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Abstract
The availability of large-scale facial datasets with the rapid progress of deep learning techniques, such as Generative

Adversarial Networks, has enabled anyone to create realistic fake videos. These fake videos can potentially become

harmful when used for fake news, hoaxes, and identity fraud. We propose a deep learning bagging ensemble classifier to

detect manipulated faces in videos. The proposed bagging classifier uses the convolution and self-attention network

(CoAtNet) model as a base learner. CoAtNet model is vertically stacking depthwise convolution layers and self-attention

layers in such a way that generalization, capacity, and efficiency are improved. Depthwise convolution captures local

features from faces extracted from video then pass these features to the attention layers to extract global information and

efficiently capture long-range dependencies of spatial details. Each learner is trained on a different subset randomly taken

of training data with a replacement then models’ predictions are combined to classify the video either as real or fake. We

also use CutMix data augmentation on the extracted faces to enhance the generalization and localization performance of

the base learner model. Our experimental results show that our proposed method achieves higher efficiency compared to

state-of-the-art methods with AUC values of 99.70%, 97.49%, 98.90%, and 87.62% on the different manipulation tech-

niques of the FaceForensics?? dataset (DeepFakes (DF), Face2Face (F2F), FaceSwap (FS), and NeuralTextures (NT)),

respectively, and 99.74% on the Celeb-DF dataset.
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1 Introduction

Images and videos containing forgery faces generated by

DeepFake methods have recently sparked widespread

public concern. The term ‘‘DeepFake’’ refers to swapping

the face of one individual with the face of another one

using deep learning techniques. Originally, the term

‘‘DeepFake’’ was named by a Reddit user in late 2017

when he built a machine learning algorithm to exchange

the faces of celebrities [1]. The DeepFake technology has

the potential to be harmful when utilized for malicious

purposes such as revenge pornography, hoaxes, identity

fraud, and spread of misinformation during e.g., political

elections.

Recently, it has become increasingly easy to automati-

cally manipulate a person’s genuine face in an image or

video and generate a fake one. There are many reasons

leading to the growing DeepFakes, such as the availability

of large-scale datasets and the evolution of deep learning

techniques like Generative Adversarial Networks (GAN)

[2] and Autoencoder (AE) models [3]. As a result, many

applications have been released, such as FaceApp [4] and

FaceSwap [5], which can be easily used by anyone to

manipulate faces and create fake images and videos with-

out a background. This heightens the risk and urgency

associated with the problem.

There are four different types of facial manipulations: 1)

entire face synthesis, 2) identity swap, 3) expression swap,
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and 4) attribute manipulation. In entire face synthesis,

which generates fully non-existent face images using the

GAN [2] model, such as StyleGAN [6]. This manipulation

could be useful for some disciplines such as generating 3D

modeling and video games. On the other hand, it could be

harmful to some applications, such as using a fake image as

a profile photo on social media.

The second type is identity swap, which is commonly

known as ‘‘face swap’’ or ‘‘face replacement’’. This

manipulation includes altering an image or video to sub-

stitute one person’s face with another’s. It can be achieved

through two main techniques: using traditional computer

graphics techniques such as FaceSwap [5], or utilizing deep

learning-based methods known as DeepFakes [7]. One

example of this is the mobile app ZAO [8]. This type of

manipulation could be useful, particularly in the film

industry. However, it can also be utilized for harmful

intentions such as financial fraud, producing pornographic

videos featuring celebrities, and hoaxes.

The expression swap is the third type and sometimes

referred to as ‘‘face Reenactment’’, which includes swap-

ping the facial expression, gaze, mouth, and pose of one

person to another person in an image or video without

changing the identity. There is a widely circulated video of

Mark Zuckerberg making statements he never actually

made [9]. Popular techniques used to generate this type of

manipulation utilize GAN [2] models such as Face2Face

[10] and NeuralTextures [11].

The last type of face manipulation is attribute manipu-

lation. It is also referred to as face retouching or face

editing. This manipulation includes editing some attributes

of the real face, by changing gender, adding color to hair or

skin, adding or removing glasses, and so on. This manip-

ulation is usually achieved using GAN [2] models such as

StarGAN [12]. A popular example of a mobile application

for this type of manipulation is FaceApp [4].

A lot of research efforts have been conducted to find

methods that can identify manipulated faces. Traditional

forgery detection methods are basically based on: 1) The

fingerprints inside the camera by analyzing the intrinsic

information recorded by the camera device such as filter

array of color, compression, and the optical lens [13]. 2)

The external fingerprint information provided by the edit-

ing software such as moving or copy-paste various com-

ponents of the image [14].

However, another set of face forgery detection methods

focuses on recognizing the artifacts that exist in the gen-

erated DeepFake images. These artifacts can be catego-

rized into spatial and temporal artifacts. The spatial

artifacts are a result of blending the generated content with

the original image or anomalies in context compared to the

rest of the image. Additionally, some models such as

GANs [2] leave a fingerprint in the generated image, which

can be traced by the detection system. The temporal arti-

facts can be detected by analyzing consecutive frames of

the fake video to discover anomalies in behavior, incon-

sistencies, or lack of coherence. Moreover, some forgery

detection methods are based on training a strong classifier

based on traditional machine learning or deep learning

techniques and letting the classifier decide which features

to analyze.

In this paper, a deep learning bagging ensemble classi-

fier is proposed to detect manipulated faces in videos. Our

method uses the convolution and self-attention network

(CoAtNet) model as a base learner, which consists of

vertically stacked depthwise convolution and self-attention

layers. The depthwise convolution captures local features

from faces extracted from videos, and the attention layers

extract global information and efficiently capture long-

range dependencies of spatial details. We train each learner

on a different subset of the training data and then combine

the models’ predictions to form a robust classifier. Addi-

tionally, to improve the efficiency of the ensemble model,

we propose the use of CutMix data augmentation on

extracted faces. The proposed method is evaluated on two

different datasets, Celeb-DF and FaceForensics??. The

main contributions of this paper can be summarized as:

• A deep learning-based bagging ensemble classifier is

proposed to detect manipulated faces in videos.

• The ensemble classifier is based on the CoAtNet model

which is a combination of depthwise convolution and

self-attention layers, to improve generalization, capac-

ity, and efficiency.

• The CutMix data augmentation is proposed to enhance

the localization and generalization performance of the

CoAtNet model.

• Our proposed method is evaluated on two different

datasets namely, Celeb-DF and FaceForensics?? and

it achieved higher efficiency compared to state-of-the-

art methods.

The remaining sections of the paper are structured as fol-

lows: Sect. 2 provides an overview of related work in the

field of DeepFake detection. Section 3 describes our pro-

posed method, which includes details about the CoAtNet

model and the bagging ensemble classifier with CutMix

data augmentation. We present in Sect. 4 our experimental

results and discussion on two datasets, namely

FaceForensics?? and Celeb-DF. Lastly, we provide a

concluding section and offer insights into potential future

work.
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2 Related work

Recently, the rapid developments in machine learning and

deep learning algorithms enable researchers to develop and

evaluate many methods to detect DeepFakes. In this sec-

tion, we cover the most relevant approaches to detect

manipulated images and videos.

Traditional machine learning methods have been used in

many research works for detecting face forgery, such as

Support Vector Machine (SVM) [15, 16]. For example, in

[16], the authors introduced a method for detecting fake

images by comparing landmark locations extracted from

the original and fake images. They found that central

landmarks of fake and original images are always very

closest, so, they decided to use only facial landmarks to

estimate the error or difference between the two images.

The error values are then used as a feature vector to train an

SVM classifier to detect fake images. However, this

method may be sensitive to variations in the position and

orientation of the facial landmarks, as small differences in

landmark positions can lead to significant changes in the

feature vector. In [17], the authors tested a steganography-

based method [18] on the FaceForensics?? dataset to

detect face forgery. The detector is built using a rich model

of features obtained through various approaches and a Fish

linear discriminate-based classifier. However, the results of

this method were not as good as those achieved by deep

learning-based methods.

On the contrary, various methods have utilized deep

learning techniques, such as convolutional neural network

(CNN) and capsule networks, to detect faked faces. For

instance, in [19], the authors proposed a compact neural

network, MesoNet, to capture mesoscopic properties of

images for detecting facial video forgeries. Two network

architectures, Meso-4 and MesoInception-4, are intro-

duced, Meso-4 has a sequence of four layers of successive

convolutions and pooling, followed by a dense network

with one hidden layer, while MesoInception-4 used a

variant of the inception module instead of the first two

convolutional layers as in Meso-4. However, the proposed

networks are only tested for detecting DF and F2F facial

video manipulations. In [20], Rahmouni et al. proposed a

method that used CNN to differentiate between real and

computer-generated graphics images. The method involves

splitting the input images into smaller patches and feeding

them to CNN to extract feature maps. Statistical features

are then computed based on the extracted feature maps, and

these statistical features are utilized for distinguishing

between computer-generated and genuine photographic

images. However, the method may not generalize well to

detect different types of DeepFake manipulations. In [21],

they proposed a method that utilizes biological signals

present in videos as a means of identifying authenticity.

The method involves several transformations of these sig-

nals and the use of a CNN to enhance the classifier’s ability

to detect synthetic content. In [22], they combined a cap-

sule network with VGG-19 for detecting fake faces,

including those using printed images and replayed videos,

as well as those created using deep learning. This network

has demonstrated the capability to perform comparably to

conventional CNN but with a much smaller number of

parameters. In [23], the authors proposed a CNN method

that leverages both the spatial information of the image and

the phase spectrum to detect up-sampling artifacts caused

by face forgery. However, this method may not be as

effective if the forgery wasn’t created using generative

models. In [24], the authors introduced a supervised con-

trastive learning approach for classifying images as either

fake or real. Their method involves applying two different

augmentation techniques, selected randomly, to the input

image to generate a pair of distinct perspectives of an

identical image, which is then passed through their

framework, which consists of two branches. In each

branch, they use XceptionNet as an encoder to extract

features, a projector to represent these features as a vector,

and a predictor to generate a new vector based on this

projection vector and the feature maps of the other branch,

allowing the model to learn consistency. In [25], an

attention technique was utilized with CNNs to identify key

regions in the image and highlight them to improve the

features used for classifying manipulated faces. In [26], a

graph neural network (GNN) is proposed to detect real and

fake faces. This method involves extracting faces from

videos and dividing them into patches, where each patch

represents a node in a graph. The edges are constructed

using K-Nearest Neighbor (KNN), and an aggregation

function is used to update edge weights through a number

of iterations. The GNN is integrated into a pyramid ResNet

architecture to process multiscale image attributes. How-

ever, the performance of the KNN used to build the edges

can be influenced by the choice of the number of neighbors

and the distance metric used, which may have an impact on

the accuracy of the resulting graph.

Additionally, some methods exploit the temporal infor-

mation of video frames. For example, the authors in [27]

proposed employing different spatio-temporal convolu-

tional network architectures such as Recurrent CNN

(RCN), ResNet-3D (R3D), and Inflated 3D CNN (I3D) to

exploit temporal information for detecting DeepFakes. In

[28], the authors proposed a two-stream method for

detecting DeepFakes, which involves an analysis of the

compressed video’s temporal-level and frame-level char-

acteristics. They recognize that fake videos may lack

temporal consistency, so they apply a temporal-level

stream to extract temporal correlation features to deal with
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this problem. However, these methods require large

amounts of training data to learn effective representations

of spatio-temporal features.

Moreover, some other detection methods use an

ensemble-based learning architecture. For instance, in [29],

the authors proposed an ensemble of CNN architectures

(XceptionNet, XceptionNet ? Attention, and Effi-

cientNet? Attention) by applying a supervised attention

network on the original model. This network includes

attention-based data augmentation and decision explana-

tion to enhance the model’s accuracy and improve gener-

alization. They trained and evaluated their model using the

DFDC dataset. In [30], the authors proposed a technique

based on ensemble learning called DeepfakeStack. Their

architecture consists of two levels: level 0 involves a series

of deep learning models called base-learners, and level 1 is

a CNN classifier called meta-learner, which is trained on

the output predictions of level 0. They trained and evalu-

ated their technique on the FaceForensics?? dataset [17].

The authors in [31] introduced DefakeHop, a method that

utilizes the principle of successive subspace learning to

automatically extract features from various parts of face

images. These features are obtained through the Saab

transform and then further processed by a feature distilla-

tion module. The final decision is obtained by integrating

soft decisions from all facial regions and selected frames.

Currently, Vision Transformer (ViT) models have been

proven to be effective in image classification. For instance,

Heo et al. [32, 33] introduced a ViT-based model that

concatenates patch embedding of input sequences with

EfficientNet to extract local features. The output of this

concatenated layer is then passed to ViT with a distillation

method that learns global information for DeepFake

detection. Similarly, in [34], the authors proposed a model

consisting of a stack of convolutional blocks to extract

learnable features from video frames, followed by a ViT

that takes the extracted feature as input and classifies it as

either fake or real. However, the examination of ViT-based

models and their variations for DeepFake detection is still

limited.

3 The proposed method

In recent years, there has been a growing interest in

incorporating the concept of attention into computer vision,

as various works have demonstrated the effectiveness of

this approach [35–38]. One of the most recent development

models is ViT [39]. Despite its promising results, the

performance of ViT still falls behind that of CNNs [40].

This is likely due to the fact that ViT lacks the image-

specific inductive bias that CNNs possess [41, 42]. CNNs

are typically able to generalize and converge faster than

ViT, while the latter has more model capacity.

CoAtNet model [43] combines both architectures’

strengths in such a way that this combination improves

generalization, capacity, and efficiency. The CoAtNet

model has two main components: mobile inverted bottle-

neck convolution (MBConv) block [44] and self-attention

with relative bias [45]. The specifics of these two compo-

nents are addressed in subsequent subsections.

In this paper, we propose an ensemble of CoAtNet

models with CutMix augmentation to effectively detect

DeepFake videos as shown in Fig. 1. The CoAtNet com-

bines both convolutional layers and self-attention layers

with a relative bias to capture features from the input

images. The convolutional layers capture local features

from the images, while the self-attention layers extract

global information and efficiently capture the long-range

dependencies of spatial details.

3.1 MBConv block

MBConv block was proposed in [44]. The MBConv block

has been shown to be effective at improving the perfor-

mance of deep learning models while keeping them light-

weight and efficient. The structure of the MBConv block

consists of three layers. First, an expansion layer applies a

ð1 � 1Þ convolutional layer to the input to increase the

number of channels. Typically ð1 � 1Þ convolutional layers

are used to combine the features across channels and

control the number of channels in the output. Then, a

depthwise convolution ð3 � 3Þ is performed on the output

of the expansion layer. Depthwise convolution is a type of

convolution that differs from standard convolution. In

standard convolution, a set of filters with learnable weights

is applied to the entire input feature map. Each filter slides

across the entire input feature map, computing a dot pro-

duct between the filter weights and the input values at each

location. The resulting output feature map has the same

spatial dimensions as the input, but the number of output

channels is determined by the number of filters used. In

contrast, depthwise convolution applies a single filter per

input channel. In other words, each filter in a depthwise

convolution only convolves with a single channel of the

input feature map. Depthwise convolution is computa-

tionally less expensive than standard convolution because

it requires fewer parameters and computations.

Finally, a projection layer applies ð1 � 1Þ convolutional

layer to the output of the depthwise convolution layer to

reduce the number of channels. This layer is used to match

the number of channels in the input with the output of the

block. The input and output feature maps are added using a

residual connection only if they have the same dimensions

and the stride used with a depthwise convolution equals
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one, as shown on the left side of Fig. 2. In the CoAtNet, the

first repetition of the MBConv block uses a stride of 2 with

the first convolutional layer for the downsampling process,

as shown on the right side of Fig. 2.

3.2 Self-attention

In computer vision, CNNs have been the dominant model

architecture [40, 46–48]. In contrast, self-attention-based

architectures, in particular Transformers [45], have shown

great success in natural language processing (NLP). The

ViT architecture proposed in [39] uses an encoder

composed of repetitive blocks of two layers: Multi-head

self-attention (MSA) layer followed by a feed-forward

network (FFN). The self-attention layer aggregates spatial

information over patches, capturing global information and

long-range dependencies by attending to relevant patches.

Consider a 2D image with feature maps x 2 RH�W�C,

where H is the height, W is the width, and C is number of

feature maps. To form the input sequence x for self-at-

tention, the image is divided into a fixed size of patches

xp 2 RP�P�C, with the number of patches m ¼ WH=P2,

where (P, P) is the size of each patch. These patches are

flattened into a 1D to form the input sequence of token

embeddings x ¼ ðxp1
; ::::; xpmÞ of m elements. Self-attention

operates on this sequence and produces an output sequence

y ¼ ðy1; ::::; ymÞ, where yi 2 Rdy . The output of each ele-

ment yi is computed as a weighted sum of the linearly

projected input elements:

yi ¼
Xm

j¼1

aijðxpjWVÞ ð1Þ

where each weight aij is computed by applying a softmax

function:

aij ¼
exp eijPm
k¼1 exp eik

ð2Þ

and eij computes the scaled pairwise similarity between

two elements ðxpi ; xpjÞ:

Fig. 1 An overview of the proposed method

Fig. 2 The structure of the MBConv block
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eij ¼
ðxpiWQÞðxpjWKÞT

ffiffiffiffiffi
dy

p ð3Þ

where WQ;WK ; and WV are all learned transformation

matrices that map the input sequence into queries Q, keys

K, and values V representations, respectively.

MSA extends the concept of self-attention by applying

the self-attention operation h times, referred to as ‘‘heads’’,

in parallel and projecting their concatenated outputs. MSA

is employed to learn various distinctive representations of

the input. MSA is defined as:

MSAðQ;K;VÞ ¼ Concatðhead1; :::; headhÞWO ð4Þ

headi ¼ SelfAttentionðQWQ
i ;KW

K
i ;VW

V
i Þ ð5Þ

where WQ
i , WK

i , and WV
i are the projection matrices for

each head i. WO is a weight matrix that is applied to the

concatenated outputs of the MSA.

The second layer of the encoder is a point-wise FFN

consisting of two fully connected layers with a ReLU

activation function in between. The primary function of

this layer is to provide a layer of non-linear transformations

that allows the model to learn more complex representa-

tions of the input sequence. The layer normalization is

employed on the input of each layer (MSA and FNN) in

such a way that the output of each layer is added to the

input via a residual connection.

3.3 Relative attention

Relative attention is a variant of self-attention that takes

into account the relative position of the elements in the

input sequence. 2D relative attention is commonly used in

image and video processing tasks, where the relationship

between the pixels or frames is important for understanding

the content of the image or video. The standard self-at-

tention considers the absolute position [45]. Absolute

positional encodings are available in a variety of formats,

such as the sine and cosine functions. To generate the

positional encoding vectors, a combination of sine and

cosine functions with different frequencies is utilized.

These vectors have the same dimension as the input

embeddings. The positional encoding vectors are added to

the input embeddings to inject the positional information of

the input token.

There have been numerous variations for the relative

position in previous works, such as [49–51]. Relative

position can be split into two categories: (1) the dependent

version, which depends on input embeddings; and (2) the

independent version, where the encodings are independent

of the input embeddings. In our proposed architecture, we

use the independent version, similar to the one used in [49],

where a 2D relative position wi�j is added to the attention

weight to achieve the property of translation equivariance.

The Eq. (2) is modified to be:

aij ¼
expðeij þ wi�jÞPm
k¼1 expðeik þ wi�jÞ

ð6Þ

where wi�j is a trainable scalar representing the relative

position weight for all (i, j) pairs.

3.4 CoAtNet architecture

The CoAtNet model’s architecture is composed of merging

depthwise convolution with self-attention layers with rel-

ative position encoding (as discussed in the previous sec-

tion). The CoAtNet model combines an MBConv block

and self-attention with the relative position in Eq. (6). This

combination achieves three properties namely, global

receptive field, input-adaptive weighting, and translation

equivariance. The architecture of CoAtNet basically con-

sists of five levels (L0, L1, L2, L3, L4) namely, Conv2d,

MBConv, MBConv, TFMRel and TFMRel layers respec-

tively as shown in Fig. 3. Where Conv2d is a 2D convo-

lutional layer, and TFMRel is a Transformer block that

consists of MSA with relative position encoding followed

by an FNN layer. Each level is repeated T times and the

number of channels D from L1 to L4 is doubled, as shown

Fig. 3 The architecture of the

CoAtNet model
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in Table 1. The kernel size is 3 for all Conv2d and

MBConv blocks, and the size of each attention head is 32

for all the Transformer layers. Pre-activation is applied to

MBConv and Transformer blocks, in which normalization

is performed before the layer operation. This allows the

residual connection to be defined as follows:

x ( xþ LayerðNormðxÞÞ ð7Þ

where Layer refers to self-attention, FFN, or MBConv

layers. For self-attention and FFN layers, Norm denotes

layer normalization and for MBConv blocks, Norm denotes

batch normalization. For the first block inside each level

from L1 to L4 the identity branch and the residual branch

are down-sampled separately. In particular, for each

Transformer block, the max-pooling of stride 2 is per-

formed to the input states of both branches. In order to

increase the hidden size, a channel projection is also per-

formed to the identity branch:

x ( ProjðMaxPoolðxÞÞ þ SelfAttentionðMaxPoolðNormðxÞÞÞ
ð8Þ

While for each MBConv block, a convolution of stride 2 is

used to achieve the downsampling in the residual branch:

x ( ProjðMaxPoolðxÞÞ þMBConvðNormðxÞÞ ð9Þ

Finally, we implement global average pooling on the out-

put of the last level in order to simplify the representation

of features. We then add a fully connected layer with 512

hidden neurons, followed by a dropout layer and the output

layer.

3.5 CutMix data augmentation

CutMix [52] is an augmentation technique that utilizes the

regional dropout techniques [53, 54] to enhance the

localization and generalization performance of CoAtNet

model by spreading the focus of the model to the entire

object region not only to the most discriminative parts. The

regional dropout technique removes random regions in

input images. CutMix is similar to other techniques, such

as MixUp and CutOut [53, 55], that alter the training

images by removing or masking regions of the image.

However, the main distinction of CutMix is that the

removed regions are replaced with patches from another

training image, rather than simply being replaced with a

constant value as illustrated in Fig. 4. This allows the

model to learn more robust feature representations by

combining different parts of different training examples

during training.

Given training images x and their corresponding labels

y, the CutMix process creates new training samples by

randomly cutting a section of one image ðxA; yAÞ and

placing it onto another image ðxB; yBÞ, forming a new

sample ðx�; y�Þ. Then the CoAtNet model is trained on the

newly generated samples, with the aim of introducing a

wider variety of data to improve the model’s robustness.

The new image sample ðx�; y�Þ is defined as:

x� ¼ B� xA þ ð1 � BÞ � xB ð10Þ

y� ¼ xyA þ ð1 � xÞyB ð11Þ

where B is a binary mask that indicates where to drop and

fill the pixels from the two images. Additionally, a coef-

ficient x is utilized to adjust the ratio of pixels being taken

from each of the images and is sampled from the Beta

distribution.

Table 1 CoAtNet model architecture: each line represents a series of

identical layers repeated T times, D is the number of channels and e is

the expansion factor

Input Operator T D e

1602 � 3 Conv2d 2 64 –

802 � 64 MBConv 2 96 4

402 � 96 MBConv 3 192 4

202 � 192 TFMRel 5 384 –

102 � 384 TFMRel 2 768 –

52 � 768 GAvgPool 1 –

768 FC 1 512 –

512 Dropout 1 –

512 FC

(Output)

1 2 –

Fig. 4 An illustration of the CutMix data augmentation
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3.6 Bagging ensemble

Bagging Ensemble [56] is an ensemble learning method

based on bootstrap sampling. It is an effective technique

for generating an ensemble of independent models, in

which these models are trained in a parallel manner on a

different sample of instances generated from the original

data set with replacement. Replacement means that if the

training data set contains D samples, we randomly select

D1 samples to generate the first subset then return the

selected D1 samples to the original data set to be re-se-

lected again to generate the number of subsets depending

on the number of bagging models.

The models’ predictions could be combined using dif-

ferent techniques such as Majority Voting, Sum, Product

rules, and stacking. The Majority Voting method works by

taking a majority vote of the predictions of the base

models. The Sum rule is a more powerful ensemble

method, where the predictions of all base models are

summed together, and the class with the highest sum is

predicted. The Product rule is similar to the Sum rule, but

the predictions of all base models are multiplied together

before selecting the predicted class. Stacking, on the other

hand, involves training a meta-model to predict the target

class based on the predictions of the base models. The

Majority Voting, Sum, and Product rules can be defined as

follows:

ŷ ¼ argmaxc2C
XN

n¼1

½ŷn ¼ c� ð12Þ

ŷ ¼ argmaxc2C
XN

n¼1

ŷn ð13Þ

ŷ ¼ argmaxc2C
YN

n¼1

ŷn ð14Þ

where ŷn is the prediction of the nth base-learner, N is the

number of base-learners, and C is the set of class labels. In

this paper, we compare the performance of three ensemble

techniques: Majority Voting, Sum, and Product rules.

These methods are relatively simple and do not require any

additional training while stacking is a more complex and

computationally expensive method. The training of the

bagging ensemble based on the CoAtNet model is shown in

Algorithm 1.
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4 Experiments and discussion

4.1 Datasets

In all our experiments, we used FaceForensics?? [17] and

Celeb-DF [57] datasets. The FaceForensics?? dataset [17]

is a large-scale collection of manipulated facial images,

containing over 1.8 million images. This dataset includes

1, 000 authentic videos that were obtained from YouTube.

These real videos were manipulated using four different

methods, which include classical computer graphics-based

approaches (Face2Face (F2F) [10], FaceSwap (FS) [5]),

and deep learning-based techniques (Deepfakes (DF) [7],

NeuralTextures (NT) [11]), to generate fake videos. For

each method, 1, 000 fake videos were generated. The

dataset also includes two compressed versions with dif-

ferent quality levels, namely low-quality videos (LQ) and

high-quality videos (HQ). Our proposed method is evalu-

ated on the (LQ) dataset. Samples of FaceForensics?? are

shown in Fig. 5.

The Celeb-DF [57] is a new and challenging large-scale

DeepFake video dataset, consisting of over 2 million

images. It includes 590 real videos and 5, 639 DeepFake

videos. The real videos were sourced from publicly avail-

able YouTube videos, featuring interviews of 59 celebrities

with diverse distributions in gender, age, and ethnicity. The

manipulated videos were generated using an advanced

DeepFake synthesis algorithm [58, 59], which improves the

visual quality of the manipulated videos by swapping the

face of one person with the face of another person for each

of the 59 subjects. Samples of Celeb-DF are shown in

Fig. 6.

4.2 Implementation details

The FaceForensics?? dataset is divided as described in

[17], with 720 videos selected for training, 140 for vali-

dation, and 140 for testing. For the Celeb-DF dataset, 518

real and fake videos are used for testing and the remaining

videos are used for training the models.

To preprocess the data, we extract one frame every ten

subsequent frames from both real and DeepFake videos.

We use the MTCNN model [60] to detect face landmarks

from the extracted frames. All the detected faces are then

cropped around the center and resized to 160 � 160 pixels.

For the training, all the detectors namely, XceptionNet

[61] and CoAtNet are pretrained on the Imagenet dataset

Fig. 5 Examples of FaceForensics?? dataset
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and then the last layer is removed and we add a global

average pooling layer followed by 512 fully connected

layer, dropout layer, and finally the softmax output layer

for deep fake detection. Each model is trained using the

Adam optimizer with a learning rate of 0.0001 on the

DeepFake datasets for 15 epochs. XceptionNet is a widely

used model in DeepFake detection and is considered a

baseline. XceptionNet is a CNN-based model that replaces

the standard inception modules with a depthwise separable

convolutional module. The models are trained on a single

Nvidia TITAN Xp GPU with a batch size of 32. For our

proposed bagging ensemble method, we train five CoAtNet

models on different subsamples selected randomly from

the training set and combine the models’ predictions using

one of three techniques: Majority Voting, Sum rule, or

Product rule.

4.3 Evaluation metrics

Two common evaluation metrics used in face forgery

detection are the Accuracy rate (ACC) and the Area Under

Receiver Operating Characteristic Curve (AUC). Accuracy

is a widely understood measure for evaluating the perfor-

mance of face forgery detection systems. It is calculated as

the proportion of correct predictions made by a model in

relation to the total number of predictions made.

Let TP represent the count of correctly classified real

images, TN represent the count of correctly classified fake

images, FP represent the count of fake images mistakenly

classified as real, and FN represent the count of real images

mistakenly classified as fake. The Accuracy is defined as:

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð15Þ

The AUC is widely used in DeepFake detection problems

to measure the performance of a model that classifies

examples as belonging to one of two classes, such as real

and fake images. The calculation of AUC involves the

plotting of a graph known as the ROC curve, which

demonstrates the relationship between the true positive rate

(TPR) and the false positive rate (FPR) at various thresh-

olds. The TPR and FPR are defined as:

TPR ¼ TP

TPþ FN
ð16Þ

FPR ¼ FP

FPþ TN
ð17Þ

Fig. 6 Examples of Celeb-DF dataset

Table 2 Results on

FaceForensics?? dataset for

each manipulation techniques

DeepFakes (DF), Face2Face

(F2F), FaceSwap (FS),

NeuralTextures (NT) using

XceptionNet and CoAtNet

models

Model DF F2F FS NT

ACC AUC ACC AUC ACC AUC ACC AUC

XceptionNet 95.27 98.94 88.23 95.50 92.19 97.21 75.15 83.26

CoAtNet 95.81 99.12 87.55 94.71 92.95 97.71 77.33 85.32

CoAtNet ?

aug

95.63 99.10 87.88 95.78 93.56 98.03 76.44 84.82

CoAtNet ?

CM

96.87 99.48 89.88 96.32 94.00 97.99 77.35 86.18

Bold values indicate the best results for each evaluation metric on each model and higher value means

better result
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AUC represents the total area under the ROC curve. A

perfect classifier would have a TPR of 1 and a FPR of 0,

resulting in an AUC of 1.

4.4 Results on faceforensics11 dataset

Several experiments have been conducted on both

FaceForensics?? and Celeb-DF datasets to evaluate the

performance of the proposed DeepFake detection model.

First, we compare the performance of XceptionNet and

CoAtNet models in detecting different fake videos gener-

ated by different manipulation techniques on the

FaceForensics?? dataset as shown in Table 2.

When comparing the performance of the XceptionNet

and CoAtNet models on the FaceForensics?? dataset, it

was observed that the CoAtNet model performed relatively

better across all manipulations, with an average AUC of

94:22% and an average accuracy of 88:41% on the four

FaceForensics?? manipulations. On the other hand, the

XceptionNet model demonstrated an average AUC of

93:73% and an average accuracy of 87:71%. The CoAtNet

model outperformed the XceptionNet in terms of AUC and

accuracy for three out of the four manipulation techniques.

For instance, on the NT manipulation technique, the

CoAtNet model has an AUC and accuracy of 77:33% and

85:32% respectively, while the XceptionNet model has an

AUC and accuracy of 75:15% and 83:26% respectively.

The only manipulation technique where XceptionNet

achieved the highest AUC and accuracy was for the F2F

manipulation.

Next, we compare the performance of the proposed

CutMix (CM.) augmentation technique to the traditional

augmentation (aug.) techniques, using the CoAtNet model,

as shown in Table 2. Traditional augmentation techniques

include operations such as rotation, flipping, scaling,

zooming, and shifting. The goal of these techniques is to

expose the model to a wider range of variations during

training, in order to improve its robustness and ability to

generalize to new data. The performance of the CoAtNet

model with traditional augmentation is almost similar to

the performance of the CoAtNet model without augmen-

tation except for the FS manipulation technique, where the

CoAtNet model with traditional augmentation showed a

slight increase in accuracy (93:56%) compared to the

CoAtNet model without augmentation (92:95%). The

CoAtNet model with CutMix outperforms both the CoAt-

Net model with traditional augmentation and the CoAtNet

model without augmentation in performance. Specifically,

the average AUC and accuracy of the CoAtNet model with

CutMix are 95:74% and 89:53% respectively, this is

compared to 94:43% and 88:38% for the CoAtNet model

with traditional augmentation and 94:22% and 88:41% for

the CoAtNet model without augmentation over the four

manipulation techniques. These results indicate that the

CutMix augmentation technique is more effective in

enhancing the capability of the CoAtNet model for Deep-

Fake detection tasks.

Table 3 reports the evaluation of different ensemble

techniques of CoAtNet models with CutMix augmentation

on the FaceForensics?? dataset for four different manip-

ulation techniques. Three ensemble methods are compared:

Majority Voting, Sum, and Product rules. It can be

observed that the ensemble methods are capable of

attaining higher AUC and accuracy scores compared to the

single CoAtNet model. For example, for the F2F manipu-

lation technique, the accuracy of the Majority Voting, Sum,

and Product ensemble methods are 91:36%, 91:60%, and

91:69% respectively, compared to the 89:88% of the single

CoAtNet model. For the NT manipulation technique, the

accuracy of the Majority Voting, Sum, and Product

ensemble methods are 79:10%, 79:43%, and 79:32%

respectively, compared to the 77:35% of the single CoAt-

Net model. The sum and product rules are more powerful

than majority voting because they take into account the

confidence level of each model’s prediction. For example,

for the F2F manipulation technique, the accuracy of the

Sum and Product ensemble methods are 91:60%, and

91:69% respectively, compared to the 91:36% of the

Majority Voting.

In Fig. 7, we present the ROC curves for our proposed

ensemble method using the Product rule and the baseline

methods on the four manipulations techniques of the

FaceForensics?? dataset. The ROC curve for the ensem-

ble method (red curve) is closer to the top-left corner of the

graph, indicating that it has a higher TPR and a lower FPR

compared to the XceptionNet (blue curve), CoAtNet (or-

ange curve), and CoAtNet ? CM. (green curve). This

suggests that our proposed method is better at correctly

identifying manipulated videos while minimizing the

number of false positives. Additionally, we can see the

Table 3 Results of the ensemble

of CoAtNet models on the

different manipulation

techniques of the

FaceForensics?? dataset (DF,

F2F, FS, and NT)

Model DF F2F FS NT

ACC AUC ACC AUC ACC AUC ACC AUC

Majority Voting 97.65 – 91.36 – 95.67 – 79.10 –

Sum Rule 97.67 99.72 91.60 97.49 95.70 98.87 79.43 87.81

Product Rule 97.70 99.70 91.69 97.49 95.74 98.90 79.32 87.62
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AUC values in the figure. For example, for FS manipula-

tion, the AUC for the ensemble method is 98:90%, while

the AUC for the XceptionNet (97:21%), CoAtNet

(97:71%), and CoAtNet ? CM. (97:99%).

In Fig. 8, the accuracy of each individual model within

the bagging ensemble is presented. For example, for the

NT manipulation, the average accuracy of the ensemble is

76.90%, with a standard deviation of 0.49. The accuracy of

the ensemble using the Product rule is 79.33%. For the DF

manipulation, the highest accuracy of an individual model

is 96.78%, while the accuracy of the ensemble using the

Product rule is 97.70%. The results show that the accuracy

of the ensemble is consistently higher than that of the

individual models, indicating that the ensemble method is

able to improve the performance of the individual models

and that models within the ensemble are diverse and able to

make good predictions.

The results of evaluating our proposed ensemble method

against various state-of-the-art methods on different

manipulation techniques (DF, F2F, FS, NT) of the

FaceForensics?? dataset are presented in Table 4. The

ensemble method achieves the highest accuracy and AUC

for all types of manipulations compared to all other methods

such as MesoNet [19], Rahmouni et al. [20], Steg. Features

[18], Dong et al. [24], Capsule networks [22], Liu et al. [23],

and Hu et al. [28]. The accuracy of the proposed ensemble

method ranges from 79.32% for NT to 97.70% for DF,

while the AUC ranges from 87.62% for NT to 99.70% for

DF. For NT manipulation, the proposed method comes in

second place after Hu et al. [28] method. The results indi-

cate that the proposed ensemble method is able to improve

the performance of the individual models and is an effective

method for detecting manipulated faces in videos.

Fig. 7 Comparison of ROC curves and AUC values of the proposed ensemble method and baseline methods on the FaceForensics?? dataset.

a DF. b F2F. c FS. d NT
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The MesoNet method [19] achieves the lowest ACC

scores for F2F, and NT manipulation techniques but with

relatively high accuracy for DF. The Rahmouni et al.

method [20] performs the lowest ACC score for FS. The

Steg. Features method [18] achieves better ACC scores

than both MesoNet and Rahmouni et al. methods for F2F,

FS, and NT manipulation techniques, but fails behind both

for detecting DF manipulation. Dong et al. method [24]

only shows some improvement in detecting NT compared

to Steg. Features, MesoNet, and Rahmouni et al. methods.

The Capsule networks [22] have relatively high accuracy

for DF and F2F but have no results for FS and NT. The

Fig. 8 The accuracy of each model in the bagging ensemble on the FaceForensics?? dataset

Table 4 A comparison of the

proposed ensemble method with

the state-of-the-arts on different

manipulation techniques (DF,

F2F, FS, NT) of the

FaceForensics?? dataset

Model DF F2F FS NT

ACC AUC ACC AUC ACC AUC ACC AUC

MesoNet [19] 87.27 – 56.20 – 61.17 – 40.67 –

Rahmouni et al.

[20]

85.45 – 64.23 – 56.31 – 60.07 –

Steg. Features [18] 73.64 – 73.72 – 68.93 – 63.33 –

Dong et al. [24] 86.30 94.10 68.30 81.40 58.20 65.60 67.80 79.20

Capsule [22] 92.17 – 90.36 – 92.79 – – –

Wodajo et al. [34] 93.00 – 69.39 – 69.00 – 60.00 –

Hu et al. [28] 94.64 98.00 86.48 94.00 85.27 94.00 80.05 90.00

Liu et al. [23] 93.48 98.50 86.02 94.62 92.26 98.10 76.78 80.49

Ensemble (Ours) 97.70 99.70 91.69 97.49 95.74 98.90 79.32 87.62

Bold values indicate the best results for each evaluation metric on each model and higher value means

better result
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Wodajo et al. method [34], which is a ViT-based model,

has high accuracy for DF compared to the Capsule net-

works but performs poorly for FS, F2F, and NT. The Hu

et al. and Liu et al. methods [23, 28] achieve high accuracy

and AUC scores for all manipulation techniques compared

to the previously mentioned methods. The proposed

ensemble method outperforms all previous methods in

terms of accuracy and AUC for all manipulation tech-

niques, except for NT, the proposed method achieves ACC

of 79.32% and AUC of 87.62% compared to ACC of

80.05% and AUC of 90.00% for Hu et al [28] method. NT

manipulation is considered challenging to detect because it

involves synthesizing new textures to replace the original

ones, resulting in a more realistic and difficult-to-detect

forgery.

Overall, the proposed method outperforms other meth-

ods for several reasons. Firstly, it employs a deep learning

bagging ensemble classifier which reduces overfitting and

improves generalization performance, particularly for

complex and heterogeneous datasets like the FaceForen-

sics?? dataset. Moreover, the proposed ensemble method

utilizes the CoAtNet model as a base learner, enabling it to

efficiently capture long-range dependencies of spatial

details and improve the model’s capacity and efficiency.

Additionally, the proposed ensemble utilizes CutMix data

augmentation on the extracted faces, which enhances the

performance of the ensemble model. However, some of the

other methods only give a good performance for specific

manipulation techniques, indicating that they may not be

generalized enough to detect face manipulations in various

videos.

4.5 Results on celeb-DF dataset

We evaluate XceptionNet and CoAtNet models on the

Celeb-DF dataset and compare their performance for

DeepFake detection. Table 5 shows that there is a signifi-

cant increase in the accuracy of CoAtNet model by almost

1:5% compared to XceptionNet. Additionally, the

table shows the results of using data augmentation on the

CoAtNet model further improve its performance. The

results show that the CutMix augmentation technique leads

to the best performance, with an AUC of 99:49% and an

Table 5 Results on Celeb-DF dataset using XceptionNet and CoAt-

Net models

Model Celeb-df

ACC AUC

XceptionNet 95.35 98.97

CoAtNet 96.79 99.45

CoAtNet ? aug 96.90 99.39

CoAtNet ? CM 97.10 99.49

Bold values indicate the best results for each evaluation metric on

each model and higher value means better result

Table 6 Results of the ensemble of CoAtNet models on the Celeb-DF

dataset using different ensemble techniques

Model Celeb-df

ACC AUC

Majority Voting 97.61 –

Sum Rule 97.71 99.70

Product Rule 97.81 99.74

Fig. 9 Comparison of ROC curves and AUC values of the proposed

ensemble method and baseline methods on the Celeb-DF dataset

Table 7 A comparison of the proposed ensemble method with the

state-of-the-art methods on the Celeb-DF dataset

Model Celeb-df

ACC AUC

Yang et al. [16] – 54.60

MesoNet [19] – 54.80

Capsule [22] – 57.50

Li et al. [57] – 64.60

Dang et al. [25] – 71.20

Hu et al. [28] 80.74 87.00

Chen et al. [31] – 90.56

Ciftci et al. [21] 91.50 –

Silva et al. [29] 93.64 98.41

Heo et al. [33] – 99.30

Ensemble (Ours) 97.81 99.74

Bold values indicate the best results for each evaluation metric on

each model and higher value means better result
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accuracy of 97:10%. This is compared to the CoAtNet

model with traditional data augmentation which has an

AUC of 99:39% and an accuracy of 96:90%. These results

indicate that the CutMix augmentation is more effective in

enhancing the performance of the CoAtNet model on the

DeepFake detection task.

Finally, we evaluate three different ensemble techniques

of CoAtNet with CutMix augmentation using Majority

Voting, Sum, and Product. The results on the Celeb-DF

dataset show that all three ensemble methods improve the

performance of the single CoAtNet model. When com-

paring the performance of the three methods, we find that

the Product rule slightly increases the accuracy of Deep-

Fake detection, as shown in Table 6. This indicates that the

Product rule is more effective in combining the predictions

of multiple models for DeepFake detection on the Celeb-

DF dataset.

We also compare the ROC curve for the proposed

ensemble method using the Product rule on the Celeb-DF

dataset to those of the XceptionNet, CoAtNet, and CoAt-

Net ? CM. models as shown in the Fig. 9. We can see that

the ROC curve for our ensemble method (red curve) is

better than the XceptionNet model (blue curve) with a

higher AUC value of 99:74% compared to the Xcep-

tionNet’s AUC value of 98:97%. This indicates that our

proposed method generalizes well on the Celeb-DF dataset

and outperforms the baseline method on both datasets.

To assess the performance of our proposed method, we

conduct a comparative analysis with some of the state-of-

the-art techniques using the Celeb-DF dataset as shown in

Table 7. The proposed method achieves the highest accu-

racy and AUC scores with 97:81% and 99:74% compared

to the Silva et al. [29] with 93:64% and 98:41% which

comes in the second place. The results show that the pro-

posed ensemble method is an effective method for detect-

ing DeepFake manipulations.

5 Conclusion

In this paper, we presented a new method for detecting

manipulated faces using the bagging ensemble technique.

Our method uses a CoAtNet model as the base learner for

the ensemble method. Our method was tested on the Celeb-

DF and FaceForensics?? datasets and showed superior

results compared to existing state-of-the-art techniques. We

improved the performance of the CoAtNet model by

incorporating the CutMix augmentation technique. The

proposed ensemble of CoAtNet models with the CutMix

augmentation technique achieved the best results in

detecting manipulated faces on both datasets. In future

work, we will evaluate the proposed method on various

other DeepFake datasets and incorporate alternative aug-

mentation techniques to enhance its performance.
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