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Abstract
One of the most widely referenced Swarm Intelligence (SI) algorithms is the Grey Wolf Optimizer (GWO), which is based

on the pack hunting and natural leadership organization of grey wolves. The GWO algorithm offers several significant

benefits, including simple implementation, rapid convergence, and superior convergence outcomes, leading to its effective

application in diverse fields for solving optimization issues. Consequently, the GWO has rapidly garnered substantial

research interest and a broad audience across numerous areas. To better understand the literature on this algorithm, this

review paper aims to consolidate and summarize research publications that utilized the GWO. The paper begins with a

concise introduction to the GWO, providing insight into its natural establishment and conceptual framework for opti-

mization. It then lays out the theoretical foundation and key procedures involved in the GWO, following which it

comprehensively examines the most recent iterations of the algorithm and categorizes them into parallel, modified, and

hybridized variations. Subsequently, the primary applications of the GWO are thoroughly explored, spanning various fields

such as computer science, engineering, energy, physics and astronomy, materials science, environmental science, and

chemical engineering, among others. This review paper concludes by summarizing the key arguments in favour of GWO

and outlining potential lines of inquiry in the future research.

Keywords GWO � Swarm intelligence algorithms � Variants � Applications

1 Introduction

Meta-heuristic optimization techniques have proven to be

successful in solving complex problems that arise in real-

world settings. The growing popularity of these techniques

can be attributed to several factors. Notably, by beginning

with solutions that are generated at random without

necessitating the calculation of search space derivation,

their derivation process is free of specific mechanisms

[1, 2] Additionally, meta-heuristic algorithms’ key char-

acteristic is exploration [3, 4], which aids in avoiding local

optima [2]. These algorithms are also fairly straightforward

in terms of their realistic or natural properties, drawing

inspiration from natural phenomena, animal behaviours,

and physical events [2]. Importantly, these methods do not

alter the algorithm’s structure (which is independent of the

problem), making them adaptable and easily applicable to a

wide range of real-world problems. Researchers need only

determine the inputs and outputs specific to a given prob-

lem. This inherent adaptability contributes significantly to

the appeal of these algorithms.

Meta-heuristic algorithms are categorized into two

subtypes based on their approach to solution space: single-

solution heuristics (e.g. Simulated Annealing [5, 6]) and

multiple-solution heuristics (e.g. Genetic Algorithm [7, 8],

Particle Swarm Optimization [9], Harmony Search
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[10, 11], etc.). To prevent being trapped in local optima,

multiple-solution heuristics are preferred to single-solution

heuristics, as the former can gather information on vast

search areas [2] and concurrently facilitate multiple solu-

tions in reaching critical areas of the state space.

Three fundamental ideas—evolution, physics, and

swarm intelligence—serve as the foundation for most

meta-heuristic algorithms. The main source of inspiration

for evolutionary algorithms is natural evolution. Well-

known evolutionary algorithms include the Genetic Algo-

rithm (GA [7, 8], Biogeography-Based Optimization

(BBO) [12], Genetic Programming [13], and Differential

Evolution (DE) [14, 15]. Physics-based algorithms, on the

other hand, emulate natural phenomena and include

examples like the Gravitational Search Algorithm (GSA)

[16], Charged System Search (CSS) [17], Black Hole (BH)

[18], and Ray Optimization [19]. Lastly, swarm intelli-

gence (SI) is one of the most popular and hotly debated

subcategories of natural algorithms. Grounded in the social

intelligence and collective behaviours of wild animals,

several SI-based meta-heuristics have emerged in recent

years, such as Particle Swarm Optimization (PSO) [20],

Ant Colony Optimization (ACO) [21], the Artificial Bee

Colony (ABC) [22], the Whale Optimization Algorithm

(WOA) [23], the Dragonfly Algorithm (DA) [24], and the

Firefly Algorithm (FA) [25].

A recent SI algorithm that has garnered significant

academic attention across various optimization domains is

the Grey Wolf Optimizer (GWO) [2], introduced by Mir-

jalili et al. in 2014. A substantial body of research literature

has evolved based on this algorithm, as depicted in Fig. 1,

which illustrates all papers related to the GWO up until

2022. The GWO stands out from its predecessors in several

ways. Specifically, it features a minimal number of

adjustable parameters, facilitating a swift balance between

exploration and exploitation and enabling positive con-

vergence [26].

The GWO algorithm is largely influenced by the social

structure and hierarchical organization observed in wolf

packs in nature, comprising four distinct wolf levels: alpha,

beta, delta, and omega. During their pursuit of prey, all

wolves follow the lead of the top three wolves to locate

their target. Empirical studies consistently attest to the

superior performance of the GWO, making it a valuable

tool in various applications. Notably, it has been utilized in

resource allocation [27], stock selection [28], COVID

prediction [29], and many more areas.

The primary objective of this review is to conduct a

comprehensive analysis of recent developments in the

GWO algorithm and its diverse applications within the

academic community. The review encompasses all relevant

publications from 2018 to 2023 available in the Scopus

database, as depicted by year in Fig. 2. Figure 3 provides

an overview of the distribution of GWO publications across

various subject categories, whereas Fig. 4 is a knowledge

map of the top 100 most relevant papers on the GWO. Each

circle within this map represents a distinct research topic,

whereby the quantity of the circles indicates the prevalence

and current status of the GWO literature. This review also

includes an exploration of the advantages of the GWO

algorithm and improvements proposed in the existing lit-

erature to address its shortcomings. Notably, as shown in

Fig. 5, this article discusses key facets of the GWO:

(1) GWO variants, which include the modified GWO,

hybridized GWO, parallelism, and multi-objective

GWO. The modified GWO encompasses enhance-

ments in mechanisms, operators, and population

hierarchy and structure.

(2) GWO applications, such as in the areas of machine

learning, engineering, wireless sensor networks,

environmental modelling, medicine and bioinformat-

ics, and image processing.

This review paper is organized as follows: Sect. 2 pro-

vides a general history of the GWO and its development;

Sect. 3 discusses the variations of the GWO and its

improvements; Sect. 4 identifies and describes the GWO’s

practical applications; Sect. 5 details the examination and

evaluation of the GWO; and Sect. 6 concludes the paper by

suggesting potential directions for future research on

GWO.

2 The grey wolf optimizer (GWO)

The GWO formula is presented in this section, along with a

breakdown of its essential components. The origins,

applications, and convergence of this algorithm are also

discussed.

2.1 Inspiration behind the GWO

The grey wolf, a member of the canid family (Canis lupus),

is considered an apex predator as it stands at the top of the

food chain. Grey wolves typically live in packs of five to

12, displaying high social awareness in terms of hunting

and leadership. The fairly rigid social hierarchy of the wolf

pack, depicted in Fig. 6, served as the source of inspiration

for the GWO algorithm.

The male or female wolf that leads the pack is known as

the alpha. The alpha is generally responsible for taking

decisions on hunting, where to sleep, when to get up, and

so on. Although the alpha is the best at leading the pack, it

is not always the most physically powerful member. This

shows that a pack’s organization and discipline are sig-

nificantly more important than its physical strength.
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The second position in the hierarchy of grey wolves is

called beta, held by the alpha’s subordinates. Beta wolves

obey the alpha and support it in decision-making, pack

duties, and commanding lower level wolves. They also

offer advice to the alpha and reaffirm the alpha’s directives

Fig. 1 Papers related to GWO

Fig. 2 Percentage of GWO Publications from 2018 to 2023

Fig. 3 GWO publication count by subject category

Fig. 4 Knowledge Map of the GWO
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to the rest of the pack. Betas thus act as the alpha’s

counsellors and the pack’s enforcers of discipline.

Next, wolves that submit to the alpha and beta wolves,

but dominate the lowest-level wolves, are called deltas.

Scouts, sentinels, seniors, hunters, and carers fall within

this category.

The grey wolf with the lowest ranking is the omega, the

scapegoat of the pack. Omega wolves must give way to all

other dominant wolves, and are only allowed to eat last.

The babysitters in the pack are sometimes the omegas.

Apart from their social order, group hunting is another

fascinating aspect of grey wolves’ social behaviour. The

main phases of grey wolf hunting are as follows [30]:

(a) Locating the prey, gaining ground on it, and stalking

it.

(b) Chasing, encircling, and harassing the prey until it

comes to a stop.

(c) Attacking the prey.

2.2 Mathematical models of the GWO

For the purpose of creating the GWO, the grey wolf

hunting strategy (see Fig. 7) is quantified in this section.

2.2.1 Encirclement

When hunting, grey wolves encircle their prey, as previ-

ously indicated. To quantitatively model the encircling

behaviour of grey wolves, the following equations are

suggested:

Fig. 5 Classification of the GWO algorithm

Fig. 6 The social structure of grey wolves

Fig. 7 The grey wolf hunting strategy a Locating the prey b Encir-

cling the prey c Attacking the prey
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D~ ¼ C~ � X~p ið Þ � X~ ið Þ
�
�
�

�
�
� ð1Þ

X~ iþ 1ð Þ ¼ X~p tð Þ � A~ � D~ ð2Þ

where i stands for the current iteration, A
!

and C
!

are

coefficient vectors, X
!

p is the position vector of the prey,

and X
!

stands for a grey wolf’s position vector.

Calculations for the vectors A
!

and C
!

are as follows:

A~¼ 2a~ � r1!� a~ ð3Þ

C~ ¼ 2 � r2! ð4Þ

where components of a! drop linearly over iterations from

2 to 0 and r1, r2 are random vectors in [0,1]. The following

equation should be used to update the parameter a:

a ¼ 2� i
2

I

� �

ð5Þ

where i represents the most recent iteration and I is the

total number of iterations.

A two-dimensional position vector and several potential

neighbours are shown in Fig. 8 to demonstrate the impli-

cations of Eqs. (1) and (2). A grey wolf in the position X(i)

can update its location in accordance with the location of

the prey, Xp. By changing the values of the A
!

and C
!

vectors, other locations surrounding the best agent can be

identified with respect to the current location. It should be

noted that wolves can reach any place between the points

shown in Fig. 8 as a result of the random vectors r1
! and r2

!.

A grey wolf can therefore use Eqs. (1) and (2) to update its

position inside the area surrounding the prey at any

location.

2.2.2 Hunting

Grey wolves have the capacity to locate their prey and hunt

them down. Typically, the alpha leads the hunt, though

hunting may occasionally be done by the beta and delta

wolves. In a generalized search environment, the optimal

prey is unclear. To mathematically mimic the hunting

behaviour of grey wolves, it is assumed that the beta, delta,

and alpha wolves have more knowledge about the likely

location of the prey. Therefore, the search results of wolves

in the top three rank are always used. All other search

agents, including the omegas, are directed to realign

themselves to match the top agents’ prey placements. The

formulas listed below are recommended in this regard.

D~a ¼ C~1 � X~a � X~
�
�
�

�
�
�

D~b ¼ C~2 � X~b � X~
�
�
�

�
�
� ð6Þ

D~d ¼ C~3 � X~d � X~
�
�
�

�
�
�

X~1 ¼ X~a � A~1 � D~a
� �

X~2 ¼ X~b � A~2 � D~b

� �

ð7Þ

X~3 ¼ X~d � A~3 � D~d

� �

X~ iþ 1ð Þ ¼ X~1 þ X~2 þ X~3

3
ð8Þ

Figure 9 illustrates how a search agent changes its

position in response to the alpha, betas, and deltas in a

2D search space. As can be seen in the figure, the final

position within a circle is randomly determined by the

Fig. 8 2D position vectors and potential future locations Fig. 9 Position updating in the GWO
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locations of alpha, beta, and delta agents in the search

space. Thus, alpha, betas, and deltas determine where the

prey is while the other wolves arbitrarily update their

positions around it.

2.3 The GWO’s exploration and exploitation

2.3.1 Exploitation (hunting the prey)

Grey wolves attack their prey when it stops moving, thus

ending the hunt. To imitate the analytical approach towards

the prey, the value of a is reduced, which, as should be

noted, decreases A
!

‘s fluctuation range as well. Specifi-

cally, a drops from 2 to 0 during the period of iterations,

decreasing at random within the range [�2a, 2a]. When the

random values of A
!

fall between [- 1, 1] ,the future

position of a search agent can be anywhere between [- 1,

1] and the prey’s position. Figure 10 shows how the wolves

are forced to charge the prey when Aj j\1.

The alpha, beta, and delta locations can now be used by

the GWO algorithm’s search agents to update their posi-

tions. Consequently, they can launch an attack in the

direction of the prey by employing the suggested operators.

However, the GWO method is susceptible to local solution

stagnation when used with these operators. While the

proposed encircling mechanism does, to some extent,

demonstrate exploration, the GWO requires more operators

to emphasize exploration.

2.3.2 Exploration (searching prey)

To direct their search, grey wolves mainly employ the

alpha, beta, and delta positions. They split up to search for

prey, then come back together to attack it. To mathemati-

cally imitate this divergence, A
!

with random values more

than 1 or less than -1 can be employed to drive the search

agent to diverge from the prey. This promotes exploration

and makes it possible to apply the GWO method globally.

Figure 10 demonstrates how Aj j[ 1 causes the grey

wolves to stray from their victim in an effort to locate fitter

prey.

Another aspect of the GWO that stimulates inquiry is the

C
!

vector, which has random values [0,2] as shown in

Eq. 4. This component provides random weights for the

prey to stochastically emphasize (C[ 1) or deemphasize

(C\1) the role of the prey in influencing the distance in

Eq. 1. Thus, it is possible for the GWO to act more ran-

domly in optimization, favouring exploration and

exploitation while avoiding the local optima trap. The

decline in C is not linear, which is an essential distinction

from A. This requires C to always supply random values to

prioritize exploration throughout both early and final iter-

ations. This element is helpful in situations of local optima

stagnation, especially in final iterations.

Alternatively, the C vector can be considered as the

outcome of natural obstacles in the way of approaching

prey. The obstructions in nature that wolves typically run

against on their hunting routes seriously impede their

capacity to reach their prey quickly and efficiently. Over-

coming these obstacles is what the vector C does. The

weight of a wolf’s prey can be arbitrarily assigned by the

wolf, making it harder and farther away for the wolf to get

there.

Finally, to start the search, a random grey wolf popu-

lation is produced via the GWO algorithm. The potential

position of the prey is calculated by the alpha, beta, and

delta wolves across a number of iterations. Each possible

response alters the prey’s distance from it. The value of a is

decreased from 2 to 0, highlighting exploration and

exploitation. When Aj j[ 1 and Aj j\1, agent solutions

frequently diverge from the prey. When an end criterion is

satisfied, the GWO algorithm is finally completed.

2.4 Illustrative example

The convergence behaviour of the GWO is examined in

this subsection. Berg et al. [31] asserted that during the

earliest stages of optimization, search agents’ movements

ought to change dramatically. This dynamic behaviour

allows a meta-heuristic algorithm to thoroughly explore the

entire search space. To emphasize exploitation towards the

conclusion of the optimization process, these changes in

agent movements should be minimized. Figure 11 visually

presents the search history and trajectory of the initial

search agent along its first dimension, offering insights into

the convergence behaviour of the GWO algorithm. For

animated versions of this figure, please refer to the Sup-

plementary Materials.

Fig. 10 Attacking prey and searching for prey
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In this section, the benchmark functions were adjusted

and the optimization process was conducted using six

search agents. The search history of these search agents is

illustrated in the second column of Fig. 11. Notably, the

GWO search agents frequently traverse potential regions

within the search space, intelligently selecting the most

promising ones. Furthermore, the trajectory of the first

particle is depicted in the fourth column of Fig. 11, high-

lighting changes in the first dimension of the initial search

agent. It is evident that there are substantial variations in

the early iterations, but these changes gradually diminish as

the iterations progress. According to Berg et al. [31] this

characteristic ensures that an SI algorithm eventually

converges on a particular location in the search space.

In conclusion, the results demonstrate that the GWO

formula outperforms well-known meta-heuristics in solv-

ing a number of benchmark functions.

3 Recent GWO variants

The complexity of real-world optimization problems has

prompted adjustments to the GWO technique to make it

compatible with the search space of complex domains. The

following four categories can be used to summarize the

changes made to the GWO: I. Adjustments to the update

mechanism to address shortcomings when used to solve

real-world issues; II. Changes to enhance operations; III.

Creation of a hybrid version to improve exploration and

exploitation; and IV. Development of multiple versions to

deal with parallel processing platforms. Each of these four

variations are explored in the following subsections.

3.1 Modified versions of the GWO

Based on the types of improvements proposed in each

reviewed paper to enhance the functionality of the GWO,

the improvements can be categorized into the following

groups: refreshing mechanisms, new operators, and modi-

fied population hierarchy and structure. The subsequent

paragraphs emphasize the key contributions made at each

of these levels.

3.1.1 Refreshing mechanisms

Researchers in this research direction have focused on

improving the balance between exploration and exploita-

tion procedures. Within this domain, two key sub-direc-

tions have emerged to enhance this balance. The first aims

to dynamically update GWO parameters, while the second

offers various techniques for modification. The following

discussion highlights the primary works within this

category.

One study [32] proposed the VW-GWO, a better GWO

with varying weights to maintain a strict social hierarchy

within the wolf pack. This algorithm requires that the alpha

position’s weight in Eq. 9 always be at least as great as that

of the beta and delta positions. Therefore, the weight of the

beta position should never be less than the weight of the

delta position. Additionally, as shown in Eq. 10, a novel

formula for governing the controlling factor is suggested in

order to lower the likelihood of being trapped in local

optima. ALO, PSO, BA, and the original GWO were used

to test and compare the methodology using 11 benchmark

functions. The results confirmed the proposed VW-GWO

algorithm’s qualities.

X~ t þ 1ð Þ ¼ x1X~1 þ x2X~2 þ x3X~3

x1 þ x2 þ x3 ¼ 1

u ¼ 1

2
arctan itð Þ

h ¼ 2

p
arccos

1

3
� arctan itð Þ

x1 ¼ cos h

x2 ¼
1

2
sin h � cosu

x3 ¼ 1� x1 � x2

8

>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð9Þ

a ¼ ame
�it=M ð10Þ

An improved Alpha-Guided GWO was suggested by

another author [33]. By adding a new guiding mechanism

(refer Eq. 11) and a mutation operation (refer Eq. 12), it

accelerates the algorithm’s convergence rate and keeps the

Fig. 11 The initial particle’s first-dimensional search history and

trajectory
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system from settling into a local optimal state. The pro-

cedure is made simpler to use by scalar coefficients A and

C. By contrasting the IAgGWO with other four algorithms

on 35 benchmark functions, as well as the engineering

problem of the two-stage operational amplifier design, the

IAgGWO’s superior performance was established in the

study.

X~ t þ 1ð Þ ¼ 0:5 X1
�!

tð Þ þ 0:3 X2
�!

tð Þ þ 0:2 X3
�!

tð Þ ð11Þ

X~
�
a ¼ X~max þ X~min � X~a

X~
��
a ¼ Guassian 1; 1ð Þ � X~a

(

ð12Þ

A more precise model [34] was developed to mimic the

hierarchy of authority and group hunting tactics used by

grey wolves in the wild. According to this new model, each

wolf moves straight in the direction of the prey’s predicted

location (refer Eq. 13) and the location of each wolf is

dynamically evaluated by the leader wolves (refer Eq. 14).

According to the CEC2017 test suite, the updated optimizer

performs noticeably better than the original version and its

subsequent variations, both in terms of convergence speed

and solution robustness.

x j
p tð Þ ¼ xa � x j

a tð Þ þ xb � x j
b tð Þ þ xd � x j

d tð Þþ 2 tð Þ
1 � xa [xb [xd � 0

xa þ xb þ xd ¼ 1

2 tð Þ�N 0; r tð Þð Þ

8

>>><

>>>:

ð13Þ

x j
i t þ 1ð Þ ¼ x j

p tð Þ � r � x j
p tð Þ � x j

i tð Þ
�
�
�

�
�
� ð14Þ

To improve the wolf pack’s capacity to find prey, one

paper [35] presented a GWO modification that added ran-

dom walks to handle the leading wolves, called RWGWO.

Equation (15) can be used to define the random walk for

the leading wolf, where a1 [ 0 is a variable that regulates

the iteration’s step size si. It was shown that the perfor-

mance of the RWGWO beat all other meta-heuristic

algorithms and basic GWO on the CEC 2014 criterion.

xn ¼ x0 þ a1s1 þ a2s2 þ . . .þ aNsN ¼ x0 þ
XN

i¼1

aisi ð15Þ

A novel position-updated equation (see Eq. 16) was

introduced [36] in an effort to improve the exploration by

using a randomly chosen population member to direct the

search for new potential prey. A nonlinear control param-

eter technique was also implemented to fully utilize and

balance the GWO algorithm’s exploration and exploitation,

as shown in Eq. 17. The new strategy’s effectiveness and

efficiency were demonstrated by experimental findings on

a set of 23 benchmark functions and four engineering

applications.

X~ t þ 1ð Þ ¼ b1 � r3 �
X~1 tð Þ þ X~2 tð Þ þ X~3 tð Þ

3
þ b2 � r4

� X~
0 � X~

� 	

ð16Þ

a~ tð Þ ¼ ainitial � ainitial � afinalð Þ � Maxiter � t

Max iter

� �u

ð17Þ

Another suggested algorithm called the RBGWO [37]

increases the search process’ overall effectiveness by bal-

ancing its exploitation and exploration potential, using

three successive enhancement techniques that include a

random walk with student-generated t-distributed random

integers and a social hierarchy mechanism. In the first

approach, every grey wolf’s location is updated based on

weight variables, as in Eqs. 18 to 20. In the second method,

Eq. 21 updates the wolf’s location, employing the idea of a

random walk [35]. In the third strategy, a new random-

ization policy is implemented to improve the search’s

efficiency, substantially strengthening the random walk, as

shown in Eq. 22. On the CEC 2014 benchmark functions

with various scales, the RBGWO demonstrated superiority

over the GWO and its subvariants (RWGWO, EGWO ? ,

and EGWO).

F ¼ f1 þ f2 þ f3 ð18Þ

x1 ¼
f1
F
; x2 ¼

f2
F
; x3 ¼

f3
F
; ð19Þ

Zi ¼ x1 � X1
�!

tð Þ þ x2 � X2
�!

tð Þ þ x3 � X3
�!

tð Þ ð20Þ
X0
i ¼ Xi tð Þ þ a� trnd v; 1; dð Þð Þ
a ¼ 2� 2� t=maxlterð Þ




ð21Þ

X00
i ¼ X0

i tð Þ þ c� tr1 þ c� tr2ð Þ ð22Þ

3.1.2 New operators

This line of research examines the potential for enhancing

the performance of the GWO by adding new operators such

as a crossover or a local search method. The key pieces of

research in this area are covered in the following

paragraphs.

To speed up the global convergence speed of the GWO,

one author [38] incorporated chaos theory into the algo-

rithm to form the CGWO. Comparisons were made

between the most effective CGWO and a number of other

well-known meta-heuristics, including the FM, FPA, and

PSO algorithms. The outcomes demonstrated that the

CGWO substantially outperforms ordinary GWO algo-

rithms given a suitable chaotic map.

Using techniques from reinforcement learning, the

experienced GWO (EGWO) [39] learns the actions that

should be conducted at various optimization phases and in

different regions of the search space. The experience data

2720 Neural Computing and Applications (2024) 36:2713–2735
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is stored in a neural network model. The original GWO,

PSO, and GA were compared to the suggested EGWO in

two important optimization applications: feature selection

and ANN weight adaption. The results showed that the

EGWO performs significantly better.

For the purpose of resolving worldwide optimization

and engineering design problems, the Improved Grey Wolf

Optimizer (I-GWO) was developed [40]. To overcome the

lack of population diversity, the disparity between

exploitation and exploration, and the GWO algorithm’s

early convergence, the I-GWO algorithm is supported by

the dimension learning-based hunting (DLH) search

method as a novel mobility approach. The suggested

algorithm’s performance on engineering design issues

demonstrated its effectiveness and adaptability.

The enhanced grey wolf optimizer (EGWO) was

developed and proposed [41], where the ability to hunt prey

is enhanced by including Lévy flight phases and binomial

crossing into the grey wolf’s hunting strategy. The sug-

gested variation is also employed for clustering process

optimization. Seven benchmark datasets from the UCI

were used to test the EGWO’s clustering effectiveness and

compare it to five other clustering methods. According to

the empirical findings, it is a strong and promising alter-

native for effective large-scale data clustering.

Another enhanced GWO (TGWO) using tracking and

searching modes was provided in one study [42]. On 19 test

functions, the proposed enhanced algorithm’s performance

was evaluated. The findings demonstrated that, compared

to popular heuristics such as GWO, PSO, SSA, SCA, ALO,

WOA, MFO, BGWO, PSOGWO, and GWOCS, the

TGWO was able to deliver highly competitive results.

One article [43] developed a GWO version called

GWOCMALOL, that is improved using a Levy flight

mechanism, an orthogonal learning approach, and a

covariance matrix adaptive evolution strategy (CMAES) to

address the inadequacies of the original process. Experi-

ments were performed using a variety of IEEE CEC2014

functions, 10 competing algorithms, 7 upgraded GWO

versions, 11 advanced algorithms, the Wilcoxon signed-

rank test, and 24 UCI data sets. The outcomes demon-

strated that the created algorithm outperformed the original

technique and fixed the flaws.

To fully benefit from better-performing particles for

optimization in upcoming generations, the elite opposition-

based learning strategy (EOBLS) has been presented [44].

A chaotic k-best gravitational search strategy (CKGSS) is

recommended to obtain the adaptive step to improve global

exploratory capabilities. Ten well-known benchmark

functions were used in the study, along with an auto drum-

style brake. The results demonstrate that among the six

optimization algorithms, the EOCSGWO ranked first and is

more accurate and resilient.

One improved hierarchy is integrated into the GWO

technique using the accelerated GWO (AGWO), which

was first developed in 2021 [45]. To improve both local

and international searches, a mathematical model is first

introduced. Then a diversification measure is suggested to

end local confinement and maintain a perfect equilibrium

between the processes of intensification and diversification.

Additionally, a parameter-tuned method is added to

accelerate the convergence rate. Twenty-three benchmark

arithmetic problems were used to test the suggested

methodology in MATLAB experiments. In comparison

with other algorithms, the AGWO performed better in

terms of standard deviation, best value, and convergence

curve.

3.1.3 Modified population structure and hierarchy

Numerous research publications are devoted to improving

the GWO algorithm, as discussed above. However, there

are currently few advancements in modifying population

hierarchy and structure to increase population variety and

global search capabilities. The population structure can be

changed to boost exploration capacity while preventing

early convergence. To this end, the AP-TLB-IGWO, or

adult-pup teaching–learning based interactive GWO

approach, has been presented [46]. The suggested approach

emphasizes improved generalization, search efficiency, and

diversification using a new population structural

framework.

The GWO’s primary trait is its leadership hierarchy;

however, this trait affects how precisely it searches. To

address this shortcoming, a suggestion was made for a

GWO with enhanced hierarchy (GWO-EH) [47]. To

strengthen exploration and improve the high-ranking

wolves’ leadership, the enhanced position-updating for-

mula is specifically implemented for the leading wolves.

The worst three wolves are moved nearby the dominant

wolves as part of a strategy to reinforce exploitation.

Additionally, having self-adaptive weights depending on

fitness draws attention to the social leadership structure

while also accelerating the rate of convergence.

In one paper [48], an algorithm called the Diversity

Strategy based GWO (DSGWO) is put forth. This algo-

rithm boosts the performance of the GWO algorithm by

combining the group-stage competition mechanism and the

exploration–exploitation balancing mechanism. Empirical

testing using two engineering challenges and the IEEE

CEC 2014 benchmark functions demonstrated the effec-

tiveness of the DSGWO algorithm in obtaining the data-

set’s optimal solution, maintaining more population

variety, and enhancing global search capabilities.
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3.2 Hybridized versions of the GWO

To develop a better quality solution for contemporary and

practical real applications in the field of global optimiza-

tion, it has become a new research trend to hybridize two or

more variations. In the literature, the GWO has been

combined with other meta-heuristic algorithms. For

instance, a brand-new hybrid algorithm (referred to as

FWGWO) has been proposed [49]. By choosing a balance

coefficient that properly integrates the benefits of two

algorithms, the proposed approach combines the exploita-

tion capacity of the GWO with the exploration ability of

the fireworks algorithm to effectively attain global optima.

Additionally, the fundamental wolf algorithm has been

expanded [50] to incorporate biological evolution with the

‘‘survival of the fittest’’ (SOF) notion of the biological

update of nature. Differential evolution (DE) is used to

describe the wolf’s evolutionary history. In order to stop

the algorithm from achieving the local optimum, the wolf

pack is updated in accordance with the SOF principle.

The concept of PSO has also been established [51],

which updates each grey wolf’s position information using

the best values of the individual and the wolf pack. By

using this approach, the algorithm is prevented from

reaching a local optimum and the individual’s best position

information is preserved. Next, utilizing experimental data

obtained from a variety of operating conditions, several PV

cell model properties were extracted to create a new hybrid

algorithm called GWOCS [52], based on the GWO and

cuckoo search. The key advantage of the GWOCS is its

ability to establish a balance between exploration and

exploitation. Extensive experimental findings indicate that

the GWOCS is a good strategy for obtaining solar PV

models’ parameters.

Another hybrid algorithm named GWO-ABC [53] uti-

lizes the GWO and ABC algorithms as its foundation. The

GWO-ABC algorithm allows wolves to continue using

their traditional hunting methods to improve their capacity

for exploitation while also adopting the bees’ information-

sharing tactics to increase their capacity for exploration.

Additionally, for several complex benchmark transfer

functions as well as the trajectory tracking problem of a

2-DOF robotic manipulator, the GWO-ABC algorithm

produces the best fractional order PID (FOPID) controllers.

The major goal of one suggested improved GWO [54] is

to grant some wolves the ability to fly, hence extending the

search window. The exploitation potential of the grey wolf

and the exploration potential of the Aquila have been

maintained despite changes made to the GWO to balance

both strategies. Meanwhile, to help switching reluctance

motors (SRMs) function better and handle a variety of

operating circumstances, a unified control system based on

an improved GWO that hybridizes GWOA and COA has

been recommended [55]. To address the issue of HS

parameter selection, one research [56] devised a hybrid of

HS with the GWO.

3.3 Parallelism

In population-based meta-heuristics, parallelism is a useful

strategy that allows the population to be split up into sev-

eral subpopulations, each of which is capable of evolving

on a different type of machine processor. Through paral-

lelism, the quality of solutions can be improved while the

optimizer’s execution time can be efficiently decreased. In

one study [57] aiming to reduce the maximum completion

time, SCEGWO, a new shuffling cellular evolutionary

GWO was proposed to tackle the FJSSP-JPC. The wolf

population in California is divided into numerous separate

micro subpopulations based on neighbourhood layout. This

concurrent multi-subpopulation approach can increase

search diversity and address the GWO’s disadvantage.

Extensive experimental findings show that the suggested

SCEGWO greatly outperforms other competing algorithms

on this topic.

3.4 Multi-objective GWO

To optimize problems with multiple objectives, the Multi-

Objective GWO (MOGWO) was proposed for the first time

[58]. The GWO features an internal fixed-sized external

archive for storing and retrieving Pareto optimal solutions.

The social order of grey wolves is determined using this

information, and grey wolf hunting behaviour is simulated

in multi-objective search spaces. Ten multi-objective

benchmark problems were used to test the suggested

approach, and it was then contrasted with two well-known

meta-heuristics, Multi-Objective PSO (MOPSO) and

Multi-Objective Evolutionary Algorithm Based on

Decomposition (MOEA/D). The outcomes demonstrated

that the suggested approach outperforms other algorithms

and can deliver competitive results.

To determine the optimum operation of standalone gas

turbine and hybrid gas turbine-solid oxide fuel cell sys-

tems, a novel approach was offered that combines the

artificial neural network (ANN) concept with the GWO

algorithm [59]. With this method, multiple objectives are

achieved while simultaneously minimizing CO2 emissions

and the unit cost of electricity. Compared to other tech-

niques, this saves a significant amount of time.

For the home healthcare routing and scheduling problem

with priority and uncertainty, a discrete multi-objective

GWO (DMOGWO) has been suggested [60]. Specifically,

a fuzzy multi-objective optimization model is constructed

to increase the overall priority of all clients who are visited
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and decrease overall service costs. According to experi-

mental findings, the proposed DMOGWO can successfully

resolve the routing and scheduling issue in home care.

In one article [61], a method based on multi-objective

binary GWO was utilized to forecast the energy con-

sumption of appliances using the random forest, extra trees,

decision tree, and K-nearest neighbour regression algo-

rithms. The two objectives of the study were to maximize

algorithmic prediction performance and minimize the

number of chosen features.

4 Applications of GWO variants

The vast advantages of the GWO has led to significant

applications across numerous key disciplines. In this

review study, these applications are divided into the areas

of machine learning, engineering, wireless sensor network,

environmental modelling, medicine and bioinformatics,

and image processing (see Fig. 12). Thorough descriptions

of these applications are given in the subsections that

follow.

4.1 Machine learning applications

Recent publications on machine learning that used GWO,

derived from Scopus, are charted in Fig. 13. It can be seen

that various machine learning applications have used the

GWO, falling into one of four primary groups: feature

selection, neural network training, support vector machine

optimization, and clustering applications.

4.1.1 Feature selection

In data mining and machine learning applications, feature

selection, which is the action of deleting unnecessary or

unusable information, is regarded as a vital pre-processing

step [62]. In solving a multi-objective optimization prob-

lem, feature selection’s objective is to maximize classifi-

cation accuracy while minimizing the number of

characteristics that must be picked. Recent publications in

Scopus that have employed the GWO in feature selection

are shown in Fig. 14.

The Adaptively Balanced GWO (ABGWO) method [63]

is recommended as a solution for determining optimal

feature subsets in high-dimensional classification tasks.

ABGWO introduces a random wolf to augment GWO’s

exploration capabilities, employing a novel level-based

technique for selecting the random wolf. Demonstrating its

superior exploration and exploitation abilities, ABGWO

outperforms seven state-of-the-art feature selection tech-

niques on 12 high-dimensional datasets.

The combination of a new GWO method with a Two-

phase Mutation has also been proposed [64] to address

feature selection issues in classification based on wrapper

approaches. This method employs the sigmoid function to

transform the continuous search space into a binary one,

aligning with the binary nature of feature selection

Fig. 12 Applications of the GWO Fig. 13 Publications using the GWO in machine learning
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problems. Comparative evaluations showcase the algo-

rithm’s effectiveness and superiority over well-known

algorithms like PSO and FA.

To resolve feature selection issues, one study [65] sug-

gests a hybrid GWO and PSO in binary form, called

BGWOPSO. This hybrid approach utilizes a wrapper-based

K-nearest Neighbours classifier with Euclidean separation

matrices to find optimal solutions. Evaluations on 18

benchmark datasets from the UCI library demonstrate the

superior performance of BGWOPSO compared to binary

GWO, binary PSO, binary genetic algorithms, and a whale

optimization approach with simulated annealing.

Relatedly, another paper [66] presents an improved

version of the binary GWO (BGWO). It examines the

binary range of values for A
!

and D
!

and recommends a

new updating equation for the parameter a to balance the

capabilities of local and global search capabilities. The

proposed BGWO exhibits minimal classification errors in

feature selection tasks on UCI datasets with a limited

number of features.

To address challenges with Arabic text categorization, a

wrapper FS function has been developed [67], containing

an improved binary GWO that is applied as a wrapper-

based feature selection technique. The proposed binary

GWO, along with the elite-based crossover approach and

the support vector machine (SVM) based feature selection

method, proves more effective than competitors in han-

dling Arabic text classification issues.

Scholars have also suggested a multi-strategy ensemble

GWO (MEGWO) [68] to overcome the GWO’s limitation

of using a single search strategy to solve different function

optimization issues. MEGWO utilizes three alternative

search techniques to update solutions and is assessed

through feature selection in practical applications. Experi-

mental results demonstrate MEGWO’s superiority in pre-

cision and convergence speed compared to previous GWO

variants and other algorithms, owing to its integration of

multiple improved search strategies.

4.1.2 Training neural networks

Biological nervous systems have served as the inspiration

for ANNs, which are models designed for information

processing. ANNs are widely employed in research and

applications due to their exceptional ability to capture

nonlinearity and dynamicity. However, the effectiveness of

ANNs greatly depends on their connection weights and

structure. Consequently, it is customary to assess how well

a newly introduced meta-heuristic algorithm can optimize

the connection weights of neural networks.

In one paper [69], a novel control approach based on

Reinforcement Learning (RL) is outlined. This approach

trains neural networks (NNs) using the GWO, a meta-

heuristic algorithm, combined with Policy Iteration (PI).

The study compares this method with the traditional PI RL-

based control approach, which utilizes both the PSO meta-

heuristic algorithm and the Gradient Descent (GD) algo-

rithm. The experimental results demonstrate that, when

compared to GD and PSO, the GWO algorithm offers a

more effective solution for the control objective under

consideration in this study.

The combination of an ANN and an AGWO has been

proposed in an article [70] as a novel hybrid machine

learning model. This hybrid model is designed for esti-

mating the axial load-carrying capacity of CFST columns.

The ANN-AGWO model optimizes the weights and biases

of the ANN using the AGWO, creating a mapping feature

that predicts the Pu value of CFST columns based on a set

of influential factors. This approach holds promise for

accurately forecasting the load-bearing capacity of CFST

columns, as indicated by the results.

4.1.3 Optimizing support vector machine (SVM)

SVM is regarded as one of the most effective classifiers

and regression models. Vladimir Vapnik established the

SVM on solid mathematical foundations [71].

To enhance the performance of SVMs, adjustments to

both the kernel settings and the error penalty parameter C

are necessary. Typically, this challenge is addressed

through a grid search, which explores various combina-

tions. However, this method’s inefficiency arises from the

time-consuming evaluation of numerous potential combi-

nations. Consequently, many researchers have turned to

employing meta-heuristic algorithms for optimizing these

hyperparameters, with recent studies employing GWO to

fine-tune SVM hyperparameters.

A unique machine learning technique dubbed the GWO-

SVM [72] has been introduced to optimize the parameters

Fig. 14 Publications using the GWO in feature selection
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C, e, and g of the SVM model. The GWO-SVM model was

developed to forecast adsorbed gas based on a data set

containing temperature, pressure, total organic carbon

(TOC), and humidity. The model shows good predictive

ability towards output values based on empirical findings,

outperforming previously suggested models.

Based on the Support Vector Regression (SVR) model,

an improved IGWO-SVR model [73] has been built to

capture the complex nonlinear relationship between coal

body temperature and the characteristic gas concentration

responsible for coal spontaneous combustion. The settings

of the C and g parameters in the SVR model directly

impact the model’s prediction ability, and the GWO tech-

nique is used to optimize the two parameters. Numerical

experiments confirm the efficiency of this upgraded GWO

method.

4.1.4 Clustering applications

The purpose of clustering, a popular machine learning and

data mining activity, is to partition data points into several

groups that share certain traits [74].

Additionally, a unique hybrid method called HBBOG

(Hybrid GWO and BBO) was proposed [75]. Based on

analyses of nine clustering datasets, the HBBOG produces

more satisfactory outcomes compared to the three com-

parison techniques when tackling clustering optimization

issues. Additionally, large-scale data sets can be efficiently

clustered using the MapReduce-based enhanced GWO

(MR-EGWO) [41]. This proposed technique provides a

potent and promising option for effective and large-scale

data clustering, as per experimental findings.

4.2 Engineering applications

4.2.1 Design and tuning controllers

For simultaneous stabilization and real-time position con-

trol of a laboratory scale MAGLEV system, GWO’s opti-

mal tuning of the traditional PID controller is discussed in

one study [76]. It is clear from simulation and real-time

findings that the GWO works better than other optimization

techniques.

In order to find the appropriate PID controller parame-

ters for the control of the ball hoop (BH) system, one paper

[77] used the GWO algorithm to minimize the commonly

used objective functions IAE, ISE, ISTAE, and ITAE. With

the GWO-tuned PID controller, the BH system with mul-

tiple goal functions was shown to run satisfactorily.

A GWO-optimized algorithm-based IMC method [78]

was used to construct an optimal FOPID controller for a

single region with a non-reheated turbine electrical power

system. Better parameter values are provided by the GWO

technique both before and after perturbation cases.

Using GWO, Agarwal et al. [79] tuned the FOPID

controller’s criteria for regulating a DC’s speed. Along

with GWO/PID, a comparison of the suggested GWO/

FOPID methodology with other methods demonstrated that

using ITAE as an objective function in the suggested

approach results in less settling, faster rise times, and

similar overshoot.

Two optimization techniques, the WOA and the GWO

have been utilized in recent research [80] to modify PID

controller gains. The aim is to improve the DC/DC boost

converter, driven by the PWM duty cycle. According to the

simulation findings, the two suggested algorithms outper-

form the standard ones in terms of response time, ripple,

and power overrun.

An ideal tuning method for the Sun-Tracker System

(STS) has been proposed [81] using the GWO and the

fuzzy controller technology developed by Takagi, Sugeno,

and Kang. The results show that using GWO-based opti-

mization techniques is a solid choice for identifying the

best compromise between error minimization and fuzzy

tuning parameters for STS.

In order to account for GRCs and GDB nonlinearities, a

two-area hydrothermal integrated power system with a

secondary GWO-optimized fuzzy-PID controller can be

used [82]. When contrasting the system responses under

the suggested fuzzy-PID controller with those controlled by

PI and PID for 1% SLP applied in area 1, the effectiveness

of the suggested controller is evident.

An innovative PID-fuzzy PID hybrid (PID-FPID) con-

troller tuned using the MGWO approach was successfully

deployed in a connected system [83]. Using the MGWO

technique, the ideal settings of this proposed PID–FPID

hybrid controller are attained.

The Simplified GWO (SGWO) was proposed [84] as a

method of tackling optimization problems in managing the

frequency of an energy-storage-equipped distributed power

generation system (DPGS) with an adaptive fuzzy PID

(AFPID) controller.

Another unique methodology has been presented as a

modified version of the GWO in conjunction with the

cuckoo search algorithm (MGWO-CS) [85]. It is used in a

TID controller structure for frequency management of a

two-area power system integrated with a PV and thermal

generator. Results from simulations show that the hybrid

strategy outperforms other known techniques.

4.2.2 Power dispatch problems

According to Arun et al. [86], the PID controller gain

should ideally be automatically adjusted by GWO, PSO,

and GA to accommodate various loading scenarios,
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ultimately reducing area control error, settling time,

undershoots, overshoots, and frequency fluctuations in

multi-area power systems. It is evident that the frequency

difference and net power fluctuation of Load Frequency

Control (LFC) can be effectively managed through the

implementation of evolutionary algorithms for PID con-

trollers, such as GA, PSO, and GWO, regardless of whether

the system considers Reactive Power Feedback (RFB) and

Unified Power Flow Controller (UPFC) for multi-area

operation.

4.2.3 4.2.3 Robotics and path planning

Quadruped robots offer several advantages, including

exceptional obstacle-climbing abilities, low energy con-

sumption, high adaptability, stability, and minimal envi-

ronmental impact. Consequently, they play a significant

role in the field of robotics and are increasingly popular.

The GWO was utilized for the first time to fine-tune a PID

controller on a quadruped robot as a diversification tech-

nique [87]. This approach compares GWO with two pop-

ular search algorithms, PSO and GA, to assess its

optimization performance. Simulation results clearly

demonstrate that the GWO algorithm outperforms both

PSO and GA in terms of both local and global search

optimization, offering superior speed and efficiency.

For unmanned aerial vehicles (UAVs), path planning is

a critical component of mission planning. It is essential to

choose the greatest route across a challenging environment.

A brand-new hybrid GWO technique called the HSGWO-

MSOS algorithm [88] was presented for dealing with the

path planning issue for UAVs in difficult and dangerous

environments. Experimental results show that the

HSGWO-MSOS algorithm effectively identifies safe and

efficient routes, surpassing GWO, SOS, and SA in terms of

solving UAV path planning problems.

RLGWO, a novel reinforcement learning-based GWO

method [89] has been introduced to tackle UAV path

planning in a three-dimensional flight environment. This

method incorporates reinforcement learning to dynamically

adjust actions based on performance data over time, and it

smooths the resulting flight path using a cubic B-spline

curve to ensure UAV suitability. Simulation experiments

validate the RLGWO algorithm’s ability to find feasible

and efficient paths in challenging environments.

4.2.4 Scheduling

In the manufacturing industry, scheduling is a vital deci-

sion-making process that directly and significantly affects

resource usage and production efficiency. With the primary

goal of ensuring sensible and effective use of the resources

at hand, scheduling is concerned with judiciously

distributing scarce resources among a variety of duties that

are spread out over time [90]. Given the fierce competition

in the market for shorter product life-cycles, frequent

product customization, and shifting consumer wants, many

modern manufacturing enterprises use the adaptable indus-

trial environment of a job shop, which can support different

process pathways using many identical devices [91, 92].

Therefore, over the years, both academics and practitioners

have given increasing attention to flexible job shop

scheduling (FJSSP) [93, 94].

A flexible job shop scheduling problem with task

precedence constraints (FJSSP-JPC) can be solved using

the novel shuffled cellular evolutionary GWO (SCEGWO)

[57], with the aim of decreasing makespan. Each

SCEGWO agent engages in topological cellular neigh-

bourhood interaction through the use of a micro-distributed

form of the GWO. Extensive experimental findings show

that the SCEGWO’s constituent parts are efficient, and it

significantly outperforms other rival algorithms.

Considering the features of a welding shop, an IGWO

was created [95] to solve the welding shop inverse

scheduling problem (WSISP), which uses encoding and

decoding techniques from the VNS, critical path, and

matrix. The outcome shows that the proposed IGWO is

both feasible and effective for resolving real-world WSISP

scenarios.

In order to solve the travelling salesman problem (TSP),

a modified GWO has been presented [96], which enhances

the traditional GWO by using the swap operator and swap

sequence. It is clear from the literature that the GWO has

not been extensively investigated as a solution for TSP, a

well-known combinatorial optimization problem. Simi-

larly, the traditional GWO has been modified to solve the

permutation-coded TSP using swap, shift, and symmetry

transformation operators [97]. This new version is known

as the transformation operator based grey wolf optimizer

(TO-GWO). In TO-GWO, each wolf stands for a potential

TSP solution, and by interacting with the leader wolves

through the use of swap, shift, and symmetry operators, the

wolves are able to reach the best feasible TSP solution.

4.2.5 Other engineering applications

According to the United Nations Environment Program,

buildings account for 36% of the world’s carbon dioxide

emissions and use around 40% of the energy produced

globally [98, 99]. Building-related greenhouse gas emis-

sions will virtually treble by 2030 if no action is taken to

minimize energy use [98]. In order to reduce energy con-

sumption, researchers must focus on increasing buildings’

energy efficiency [100, 101]. Therefore, the GWO was

employed in one study [102] to reduce the annual energy

usage of an office building under the Seattle climate. To
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carry out the building optimization task, the optimization

method was developed and integrated with EnergyPlus

codes. Additionally, back-propagation NNs with an adap-

tive GWO algorithm have been suggested as a revolu-

tionary indoor thermal comfort and energy consumption

control approach [103]. This emerging control method

holds a powerful capacity for optimization.

Most work phases involved in tunnel boring machine

(TBM) planning require assumptions and educated gues-

ses. The risks associated with high capital costs and tunnel

construction planning can thus be reduced by obtaining an

accurate and trustworthy estimation of TBM performance.

For forecasting the TBM-penetration rate (TBM-PR) [104],

a long short-term memory (LSTM) model was reinforced

with the GWO to construct a hybrid model. The final

results demonstrated that the GWO technique can signifi-

cantly improve LSTM performance.

For structures to operate safely, the evaluation of off-

shore wind turbine (OWT) structure performance deterio-

ration is crucial. An approach to measure the deterioration

of OWT structures’ performance was presented in one

article [105], based on an improved variational mode

decomposition (VMD) algorithm. The procedure intro-

duces the GWO algorithm and the multisensor data fusion

technique to optimize the VMD parameter setup. To

measure the structural performance deterioration of OWTs,

it then extracts the structural performance degradation

signature of the structure using noise-reduction data.

Photovoltaic systems that are connected to the grid are

frequently used to generate renewable-energy-based power

all over the world. However, one of the key problems with

their execution is optimal system design and relatedly,

system sizing. The technical advantages of systems could

be jeopardized by system components that are either under-

or over-sized. To attain maximum efficiency of a grid-

connected photovoltaic system design, one study [106]

discusses the application of the GWO to select the best PV

module and inverter models to calculate the maximum

specific yield. The outcomes show that the GWO is faster

in achieving the same precise yield as an iterative-based

scaling algorithm. Moreover, to identify ambiguous

parameters in PV cell models using a local exploratory

technique, a novel Orthogonal-Learning-Based GWO

(OLBGWO) was developed [107]. The performance of the

OLBGWO demonstrates its advantage over competing

algorithms.

In the field of renewable energy generation, fuel cells,

particularly Solid Oxide Fuel Cells (SOFCs), have gained

significant attention for their potential industrial and

commercial applications. Researchers are dedicated to

finding efficient and cost-effective ways to produce fuel

cells. In this regard, Wang et al. [108] provided a new,

well-structured methodology using an MGWO algorithm to

determine the model parameters for an SOFC stack. This

method provides an ideal selection of unknown variables

for the SOFC stack model. The effectiveness of this tech-

nique has been validated upon comparison with various

other methods.

In a similar vein, another study [109] focuses on the

optimization of crucial operating parameters for SOFCs.

The authors employ a specialized high-speed optimization

approach known as the adaptive chaotic GWO algorithm.

This innovative technique combines the strengths of both

chaotic and adaptive GWO methods to identify essential

functioning parameters of SOFCs.

In the context of tower solar thermal power plants, the

heliostat field plays a crucial role, contributing significantly

to the overall cost and concentrating efficiency. Optimizing

the design of the heliostat field is essential. An enhanced

GWO algorithm [110] is proposed, incorporating an optical

efficiency model to optimize the heliostat field’s parame-

ters. This enhanced algorithm improves convergence and

weight update formulas while effectively avoiding local

optima. As a result, the optical efficiency of the heliostat

field increases by 8.2 percent compared to the standard

GWO method.

The accurate assessment of axis straightness inaccuracy

for shaft and hole parts is considered a nonlinear opti-

mization problem. This problem can be solved effectively

by using an intelligent optimization algorithm like the

improved GWO (IGWO) [111], which also has the benefits

of high solution accuracy, quick search times, and simple

convergence. The IGWO is a valuable tool for assessing

axis straightness errors in shaft and hole sections.

Apart from that, a deep learning-based technique for

Pelton wheel defect diagnosis has been devised [112]. A

recently created optimization technique, kernel estimate for

mutual information (KEMI), is the fitness function used by

the adjusted GWO (AGWO) to optimize the filter param-

eters of TVF-EMD. The results confirmed the proposed

method’s effectiveness and superiority over other

approaches.

The unit commitment problem when power system

generation assets are operationally planned is a challeng-

ing, large-scale, and constrained optimization challenge.

The BGWO was introduced in one paper [113] to discover

the commitment schedule of the unit commitment problem.

The superior performance of the BGWO was established in

successfully resolving the unit commitment problem for

small, medium, and large scale systems, surpassing other

well-known heuristic and binary techniques.

A strategy for allocating hot spinning reserves (HSRA)

was presented [114] in the wake of big generators’ antic-

ipated disconnections during peak demand. Hybrid GWO

(HGWO) was recommended as a way to prevent system
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cascade failures by optimizing reactive power allocation,

load reduction, and generator rescheduling.

4.3 Wireless sensor network

In order to predict energy waste, a cluster-based routing

technique for Wireless Body Area Networks (WBAN) has

been reported [115]. It recommended using the Modified

GWO with Q-Learning (MGWOQL) for cluster head

selection and updating. By choosing the best cluster head,

the suggested protocol utilized various goal functions to

reduce the energy consumption of clusters (CH). On the

MATLAB platform, the simulation was run under various

circumstances. The results demonstrate its energy effi-

ciency in the WBAN setting.

In another study [116], a Multi-Objective Linear Pro-

gramming (MOLP) problem involving the deployment of

Virtual Network Functions (VNF) was presented, bringing

about an exchange between the two competing goals of

minimizing service latency for customers and reducing

deployment costs. A meta-heuristic BGWO technique was

developed for the deployment of VNFs, driven by artificial

intelligence (AI). It provides a close to optimum resolution

in polynomial time due to MOLP.

4.4 Environmental modelling applications

Several research studies have utilized GWO to optimize

reliable models in environmental modelling. In one study

[117], a simulation–optimization model using the pump

and treat (PAT) method is suggested, incorporating GWO-

equipped ANN. This model effectively addresses two

unconfined aquifer issues. Compared to the ANN-PSO and

ANN-DE models, the groundwater remediation ANN-

GWO model demonstrates superior stability and conver-

gence behaviour.

The economic-environmental dispatch of conventional

thermal units, heat-only units, and integrated combined

heat and power units is tackled using a mutant GWO

algorithm [118]. This approach considers valve-point

impacts and temperature decline in heat pipelines. After

conducting simulations on test systems with 24 units, 48

units, and 84 units, the outcomes of the mutant GWO

algorithm are compared to other meta-heuristic algorithm,

highlighting the superior performance of the recommended

method.

A brand-new multi-process model for a clean coal

power plant has been introduced [119], covering all pro-

cesses from extremely low load to maximum continuous

boiler rating and shutdown. GWO is employed to optimize

all model parameters, outperforming GA in some aspects.

The simulation results validate the effectiveness of both the

model and the optimization strategies.

A hybrid wind speed prediction model, known as the

MODWT-RF-IGWO-LSTM model, was developed [120]

based on the IGWO, the random forest (RF) algorithm, the

maximal overlap discrete wavelet transform (MODWT)

technology, and the LSTM network. Ten more models

were compared to the proposed MODWT-RF-IGWO-

LSTM model to assess its predictive effectiveness,

demonstrating its potential as a cutting-edge method to

significantly improve wind speed prediction accuracy.

Another paper [121] presents an innovative combination

model for wind speed forecasting and smart grid planning.

This model integrates data pre-processing, forecasting

algorithms, the GWO, and no negative constraint theory

(NNCT), enhancing wind speed prediction accuracy

significantly.

To find the global minimum, scholars presented the

parameter shifted GWO (psGWO) [122] due to the limi-

tations of the traditional GWO algorithm. The psGWO

proves effective in seeking global minimum targets without

getting stuck in local minima, as demonstrated in a 2D

seismic dynamic rupture inversion for deriving parameters

governing fault rupture dynamics behaviour from seismo-

gram records.

4.5 Medical and bioinformatics application

The GWO has been used in a variety of ways for medical

and bioinformatic applications. For instance, it was initially

used to model biodiesel yield [123], while the Response

Surface Methodology (RSM) and GWO were looked at to

model the production of waste sunflower oil methyl ester

(WSOME)/biodiesel (BD) from waste sunflower oil

(WSO). In comparison with the RSM model, the root mean

squared errors were reduced and the coefficient of deter-

mination was higher for the GWO model. GWO projected

values show its dependability and utility for prediction

without the trial-and-error process of conventional experi-

mentation, making it superior to the RSM’s output.

The Grey Relational Analysis (GRA) and GWO algo-

rithms were proposed [124] as a solution to the multi-ob-

jective optimization challenge encountered during the end

milling of MWCNT/epoxy nanocomposites. The suggested

hybridization strategy effectively manages the opposing

machining features. In comparison with the conventional

GRA approach, it effectively increases the desired

machining performance and displays an excellent conver-

gence plot.

Applying the RWGWO technique to chronic disease

prediction has also been suggested [125] to enhance local

search and strike, keeping exploration and exploitation in

check. Using data from 18 different chronic diseases, a set

of categorization metrics were assessed using several

recent techniques for comparison with the RWGWO. The
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results indicate that the RWGWO technique outperforms

other Nature Inspired Algorithms (NIAs) and may signifi-

cantly reduce the amount of features in each chronic dis-

ease dataset.

Using the best possible set of features, the Binary

Improved GWO (BIGWO) technique [126] was created for

categorizing Parkinson’s disease. In the BIGWO, the

search space of features is encoded using five different

transfer functions, and the search procedure is fine-tuned

using a mutation operation to identify the most useful traits

for disease diagnosis.

4.6 Image processing

The proliferation of multimedia data, particularly pho-

tographs, on internet social media platforms has led to a

growing focus on content-based picture retrieval systems.

Despite the development of numerous strategies for con-

tent-based picture retrieval, face recognition remains a

challenging task. The revised GWO (VW-GWO) was used

in a research [127] to develop a facial recognition classi-

fication model that would optimize the SVM. Simulation

studies confirmed the superiority and improved stability of

the VW-GWO classification model.

Additionally, a unique GWO-based approach called

mixed GWO [128] has been developed and is capable of

handling both continuous and discrete or mixed situations.

With this bio-inspired optimization technique, multispec-

tral images have been simultaneously denoised and

unmixed for the first time.

An Ensemble GWO (EGWO) [129] was created by

employing the position-updated equation and the elite-

based search strategy as two methods to improve GWO

performance. On 12 photos from the USC-SIPI image set,

the method exhibited satisfactory performance.

Images from chest X-rays (CXR) are more frequently

used for the detection of COVID-19 instead of CT images,

due to the former’s stronger visuals of lung features. A

three-stage COVID-19 classification model based on CXR

images was proposed using an enhanced GWO with

genetic algorithm (EGWO-GA) and deep learning convo-

lutional neural networks (DLCNN) for selecting the best

features [130]. This model is referred to as CXGNet. In

comparison with conventional RT-PCR, fast antigen, and

serological tests, it classified the disease more quickly and

required less human effort.

Image processing success is crucially impacted by the

segmentation stage. Histogram-based thresholding is one

of the most widely used techniques for picture segmenta-

tion. Consequently, for multi-level thresholding segmen-

tation, authors [131] propose the discrete multi-objective

shuffled GWO (D-MOSG) algorithm. Superior results have

been attained with the D-MOSG method compared to other

algorithms, according to experiments.

The MGWO was proposed as an improvement to the

GWO in one study [132]. Through the use of multiple

thresholds at four different threshold values, the MGWO

was used to segment leaf spot illnesses on maize. The

outcomes demonstrated that the MGWO is competitively

visible and can be employed as a successful optimizer for

multi-threshold image segmentation.

5 Assessment and evaluation of GWO

As previously mentioned, the success of the GWO algo-

rithm can be attributed to its straightforward stimulus,

limited regulating parameters, and adaptive exploratory

behaviour. Over the last few years, the scope and volume

of new GWO algorithm variants that are developed and

applied to solve real-world problems have significantly

increased. However, despite its success in resolving various

real-world situations, there remain several significant

challenges.

Firstly, one study [133] revealed an issue with the

GWO’s performance. Specifically, it excels in optimization

problems where the optimal solution is 0 but performs

poorly when the optimal solution is 1 or when it is distant

from 0. This performance discrepancy when handling dif-

ferent types of optimization problems needs further

investigation, as other optimization algorithms may share

this challenge.

Secondly, it is crucial to thoroughly investigate the

parameter adjustments of GWO algorithms. Currently, only

two parameters with predetermined values are used to

balance exploration and exploitation throughout the search

process. Research should explore the feasibility of con-

ducting search operations with varying numbers of wolves

in each iteration to improve algorithm performance.

Thirdly, there is a need for more research into identi-

fying the most effective GWO algorithm variations for

solving specific optimization problems. Efforts should be

directed towards creating GWO variants with flexible and

application-focused constraint schemes. Existing literature

has largely relied on static penalty constraints handling

techniques, which may prove ineffective in scenarios with

complex search spaces lacking solutions that satisfy all

requirements.

Lastly, a comprehensive analysis of key aspects of the

GWO algorithm in hypothetical scenarios is essential. This

analysis should cover aspects such as wolf population

structure, parameter settings, and adaptive terrains. Nota-

bly, the reason behind the GWO’s utilization of only three

leaders, known as ‘‘alpha wolves,’’ and the implications of

altering the number of alpha wolves (increasing or
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decreasing) on performance should be thoroughly

investigated.

6 Conclusion and future research

This paper provides a comprehensive literature review on

the most recent variants and applications of the GWO

algorithm. The initial sections cover the primary inspira-

tion, mathematical models, and analyses of the GWO

algorithm. Subsequently, the algorithm’s performance,

particularly in terms of exploitation and exploration, is

thoroughly examined. Additionally, the paper briefly dis-

cusses the multi-objective variant of the GWO algorithm.

Following these analyses, the paper evaluates the latest

research concerning parameter tuning, new operators, and

hybrid versions of the GWO algorithm. It also discusses the

diverse applications of GWO in various fields, including

feature selection, ANN training, classification, clustering,

controller design, power dispatch problems, robotics and

path planning, scheduling, wireless sensor networks,

environmental modelling, bioinformatics, and image pro-

cessing. Results from these applications indicate that the

GWO outperforms other bio-inspired algorithms, including

BA, GA, FA, PSO, and more.

Figure 3 illustrates the distribution of GWO publica-

tions by subject category, revealing that over 30% of GWO

applications pertain to computer science, while 24% are in

the field of engineering. This study underscores the limited

investigation of GWO by the research community, as it is a

relatively new algorithm with under-researched applica-

tions in the literature. Tables 1, 2, and 3 provide concise

summaries of related studies on the GWO algorithm.

Despite the growing popularity and recent advancement

of the GWO, there are still areas that require further

development. First, the GWO algorithm’s key limitations

are its inability to manage multiple variables and its ten-

dency to escape local solutions while tackling complex

issues. Investigating the use of groups with varying num-

bers of wolves within the GWO could enhance its effec-

tiveness when addressing challenging real-world problems.

Second, there are presently no studies attempting to

adapt or use the GWO method to address dynamic situa-

tions. As the global optimum in a dynamic search space

evolves with time, exploring appropriate operators (e.g.

multi-swarm, repository, or performance measure) for the

GWO in dynamic search spaces is a promising area.

Third, considering uncertainties in input, output, objec-

tive functions, and constraints is crucial for solving real-

world problems effectively. Thus, research into how well

the GWO performs in handling uncertainties and providing

reliable solutions is needed.

Table 1 Modified GWO Algorithms

Modified GWO Studies

Refreshing Mechanisms [32–37]

New Operators [38–45]

Modified Population Hierarchy and Structure [46–48]

Table 2 Different Variants of the GWO Algorithm

GWO Variants Studies

Hybridized GWO [49–56]

Parallelism [57]

Multi-objective GWO [58–61]

Table 3 Different Applications

of the GWO Algorithm
Domain Sub-domain Studies

Machine learning Feature Selection [62–68]

Training Neural Networks [69, 70]

Optimizing Support Vector Machine (SVM) [71–73]

Clustering [41, 75]

Engineering Design and Turning Controllers [76–85]

Power Dispatch Problems [86]

Robotics and Path Planning [87–89]

Scheduling [57, 95–97]

Other Engineering Applications [102–114]

Wireless sensor network [115, 116]

Environmental modelling applications [117–122]

Medical and bioinformatics application [123–126]

Image processing [127–132]
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Fourth, although the GWO has successfully handled a

sizable number of issues in the real world, there has been

no systematic research into the best ways to handle con-

straints in this approach. Since there are many infeasible

regions in the search space, the death penalty function used

by the majority of the existing efforts is ineffective. Con-

sequently, a valuable research area is to give the GWO

access to various constraint handling approaches and

analyse their effectiveness.

Finally, to accomplish the proper trade-off between

search elements for exploration and exploitation in the

GWO, users must set two predetermined, constant param-

eters that influence the search. Parameter setting is a sig-

nificant conundrum for novice users who are unfamiliar

with utilizing the GWO properly Thus, parameter tweaking

and the parameter-free GWO is another potential platform

for interested scholars.

In conclusion, the GWO is a viable and strong contender

for use in a wide range of applications, as outlined in the

preceding discussions. This paper serves as a valuable

roadmap, guiding researchers and practitioners towards

effectively harnessing the GWO method to solve diverse

problems. Consequently, the utilization of the GWO for

tackling highly complex problems becomes not only

practical but also highly feasible for both present and future

efforts in this field.
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