
ORIGINAL ARTICLE

AutoTGRL: an automatic text-graph representation learning
framework

Raeed Al-Sabri1 • Jianliang Gao1 • Jiamin Chen1 • Babatounde Moctard Oloulade1 • Tengfei Lyu1

Received: 3 December 2022 / Accepted: 29 October 2023 / Published online: 8 December 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
Text-graph representation learning is a critical and important area of research with extensive applications in natural

language processing (NLP). Recently, graph learning models based on graph neural networks (GNNs) have been effec-

tively utilized for encoding text-graph representation for various tasks due to their ability to handle complex structures and

capture global information. However, existing text-graph representation learning models are heavily based on the manual

design of model architectures and fine-tuning hyperparameters, which is time-consuming and relies on expert knowledge.

To address this challenge, we propose an automatic text-graph representation learning (AutoTGRL) framework for

transductive and inductive learning-based downstream tasks on text graphs. Specifically, the AutoTGRL framework first

builds a general text-graph representation learning model (TGRL model) for text-graph transductive and inductive

learning. Then, to enable the automatic design of TGRL models, we propose an automated TGRL model search module. In

the automated TGRL model search module, we propose an effective and customized search space called text-graph

representation learning (TGRL) search space, which consists of three subspaces, including large-scale embedding strategy

space, text-graph representation strategy space, and GNN structure and hyperparameter space, to build TGRL models. We

propose to use a search algorithm to search for the best combinations to construct TGRL models to fulfill different

downstream tasks from the TGRL search space. To demonstrate the effectiveness AutoTGRL framework, we apply it to

text classification, aspect-based sentiment analysis (ABSA), and entity and relation extraction tasks. The extensive

experiments demonstrate the superiority of AutoTGRL to design the optimal TGRL models, which outperform the state-of-

the-art models over multiple datasets.

Keywords Graph neural network � Automatic machine learning � Text-graph representation � Natural language processing

1 Introduction

Text-graph representation learning is one of the most sig-

nificant problems in the field of natural language process-

ing (NLP) because it provides essential methodologies for

a wide spectrum of a diverse range of applications in the

real world, such as document organization, spam detection,

opinion mining, topic modeling, text classification, senti-

ment analysis, entity extraction, and relation extraction.

[1–5]. In the recent past, graph neural networks (GNNs)

[6, 7] have been getting more attention and illustrated their

superior results on the text-graph representation learning

for various tasks [8, 9]. By constructing text graphs using

different representation methods [10], GNN-based models

can capture non-consecutive and long-distance interactions

among tokens that lead to the improvement of downstream

& Jianliang Gao

gaojianliang@csu.edu.cn

Raeed Al-Sabri

alsabriraeed@csu.edu.cn

Jiamin Chen

chenjiamin@csu.edu.cn

Babatounde Moctard Oloulade

oloulademoctard@csu.edu.cn

Tengfei Lyu

tengfeilyu@csu.edu.cn

1 School of Computer Science and Engineering, Central South

University, Changsha 410083, Hunan, China

123

Neural Computing and Applications (2024) 36:3941–3965
https://doi.org/10.1007/s00521-023-09226-0(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-09226-0&domain=pdf
https://doi.org/10.1007/s00521-023-09226-0

task performance. In text-graph representation learning,

documents and tokens are modeled as nodes and language

properties are modeled as edges. There are two different

kinds of GNN-based models for text-graph representation

learning: transductive-based learning models and induc-

tive-based learning models. The transductive-based learn-

ing models [3, 8, 11] build a graph containing documents

and tokens as nodes for the entire text corpus. They collect

global information about a corpus and perform node

(document) categorization. The inductive-based learning

models [12, 13] construct a graph for each document using

tokens as nodes. In the inductive learning model, no test set

information should be included during the training phase.

Although the promising results of GNN-based models in

text graph representation learning tasks, they heavily rely

on the manual construction of model architectures and

hyperparameter optimization. To achieve high perfor-

mance, they require costly human efforts and domain

knowledge for tuning a vast number of text-graph repre-

sentation learning model (TGRL model) components,

including text-graph representation learning strategies,

GNN structures, hyperparameters, and text embedding

strategies. When applied to a new dataset, the manually

constructed TGRL models often have low performance and

need an extremely high number of design trials. The pri-

mary advantages and drawbacks of the most recent GNN-

based TGRL models are outlined in Table 1. Because of

the advancements made in automated machine learning,

the methodologies associated with automatic machine

learning have been effectively used in an increased number

of scenarios [14]. Consequently, we are able to overcome

the difficulty of developing TGRL models and achieve

optimum performance on a variety of downstream tasks.

In this paper, we made the first attempt to address the

problem of manually designing a text-graph representation

learning model (TGRL model) and propose the automatic

text-graph representation learning (AutoTGRL) frame-

work, which can automatically achieve text-graph

representation learning for downstream tasks on different

text datasets. The designed AutoTGRL framework consists

of five main modules: large-scale text embedding, trans-

ductive graph-based learning, inductive graph-based

learning, model evaluation, and automated TGRL model

search modules. Specifically, the large-scale text embed-

ding module computes document embeddings using a

large-scale embedding strategy (e.g., BERT-style models).

Then, the transductive graph-based learning module first

builds a transductive text graph based on a text-graph

representation learning strategy and learns the node

embeddings of the constructed graph using GNNs. In the

inductive graph-based learning module, AutoTGRL builds

the inductive text graphs based on a text-graph represen-

tation learning strategy and learns the node embeddings of

each graph. Then, the module integrates node embeddings

to generate the graph-level embeddings. The transductive

graph-based learning and inductive graph-based learning

modules utilize the document embeddings from the large-

scale text embedding module as an initial embedding of the

constructed graph nodes. The model evaluation module

receives the text representation from the transductive

graph-based learning or inductive graph-based learning

modules and evaluates the searched TGRL model on

downstream tasks. This module applies the task-specific

layers (prediction layers) on the received text representa-

tion and computes the task performance on the validation

set and returns it as reward feedback to the search algo-

rithm. The large-scale text embedding, transductive graph-

based learning, and model evaluation modules construct

the TGRL model based on transductive learning. While the

large-scale text embedding, inductive graph-based learn-

ing, and model evaluation modules construct the TGRL

model based on inductive learning. To enable the auto-

matic design of TGRL models, we propose an automated

TGRL model search module. In the automated TGRL

search, we design an effective text-graph representation

learning search space called TGRL search space, which

Table 1 Advantages and drawbacks of the most recent GNN-based TGRL models

Advantages Drawbacks

Graph embeddings keep the global information about the structure of a graph They require expert knowledge to design model

architectures

They are efficient in undertaking tasks that are believed to have a complex

relational structure

They are time-consuming to fine-tune hyperparameters

They have the capability of learning the syntactic structure of a variety of texts When applied to new datasets, they tend to have lower

performance

They are able to achieve cutting-edge performance

They are able to deal with complicated structures and gather information on a

global scale

3942 Neural Computing and Applications (2024) 36:3941–3965

123

consists of three sub-spaces, namely, the large-scale

embedding strategy space, GNN structure and hyperpa-

rameters space, and text-graph representation learning

strategy space. Then, we use a search algorithm based on

reinforcement learning to obtain the optimal combination

from the TGRL search space to build the TGRL model to

achieve the downstream tasks. To examine the effective-

ness AutoTGRL framework, we evaluate it on text classi-

fication and aspect-based sentiment analysis, and entity and

relation extraction tasks based on text-graph representation

learning. The following is a summary of our work’s

contributions:

1. For the first time, we propose the AutoTGRL frame-

work to automatically design a text-graph representa-

tion learning model for transductive and inductive

graph-based learning on different text-graph data.

Based on the proposed AutoTGRL framework, we

design an effective TGRL search space for text-graph

representation learning modeling. Then, a search

algorithm is adapted to identify the optimal combina-

tions of the TGRL model in the designed search space.

2. Extensive experiments on nine real-world text datasets

demonstrate that AutoTGRL outperforms the state-of-

the-art baseline methods on text classification, aspect-

based sentiment analysis, and entity and relation

extraction tasks.

2 Related work

This section introduces the related work about text-graph

representation learning, GNNs for text-graph representa-

tion learning, and neural architecture search.

2.1 Text-graph representation

Text-graph representation is one of the essential research

studies in natural language processing (NLP) for various

applications such as text mining, text classification, senti-

ment analysis, and information retrieval [10]. Various

methods have been developed to transform text to a graph

G ¼ ðV;EÞ, where V is a set of nodes (tokens/documents)

and E is a set of graph edges (token–token relation or

token-document relation) [9, 15, 16]. They attempt to

exploit the best features of text document characteristics. In

natural language processing, there are three main text-

graph representation strategies to present token–token

relationships between two tokens. The first type of token–

token relationship is N-grams based on co-occurrence

relationship, also called sequential-based relationship [12],

in which each edge between two paired tokens indicates the

n-hop co-occurrence relationships between two tokens

across several documents. In this type, tokens are supposed

to appear with each other within a certain window. The

second type is a syntactical-dependent relationship, also

called syntactic-based relationship, in which the connection

between two tokens illustrates the grammatical dependent

relation within each sentence [17]. External syntactical

dependency parsing tools such as Stanford CoreNLP,

NLKT, etc. are used. The third type of relationship

between two tokens is the semantic similarity based rela-

tionship [8]. This type calculates the semantic similarity

among pairwise tokens. Utilizing similarity-based mea-

sures such as cosine similarity, point-wise mutual infor-

mation (PMI), etc. [11], the semantic weighting scores

between two tokens are calculated. The token-document

relation is used to normally present the occurrence rela-

tionships between a specific token and a document. In the

token-document relation, the information on the document-

token level is utilized to examine the representations of

tokens and documents. In our work, we build text graphs

based on the automatic search for text-graph representation

strategy. The search algorithm identifies the suitable text-

graph representation strategy from a designed TGRL

search space.

2.2 GNNs for text-graph representation learning

Graph neural networks (GNNs) have made significant

progress in text-graph representation learning due to the

fast growth of deep learning techniques [13, 18]. In gen-

eral, the majority of common GNN models use neighbor-

hood aggregation approaches, and a GNN layer may be

defined as follows:

hlv ¼ AGlðhl�1
v ; fhl�1

u j8u 2 NvgÞ ð1Þ

where hlv is the node representation of node v at layer l and

Nv are the local neighbors of node v. AG is an aggregation

operation, which has various implementations [7].

GNNs have shown promising performance on text-graph

representation for a variety of tasks such as text classifi-

cation, entity and relation extraction tasks, and aspect-

based semantic analysis tasks due to their capacity of

capturing long-distance relations between nodes

[9, 11, 15, 19, 20]. Specifically, [11] applies graph con-

volutional networks GCNs on a heterogeneous token-doc-

ument graph built for the whole corpus, which has the

ability to capture the global token co-occurrence informa-

tion and achieves better results. Later on, [15] proposes a

simple graph convolution (SGC) that reduces the compu-

tation complexity by removing unnecessary nonlinearity

computation, and the weight matrices are collapsed

between layers. SGC shows better performance with

superior time efficiency. By integrating more context

Neural Computing and Applications (2024) 36:3941–3965 3943

123

information such as semantic and syntactic dependencies

between tokens, TensorGCN [8] presents a text graph

tensor. BiGCN [21] employs a hierarchical graph structure

to combine data on token co-occurrences and dependency

type information for aspect-level sentiment analysis. By

considering tokens as nodes and the relation neighboring

tensor as edges, EMC-GCN [22] converts the phrase into a

multi-channel graph. GNN-based models have been used

successfully in learning node representations and achieved

good performance. However, designing TGRL architec-

tures and fine-tuning the learning parameters in the existing

methods is done manually, which requires more effort and

domain knowledge. In addition, it is difficult to design a

TGRL model that is appropriate for different types of text

datasets.

2.3 Neural architecture search

Neural architecture search (NAS) [23, 24] aims to auto-

matically search better architectures than the expert-de-

signed ones, which have achieved promising performance

in designing architectures for recurrent neural network

(RNN) and convolution neural network (CNN). To accel-

erate the reinforcement learning procedure that trains the

controller to generate child networks, ENAS [25] used the

shared parameters among child trials; DARTS [26] pro-

vides a differentiable manner for formulating the task of

neural architecture search and does not need reinforcement

learning controllers; when generating model parameters, a

hyper-network may be used to predict optimal values,

SMASH [27] presents a one-shot model architecture

search. More recently, studies attempt to automatically

search GNN architecture such as reinforcement learning-

based approaches and evolutionary-based approaches

[14, 28]. Among them, graph neural architecture search

(GNAS) [29] has been used to the creation of automated

GNN models with great success. Precisely, GNAS utilizes

a search algorithm (reinforcement learning-based algo-

rithm) to investigate search space and selects the top

architecture in terms of performance (e.g., accuracy on

validation set) on a specific task. However, the existing

graph neural architecture search frameworks does not

consider designing text-graph representation learning

model based on graph neural networks. In addition, this is

the first work to automatically design an optimization

pipeline for text-graph representation learning models.

3 Proposed framework AutoTGRL

AutoTGRL is an automatic text-graph representation

learning framework for modeling text graphs for trans-

ductive and inductive graph-based learning. As shown in

Fig. 1, the AutoTGRL framework consists of five key

modules, including large-scale text embedding, transduc-

tive graph-based learning, inductive graph-based learning,

model evaluation, and automated TGRL model search

modules. In this section, we first describe the problem of

automatically learning text-graph representations. Then,

we introduce each module of the AutoTGRL framework in

detail.

3.1 Problem definition

A TGRL search space for a text-graph representation

learning model consists of three sub-spaces: the large-scale

embedding strategy space, GNN structure and hyperpa-

rameters space, and text-graph representation strategy

space. TGRL search space is represented as

S 2 R S1j j� S2j j�...� Stj j, where Si¼1;2;3;...;t 2 RjSij is the set of

potential choices for the ith TGRL model component (e.g.,

text-graph representation strategy). t is the number of

components required for TGRL models M, such that a

structured model m ¼ fS1; S2; . . .; Stg.
Given a designed TGRL search space and text dataset,

our aim is to find the best TGRL model from the designed

TGRL search space,

mbest ¼ fSbest1 ; Sbest2 ; . . .; Sbestt g

which maximizes the estimated performance E RVðmÞ½ � on
validation set V, i.e.,

mbest ¼ argmaxm2ME RVðmÞ½ �: ð2Þ

3.2 Large-scale text embedding

Recent studies in text representation learning show that

large-scale pre-trained text embedding can significantly

enhance the performance of downstream tasks and speed

up the convergence of the network with better generaliza-

tion [30]. The large-scale text embedding module is

designed to generate the effective initial representation of

document nodes. The large-scale pretraining model has

proven their effectiveness on a broad variety of different

NLP tasks [31, 32]. They are able to acquire the complex

text semantics that is inherent in language at a large scale.

They are trained on large-scale unlabeled corpora in an

unsupervised manner and have the potential to benefit text-

graph representation learning. Obtaining effective docu-

ment embeddings depends on the used large-scale pre-

training embedding model, which varies from one text

dataset to another [30]. So, choosing the right large-scale

embedding model for a dataset and a certain task is an

important step, which has not been taken into consideration

in the existing text-graph representation learning models.

3944 Neural Computing and Applications (2024) 36:3941–3965

123

In the large-scale text embedding module, we utilize large-

scale embedding models to produce the document and

token embeddings, which are then used as input represen-

tations for document nodes in the text-graph representation.

To make AutoTGRL choose the appropriate large-scale

pretraining model to obtain effective document embed-

dings, we design a large-scale embedding strategy search

space. The search algorithm will search the optimal large-

scale pretraining strategy from the TGRL search space

based on the feedback performance. Given a text dataset of

N documents T ¼ d1; d2; . . .; dNgf , we calculate the docu-

ment embeddings as follows:

Xdoc ¼ f ðTÞ ð3Þ

where T ¼ d1; d2; . . .; dNgf is a text dataset of N docu-

ments, and f is the large-scale pretraining embedding

model drawn from the TGRL search space using the search

algorithm.

To speed up the running time of our model, we fine-tune

document embeddings using different large-scale embed-

ding models with few epochs. Then, during the search

process of the models, we just need to read the document

embeddings based on the large-scale embedding strategy

sampled from the TGRL search space.

3.3 Transductive graph-based learning

In the transductive graph-based learning module, we first

construct the transductive text graph G based on a text-

graph representation strategy. Then, transductive GNN-

based learning is used to learn the node embeddings of

transductive text graphs using a GNN architecture. The

text-graph representation strategy and GNN architecture

will be sampled from the TGRL search space.

Fig. 1 AutoTGRL framework. The automated TGRL model search

module e utilizes a search algorithm to identify the description of the

TGRL model architecture from the proposed TGRL search space. In

the large-scale text embedding module (a), document embeddings are

computed by a large-scale text embedding method obtaining initial

document embeddings Xdoc. The transductive graph-based learning

module b first constructs a transductive text graph based on a text-

graph representation strategy and learns the graph node embeddings

HTGNN by the GNN architecture. The inductive graph-based learning

module c constructs the inductive text graphs based on a text-graph

representation strategy and learns the node embeddings of each graph

by the GNN architecture. Then, the module incorporated the node

embeddings to form the graph-level embeddings HIGNN. Then, the

model evaluation module d applies the evaluation based on the

downstream task on the validation set and returns the performance

score as feedback to the search algorithm, which supervises the search

direction in the TGRL search space to sample the optimal TGRL

model

Neural Computing and Applications (2024) 36:3941–3965 3945

123

3.3.1 Transductive text-graph construction

In transductive text graph construction, a single graph G ¼
ðV;EÞ is built for the entire corpus called transductive text

graph, where V represents document and token nodes and

E represents edges. In the transductive text graph, docu-

ments and tokens are represented as nodes, while language

properties such as token co-occurrence, semantic and

syntactic dependencies are used to build the edges among

nodes. There are different text-graph representation

strategies such as sequential-based graphs, semantic-based

graphs, and syntactic-based graphs [10].

The term frequency-inverse document frequency (TF-IDF)

method is used in the process of calculating edge weights

between token and document nodes in the transductive text

graph. While the edges between token nodes are built using a

text-graph representation strategy such as sequential-based

graph representation, semantic-based graph representation,

and syntactic-based graph representation, the search algorithm

will draw the appropriate graph representation strategy from

among these three options. Specifically, the edges among

nodes are calculated as follows:

Auv ¼

PMI u; vð Þ; Semantic u; vð Þ;
Syntactic u; vð Þ u; v are tokens

TF� IDFuv u is document, v is token

1 u ¼ v

0 otherwise

8
>>>>>><

>>>>>>:

ð4Þ

Where PMIðu; vÞ, Semanticðu; vÞ, and Syntacticðu; vÞ denotes
the text sequential-based graph representation, semantic-based

graph representation, and syntactic-based graph representation,

respectively, which are calculated as follows:

Sequential-based graph representation To build the trans-

ductive text graph based on this representation, we utilize

point-wise mutual information (PMI) to compute the

weights between token node pairs. We only build the edges

between token nodes with positive PMI values. A fixed-

size sliding window is used to utilize token co-occurrence

information. Formally, the following is a definition of the

weight of the edge that connects node v and node u:

PMI u; vð Þ ¼ log
pðu; vÞ
p uð ÞpðvÞ ð5Þ

p u; vð Þ ¼ #Nwindowsðu; vÞ
#Nwindows

ð6Þ

p uð Þ ¼ #NwindowsðuÞ
#Nwindows

ð7Þ

where #NwindowsðuÞ is the number of sliding windows with

token u over the whole corpus, #Nwindowsðu; vÞ is the

number of sliding windows with token both token u and v,

and #Nwindows is the total number of sliding windows.

Semantic-based graph representation to build the trans-

ductive text graph based on this representation, we utilize

the LSTM method [33] to construct the edge weights

between token node pairs. We extract the token embed-

dings using LSTM trained on the training set of the given

dataset and compute the cosine similarity between tokens.

If the semantic value of a pair of tokens exceeds a prede-

termined threshold q. We count how many each pair of

tokens has a semantic relation over the whole corpus. The

edge weight of token pairs can be computed as:

Semantic u; vð Þ ¼ #Nsemanticðu; vÞ
#Ntotalðu; vÞ

ð8Þ

where Semantic u; vð Þ is the edge weight between tokens u

and v, #Nsemanticðu; vÞ indicates the number of times the

tokens u and v have semantic relation over all documents in

the corpus. #Ntotalðu; vÞ denotes the number of times the

token u and v occur across the whole corpus in the same

document.

Syntactic-based graph representation to build the trans-

ductive text graph based on this representation, we use the

Standford CoreNLP parser for a syntactic measure that

extracts the dependency between tokens and treats it as an

undirected relationship. Over the whole corpus, we count

how many times each pair of tokens has a syntactic

dependency. The edge of token pairs is calculated by:

Syntactic u; vð Þ ¼ #Nsyntacticðu; vÞ
#Ntotalðu; vÞ

ð9Þ

where Syntactic u; vð Þ is the edge weight between tokens u

and v, #Nsyntacticðu; vÞ indicates the number of times the

tokens u and v have syntactic dependency relation over all

documents in the corpus. #Ntotalðu; vÞ denotes the number

of times the token u and v occur in the same document over

corpus.

Fig. 2 A directed acyclic graph representation of the GNN layer. The

dotted arrows indicate that a single preceding state is sampled for

each intermediate state

3946 Neural Computing and Applications (2024) 36:3941–3965

123

3.3.2 Transductive GNN-based Learning

For the transductive GNN-based learning, we design the

GNN layer as a directed acyclic graph [34] as illustrated in

Fig. 2, where a node Sli corresponds to a state, and a

directed dotted edge (i, j) connects the candidate previous

states for each intermediate state. Each layer consists of

two input states Sl1 and Sl2, intermediate states Sl3 to Sl5 (can

be two or more), and output state Slout. The output states

from the two levels before the current layer are used to

initialize the input states, (e.g., the first state Sl1 in the l-th

layer is equal to the output of the (l-2)-th layer, and the

second state Sl2 in the l-th layer is equal to the output of the

(l-1)-th layer). The sampled prior state is used as the

starting point for the calculation of the intermediate states,

which are then calculated using a message computation

operator, a sampling operator, and an aggregate operator.

The output state Slout is processed by a Read operator from

all intermediate states Sl3 to Sl5, then the activation function

is applied. The architecture processes the information

according to the partial order flow. In particular, the order

allows updating the embedding state based on the selected

state from all its predecessors sequentially. The input states

are configured to mirror the states that were produced by

the two layers that came before it:

Sli ¼ SmplðSljjj� iÞ ð10Þ

The output state is calculated as the following:

Slþ1
out ¼ r Read

�
Fl
�
SlijSli 2 Sm

��� �
ð11Þ

where Smpl, r;Read, and Fl are the previous state sam-

pling operator, the activation function, the read operator,

and the GNN structure with hyperparameters, respectively.

Sm denotes the intermediate states. S0 ¼ X is the repre-

sentation of the initial node obtained as follows:

X ¼
Xdoc

0

� �

ðndocþntokenÞ�d

ð12Þ

Where Xdoc is the document embeddings produced by the

large-scale text embedding module, ndoc is the total number

of nodes in the document, ntoken is the total number of

token nodes, and d is the embedding dimensionality.

In the designed GNN layer, the intermediate state is

computed by a GNN function Fl drawn from a TGRL

search space, which contains the attention operation gl,

aggregation operation Agg, and update operation Ul, for-

mulated as follows:

mlþ1
v ¼ Aggu2NðvÞg

lðhlv; hlu;AvuÞ ð13Þ

hlþ1
v ¼ Ulðhlv;mlþ1

v Þ ð14Þ

The attention operation gl receives node representations h1v ,

neighbor nodes representations hlu for u 2 NðvÞ, and edge

weights Avu between node v and u. The embedding vectors

from gl are gathered using aggregation operation Agg to

obtain hidden features mlþ1
v . The update operation Ul

integrates the hidden features mlþ1
v and the current node

features hlv to generate new hidden features hlþ1
v .

3.4 Inductive graph-based learning

In the Inductive graph-based learning module, we first

construct the inductive text graphs based on the text graph

representation strategy sampled from the TGRL search

space. Then, inductive GNN-based learning is used to learn

the node embeddings of inductive text graphs based on the

GNN structure and hyperparameters sampled from the

TGRL search space.

3.4.1 Inductive text-graph construction

The inductive graph-based learning module builds the

inductive text graphs based on a text-graph representation

strategy. In inductive text graph construction, graphs are

built for each given text called inductive text graphs. Given

a text of l tokens T ¼ t1; . . .ti; . . .; tlf g, where ti is the

embedding of i-th token. We construct a graph for each text

Gd ¼ ðTd;EdÞ, where Td represents token nodes in the text

and Ed represents edges between nodes. Each edge begins

with a token in the text and finishes with tokens adjacent to

it. The graph of text T is formulated as follows:

N ¼ ti j i 2 1; l½ �f g; ð15Þ

E ¼ eij j i 2 1; l½ �; j i� r; iþ r½ �
� �

ð16Þ

where N denotes the node set, E denotes the edge set. r is

the number of connected tokens adjacent to each token in

the graph. The edge weights in E are calculated using text-

graph representation strategies such as the sequential-based

graph, syntactic-based graph, and semantic-based graph

representations as described in Sect. 3.3.1.

3.4.2 Inductive GNN-based learning

In inductive GNN-based learning, the initial embedding of

token nodes is calculated as follows:

wi ¼ Vi � f ðXdocÞ ð17Þ

where Xdoc is the text embedding produced by the large-

scale embedding module, f is a linear layer, and vi is the

pre-trained token embedding (e.g., GloVe [35]). Then, we

utilize the DAGNN layer designed in Sect. 3.3.2 to learn

the embedding of token nodes in the inductive text graphs.

Neural Computing and Applications (2024) 36:3941–3965 3947

123

The token node embeddings are combined to form a

graph-level representation of the text after they have been

sufficiently updated. Then, the soft attention weight is

calculated as follows:

hv ¼ rðg1ðhtvÞÞ � tanhðg2ðhtvÞÞ ð18Þ

where g1 and g2 are two multilayer perceptrons (MLP).

The readout layer to compute the graph-level embedding is

defined as:

HIGNN ¼ 1

jV j
X

v2V
hv þMaxpoolingðh1; . . .; hVÞ ð19Þ

where hv is the token embedding, V is the number of

tokens, and max pooling is a max-pooling function.

3.5 Automated TGRL model search

To achieve the automatic modeling of text-graph repre-

sentation learning, we propose the automated TGRL model

search module for the AutoTGRL framework. In this

module, we designed an effective and customized TGRL

search space based on the designed unified TGRL model

architecture. Then, we use a search algorithm based on

reinforcement learning to search for the optimal TGRL

model.

3.5.1 TGRL search space

To determine the TGRL search space, we considered the

trade-offs between the complexity of the search space and

the performance of the TGRL model. Our aim is to strike a

balance between the two by keeping the search space small

enough to reduce computation time while being compre-

hensive enough to explore a broad range of potential TGRL

models. To construct an effective TGRL search space, we

determined the search space based on a thorough analysis

of the text-graph representation learning (TGRL) model

structures in the existing literature. Then, we identified all

possible combinations of components and their candidate

values that could be used to optimize the TGRL model. We

also consider the computational resources for conducting

experiments. Therefore, we narrowed down the search

space by reducing the candidate values of each component

that were unlikely to significantly affect the performance of

the model or were highly correlated with other candidate

values.

On the basis of the TGRL model structure, we devel-

oped an effective and customized search space. The TGRL

search space consists of three sub-space, including GNN

structure and hyperparameters space, large-scale text

embedding strategy space, and text-graph representation

strategy space. Each sub-space consists of a set of

components with several candidate operations, as shown in

Table 2.

GNN structure and hyperparameters space We build the

GNN structure and hyperparameters space based on the

designed DAGNN layer. It consists of five GNN structure

components and two hyperparameters. Each DAGNN layer

is associated with the following structure components:

1. Previous state sampling operator (PSS) It samples the

previous state Slj 2 fSlijj\ig of the intermediate sate Sli
in the designed GNN layer (Fig. 2). For example, for

Sl3, the previous state is sampled from (Sl1 and Sl2), the

previous state of the second intermediate state Sl4 is

sampled from input states and the first intermediate

state (Sl1; S
l
2; S

l
3), and so on. The previous state

sampling operator is an essential component of text-

graph representation learning because it allows the

model to capture dependencies between nodes in the

graph. The search space design for this operator must

consider all previous states of the current state.

2. GNN function type (GNNF) This operator stands for

four components: neighbor sampling operator, which

chooses the receptive field N(v) for a given node v,

message computation operator, which calculates the

feature representation for each node u in the receptive

field N(v), message aggregation operator, required to

aggregate the neighborhood structure to form a repre-

sentation hi for each node vi [36], and attention head,

which helps to perform the stability of the learning

process, and final representation hi of node vi is

generated by concatenating the multiple representation

outputs from multi-head attentions [37]. Different

types of GNN functions have different strengths and

weaknesses in capturing the structural information of

graphs for different downstream tasks. Therefore,

including multiple types of GNN functions in the

search space can help to find the best model that can

effectively capture the graph structure. As shown in

Table 2, we use neighbor sampling operator, message

computation, and message aggregation introduced in

the original works, including GCN [6], SGC [15],

Chebnet [38], ARMA [39], Mean Sage (GraphSage)

[40], and GAT [7] with multi-attention heads. The

initial E in EGCN, EGAT, and ESGC means integrat-

ing the edge features in the message passing.

3. Hidden dimension (HD) This component determines

the size of the intermediate representations in the

TGRL model. A larger hidden dimension can increase

the capacity of the model to capture more complex

relationships between nodes, but it also increases the

risk of overfitting. Therefore, including a range of

hidden dimensions in the search space can help to find

3948 Neural Computing and Applications (2024) 36:3941–3965

123

a balance between model capacity and generalization

performance. The design of the search space for this

hyperparameter should consider the complexity of the

task and the available computational resources.

4. Readout operator (RO) This component determines

how the final representation is computed from the

hidden intermediate states in the designed DAGNN

layer. Different readout operators have different

strengths and weaknesses in capturing global informa-

tion from graphs. Therefore, including multiple types

of readout operators in the search space can help to find

the best operator that can effectively capture global

information from graphs. The readout operator is

applied to process all the intermediate hidden states

in the designed GNN layer to represent the output state

Slout. The Readout operator can perform operations such

as concatenation, addition, and multiplication.

5. Activation function (Act) After forming node repre-

sentations of the output state, Slout, a nonlinear oper-

ation (e.g., Tanh) is applied to smooth and transform

Slout as a vector of probabilities for classifying nodes.

This component determines the nonlinear function

applied to the output of the convolution function.

Different activation functions, such as ReLU, sigmoid,

and tanh, have different properties that affect how well

they perform on different tasks. Therefore, including

multiple types of activation functions in the search

space can help to find the best function that can

effectively introduce nonlinearity into the computation

of the model.

The optimization of GNN-based TGRL models is also

based on learning parameters. For example, a slight change

in learning parameters affects the learning capability of

GNN-based TGRL models. Thus, we also aim to optimize

the following learning parameters.

1. Dropout rate (DR) The dropout technique addresses

the overfitting issue during the training of the neural

network model. Dropout reduces the complexity of

large network training by removing units and their

connections during neural network training [41]. A

higher dropout rate can increase regularization but may

also decrease model performance if too many nodes are

dropped out. Therefore, including a range of dropout

rates in the search space can help to find a balance

between regularization and performance.

2. Learning rate (LR) When training a neural network

with the gradient-descent algorithm, the learning rate

determines the rate of change in the loss at each

iteration. A higher learning rate may lead to faster

convergence but may also cause instability or over-

shooting during training if it is too high. Therefore,

including a range of learning rates in the search space

can help to find an optimal learning rate that balances

convergence speed and stability during training.

Large-scale embedding strategy space The objective of

large-scale text embedding is to generate the embeddings

of each document. The document embeddings will be used

as initial features of document nodes in transductive and

inductive graph-based learning. To enable AutoTGRL to

choose the optimal large-scale pretraining model in order

to achieve effective document embeddings, a large-scale

embedding strategy subspace is designed. We add two

components to the large-scale embedding strategy sub-

space: Bert style model (BSM) and Bert learning rate

(BLR) with several candidate options as illustrated in

Table 2.

1. Bert style model Different types of Bert models, such

as Bert-base-uncased, Roberta-base, Bert-large-un-

cased, and Roberta-large, have different strengths and

weaknesses in capturing the sequential information of

Table 2 TGRL search space components

Sub-spaces Component Candidate values

GNN structure and hyperparameters space PSS Previous states Slj 2 fSlijj\ig
GNNF GCN, SGC, Chebnet, ARMA, GAT_1, Graph_Conv, Transformer_Conv

HD 16, 32, 64, 128

RO Concatenation, summation, multiplication

Act Tanh, Sigmoid, Relu, Leaky_Relu

DR 0.4, 0.5, 0.6, 0.7

LR 1e-2, 1e-3, 1e-4, 5e-3, 5e-4

Large-scale embedding strategy space BSM Bert-base-uncased, roberta-base, bert-large-uncased, roberta-large

BLR 1e-5, 5e-3, 1e-3, 1e-4, 5e-3

Text-graph representation strategy space TGR SeqGR, SemGR, SynGR

Neural Computing and Applications (2024) 36:3941–3965 3949

123

text for different downstream tasks. Therefore, includ-

ing multiple types of Bert models in the search space

can help to find the best model that can effectively

capture the textual information. The search algorithm

will search the TGRL search space for the ideal Bert-

style pretraining model.

2. Bert learning rate This component determines the

learning rate used specifically for the BERT-style

layers in the model. A higher learning rate may lead to

faster convergence but may also cause instability or

overshooting during training if it is too high. Therefore,

including a range of learning rates in the search space

can help to find an optimal learning rate that balances

convergence speed and stability during training.

Text-graph representation strategy space Text graph rep-

resentation strategy plays an important role in constructing

transductive and inductive text graphs. AutoTGRL con-

structs the transductive text graph by representing docu-

ments and tokens as nodes in a single graph, but it

constructs an inductive text graph for each document by

representing tokens in a document as nodes. AutoTGRL

generates the edges between token and document nodes

using various text-graph representation strategies as

described in Sect. 3.3.1. To enable AutoTGRL to choose

the optimal text-graph representation strategies for a given

dataset, we design a subspace called text-graph represen-

tation strategy space. The text-graph representation strat-

egy space consists of a text-graph representation (TGR)

component. The choices of graph-based representation

strategy are sequential-based graph representation

(SeqGR), semantic-based graph representation (SemGR),

and syntactic-based graph representation (SynGR).

3.5.2 Search algorithm

In the search algorithm, the controller (RNN network) with

parameters h predicts a TGRL model m. The TGRL model

contains a set of operators (m1:T) including text-graph

representation strategy, large-scale embedding strategy,

GNN structure components, and hyperparameters, where T

is the length of the operator set. The operator mjð1� j� TÞ
is drawn from the designed TGRL search space M.

Parameters h are updated using a policy gradient algo-

rithm to maximize the objective function in Eq.(2). Thus,

better models are generated over time. After generating the

list of operators m1:T of the TGRL model, the model is built

and trained on a given text dataset to generate the text

representation which will go through prediction layers

based on the downstream tasks to produce the task per-

formance. The task performance on a given validation set V

is returned as a reward RVðmÞ to train the RNN network.

We use reinforcement learning to update h as follows:

rhEpreðm1:T ;hÞ½R�

¼
XT

t¼1

Epreðm1:T ;hÞ½rhlogPreðmtjmt�1:1; hÞðR� bÞ�;

ð20Þ

where b is the preceding awards’ exponential moving

average. When training m model, we utilize the cross-en-

tropy loss function. After AutoTGRL generates 500 TGRL

models, we choose the top K ¼ 5 models with the highest

evaluation performance and train them 20 times to choose

the optimal models. Figure 3 shows an illustrative example

of AutoTGRL constructing a DAGNN Layer with two

intermediate states.

3.6 Model evaluation

We evaluate AutoTGRL on two text-graph representation

learning tasks: text classification and aspect-based senti-

ment analysis, and entity and relation extraction tasks.

3.6.1 Text classification

To evaluate AutoTGRL on text classification tasks, we

conduct transductive and inductive graph learning to clas-

sify texts. This module receives the document node rep-

resentation HTGNN from the transductive graph-based

learning module or graph level representation HIGNN from

the inductive graph-based learning. Then, we apply soft-

max classifier as follows:

Z ¼ softmaxðHTGNNÞ ð21Þ

The cross-entropy error across all labeled documents is the

loss function for classification tasks as follows:

Lc ¼ �
X

d2YD

XF

f¼1

Ydf log Zdf ð22Þ

where YD is the list of document indices with labels and

F is the output feature dimension, which is equivalent to

the number of categories. The label indication matrix is

represented by Y.

3.6.2 Aspect-based sentiment analysis

The goal of aspect-based sentiment analysis (ABSA) is to

mine fine-grained opinion information for specific aspects

[42]. ABSA has various subtasks, in which the aspect target

is the primary item. Aspect sentiment classification (ASC)

[17, 19] is one of the popular ABSA tasks, which estimates

the sentiment polarity of a given aspect target. However,

assuming the aspect target is given is not always feasible.

Aspect sentiment triplet extraction (ASTE) [43, 44] is also

3950 Neural Computing and Applications (2024) 36:3941–3965

123

another ABSA task, which extracts a triplet comprising an

aspect target term, the related opinion term, and the

expressed sentiment to provide a more comprehensive

sentiment picture. To evaluate AutoTGRL on ABSA tasks,

we use inductive graph learning.

For the ASC task, a sentence-aspect pair (s, a) is given,

where a ¼ a1; a2; . . .; amf g indicates the aspect. The aspect

is a sub-sequence of the entire sentence T ¼ t1; t2; . . .; tnf g.
After getting the token-level representation, the Readout

layer is applied to aggregate the representations of all the

aspect nodes and then concatenate the obtained represen-

tations to form the final aspect representation HIGNN

Eq. (19). Then, the generated representation HIGNN is input

into a linear layer. Finally, we apply a softmax function to

generate a sentiment probability distribution pro as shown

below:

proðaÞ ¼ softmaxðWpro � HIGNN þ bproÞ ð23Þ

Where bpro is a learnable bias and Wpro is the learnable

weight. Therefore, the loss function of the ASC task can be

formulated by using cross-entropy loss as follows:

Lpro ¼ �
X

ðs;aÞ2Z

X

p2P
log proðaÞ ð24Þ

where Z indicates all sentence-aspect pairs and P is the

distinct sentiment polarities.

For the ASTE task, a sentence T ¼ t1; t2; . . .; tnf g is

given, where n is the number of tokens. ASTE produces

triplets consisting of an aspect target, the sentiment that is

associated with it, and the opinion term that corresponds to

it. Each triplet is formed as (aspect, opinion, sentiment),

where sentiment 2 positive; neural;f negative; invalidg.
where invalid indicates that the aspect and opinion have no

valid sentiment relationship.

To evaluate AutoTGRL on the ASTE task, we use

inductive graph learning after removing the Readout layer

and keeping the token-level representation. After getting

the token-level representation HIGNN, we apply the token

classifier. We assume s to be a predefined set of token

categories, including aspect, opinion, and Null

s 2 aspect; opinion; nullf g. Where null indicates that

tokens do not belong to opinion or aspect terms. Therefore,

the token representation is fed as input to a feed-forward

neural network and nonlinear activation such as softmax as

follows:

ptðs j hvÞ ¼ softmaxðFFNNsðhvÞÞ ð25Þ

where FFNN indicates a feed-forward neural network, and

softmax indicates a nonlinear activation. Then, another

feed-forward neural network is used to determine the

probability of a sentiment relationship r 2
positive; neural; negative; invalidf g as follows:

psðr j ha; hoÞ ¼ softmaxðFFNNsðha; hoÞÞ ð26Þ

where ha; ho are the aspect and opinion token representa-

tions, respectively, determined by Eq. (25). FFNN indicates

a feed-forward neural network. The training objective is

specified as the sum of the negative log-likelihood from

both the token type prediction and sentiment prediction.

L ¼ �
X

hv2H
logpt s

�
v jhv

� �
�

X

ha2Ha;ho2Ho

logps r
�jha; hoð Þ

ð27Þ

where s�v is the gold token type and r� is the gold sentiment

relationship of aspect and opinion pair (ha; ho); H
a and Ho

are the aspect and opinion token candidates.

3.6.3 Entity and relation extraction

Identifying entities and their relationships constitutes a

fundamental undertaking within the realm of text mining,

particularly in light of the exponential expansion of texts

such as biomedical literature and clinical documentation

[45, 46].

The objective of the entity and relation task is to extract

relational triplets from the text. The input text is repre-

sented as a set of tokens, X ¼ x1; x2; . . .; xnf g, while S ¼
s1;1; s1;2; . . .; si;j; . . .; sn;n

� �
is the set of all possible spans in

Fig. 3 An illustrative example of AutoTGRL constructing a single DAGNN Layer with two intermediate states. Left: the outputs of the search

algorithm that describe a DAGNN layer architecture. Right: a single DAGNN layer generated by AutoTGRL

Neural Computing and Applications (2024) 36:3941–3965 3951

123

X, where i and j represent the starting and ending positions

of a span in X. The span-based graph, G ¼ ðS;AÞ, is con-
structed from the input text. The predefined set of entity

types and relationships are represented by T and R,

respectively. A relational triplet is formulated as

ðei; ri;j; ejÞ, where ei 2 T , ej 2 T , and ri;j 2 R, indicating

that the relationship ri;j exists between the entity span type

ei and entity span type ej. We apply AutoTGRL to extract

entities and the relations between them from biomedical

text. We use inductive graph learning to evaluate the pro-

posed AutoTGRL on the entity and relation extraction task.

Since biomedical entities may contain more than one word,

text-graph representation methods introduced in the

inductive text-graph representation section are not suit-

able candidate options for the text-graph representation

component in the text-graph representation strategy space.

Therefore, a new text-graph representation method called

span-based graph representation (SpanGR) is introduced.

Span-based graph representation The primary objective of

the span graph is to encompass all potential connections

among spans, thereby promoting message propagation

between span representations that exhibit semantic dis-

similarities. First, we use SciBERT [47] to create contex-

tualized token representations H ¼ h1; h2; :::; hnf g for a

text with n tokens. We then calculate span representations

si for each possible span si as follows:

si ¼ FFNg ĥsi ; hstartðiÞ; hendðiÞ;/ðsiÞ
� 	� �

ð28Þ

where si 2 Rd, using a feed-forward network with an

activation function FFNg, boundary token representations

hstartðiÞ and hendðiÞ, an embedding vector /ðsiÞ denoting span

width, and a weighted-attention mechanism ĥsi over the

token representations in span si. The attention mechanism

is computed as:

ĥsi ¼
Xend

t¼start

softmaxðV � tanhðWatt � htÞÞ � hi ð29Þ

where V and Watt are attention parameters.

Afterward, span representations are used to predict both

the entity type and relation type between each pair of

spans. The set of predefined entity types (including non-

entity) is denoted by T , and the set of predefined relation

types (including non-relation) is denoted byR. To estimate

the entity type for each span si, a feedforward network

FFNe is employed, which maps from Rd to RT . The

probability of si belonging to each entity type in T is

computed using the softmax function applied to FFNeðsiÞ,
as follows:

Prei ¼ Softmax ðFFNeðsiÞÞ ð30Þ

To predict the relation type between each span pairs hsi; sji,

another feedforward network FFNr is used. This network

maps from R3�d to RR, where R is the cardinality of R.

The input to FFNr is a concatenation of si, sj, and the

element-wise multiplication of si and sj. The probability of

each relation type inR between si and sj is computed using

the softmax function applied to FFNrð½; si; sj; si 	 sj; �Þ as

follows:

Scoreri;j ¼ Softmaxð FFNrð ½ si; sj; si 	 sj� Þ Þ ð31Þ

Here, Scorerij represents the probability of the span pair

hsi; sji having the relation type r.

Objective learning To improve computational efficiency in

entity extraction, we employ two filtering strategies.

Firstly, we can filter out spans that have a low probability

of being entities by setting a probability threshold. This

helps to reduce the number of candidate spans and we keep

only the top nk spans with the highest probability of being

entities. Secondly, we can restrict the maximum width of

the spans to a fixed number L. This means that we only

consider spans that are less than or equal to L in length.

These filtering strategies are necessary because the number

of candidate spans in a sentence of n tokens is given by

N ¼ nðnþ1Þ
2

, and this number can significantly impact

computational efficiency.

The total loss for training AutoTGRL on an entity and

relation extraction task is calculated by adding two indi-

vidual loss terms, Le and Lr, as shown below:

Ltotal ¼ Le þ Lr ð32Þ

Here, Le represents the cross-entropy loss for entity clas-

sification of the span graph, and Lr represents the binary

cross-entropy loss for relation classification. These terms

correspond to the loss functions described in Eqs. (30) and

(31).

3.7 Balancing module errors

For a given dataset, we use four modules of the AutoTGRL

framework to achieve a specific task. The modules are

large-scale text embedding, graph-based learning module

(whether inductive-based or transductive-based), auto-

mated TGRL model search module, and model evaluation

module. There are some errors that may appear between

modules. For example, large-scale text embedding may

struggle to capture relationships between text entities,

whereas graph-based models may struggle to capture the

semantic and contextual information of the text. An auto-

mated TGRL model search module may generate TGRL

model architectures that have lower performance than the

current model during the search process. Therefore,

developing an effective TGRL model requires careful

3952 Neural Computing and Applications (2024) 36:3941–3965

123

balancing of errors between the automated TGRL model

search module and the model evaluation module. In this

section, we introduce two methods to balance errors

between AutoTGRL modules.

3.7.1 Fine-tuning embedding method

The AutoTGRL uses large-scale text embedding to

generate document and word embeddings using pre-

trained models such as BERT and RoBERTa that capture

the semantic and contextual information of the text.

These embeddings are then used as initial embeddings

for the graph-based learning module. In the graph-based

learning module, a graph is constructed based on dif-

ferent text graph representation methods. The graph

structure is used to capture the relationships between

words, and graph neural networks (GNNs) are used to

learn the node representations of the graph. GNNs are

effective in capturing complex relationships and depen-

dencies between text data. However, large-scale text

embedding and graph-based learning can produce dif-

ferent errors due to their inherent characteristics. Large-

scale text embedding may struggle to capture relation-

ships between text entities, whereas graph-based models

may struggle to capture the semantic and contextual

information of the text.

Balancing errors between large-scale text embedding

and graph-based learning modules is crucial for building

accurate TGRL models. To balance errors between the

large-scale text embedding and graph-based learning

modules, in the large-scale text embedding module, we

fine-tune document embeddings using large-scale mod-

els based on truth labels involves training large-scale

text embedding models on a given labeled dataset [48].

Then, the graph-based learning module is trained on the

same labeled dataset using the initialized embeddings to

capture the relationship between word and document

nodes while preserving their semantic and contextual

information. Fine-tuning document embeddings using

large-scale models based on truth labels is an effective

approach to balance errors between AutoTGRL modules

and improve the overall performance of TGRL models

for various NLP tasks such as text classification, aspect-

based sentiment analysis, entity extraction, and relation

extraction.

3.7.2 Performance-based feedback method

The automated TGRL model search module is responsible

for exploring a vast TGRL search space of possible model

architectures to find the best TGRL model for a particular

task. The model evaluation module is responsible for

assessing the performance of the generated TGRL models

on a given task. This module uses various evaluation

metrics, such as accuracy and F1-score, to assess the per-

formance of the candidate TGRL models. However,

developing an effective TGRL model requires careful

balancing of errors between the automated TGRL model

search module and the model evaluation module. To bal-

ance the errors in the automated TGRL model search

module, it is crucial to strike a balance between exploration

and exploitation. This means that the controller should

explore the space of possible models to find new archi-

tectures that may perform better than the current ones. At

the same time, it should exploit the knowledge gained from

previous evaluations to guide the search toward more

promising architectures.

To address this issue, a performance-based feedback

loop is introduced between the automated TGRL model

search module and the model evaluation module [28]. By

incorporating feedback from the model evaluation module,

the automated TGRL model search module can guide the

controller of the search algorithm to sample better models.

This module uses a reinforcement learning-based search

algorithm to guide the search process. The RL-based

controller receives feedback from the model evaluation

module in the form of a reward signal. The reward signal

can be positive, negative, or zero, depending on the per-

formance of the generated model. The controller then uses

this reward signal to update its policy and select better

models in the next iteration. The policy gradient algorithm

is used to maximize the objective function of generating

better TGRL models. The algorithm adjusts the parameters

of the search algorithm based on the feedback from the

model evaluation module. This results in the search algo-

rithm sampling a new set of TGRL models that are more

likely to meet the desired performance metrics. The model

evaluation module continues to provide feedback, which is

used to refine the search algorithm and the policy gradient

algorithm. The iterative process continues until the search

module generates the optimal TGRL model. During train-

ing, the RL algorithm aims to maximize the expected

reward signal by learning an optimal policy. This policy

guides the controller to sample better models that perform

well on the given task.

4 Experiments

Extensive tests and evaluations of the performance of

AutoTGRL are carried out in this section so that we may

better understand its capabilities.

Neural Computing and Applications (2024) 36:3941–3965 3953

123

4.1 Implementation details

We configure the experiment settings as follows:

Hyperparameters of the search algorithm controller The

controller is a single-layer LSTM with 100 hidden units.

Model training is accomplished with a learning rate of 3.5e

� 4 using the ADAM optimizer. The default range for the

controller weights is � 0.1 to 0.1. To avoid premature

convergence, we use a tanh of 2.5 and a temperature of 5.0

for the sampling logits, and we add the entropy of the

controller sample to the reward, weighted by 1e � 4.

Hyperparameters of the text classification and aspect-

based sentiment analysis tasks Following the construction

of the TGRL model by the RNN network (controller), the

model is designed and trained for 300 epochs with a batch

size of 64. Two intermediate states are designated in the

proposed GNN layer. The search space is sampled for the

learning rates, dropout rates, and hidden units. The value of

the weight decay is 5e-05. For baseline models, we got the

results from their original papers.

Hyperparameters of the entity and relation extraction task

To assess the sampled TGRL model on the validation set V,

we reserve 10% of the ADE training set. The sampled

model is built and trained for 50 epochs. The optimal

learning rate identified by the search algorithm for the ADE

dataset is 1e-04, while the optimal dropout rate is 0.2.

AutoTGRL utilizes SciBERT as the transformer encoder

and the maximum span width is limited to 15 tokens. For

the span filtering strategy, the pruning parameter k is set to

0.6. The model is trained for 50 epochs with a batch size of

32, while the learning rate for the pre-trained transformer

encoder is set to 5e-05 for both datasets. The hidden

dimension of the GNN layer is set to 500. The maximum

width for a span is set at 20 tokens. We added a new

candidate value to the Bert style model component, the

biomedical Bert model called SciBERT [47], and a can-

didate value to the text graph representation component

called span-based graph representation (SpanGR).

4.2 Baselines

In our experiments, we compare our optimum TGRL

models created by AutoTGRL to state-of-the-art networks

created by human specialists using manual modeling. We

also compare AutoTGRL to Text-NAS approaches to show

the success of our proposed method. Four kinds of models

are considered: token embedding-based models, text-graph

representation models, Text-NAS approaches, and large-

scale pre-trained representation models.

4.2.1 Manually designed networks

For evaluation on the text classification task, we choose the

SOTA manual designed models to compare against

AutoTGRL with transductive learning: FastText, presented

by [49], a text classification strategy which deals with the

n-gram or token average embeddings as document

embeddings. It is evaluated with and without bigrams.

SWEM, presented by [50], a token embedding method,

which applies pooling strategies over token embeddings.

LEAM, proposed by [51], a label embedding with attention

method, which uses label description for embedding tokens

and labels for classifying text in the same joint. SGC,

proposed by [15], a simple version of GCN that reduces the

unnecessary redundant and complex computation applied

to a text-graph representation. GCN-with-label, A graph

convolutional network [9], which incorporates the label

information along with texts and tokens while building a

heterogeneous graph. Text-GCN (with transductive set-

tings), proposed by [11], text-graph-based text classifica-

tion method, in which a convolutional network is applied

on a large graph built from the entire corpus. TensorGCN,

a model that integrates more context information such as

semantic and syntactic dependencies between tokens,

proposed by [8]. HieGAT, a graph neural network based on

hierarchical learning (HieGNN) that extracts information

from token, sentence, and document levels [52]. GCN-

CNN-SB, a model that utilizes GCN to catch the global

information and CNN to extract local features [53]. HINT,

a strategy with the goal of extracting the maximum amount

of information from the hierarchical data that is stored in

the text tree-based graph neural network [54]. MP-GCN, a

semi-supervised text categorization using an MP-GCN

(multi-head-pooling-based GCN) [18]. TEGNN [3] pro-

vides a text categorization algorithm that topologically

improves upon the structural features of the corpus graph

and the sentence graph.

To compare AutoTGRL with inductive text graph-based

learning, we selected the following SOTA inductive-based

learning models: TIGNN and TextING-M, proposed by

[12, 13], a GNN models in which a graph is built for each

input text with global parameter sharing. While Graph-

CNN-C, Graph-CNN-F, and Graph-CNN-S are used to

compare with both inductive and transductive learning

settings, which are proposed by [38, 55, 56], which apply

convolution over token embedding similarity graphs.

GraphCNN-C, GraphCNN-F, and GraphCNN-S utilized

Cheby-shev, Fourier, and Spline filters, respectively.

InducT-GCN, a graph convolutional network and an

inductive model for classifying text based on graphs were

proposed by [57]. HyperGAT, a GNN model proposing to

model texts using document-level hypergraphs that manage

high-order interactions between tokens. [16]. TLGCN, a

3954 Neural Computing and Applications (2024) 36:3941–3965

123

text graph constructed using an inductive light graph con-

volution network [58]. GFN [59], a graph fusion network

enables quick inference and captures structural information

by combining multiple perspectives of text graphs. A new

GNN-based model that constructs graphs for each text

input while sharing global parameters, as opposed to a

unique graph for the entire corpus.

To evaluate the performance of the AutoTGRL model

on the ABSA task with giving the aspects (called ASC), we

selected the following SOTA manual designed networks to

compare against AutoTGRL: BiGCN, in which hierarchi-

cal graphs integrate token co-occurrence and dependence

type information [21]. InterGCN applies a GCN on a

dependency tree to model syntactically informed repre-

sentations of aspects [17]. DualGCN is a model that

simultaneously analyzes the syntactic complementarity of

structures with semantic correlations [19]. R-GAT [60]

proposes a structure for aspect-oriented dependency trees

and encodes dependency trees using a relational GAT.

DGEDT [61] suggests a dual-transformer network with a

better dependency graph. kumaGCN [62] leverages a latent

graph structure to augment syntactic characteristics, taking

both flat and graph-based representations into account at

the same time. SSEGCN [1] offers a syntactic and

semantically improved graph convolutional network that

uses an aspect-aware attention mechanism paired with self-

attention to generate sentence attention score matrices. To

evaluate the performance of the AutoTGRL model on the

ABSA task including aspect and opinion term extraction,

and the sentiment between them (called ASTE), we

selected the following SOTA models: RINANTE [63]

mines aspect and opinion term extraction rules from sen-

tence dependency relations; CMLA [64] attention-based

co-extraction model that uses direct and direction depen-

dence relations; Li-unified [2], an aspect extraction and

sentiment classification model; Li-unified-R modified Li-

unified for opinion extraction. GTS [43], a grid tagging

scheme with CNN, BiLSTM, and BERT as encoders, and

WHW-ASTE [44] extracting sentiment triplets model.

To evaluate the performance of the AutoTGRL model

on the entity and relation extraction tasks, we compared it

against several state-of-the-art biomedical entities and

relation extraction models, including Relation-Metric [4],

Multihead with AT [5], Multihead [65], SpERT [66], KECI

[20], SPANMulti�Head [67], Neural joint model [68],

TablERT [45], TablERT-CNN [46], and EINET[69]. The

results of TablERT are replicated in TablERT-CNN [46],

and the results of the others are taken from the original

papers. These models were evaluated against the optimal

TGRL models identified by AutoTGRL for biomedical

entities and relation extraction tasks.

4.2.2 NAS and large-scale pretrained methods

We select the following SOTA NAS and large-scale pre-

trained methods as the baselines for the text classification

task: ENAS, proposed by [25] that apply two search

spaces: macro search space ENAS-MACRO and micro

search space ENAS-MICRO. When running ENAS-

MACRO, the method looks for a neural network that has a

total of 24 layers. ENAS-MICRO is a micro-search space

that covers normal cells as well as reduction cells. We

alternate stacking the regular cells and the reduction cells.

DARTS, a differentiable architecture search that is based

on the ongoing relaxing of architectural representations

[26]. SMASH, a one-shot model architecture search that

involves building a hyper-network to generate parameter

values to every model [27]. One-shot, proposed by [70],

which studies sharing weights for one-shot architecture

search to determine optimal architectures without rein-

forcement learning or hyper-networks. Random Search , a

random search with weight sharing and early stopping [71].

TextNas, multi-path ensemble using a blend of convolu-

tional, recurrent, pooling, and self-attention layers as a text

representation architecture search space [24]. The large-

scale pre-trained methods baselines are as follows: BERT

[31], RoBERTa [32], BERTGCN, and RoBERTaGCN

[48], models for linguistic representation based on a graph

convolutional network and transformers. We utilize the

Bert-Based model with 12 layers and 768 attention heads.

ELMo [72] and OpenAI GPT [73] are also pre-trained

language representation models with around a hundred

million parameters.

4.3 Evaluation datasets

To evaluate the AutoTGRL model on text classification

tasks, we used six benchmark datasets to compare

AutoTGRL with manually designed baseline networks,

including a movie review dataset (MR), two subsets (R52

and R8) of the Reuters 21578 dataset (with 52 and 8 cat-

egories, respectively), and medical abstracts corpus

Ohsumed with 23 cardiovascular diseases categories. Text-

graph representation classification performance is often

assessed using the datasets [8, 11, 12]. Our experiments use

the same preprocessing and train/test split methods in [11].

We use STT datasets to evaluate the efficacy of our pro-

posed method to the standard NAS methodologies. Stan-

ford Sentiment Treebank (SST) is a popular sentiment

classification dataset. SST has almost 12,000 reviews with

one of the five emotion kinds. SST-Binary exclusively

classifies positive and negative values, deleting neutral

Neural Computing and Applications (2024) 36:3941–3965 3955

123

samples. The original dataset’s train/validation/test split

has been followed.1 Table 3 shows the summary statistics

of the datasets for the text classification task.

To test AutoTGRL on ABSA tasks, we use three stan-

dard public datasets: The SemEval ABSA challenge [74]

provided the Laptop and Restaurant datasets. Tweets

comprise the Twitter dataset [75]. Positive, negative, and

neutral sentiments characterize the three datasets. The

databases categorize each statement with aspects and

polarity. Table 4 presents the statistics of the ASC task

evaluation dataset. For ASTE task evaluation, we use the

datasets annotated by Fan et al. [76]. Table 5 summarizes

the statistics of the dataset.

In order to evaluate the performance of the AutoTGRL

model in biomedical entity and relation extraction, we

conducted experiments on the adverse drug event extrac-

tion (ADE) dataset [77]. The ADE dataset comprises

medical reports describing the negative effects of drug use

and contains a total of 4272 sentences, out of which 1695

involve overlapping entities and 6821 relations. The dataset

defines two pre-determined entity types, namely, Adverse-

Effect and Drug, as well as a single relation type, namely,

Adverse-Effect. To ensure the reliability of our results, we

performed 10-fold cross-validation and reported the macro-

averaged precision (P), recall (R), and F1 scores.

4.4 Overall results

4.4.1 Manually designed model comparisons

To validate the effectiveness of the AutoTGRL in design-

ing the optimal TGRL models for text classification and

ABSA tasks, it is compared with the state-of-the-art text-

graph representation learning models, token embedding-

based models, and transformer-based language represen-

tation models that are used for both tasks. Figure 4 shows

an example of the DAGNN layers designed by AutoTGRL

for the text classification tasks. Table 6 presents the text

classification accuracy of the models designed by

AutoTGRL with transductive graph-based learning against

the manually designed architectures over MR, R52, R8,

and Ohsumed datasets. While Table 7 presents the text

classification accuracy of the models designed by

AutoTGRL with inductive graph-based learning against the

manually designed architectures over the same datasets.

Table 8 reports the accuracy and macro-averaged F1-score

of the experimental result on the ASC task using inductive

graph-based learning compared with the models. Table 9

reports the recall, precision, and F1-score of the experi-

mental results on the ASTE task using inductive graph-

based learning compared with the state-of-the-art models.

From the results, we can notice that the models designed by

AutoTGRL under both transductive settings achieve com-

petitive performances compared with SOTA models over

all datasets for different text classification tasks. These

results show superior capability AutoTGRL of constructing

the optimal TGRL models in the text classification task.

We also see that models designed by AutoTGRL with

inductive graph-based learning outperform the existing

inductive-based learning models on text classification,

ASC, and ASTE tasks. We used boldface to emphasize the

greatest performance in each column. The findings

demonstrate the superiority of the AutoTGRL on various

text datasets. Moreover, according to the findings shown in

Table 10, AutoTGRL outperforms the current leading

models in terms of precision, recall, and F1 scores for

entity and relation extraction tasks on the ADE dataset.

The reason why AutoTGRL works well is twofold. First,

the text-graph representation constructed by AutoTGRL

can integrate syntactic and semantic information of token

and document nodes, which can well guide the message

passing between nodes. Second, AutoTGRL has the ability

to design the optimal combinations of the TGRL model for

the given text graph for different tasks. For more in-depth

analysis, we observe that text-graph representation learning

methods perform better than token embedding-based

methods. The potential reason could be the characteristics

of the graph structures. The network structure allows

document and token nodes to acquire more precise

embeddings by using diverse collocations.

Table 3 Summary statistics of

the evaluation datasets for the

text classification task

Dataset MR R52 R8 Ohsumed SST-B SST

#Docs 10,662 9100 7674 7400 9613 11,855

#Training 7108 6532 5485 3357 7792 9645

#Test 3554 2568 2189 4043 1821 2210

#Tokens 18,764 8892 7688 14,157 16,162 17,087

#Nodes 29,426 17,992 15,362 21,557 25,775 28,942

#Classes 2 52 8 23 2 5

Avg Len 20.39 69.82 65.72 135.82 18.4 18.3

1 https://nlp.stanford.edu/sentiment/code.html.

3956 Neural Computing and Applications (2024) 36:3941–3965

123

https://nlp.stanford.edu/sentiment/code.html

4.4.2 NAS and large-scale pretrained models

To demonstrate the efficacy of the proposed method, we

also compare AutoTGRL under transductive learning set-

tings with other NAS and large-scale pre-trained models on

the text classification task. Table 11 illustrates the evalu-

ation results of TGRL models designed by AutoTGRL

against the baseline NAS and transformer models on SST

datasets. We can notice that the TGRL models designed by

AutoTGRL achieve competitive performance compared to

the other network architectures designed automatically by

the NAS approach. The experiment results demonstrate the

effectiveness of our method and its capability to discover

the optimal TGRL models on different datasets. In addi-

tion, we compare AutoTGRL to the large-scale pretraining

models. From the results, we can see that AutoTGRL

outperforms the best baseline pre-trained models since they

are used to initialize the document embedding based on the

large-scale embedding strategy suitable for the dataset

selected by the search algorithm, which makes our model

more powerful. This enhancement is due to the ability of

AutoTGRL to construct the best TGRL model for learning

text representation.

4.5 Average run-time and convergence speed

In this section, the training time required by AutoTGRL

models and the best baselines over R52, R8, and Ohsumed

datasets are reported. In Tables 12 and 13, we report the

training runtime of the designed TGRL models by

AutoTGRL with transductive and inductive graph learning,

respectively. We also compare TGRL models designed by

AutoTGRL against the best baseline models, which

achieved the highest performance in the literature. From

the results, we observe that the models designed by

AutoTGRL are faster than the baseline models. For

example, using transductive graph learning, the AutoTGRL

model completes a training phase in 125.356s, which is

9.894s faster than the baseline GCN-CNN-SB model and

67.244s faster than the Text-GCN model on the R8 dataset.

Using inductive graph learning, the AutoTGRL model

completes a training phase in 628.24s, which is 278.76s

faster than the GFN model, 210.76s faster than TLGCN

model, and 43.54s faster than the TextING-M model on the

R8 dataset.

For more convergence analysis, we report the accuracy

and loss values of the first 40 training epochs of the TGRL

models designed by AutoTGRL to determine the conver-

gence speed and accuracy performance of the proposed

model on R8 and R52 datasets. We also compare the

convergence speed and accuracy performance of the opti-

mal models designed by AutoTGRL using transductive and

inductive learning models to the best transductive and

inductive baseline models. The epoch number and classi-

fication accuracy score are displayed in Fig. 5. From the

results, we can notice that TGRL models designed by

AutoTGRL outperform the baseline from the first epoch.

For example, the baseline requires 20 epochs to improve

accuracy on the R8 dataset, but the AutoTGRL model

requires just 5 epochs. Since AutoTGRL converges faster

than the baseline, it achieves optimum performance faster.

The loss value decreasing trend in Fig. 6 confirms the

aforementioned result. The loss curve of the AutoTGRL

model decreases with a considerable gradient during the

first epochs. In conclusion, the TGRL models designed by

Table 4 Summary statistics of the evaluation datasets for ASC task

Datasets Division # Negatives # Positives # Neutrals

Restaurant Training set 807 2164 637

Testing set 196 727 196

Laptop Training set 851 976 455

Testing set 128 337 167

Twitter Training set 1528 1507 3016

Testing set 169 172 336

Table 5 Summary statistics of the evaluation datasets for ASTE task

Datasets 14res 14lap

Train Dev Test Train Dev Test

Sentences 1300 323 496 920 228 339

Aspect-opinion pairs 2145 524 862 1265 337 490

Fig. 4 An example of the DAGNN layer designed by AutoTGRL for

text classification tasks

Neural Computing and Applications (2024) 36:3941–3965 3957

123

the AutoTGRL model have faster convergence and greater

performance.

We also presented the model size (number of parame-

ters) of the best transductive and inductive-based learning

baselines and compared them to AutoTGRL models with

inductive and transductive learning. Table 14 shows that

AutoTGRL models for R58 and R52 datasets have fewer

parameters than the best baselines for transductive or

inductive learning.

4.6 Ablation study

4.6.1 Ablation study of large-scale text embedding

This section investigates the significance of large-scale text

embedding on R8, R52, MR, and Ohsumed datasets. We

examine the influence of embeddings generated by this

Table 6 Test accuracy

comparison of models identified

by AutoTGRL with transductive

graph-based learning against the

transductive-based learning

baselines on text classification

task over four benchmark

datasets

Model MR R52 R8 Ohsumed

FastText 75.14 ± 0.20 92.81 ± 0.09 96.13 ± 0.21 57.70 ± 0.49

FastText (bigrams) 76.24 ± 0.12 90.99 ± 0.05 94.74 ± 0.11 55.69 ± 0.39

SWEM 76.65 ± 0.63 92.94 ± 0.24 95.32 ± 0.26 63.12 ± 0.55

LEAM 76.95 ± 0.45 91.84 ± 0.23 93.31 ± 0.24 58.58 ± 0.79

GraphCNN-C 77.22 ± 0.27 92.75 ± 0.22 96.99 ± 0.12 63.86 ± 0.53

GraphCNN-S 76.99 ± 0.14 92.74 ± 0.24 96.80 ± 0.20 62.82 ± 0.37

GraphCNN-F 76.74 ± 0.21 93.20 ± 0.04 96.89 ± 0.06 63.04 ± 0.77

TextGCN (transd) 76.74 ± 0.2 93.56 ± 0.18 97.07 ± 0.10 68.36 ± 0.56

SGC 75.9 ± 0.3 94.0 ± 0.2 97.2 ± 0.1 68.5 ± 0.30

TensorGCN 77.91 ± 0.07 95.05 ± 0.01 98.04 ± 0.08 70.11 ± 0.24

GCN-with-label – 94.15 ± 0.10 97.37 ± 0.17 69.10 ± 0.20

HieGAT 78.04 94.54 97.83 69.84

GCN-CNN-SB 87.59 96.35 98.53 71.85

HINT 77.03 ± 0.12 95.02 ± 0.18 98.12 ± 0.09 68.79 ± 0.12

MP-GCN 77.92 ± 0.01 94.54 ± 0.08 97.85 ± 0.02 70.27 ± 0.12

TEGNN 80.83 95.91 98.26 71.33

AutoTGRL 89.91 ± 0.14 97.39 ± 0.10 98.61 ± 0.10 73.25 ± 0.10

Table 7 Test accuracy

comparison of models identified

by AutoTGRL with inductive

learning against the inductive-

based learning baseline models

on text classification task over

four benchmark datasets

Model MR R52 R8 Ohsumed

Graph-CNN-C 77.22 ± 0.27 92.75 ± 0.22 96.99 ± 0.12 63.86 ± 0.53

Graph-CNN-S 76.99 ± 0.14 92.74 ± 0.24 96.80 ± 0.20 62.82 ± 0.37

Graph-CNN-F 76.74 ± 0.21 93.20 ± 0.04 96.89 ± 0.06 63.04 ± 0.77

HyperGAT 78.32 ± 0.27 94.98 ± 0.27 97.97 ± 0.23 69.90 ± 0.34

Text-GCN (induct.) 74.80 ± 0.25 88.20 ± 0.72 95.78 ± 0.29 57.70 ± 0.35

TextING-M 80.19 ± 0.31 95.68 ± 0.35 98.13 ± 0.12 70.84 ± 0.52

InducT-GCN 79.37 ± 0.38 95.23 ± 0.03 97.47 ± 0.51 70.21 ± 0.34

TIGCN 77.40 ± 0.10 94.4 ± 0.10 97.5 ± 0.10 66.30 ± 0.20

TLGNN – 94.60 ± 0.30 97.80 ± 0.20 69.40 ± 0.60

GFN 78.04 95.31 98.22 70.20

AutoTGRL 81.12 ± 0.10 96.20 ± 0.10 98.32 ± 0.10 71.60 ± 0.14

Table 8 Performance of ASC task by models identified by

AutoTGRL and baseline models

Model Laptop Restaurant Twitter

Acc F1 ACC F1 Acc F1

BiGCN 74.59 71.84 81.97 73.48 74.16 73.35

DGEDT 76.80 72.30 83.90 75.10 74.80 73.40

kumaGCN 76.12 72.42 81.43 73.64 72.45 70.77

InterGCN 77.86 74.32 82.23 74.01 – –

R-GAT 77.42 73.7 83.30 76.08 75.57 73.82

DualGCN?BERT 81.80 78.10 87.13 81.16 77.40 76.02

SSEGCN?BERT 81.01 77.96 87.31 81.09 77.40 76.02

AutoTGRL 82.63 79.45 88.43 82.72 78.54 77.36

3958 Neural Computing and Applications (2024) 36:3941–3965

123

module, which are fed to transductive or inductive graph-

based learning. We remove the large-scale text embedding

module from AutoTGRL called AutoTGRL-NLTE and set

the embedding of token nodes using pre-trained GloVe [35]

model, while the embeddings of the document nodes are

computed by the sum of token embeddings included in the

document. We use AutoTGRL with transductive learning

for this experiment. Considering the results shown in

Table 15, we observe that the large-scale text embedding

module has a pretty significant impact on our model over

the datasets. We can notice that the results decline when

removing the module from the AutoTGRL model.

4.6.2 Ablation study of DAGNN layer

In this section, we verify the efficacy of the developed

DAGNN layer by setting the number of intermediate states

to 1 (equivalent to conventional GNN layer), 2, and 3

states. The GNN architecture of the TGRL model is then

generated by the search algorithm depending on the num-

ber of intermediate states taken from the defined search

space. From the results in Table 16, we can see that the best

architecture discovered by AutoTGRL is when the inter-

mediate states are set to 2. Additionally, it has been

observed that there is a modest drop in performance when

the number of intermediate states is increased to 3. This

illustrates that deep GNN may indirectly collect informa-

tion from unrelated nodes leading to a degradation in

performance.

Table 9 Performance of ASTE task by models identified by

AutoTGRL and baseline models

Model 14res 14lap

P. R. F1 P. R. F1

RINANTE 48.97 47.36 48.15 41.20 33.20 36.70

CMLA 67.80 73.69 70.62 54.70 59.20 56.90

WHW-ASTE 76.60 67.84 71.95 63.15 61.55 62.34

Li-unified 74.43 69.26 71.75 68.01 56.72 61.86

Li-unified-R 73.15 74.44 73.79 66.28 60.71 63.38

GTS-CNN 70.79 61.71 65.94 55.93 47.52 51.38

GTS-BiLSTM 67.28 61.91 64.49 59.42 45.13 51.30

GTS-BERT 70.92 69.49 70.20 57.52 51.92 54.58

IMN?IOG 59.57 63.88 61.65 49.21 46.23 47.68

AutoTGRL 74.90 75.01 74.95 67.64 62.12 64.76

Table 10 Performance of entity and relation extraction task by

AutoTGRL and other state-of-the-art models on the ADE dataset

Model Entity Relation

P R F1 P R F1

Neural Joint Model 82.7 86.7 84.60 67.5 75.8 71.40

Relation-Metric 86.16 88.08 87.11 77.36 77.25 77.29

Multihead 84.72 88.16 86.40 72.10 77.24 74.58

Multihead with AT – – 86.73 – – 75.52

SpERT 88.99 89.59 89.28 77.77 79.96 78.84

KECI – – 90.67 – – 81.74

SPANMulti�Head 89.88 91.32 90.59 79.56 81.93 80.73

TablERT – – 89.90 – – 80.60

TablERT-CNN – – 89.70 – – 80.50

EINET 90.65 86.70 88.51 77.98 74.16 75.91

AutoTGRL 91.22 91.85 91.53 82.52 83.21 82.86

Table 11 Test accuracy comparison on SST datasets with baseline

NAS methods and large-scale pre-trained models on text classification

task

Model SST-B SST

ENAS-MACRO 88.90 51.55

ENAS-MICRO 87.52 47.00

DARTS 87.12 51.65

SMASH 85.94 46.65

ONE-SHOT 87.08 50.37

RANDOM SEARCH 87.15 49.20

TEXTNAS 90.33 52.51

ELMo BiLSTM 90.4 –

OpenAI GPT 91.3 –

BERT 93.39 53.2

RoBERTa 94.30 54.6

BertGCN 94.60 54.12

RoBERTaGCN 95.01 55.12

BART 92.70 –

AutoTGRL 96.96 56.92

Table 12 Comparison of training duration between the designed

TGRL models by AutoTGRL and best baselines using transductive

learning

Datasets AutoTGRL Text-GCN GCN-CNN-SB

Training time Training time Training time

R52 223.815 s 246 s 233.45 s

R8 125.356 s 192.6 135.24 s

Ohsumed 140.791 s 252.4 s 154.52 s

Neural Computing and Applications (2024) 36:3941–3965 3959

123

4.7 Parameter sensitivity

4.7.1 Performance on different sliding window sizes

Figure 7 exhibits the performance of the models designed

by AutoTGRL with a varying number of sliding window

sizes while constructing text graphs on R8 and MR datasets

on the classification task. We can notice that choosing an

appropriate window size plays an important role in test

performance. We can see that as the size of the window

Table 13 Comparison of

training duration between the

designed TGRL models by

AutoTGRL models and best

baselines using inductive

learning

Datasets AutoTGRL TLGCN GFN TextING-M

Training time Training time Training time Training time

Ohsumed 954.45 s 1685 s 1833 s 1018.678 s

R52 800.127 s 1175 s 1572 s 881.25 s

R8 628.24 s 839 s 907 s 671.78 s

Fig. 5 Average accuracy of the AutoTGRL with transductive and inductive graph-based learning against the best baselines from 0 to 40 epochs

Fig. 6 Loss value of the AutoTGRL with transductive (AutoTGRL-Transd) and inductive (AutoTGRL-Induct) graph-based learning against the

best baselines from 0 to 40 epochs

Table 14 Number of parameters (the model size) of the models

identified by AutoTGRL under transductive and inductive graph-

based learning against the best baseline models on R8 and R52

datasets. AutoTGRL-T means the AutoTGRL with transductive

graph-based learning and AutoTGRL-I means the AutoTGRL with

inductive graph-based learning

Datasets Transductive learning Inductive learning

AutoTGRL-T Baseline AutoTGRL-I Baseline

#Params #Params #Params #Params

R52 1,477,853 3,608,800 1,891,470 3,057,952

R8 1,469,009 3,074,000 1,189,010 2,722,908

Table 15 The influence of large-scale text embedding module. We

report the text classification accuracy after removing the large-scale

text embedding module from AutoTGRL, namely, AutoTGRL-NLTE

Model MR R52 R8 Ohsumed

AutoTGRL 89.91 97.39 98.61 73.45

AutoTGRL-NLTE 85.31 95.32 97.56 70.45

Table 16 AutoTGRL performance with varying number of interme-

diate states in the DAGNN layer over MR and R52 datasets

One state Two states Three states

MR 87.40 89.91 86.2

R52 96.20 97.39 95.43

3960 Neural Computing and Applications (2024) 36:3941–3965

123

gets bigger, the accuracy of the tests starts to get better.

However, the average accuracy gets worse when the win-

dow size is 20 for both datasets. This suggests that small

window sizes may not give enough information about how

often global tokens occur together, while large window

sizes may connect nodes that have nothing to do with each

other.

4.7.2 Performance on a different number of GNN layers

Figure 8 shows the classification performance on MR and

R8 with varying numbers of designed GNN layers. We

notice that two GNN layers provide the highest perfor-

mance. Additionally, we see that the performance degrades

as the number of layers increases. This demonstrates that

deep GNN layers for text-graph representation may acquire

information from a token or document nodes that are

unrelated, resulting in performance reduction.

4.7.3 Performance on different sizes of labeled training
data

We also investigate the impact of labeled training data size.

Different top-performing models are compared using dif-

ferent percentages of the whole dataset as training data. We

present the results on R8 and MR in Fig. 9. In general, all

evaluated methods achieve performance improvements

with the growth of labeled training data. More surprisingly,

models made by AutoTGRL do much better than other

baselines with less labeled data. This shows that the pro-

posed method works well in real-world cases.

4.8 Ablation study of the effect of balancing
module error methods

In this section, conducted additional experiments to

demonstrate the effectiveness of the two error balance

methods: fine-tuning embedding method and performance-

based feedback method. For the fine-tuning embedding

method, we performed experiments where we fine-tune

document embeddings based on truth labels involving

training large-scale text embedding models on a given

labeled dataset. Then, we compared the performance of this

method against a baseline version of AutoTGRL, namely,

AutoTGRL-FEM where no fine-tuning is applied. By

measuring various evaluation metrics such as accuracy on

text classification tasks, and F1-score on aspect sentiment

classification tasks, we showcase how fine-tuning helps in

achieving a better balance between errors across different

modules. Similarly, for the performance-based feedback

method, we conducted experiments that incorporate feed-

back from the model evaluation module to adjust the error

weights of the controller of the reinforcement learning-

based search algorithm in the automated TGRL model

search module during training. We compared this method

against a baseline version of AutoTGRL, namely,

AutoTGRL-PFM where we use a random search algorithm

[78]. The random search algorithm randomly selects the

components of TGRL models from the TGRL search space

and then ranks the chosen TGRL models based on their

performances. Through these experiments, we aim to

demonstrate how performance-based feedback used in

reinforcement learning-based search algorithms can effec-

tively balance errors and generate the TGRL model that

performs better.

Table 17 of the revised manuscript (also shown below)

shows the experiment results of the effect of the balancing

module error methods. We report the accuracy scores on

the text classification task and F1 scores on the ASC task

after removing the fine-tuning embedding method, and

performance-based feedback method when running

AutoTGRL, namely, AutoTGRL-FEM and AutoTGRL-

PFM. The results demonstrated that the both fine-tuning

embedding method and the performance-based feedback

method, namely, AutoTGRL have achieved better perfor-

mance over text classification and ASC tasks. We also

noticed that removing fine-tuning embedding method from

our model achieved better performance than removing the

performance-based feedback method, which indicates that

the performance-based feedback method has a better

impact on our model.

Fig. 7 AutoTGRL test Accuracy by varying sliding window sizes on

the classification task

Fig. 8 AutoTGRL test accuracy with a different number of designed

DAGNN layers on the classification task

Neural Computing and Applications (2024) 36:3941–3965 3961

123

5 Conclusion

In this paper, we propose an automatic text-graph repre-

sentation learning (TGRL) model based on the automatic

search of the TGRL model, namely, AutoTGRL. The

designed AutoTGRL framework consists of five main

modules: large-scale text embedding, transductive graph-

based learning, inductive graph-based learning, model

evaluation, and automated TGRL model search modules.

The automated TGRL model search module uses a search

algorithm based on reinforcement learning with a policy

gradient to generate the combination of the TGRL model

from the TGRL search space and optimizes them over

time. We apply the AutoTGRL model to text classification,

aspect-based sentiment analysis, and entity and relation

extraction tasks. The AutoTGR model can automatically

identify the optimal large-scale text embedding strategy,

text graph representation strategy, and GNN structure with

hyperparameters to encode the given text for the down-

stream tasks. Another significant strength of our approach

is its generality, which allows it to be applied to different

text-graph representation learning tasks. Experiment results

show that AutoTGRL can automatically design the optimal

TGRL models to obtain better performance over several

datasets compared to the SOTA models. On the other hand,

our approach has some limitations, such as the need for a

predefined search space, which could limit the flexibility of

the method to adapt to more complex tasks such as mul-

tiview multitask graph learning tasks. In addition, the

approach does not consider multimodal tasks, which

restricts its applicability in scenarios where the input data

consists of multiple modalities such as images and videos.

In future work, we plan to overcome these limitations by

incorporating more flexible search spaces and search

algorithms suitable for multiview multitask learning and

multimodal learning tasks. Moreover, a more in-depth

examination of how the approach would act with extremely

multi-label datasets for various tasks might provide light on

how the method would work for various tasks. To be able

to apply AutoTGRL on a wider range of text-graph rep-

resentation learning tasks, we need to adjust the candidate

values of search space components and the prediction layer

based on the given task.

Author contributions RA contributed to conceptualization, data

curation, formal analysis, investigation, methodology, resources,

software, validation, visualization, writing, and review. JG performed

investigation, project administration, supervision, validation, and

review. JC helped in data curation, editing, investigation, resources,

validation, and review. BMO performed investigation, resources,

editing, and review. TL performed investigation, validation, and

review.

Funding The work is supported by the National Natural Science

Foundation of China (No. 62272487).

Data availability All datasets used in the paper are publicly available.

Code availability Please email alsabriraeed@csu.edu.cn to request

code for the proposed method.

Declarations

Conflict of interest No conflicts of interest or competing interests.

Fig. 9 Test accuracy with

varying training data

proportions (2%, 5%, 10%,

20%, 50%, 75%) on R8 and MR

datasets

Table 17 The experiment results of the effect of the balancing

module error methods

Model version ASC task Text classification task

Laptop Restaurant R52 R8

F1 F1 ACC ACC

AutoTGRL-FEM 78.69 81.93 96.05 98.01

AutoTGRL-PFM 78.01 81.13 96.45 97.84

AutoTGRL 79.45 82.72 97.39 98.61

We report the accuracy scores on the text classification task and F1

scores on the ASC task after removing the fine-tuning embedding

method, and performance-based feedback method when running

AutoTGRL, namely, AutoTGRL-FEM, and AutoTGRL-PFM.

3962 Neural Computing and Applications (2024) 36:3941–3965

123

Ethical approval Not applicable

Consent to participate The manuscript is approved by all authors for

publication.

Consent for publication All authors who participated in this study

give the publisher permission to publish this work.

References

1. Zhang Z, Zhou Z, Wang Y (2022) SSEGCN: syntactic and

semantic enhanced graph convolutional network for aspect-based

sentiment analysis. In: Proceedings of the 2022 conference of the

North American chapter of the association for computational

Linguistics: human language technologies, pp 4916–4925. https://

doi.org/10.18653/v1/2022.naacl-main.362

2. Li X, Bing L, Li P, Lam W (2019) A unified model for opinion

target extraction and target sentiment prediction. In: Proceedings

of the AAAI conference on artificial intelligence, vol 33,

pp 6714–6721. https://doi.org/10.1609/aaai.v33i01.33016714

3. Song R, Giunchiglia F, Zhao K, Tian M, Xu H (2022) Graph

topology enhancement for text classification. Appl Intell

52(13):15091–15104. https://doi.org/10.1007/s10489-021-03113-

8

4. Tran T, Kavuluru R (2019) Neural metric learning for fast end-to-

end relation extraction. arXiv preprint. arXiv:1905.07458

5. Bekoulis G, Deleu J, Demeester T, Develder C (2018) Adver-

sarial training for multi-context joint entity and relation extrac-

tion. In: Proceedings of the 2018 conference on empirical

methods in natural language processing, pp 2830–2836. https://

doi.org/10.18653/v1/d18-1307

6. Kipf TN, Welling M (2017) Semi-supervised classification with

graph convolutional networks. In: Proceedings of the 5th inter-

national conference on learning representations

7. Velickovic P, Cucurull G, Casanova A, Romero A, Liò P, Bengio

Y (2018) Graph attention networks. In: Proceedings of the 6th

international conference on learning representations

8. Liu X, You X, Zhang X, Wu J, Lv P (2020) Tensor graph con-

volutional networks for text classification. In: Proceedings of the

AAAI conference on artificial intelligence, vol 34, pp 8409–8416.

https://doi.org/10.1609/aaai.v34i05.6359

9. Xint Y, Xu L, Guo J, Li J, Sheng X, Zhou Y (2020) Label

incorporated graph neural networks for text classification. In:

Proceedings of the 25th international conference on pattern

recognition (ICPR), pp 8892–8898. https://doi.org/10.1109/

ICPR48806.2021.9413086

10. Osman AH, Barukub OM (2020) Graph-based text representation

and matching: a review of the state of the art and future chal-

lenges. IEEE Access 8:87562–87583. https://doi.org/10.1109/

ACCESS.2020.2993191

11. Yao L, Mao C, Luo Y (2019) Graph convolutional networks for

text classification. In: Proceedings of the AAAI conference on

artificial intelligence, vol 33, pp 7370–7377. https://doi.org/10.

1609/aaai.v33i01.33017370

12. Huang L, Ma D, Li S, Zhang X, Wang H (2019) Text level graph

neural network for text classification. In: Proceedings of the 2019

conference on empirical methods in natural language processing

and the 9th international joint conference on natural language

processing, pp 3442–3448. https://doi.org/10.18653/v1/D19-1345

13. Zhang Y, Yu X, Cui Z, Wu S, Wen Z, Wang L (2020) Every

document owns its structure: inductive text classification via

graph neural networks. In: Proceedings of the 58th annual

meeting of the association for computational linguistics,

pp 334–339. https://doi.org/10.18653/v1/2020.acl-main.31

14. Oloulade BM, Gao J, Chen J, Lyu T, Al-Sabri R (2021) Graph

neural architecture search: a survey. Tsinghua Sci Technol

27(4):692–708. https://doi.org/10.26599/TST.2021.9010057

15. Wu F, Jr AHS, Zhang T, Fifty C, Yu T, Weinberger KQ (2019)

Simplifying graph convolutional networks. In: Proceedings of the

36th international conference on machine learning, vol 97,

pp 6861–6871

16. Ding K, Wang J, Li J, Li D, Liu H (2020) Be more with less:

hypergraph attention networks for inductive text classification.

In: Proceedings of the 2020 conference on empirical methods in

natural language processing, pp 4927–4936. https://doi.org/10.

18653/v1/2020.emnlp-main.399

17. Liang B, Yin R, Gui L, Du J, Xu R (2020) Jointly learning aspect-

focused and inter-aspect relations with graph convolutional net-

works for aspect sentiment analysis. In: Proceedings of the 28th

international conference on computational linguistics,

pp 150–161. https://doi.org/10.18653/v1/2020.coling-main.13

18. Zhao H, Xie J, Wang H (2022) Graph convolutional network

based on multi-head pooling for short text classification. IEEE

Access 10:11947–11956. https://doi.org/10.1109/ACCESS.2022.

3146303

19. Li R, Chen H, Feng F, Ma Z, Wang X, Hovy EH (2021) Dual

graph convolutional networks for aspect-based sentiment analy-

sis. In: Proceedings of the 59th annual meeting of the association

for computational linguistics and the 11th international joint

conference on natural language processing, vol 1, pp 6319–6329.

https://doi.org/10.18653/v1/2021.acl-long.494

20. Lai TM, Ji H, Zhai C, Tran QH (2021) Joint biomedical entity

and relation extraction with knowledge-enhanced collective

inference. In: Proceedings of the 59th annual meeting of the

association for computational linguistics and the 11th interna-

tional joint conference on natural language processing, vol 1,

pp 6248–6260. https://doi.org/10.18653/v1/2021.acl-long.488

21. Zhang M, Qian T (2020) Convolution over hierarchical syntactic

and lexical graphs for aspect level sentiment analysis. In: Pro-

ceedings of the 2020 conference on empirical methods in natural

language processing, pp 3540–3549. https://doi.org/10.18653/v1/

2020.emnlp-main.286

22. Chen H, Zhai Z, Feng F, Li R, Wang X (2022) Enhanced multi-

channel graph convolutional network for aspect sentiment triplet

extraction. In: Proceedings of the 60th annual meeting of the

association for computational linguistics, vol 1, pp 2974–2985.

https://doi.org/10.18653/v1/2022.acl-long.212

23. Elsken T, Metzen JH, Hutter F (2019) Neural architecture search:

a survey. J Mach Learn Res 20(1):1997–2017

24. Wang Y, Yang Y, Chen Y, Bai J, Zhang C, Su G, Kou X, Tong Y,

Yang M, Zhou L (2020) TextNAS: a neural architecture search

space tailored for text representation. In: Proceedings of the

AAAI conference on artificial intelligence, pp 9242–9249. https://

doi.org/10.1609/aaai.v34i05.6462

25. Pham H, Guan M, Zoph B, Le Q, Dean J (2018) Efficient neural

architecture search via parameters sharing. In: Proceedings of the

35th international conference on machine learning, vol 80,

pp 4095–4104

26. Liu H, Simonyan K, Yang Y (2018) DARTS: differentiable

architecture search. arXiv preprint. arXiv:1806.09055

27. Brock A, Lim T, Ritchie JM, Weston N (2018) SMASH: one-shot

model architecture search through hypernetworks. In: Proceed-

ings of the 6th international conference on learning

representations

28. Gao Y, Yang H, Zhang P, Zhou C, Hu Y (2020) Graph neural

architecture search. In: Proceedings of the 29th international joint

conference on artificial intelligence, pp 1403–1409. https://doi.

org/10.24963/ijcai.2020/195

Neural Computing and Applications (2024) 36:3941–3965 3963

123

https://doi.org/10.18653/v1/2022.naacl-main.362
https://doi.org/10.18653/v1/2022.naacl-main.362
https://doi.org/10.1609/aaai.v33i01.33016714
https://doi.org/10.1007/s10489-021-03113-8
https://doi.org/10.1007/s10489-021-03113-8
http://arxiv.org/abs/1905.07458
https://doi.org/10.18653/v1/d18-1307
https://doi.org/10.18653/v1/d18-1307
https://doi.org/10.1609/aaai.v34i05.6359
https://doi.org/10.1109/ICPR48806.2021.9413086
https://doi.org/10.1109/ICPR48806.2021.9413086
https://doi.org/10.1109/ACCESS.2020.2993191
https://doi.org/10.1109/ACCESS.2020.2993191
https://doi.org/10.1609/aaai.v33i01.33017370
https://doi.org/10.1609/aaai.v33i01.33017370
https://doi.org/10.18653/v1/D19-1345
https://doi.org/10.18653/v1/2020.acl-main.31
https://doi.org/10.26599/TST.2021.9010057
https://doi.org/10.18653/v1/2020.emnlp-main.399
https://doi.org/10.18653/v1/2020.emnlp-main.399
https://doi.org/10.18653/v1/2020.coling-main.13
https://doi.org/10.1109/ACCESS.2022.3146303
https://doi.org/10.1109/ACCESS.2022.3146303
https://doi.org/10.18653/v1/2021.acl-long.494
https://doi.org/10.18653/v1/2021.acl-long.488
https://doi.org/10.18653/v1/2020.emnlp-main.286
https://doi.org/10.18653/v1/2020.emnlp-main.286
https://doi.org/10.18653/v1/2022.acl-long.212
https://doi.org/10.1609/aaai.v34i05.6462
https://doi.org/10.1609/aaai.v34i05.6462
http://arxiv.org/abs/1806.09055
https://doi.org/10.24963/ijcai.2020/195
https://doi.org/10.24963/ijcai.2020/195

29. Gao Y, Yang H, Zhang P, Zhou C, Hu Y (2019) GraphNAS:

graph neural architecture search with reinforcement learning.

arXiv preprint. arXiv:1904.09981

30. Lu Z, Du P, Nie J (2020) VGCN-BERT: augmenting BERT with

graph embedding for text classification. Adv Inf Retr

12035:369–382. https://doi.org/10.1007/978-3-030-45439-5_25

31. Devlin J, Chang M, Lee K, Toutanova K (2019) BERT: pre-

training of deep bidirectional transformers for language under-

standing. In: Proceedings of the 2019 conference of the North

American chapter of the association for computational linguis-

tics: human language technologies, vol 1, pp 4171–4186. https://

doi.org/10.18653/v1/n19-1423

32. Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis

M, Zettlemoyer L, Stoyanov V (2019) RoBERTa: a robustly

optimized BERT pretraining approach. arXiv preprint. arXiv:

1907.11692

33. Iacobacci I, Navigli R (2019) LSTMEmbed: learning word and

sense representations from a large semantically annotated corpus

with long short-term memories. In: Proceedings of the 57th

conference of the association for computational linguistics, vol 1,

pp 1685–1695. https://doi.org/10.18653/v1/p19-1165

34. Thost V, Chen J (2021) Directed acyclic graph neural networks.

In: Proceedings of the 9th international conference on learning

representations

35. Pennington J, Socher R, Manning CD (2014) Glove: global

vectors for word representation. In: Proceedings of the 2014

conference on empirical methods in natural language processing,

pp 1532–1543. https://doi.org/10.3115/v1/d14-1162

36. Xu K, Hu W, Leskovec J, Jegelka S (2019) How powerful are

graph neural networks?. In: Proceedings of the 7th international

conference on learning representations

37. Lee JB, Rossi RA, Kim S, Ahmed NK, Koh E (2019) Attention

models in graphs: a survey. ACM Trans Knowl Discov Data

13(6):62–16225. https://doi.org/10.1145/3363574

38. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional

neural networks on graphs with fast localized spectral filtering.

In: Advances in neural information processing systems, vol 29,

pp 3837–3845

39. Bianchi FM, Grattarola D, Livi L, Alippi C (2022) Graph neural

networks with convolutional ARMA filters. IEEE Trans Pattern

Anal Mach Intell 44(7):3496–3507. https://doi.org/10.1109/

TPAMI.2021.3054830

40. Hamilton WL, Ying Z, Leskovec J (2017) Inductive representa-

tion learning on large graphs. Adv Neural Inf Process Syst

30:1024–1034

41. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhut-

dinov R (2014) Dropout: a simple way to prevent neural networks

from overfitting. J Mach Learn Res 15(1):1929–1958. https://doi.

org/10.5555/2627435.2670313

42. Zhang W, Li X, Deng Y, Bing L, Lam W (2021) Towards gen-

erative aspect-based sentiment analysis. In: Proceedings of the

59th annual meeting of the association for computational lin-

guistics and the 11th international joint conference on natural

language processing, vol 2, pp 504–510. https://doi.org/10.18653/

v1/2021.acl-short.64

43. Wu Z, Ying C, Zhao F, Fan Z, Dai X, Xia R (2020) Grid tagging

scheme for aspect-oriented fine-grained opinion extraction. arXiv

preprint. arXiv:2010.04640

44. Peng H, Xu L, Bing L, Huang F, Lu W, Si L (2020) Knowing

what, how and why: a near complete solution for aspect-based

sentiment analysis. In: Proceedings of the AAAI conference on

artificial intelligence, vol 34, pp 8600–8607. https://doi.org/10.

1609/aaai.v34i05.6383

45. Ma Y, Hiraoka T, Okazaki N (2022) Named entity recognition

and relation extraction using enhanced table filling by

contextualized representations. J Nat Lang Process

29(1):187–223. https://doi.org/10.5715/jnlp.29.187

46. Ma Y, Hiraoka T, Okazaki N (2022) Joint entity and relation

extraction based on table labeling using convolutional neural

networks. In: Proceedings of the sixth workshop on structured

prediction for NLP, pp 11–21. https://doi.org/10.18653/v1/2022.

spnlp-1.2

47. Beltagy I, Lo K, Cohan A (2019) SciBERT: a pretrained lan-

guage model for scientific text. In: Proceedings of the 2019

conference on empirical methods in natural language processing

and the 9th international joint conference on natural language

processing, pp 3613–3618. https://doi.org/10.18653/v1/D19-1371

48. Lin Y, Meng Y, Sun X, Han Q, Kuang K, Li J, Wu F (2021)

BertGCN: transductive text classification by combining GNN and

BERT. In: Findings of the association for computational lin-

guistics: ACL-IJCNLP 2021, pp 1456–1462. https://doi.org/10.

18653/v1/2021.findings-acl.126

49. Joulin A, Grave E, Bojanowski P, Mikolov T (2017) Bag of tricks

for efficient text classification. In: Proceedings of the 15th con-

ference of the European chapter of the association for computa-

tional linguistics, vol 2, pp 427–431. https://doi.org/10.18653/v1/

e17-2068

50. Shen D, Wang G, Wang W, Min MR, Su Q, Zhang Y, Li C,

Henao R, Carin L (2018) Baseline needs more love: on simple

word-embedding-based models and associated pooling mecha-

nisms. In: Proceedings of the 56th annual meeting of the asso-

ciation for computational linguistics, vol 1, pp 440–450. https://

doi.org/10.18653/v1/P18-1041

51. Peng H, Li J, He Y, Liu Y, Bao M, Wang L, Song Y, Yang Q

(2018) Large-scale hierarchical text classification with recur-

sively regularized deep graph-CNN. In: Proceedings of the 2018

world wide web conference, pp 1063–1072. https://doi.org/10.

1145/3178876.3186005

52. Hua S, Li X, Jing Y, Liu Q (2022) A semantic hierarchical graph

neural network for text classification. arXiv preprint. arXiv:2209.

07031

53. Zeng F, Chen N, Yang D, Meng Z (2022) Simplified-boosting

ensemble convolutional network for text classification. Neural

Process Lett 54(6):4971–4986. https://doi.org/10.1007/s11063-

022-10843-4

54. Zhang C, Zhu H, Peng X, Wu J, Xu K (2022) Hierarchical

information matters: text classification via tree based graph

neural network. In: Proceedings of the 29th international con-

ference on computational linguistics, pp 950–959

55. Henaff M, Bruna J, LeCun Y (2015) Deep convolutional net-

works on graph-structured data. arXiv preprint. arXiv:1506.

05163

56. Bruna J, Zaremba W, Szlam A, LeCun Y (2014) Spectral net-

works and locally connected networks on graphs. In: Proceedings

of the 2nd international conference on learning representations

57. Wang K, Han S.C, Poon J (2022) InducT-GCN: inductive graph

convolutional networks for text classification. In: Proceedings of

the 26th international conference on pattern recognition,

pp 1243–1249. https://doi.org/10.1109/ICPR56361.2022.

9956075

58. Shi J, Wu X, Liu X, Lu W, Li S (2022) Inductive light graph

convolution network for text classification based on word-label

graph. In: Proceedings of the international conference on intel-

ligent information processing, vol 643, pp 42–55. https://doi.org/

10.1007/978-3-031-03948-5_4

59. Dai Y, Shou L, Gong M, Xia X, Kang Z, Xu Z, Jiang D (2022)

Graph fusion network for text classification. Knowl-Based Syst

236:107659. https://doi.org/10.1016/j.knosys.2021.107659

60. Wang K, Shen W, Yang Y, Quan X, Wang R (2020) Relational

graph attention network for aspect-based sentiment analysis. In:

Proceedings of the 58th annual meeting of the association for

3964 Neural Computing and Applications (2024) 36:3941–3965

123

http://arxiv.org/abs/1904.09981
https://doi.org/10.1007/978-3-030-45439-5_25
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/p19-1165
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1145/3363574
https://doi.org/10.1109/TPAMI.2021.3054830
https://doi.org/10.1109/TPAMI.2021.3054830
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.18653/v1/2021.acl-short.64
https://doi.org/10.18653/v1/2021.acl-short.64
http://arxiv.org/abs/2010.04640
https://doi.org/10.1609/aaai.v34i05.6383
https://doi.org/10.1609/aaai.v34i05.6383
https://doi.org/10.5715/jnlp.29.187
https://doi.org/10.18653/v1/2022.spnlp-1.2
https://doi.org/10.18653/v1/2022.spnlp-1.2
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/2021.findings-acl.126
https://doi.org/10.18653/v1/2021.findings-acl.126
https://doi.org/10.18653/v1/e17-2068
https://doi.org/10.18653/v1/e17-2068
https://doi.org/10.18653/v1/P18-1041
https://doi.org/10.18653/v1/P18-1041
https://doi.org/10.1145/3178876.3186005
https://doi.org/10.1145/3178876.3186005
http://arxiv.org/abs/2209.07031
http://arxiv.org/abs/2209.07031
https://doi.org/10.1007/s11063-022-10843-4
https://doi.org/10.1007/s11063-022-10843-4
http://arxiv.org/abs/1506.05163
http://arxiv.org/abs/1506.05163
https://doi.org/10.1109/ICPR56361.2022.9956075
https://doi.org/10.1109/ICPR56361.2022.9956075
https://doi.org/10.1007/978-3-031-03948-5_4
https://doi.org/10.1007/978-3-031-03948-5_4
https://doi.org/10.1016/j.knosys.2021.107659

computational linguistics, pp 3229–3238. https://doi.org/10.

18653/v1/2020.acl-main.295

61. Tang H, Ji D, Li C, Zhou Q (2020) Dependency graph enhanced

dual-transformer structure for aspect-based sentiment classifica-

tion. In: Proceedings of the 58th annual meeting of the associa-

tion for computational linguistics, pp 6578–6588. https://doi.org/

10.18653/v1/2020.acl-main.588

62. Chen C, Teng Z, Zhang Y (2020) Inducing target-specific latent

structures for aspect sentiment classification. In: Proceedings of

the 2020 conference on empirical methods in natural language

processing, pp 5596–5607. https://doi.org/10.18653/v1/2020.

emnlp-main.451

63. Dai H, Song Y (2019) Neural aspect and opinion term extraction

with mined rules as weak supervision. In: Proceedings of the 57th

conference of the association for computational linguistics, vol 1,

pp 5268–5277. https://doi.org/10.18653/v1/p19-1520

64. Wang W, Pan SJ, Dahlmeier D, Xiao X (2017) Coupled multi-

layer attentions for co-extraction of aspect and opinion terms. In:

Proceedings of the AAAI conference on artificial intelligence, vol

31, pp 3316–3322. https://doi.org/10.1609/aaai.v31i1.10974

65. Bekoulis G, Deleu J, Demeester T, Develder C (2018) Joint entity

recognition and relation extraction as a multi-head selection

problem. Expert Syst Appl 114:34–45. https://doi.org/10.1016/j.

eswa.2018.07.032

66. Eberts M, Ulges A (2020) Span-based joint entity and relation

extraction with transformer pre-training. In: Proceedings of the

24th European conference on artificial intelligence, vol 325,

pp 2006–2013. https://doi.org/10.3233/FAIA200321

67. Ji B, Yu J, Li S, Ma J, Wu Q, Tan Y, Liu H (2020) Span-based

joint entity and relation extraction with attention-based span-

specific and contextual semantic representations. In: Proceedings

of the 28th international conference on computational linguistics,

pp 88–99. https://doi.org/10.18653/v1/2020.coling-main.8

68. Li F, Zhang M, Fu G, Ji D (2017) A neural joint model for entity

and relation extraction from biomedical text. BMC Bioinf

18(1):198–119811. https://doi.org/10.1186/s12859-017-1609-9

69. Wu H, Huang J (2022) Joint entity and relation extraction net-

work with enhanced explicit and implicit semantic information.

Appl Sci 12(12):6231–6247. https://doi.org/10.3390/

app12126231

70. Bender G, Kindermans P, Zoph B, Vasudevan V, Le QV (2018)

Understanding and simplifying one-shot architecture search. In:

Proceedings of the 35th international conference on machine

learning, vol 80, pp 549–558

71. Li L, Talwalkar A (2020) Random search and reproducibility for

neural architecture search. In: Proceedings of the 35th conference

on uncertainty in artificial intelligence. Proceedings of machine

learning research, vol 115, pp 367–377

72. Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K,

Zettlemoyer L (2018) Deep contextualized word representations.

In: Proceedings of the 2018 conference of the North American

chapter of the association for computational linguistics: human

language technologies, vol 1, pp 2227–2237. https://doi.org/10.

18653/v1/n18-1202

73. Radford A, Narasimhan K, Salimans T, Sutskever I et al. (2018)

Improving language understanding by generative pre-training.

Technical Report, OpenAI

74. Pontiki M, Galanis D, Pavlopoulos J, Papageorgiou H,

Androutsopoulos I, Manandhar S (2014) Semeval-2014 task 4:

aspect based sentiment analysis. In: Proceedings of the 8th

international workshop on semantic evaluation, pp 27–35. https://

doi.org/10.3115/v1/s14-2004

75. Dong L, Wei F, Tan C, Tang D, Zhou M, Xu K (2014) Adaptive

recursive neural network for target-dependent twitter sentiment

classification. In: Proceedings of the 52nd annual meeting of the

association for computational linguistics, vol 2, pp 49–54. https://

doi.org/10.3115/v1/p14-2009

76. Fan Z, Wu Z, Dai X, Huang S, Chen J (2019) Target-oriented

opinion words extraction with target-fused neural sequence

labeling. In: Proceedings of the 2019 conference of the North

American chapter of the association for computational linguis-

tics: human language technologies, vol 1, pp 2509–2518. https://

doi.org/10.18653/v1/n19-1259

77. Gurulingappa H, Rajput AM, Roberts A, Fluck J, Hofmann-

Apitius M, Toldo L (2012) Development of a benchmark corpus

to support the automatic extraction of drug-related adverse effects

from medical case reports. J Biomed Inform 45(5):885–892.

https://doi.org/10.1016/j.jbi.2012.04.008

78. You J, Ying Z, Leskovec J (2020) Design space for graph neural

networks. Adv Neural Inf Process Syst 33:17009–17021

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Neural Computing and Applications (2024) 36:3941–3965 3965

123

https://doi.org/10.18653/v1/2020.acl-main.295
https://doi.org/10.18653/v1/2020.acl-main.295
https://doi.org/10.18653/v1/2020.acl-main.588
https://doi.org/10.18653/v1/2020.acl-main.588
https://doi.org/10.18653/v1/2020.emnlp-main.451
https://doi.org/10.18653/v1/2020.emnlp-main.451
https://doi.org/10.18653/v1/p19-1520
https://doi.org/10.1609/aaai.v31i1.10974
https://doi.org/10.1016/j.eswa.2018.07.032
https://doi.org/10.1016/j.eswa.2018.07.032
https://doi.org/10.3233/FAIA200321
https://doi.org/10.18653/v1/2020.coling-main.8
https://doi.org/10.1186/s12859-017-1609-9
https://doi.org/10.3390/app12126231
https://doi.org/10.3390/app12126231
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.3115/v1/s14-2004
https://doi.org/10.3115/v1/s14-2004
https://doi.org/10.3115/v1/p14-2009
https://doi.org/10.3115/v1/p14-2009
https://doi.org/10.18653/v1/n19-1259
https://doi.org/10.18653/v1/n19-1259
https://doi.org/10.1016/j.jbi.2012.04.008

	AutoTGRL: an automatic text-graph representation learning framework
	Abstract
	Introduction
	Related work
	Text-graph representation
	GNNs for text-graph representation learning
	Neural architecture search

	Proposed framework AutoTGRL
	Problem definition
	Large-scale text embedding
	Transductive graph-based learning
	Transductive text-graph construction
	Transductive GNN-based Learning

	Inductive graph-based learning
	Inductive text-graph construction
	Inductive GNN-based learning

	Automated TGRL model search
	TGRL search space
	Search algorithm

	Model evaluation
	Text classification
	Aspect-based sentiment analysis
	Entity and relation extraction

	Balancing module errors
	Fine-tuning embedding method
	Performance-based feedback method

	Experiments
	Implementation details
	Baselines
	Manually designed networks
	NAS and large-scale pretrained methods

	Evaluation datasets
	Overall results
	Manually designed model comparisons
	NAS and large-scale pretrained models

	Average run-time and convergence speed
	Ablation study
	Ablation study of large-scale text embedding
	Ablation study of DAGNN layer

	Parameter sensitivity
	Performance on different sliding window sizes
	Performance on a different number of GNN layers
	Performance on different sizes of labeled training data

	Ablation study of the effect of balancing module error methods

	Conclusion
	Author contributions
	Code availability
	References

