0.0282

MA-ESN 1.2464 0.0117 1.4699 0.0160 0.0050

Bold indicates the winners
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Table 8 Experimental results on

daily minimum temperatures
Models Training RMSE Testing RMSE Training time (s)

Mean Std Mean Std

ESNs 0.5550 0.0055 0.5208 0.0066 0.0065

LSTM – – 1.3998 0.2693 1.1080

R2SP 0.5423 0.0036 0.5082 0.0043 0.0061

VML-ESN 0.5441 0.0039 0.5092 0.0034 0.0055

LS-ESNs 0.5274 0.0022 0.5132 0.0041 0.0206

Mixture reservoir 0.5452 0.0127 0.5084 0.0123 0.0061

CESN 0.5333 0.0035 0.5069 0.0044 0.0366

MA-ESN 0.5263 0.0032 0.4961 0.0020 0.0059

Bold indicates the winners

Table 9 Experimental results on

NCAA2022 data set
Models Training RMSE Testing RMSE Training time (s)

Mean Std Mean Std

I ESNs 16.6197 0.0675 39.2258 0.4241 0.0055

LSTM – – 40.8514 1.0579 0.6444

R2SP 16.4631 0.0613 38.4826 0.3043 0.0110

VML-ESN 16.6704 0.0479 40.1744 0.2674 0.0054

LS-ESNs 16.4981 0.0389 38.2818 0.2518 0.0603

Mixture reservoir 16.3847 0.0591 38.3250 0.4174 0.0140

CESN 15.5831 0.0708 40.6644 1.1442 0.0578

MA-ESN 16.3645 0.0706 38.2630 0.3563 0.0095

V ESNs 23.2195 0.1251 54.2807 0.6556 0.0052

LSTM – – 74.7124 1.9229 1.9099

R2SP 23.3008 0.1571 54.1458 0.6234 0.0107

VML-ESN 23.3992 0.1593 54.1154 0.7789 0.0054

LS-ESNs 23.8354 0.0394 54.0709 0.6926 0.0611

Mixture reservoir 23.1637 0.1540 54.1154 0.7272 0.0067

CESN 21.4643 0.1563 53.6306 0.6592 0.0564

MA-ESN 23.2759 0.1614 53.5856 0.6225 0.0078

IX ESNs 15.6143 0.1116 37.7819 0.3319 0.0052

LSTM – – 46.2752 1.5628 0.9857

R2SP 15.5084 0.1123 37.7392 0.4740 0.0122

VML-ESN 15.5737 0.1212 37.7426 0.3620 0.0050

LS-ESNs 16.1584 0.0486 37.6794 0.2233 0.0642

Mixture reservoir 15.6082 0.1293 37.7467 0.3997 0.0202

CESN 15.1144 0.1398 36.9253 0.4458 0.0563

MA-ESN 15.4912 0.1098 37.5610 0.2725 0.0077

XIII ESNs 40.0429 0.2876 105.3208 0.8068 0.0052

LSTM – – 298.7745 2.5637 0.1723

R2SP 38.8793 0.6416 102.8522 2.2423 0.0111

VML-ESN 39.7840 0.4720 105.2606 1.6550 0.0055

LS-ESNs 39.2636 0.3814 103.0255 0.8714 0.0539

Mixture reservoir 39.9233 0.2276 104.7534 1.0891 0.0070

CESN 36.5458 0.3850 106.9019 1.7370 0.0552

MA-ESN 36.4238 0.7554 95.3347 2.2566 0.0085

Bold indicates the winners
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capacity and better prediction performance on benchmark

time series. In our further work, we will further improve

the stability of the proposed MA-ESN and apply it to

predict the key parameters in complex industrial processes.

Appendix A

Similar to [3], Theorem 1 can be proved as follows.

Recall that,

f ðzðnÞÞ � f ðz0ðnÞÞk k� L zðnÞ � z0ðnÞk k

and the activation function f satisfies the Lipschitz condi-

tion and the Lipschitz coefficient L� 1.

So there are

f ðWxhxtþ1 þWmhmtÞ � f ðWxhxtþ1 þWmh ~mtÞ
�
�

�
�
2

� ðWxhxtþ1 þWmhmtÞ � ðWxhxtþ1 þWmh ~mtÞ
�
�

�
�
2

Thus there are

ytþ1
�
�

�
�
2
¼ mtþ1� ~mtþ1
�
�

�
�
2
¼ ðWhmhtþ1þWmmmtÞ
�
�

�ðWhmhtþ1þWmm ~mtÞ
�
�
2

¼ Whm½f ðWxhxtþ1þWmhmtÞ�þWmmmt
� ��

�

� Whm½f ðWxhxtþ1þWmh ~mtÞ�þWmm ~mt
� ��

�
2

¼ Whm½f ðWxhxtþ1þWmhmtÞ�
�
�

�Whm½f ðWxhxtþ1þWmh ~mtÞ�þWmmmt�Wmm ~mt
�
�
2

� Whm ½f ðWxhxtþ1þWmhmtÞ�
��

�

�½f ðWxhxtþ1þWmh ~mtÞ�
��
�
2
þ Wmmðmt� ~mtÞk k2

¼ Whm
�
�

�
�
2
f ðWxhxtþ1þWmhmtÞ

�
�

�f ðWxhxtþ1þWmh ~mtÞ
�
�
2
þ Wmmk k2 mt� ~mtk k2

� Whm
�
�

�
�
2
ðWxhxtþ1þWmhmtÞ

�
�

�ðWxhxtþ1þWmh ~mtÞ
�
�
2
þ Wmmk k2 mt� ~mtk k2

¼ Whm
�
�

�
�
2
Wmhðmt� ~mtÞ

�
�

�
�
2
þ Wmmk k2 mt� ~mtk k2

¼ Whm
�
�

�
�
2
Wmh

�
�

�
�
2
mt� ~mtk k2þ Wmmk k2 mt� ~mtk k2

¼ Whm
�
�

�
�
2
Wmh

�
�

�
�
2
ytk k2þ Wmmk k2 ytk k2

¼ð Whm
�
�

�
�
2
Wmh

�
�

�
�
2
þ Wmmk k2Þ ytk k2

¼ðrmaxðWhmÞrmaxðWmhÞþrmaxðWmmÞÞ ytk k2

Therefore, if rmaxðWhmÞrmaxðWmhÞ þ rmaxðWmmÞ\1 is

true, then limt!1 ytk k2¼ 0 holds for all right infinite input

sequences uþ1 2 Uþ1. That is, the MA-ESN model has

the ESP.
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