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Abstract
With an aim to eliminate or reduce the spread of hate content across social media platforms, the development of artificial

intelligence supported computational predictors is an active area of research. However, diversity of languages hinders

development of generic predictors that can precisely identify hate content. Several language-specific hate speech detection

predictors have been developed for most common languages including English, Chinese and German. Specifically, for

Urdu language a few predictors have been developed and these predictors lack in predictive performance. The paper in

hand presents a precise and explainable deep learning predictor which makes use of advanced language modelling

strategies for the extraction of semantic and discriminative patterns. Extracted patterns are utilized to train an attention-

based novel classifier that is competent in precisely identifying hate content. Over coarse-grained benchmark dataset, the

proposed predictor significantly outperforms state-of-the-art predictor by 8.7% in terms of accuracy, precision and F1-

score. Similarly, over fine-grained dataset, in comparison with state-of-the-art predictor, it achieves performance gain of

10.6%, 17.6%, 18.6% and 17.6% in terms of accuracy, precision, recall and F1-score.

Keywords Roman Urdu � Hate speech detection � Language model � Interpretability � Deep learning � Attention head �
Aggregation attention

1 Introduction

The last two decades have witnessed a significant increase

in the development of social media platforms [1]. These

platforms are facilitating in transforming world into global

village in which social media users from different regions

can share information [1] about everyday activities.

Advancement in internet facilities enable people for

quickly interacting and expressing their opinions with each

other through different communication channels, such as

brief text messages, tweets and sharing posts on various

social media platforms including Facebook, Twitter and
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Instagram [2, 3]. Social media platforms provide freedom

for sharing any type of content; however, some users

exploit the opportunity to publish fake news [4] and hate

content [1, 5].

Hate speech or trolling is disparaging a person or a

group of people based on a trait such as race, colour, eth-

nicity, gender, sexual orientation, nationality or religion

[6]. Such type of controversial content propagates hostile

discourse, and this enragement may manifest itself in

physical violence or violent acts [7]. In a nutshell, for the

development of a truly democratic society, hate speech

eradication is essential to stop violence, control conflict on

a larger scale and maintain law and order [8]. However, it

is difficult to detect and filter hate content from social

media platforms mainly due to the diversity of 7139 lan-

guages used by social media users [9].

To winnow out the spread of hate content, researchers

are utilizing the power of artificial intelligence methods for

the development of two different types of computational

predictors, namely, language-specific [10–12] and multi-

lingual [13–15]. Multilingual predictors lack in predictive

performance because they remain fail in capturing dis-

criminative and contextual information from different

types of languages at the same time [12]. On the other

hand, although language-specific predictors produce better

performance, they are developed only for resource-rich

languages like English [16], Spanish [17], Dutch [18, 19]

and Arabic [20].

Urdu Language lacks robust and precise hate speech

detectors, although it has more than 100 million speakers

[21] around the world and is the national language of two

different countries: Pakistan and India [21]. To communi-

cate Urdu, speakers make use of two different writing

styles: Nastaliq Urdu and Roman Urdu [22]. Nastaliq Urdu

is written in Latin script and Roman Urdu is similar to

English, but it follows completely free writing style [22].

Most Urdu speaking social media users use Roman Urdu

language for communication. For Roman Urdu language, it

is not possible to adapt existing machine and deep learning-

based methodologies that have been developed for hate

speech detection in resource-rich languages. The unique

characters and writing style of Roman Urdu are exactly

similar to the English language. However, Roman Urdu

does not follow any grammatical rules and people use a

free writing style while writing on social media platforms

such as a word can be written in several possible ways. The

English word ‘‘unconscious’’ is written in different ways in

Roman Urdu such as ‘‘behosh’’, ‘‘bahosh’’, ‘‘bayhoosh’’,

‘‘byhosh’’ and ‘‘baihoosh’’. Hence, due to high variability

of same words in different samples extraction of informa-

tive patterns is difficult in Roman Urdu textual data. In a

nutshell, Roman Urdu requires more robust computational

predictors that can deal with a large vocabulary and high

variability of the same word. According to our best

knowledge to date, there exist only four computational

predictors for Roman Urdu hate speech detection

[10, 23–25]. These predictors make use of various machine

learning and deep learning-based approaches but remained

fail to provide a decisive system for hate content analysis.

To empower the process of hate speech detection from

Roman Urdu content contributions of this paper are

manifold:

1. It facilitates an optimized language model trained on

large unannotated Roman Urdu data. Apart from hate

speech detection, trained language model can also be

used for performing multiple other tasks such as

sentiment analysis, fake news detection and informa-

tion retrieval.

2. It presents a novel classifier that makes use of two

different types of attention mechanisms and multiple

neural strategies such as learning rate decay and

dropout.

3. Proposed predictor is enriched with interpretability

mechanism that enables a clearer understanding of

words contributions towards predictor decisions.

4. Over coarse- and fine-grained benchmark datasets,

proposed predictor outperforms existing Roman Urdu

hate speech predictors by a significant margin of 8.7%

and 10.6% in terms of accuracy.

5. It presents a user-friendly web interface that enables

more effective monitoring and intervention of hate

content.

2 Literature review

Exponential growth of users over social media platforms

requires advanced hate speech detectors capable of filtering

unethical and hate content [6]. To promote peaceful soci-

eties, the development of computational predictors for hate

speech detection is an active area of research, where aim of

each newly developed predictor is to more precisely dis-

tinguish hate content from normal content [26]. Several

symposiums, seminars and conferences are devoted for the

exploration and smart processing of social media content

related to hate speech detection [27]. Diverse platforms,

such as Sentiment Analysis Symposium (SAS) [27],

Workshop on Computational Approaches to Subjectivity

[28], Sentiment and Social Media Analysis (WASSA) [29],

Opinion Mining [30], Summarization and Diversification

(WISDOM) and ACM conference for Knowledge Dis-

covery and Data Mining (SIGKOD), provide an interna-

tional forum for researchers from all over the world to

share the most up-to-date studies on social data mining and

its future applications in academia and industry for various
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languages, such as English, Spanish, French, Dutch and

Danish [31, 32]. In order to accelerate research related to

natural language processing, these platforms also provide

benchmark datasets for a variety of languages, such as

English, Chinese, German and Arabic [13, 33, 34]. These

platforms also attract researchers for the development of

several applications for hate speech detection [13, 33, 34].

Although no track facilitates roman Urdu hate speech

detection datasets, still various researchers have explored

the potential of machine and deep learning approaches for

the development of computational predictors capable of

detecting offensive and hate content written in Roman

Urdu language [23, 35, 36]. This section provides brief

information related to existing predictors developed for

Roman Urdu hate speech detection.

To fulfil the deficiency of benchmark corpora, Sajid

et al. [23] developed Roman Urdu hate speech dataset that

contains different comments related to YouTube videos.

Authors manually tagged 16,300 comments into five dis-

tinct classes, namely, violence promotion, neutral,

extremist, religious and threat. Moreover, to transform

comments into statistical feature space, authors used most

renowned bag of words-based feature representation

approach named TF-IDF. Generated statistical feature

space was passed to four different machine learning clas-

sifiers, i.e. logistic regression (LR), support vector machine

(SVM), stochastic gradient descent classifier (SGD) and

naive Bayes (NB). The support vector machine (SVM)

classifier was found to be the highest performing classifier,

with an accuracy of 77.45%.

Another Roman Urdu Hate-Speech and Offensive Lan-

guage Detection (RUHSOLD)1 dataset was developed by

Rizwan et al. [24]. The dataset contains 10,012 tweets that

were annotated in two different scenarios, namely, coarse-

grained and fine-grained. In coarse-grained annotation,

tweets were annotated against two classes: normal content

and hate content. In fine-grained annotation setting, tweets

were annotated against normal and four different classes of

hate speech. Authors performed large-scale experimenta-

tion to transform tweets into statistical feature space using

one embedding generation method FastText [24] and four

different language models LASER [24], ELMo [24], BERT

[24] and XLM-RoBERTa [24]. To generate more com-

prehensive feature space by extracting more semantic and

discriminative patterns of words from tweets, they feed all

the feature space generation methods with four different

types of input features: uni-gram, bi-gram, tri-gram and

quad-grams. To analyse the performance impact of dif-

ferent classifiers on Roman Urdu language, authors pro-

posed three different deep learning classifiers, namely,

CNN, BiLSTM, hybrid of Gradient Boosting Decision Tree

(GBDT) and LSTM. Experimental results demonstrated

that CNN classifier and BERT language model-based

predictive pipeline produce highest performance for both

coarse-grained and fine-grained datasets, by producing F1-

scores of 0.90 and 0.75, respectively.

Akhter et al. [25] explored the potential of seven dif-

ferent machine learning predictors for Roman Urdu hate

speech detection. Using publicly available YouTube com-

ments dataset,2 they transformed roman Urdu tweets into

statistical feature space by taking different character and

word n-gram features. Based on experimental results,

authors concluded that among six different forms of char-

acter and word n-grams, character tri-grams are the most

effective features for generating more comprehensive sta-

tistical feature space. The regression-based classification

technique surpasses the other six machine learning classi-

fiers. Additive logistic regression (LogitBoost) shows

superior performance using character tri-gram.

Khan et al. [10] scraped several social media websites to

collect around 90,000 tweets and retain only 5000 tweets

related to Roman Urdu language. They annotated Roman

Urdu tweets against three different categories: neutral-

hostile, simple-complex and offensive-hate speech. They

explored the potential of four machine learning classifiers

(linear regression, SVM, Bayesian model and random

forest) and one deep learning classifier (CNN) for Roman

Urdu hate speech identification. Authors performed two

level classification, at first level classifier discriminate

between normal and hostile tweets and at second level the

classifier further differentiates the hostile tweets into

offensive and hate classes.

For both levels of classification, logistic regression

outperforms all other machine and deep learning by pro-

ducing F1-score of 0.906 for distinguishing between neu-

tral and hostile tweets and 0.756 for discriminating

between offensive and hate speech tweets.

Table 1 demonstrates the performance comparison of

different predictive pipelines for Roman Urdu hate speech

detection. There are several challenges associated with the

Roman Urdu language that accounts for the lower predic-

tive performance of these techniques. Unlike other

resource-rich languages, Roman Urdu lacks sufficient lin-

guistic resources to perform large-scale experimentation

using deeper networks. Another challenge is the unique

morphological nature of this language as a single word has

numerous spelling variations which makes it difficult to

generate comprehensive statistical vectors of words. Fur-

thermore, unavailability of language processing tools such

as, stemming, lemmatization and stop word lists are the

major hindrances to text processing in Roman Urdu.

1 https://github.com/haroonshakeel/roman_urdu_hate_speech.

2 https://github.com/shaheerakr/roman-urdu-abusive-comment-

detector.
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3 Material and methods

This section describes details of proposed predictor for

roman Urdu hate speech detection. Furthermore, it illus-

trates evaluation measures and benchmark datasets that are

used to evaluate the integrity and generalizability of pro-

posed predictor.

3.1 Proposed predictor

Recent advancement in deep learning has empowered

natural language processing domain by facilitating devel-

opment of useful computer-aided applications for different

tasks such as sentiment analysis [37, 38], spam and non-

spam email classification [39], fake news identification

[40], information retrieval [41] and question answering

systems [42, 43]. Initially, it was assumed that deep

learning approaches produce better performance when they

are trained on large datasets and these approaches remain

fail to produce better performance over small datasets.

However, annotation of large datasets is a costly and

labour-intensive task [44, 45]. The concept of transfer

learning, particularly the invention of word embedding

methods, enables deep learning models to produce better

performance over small datasets [46]. To date, several

word embedding methods have been proposed [47–49],

where motivation behind the development of each new

method was to make use of large unlabelled textual data to

generate statistical vectors against each word [48, 50].

Identical words must have statistical vectors in closer space

while vectors of unidentical words should be distant in

order to understand the semantic relation between distinct

words [48].

At embedding layer, deep learning models make use of

pre-trained word embeddings that facilitate them to extract

more comprehensive information even from smaller data-

sets [51]. While training deep learning models, pre-trained

word embeddings only facilitate models with pre-trained

weights at only embedding layer, other layers of model are

still initialized with random weights. Thus, the success of

pre-trained word embeddings motivated researchers for the

development of more generalized models that can provide

pre-trained weights at all layers of model [51]. Following

this idea, to date, several language models have been

proposed [52, 53]. These models make use of large unla-

belled textual data to understand the context and semantics

of text [54]. Specifically, these models are trained by taking

few words as input and predicting next word as output.

Researchers have utilized pre-trained language models to

perform different types of natural language processing

tasks such as information retrieval, text classification [55],

sentiment analysis [56], question answering system [54]

and hate speech detection [17].

Most of the language models were originally developed

for resource-rich languages and later researchers adopted

them for other languages. However, these models have

several hyper-parameters such as embedding vector size,

number of layers, number of neurons in each layer, learn-

ing rate, weight decay, batch size and dropout [34, 57–59].

Researchers having a deeper understanding of language

models can only smartly train them by selecting appro-

priate hyper-parameters. That is why low-resource lan-

guages still lack the availability of pre-trained language

models. Such as for Roman Urdu language, researchers

have trained BERT model over large unlabelled textual

corpus, but still, they remained fail to produce decent

Table 1 A comprehensive summary of existing Roman Urdu hate speech predictors

Predictors Classification

type

Dataset Statistical feature representation Classifier Performance

Accuracy Precision Recall F1-

score

Khan et al.

[10]

Binary-class HS-RU-20 Count vectorizer Logistic

regression

0.84 0.84 0.97 0.90

0.84 0.69 0.82 0.75

Sajid et al.

[23]

Multi-Class Roman Urdu

dataset

uni ? bi ? tri-gram with L2 norm

of TF-IDF

SVM 0.77

Rizwan et al.

[24]

Multi-Class Coarse-grained Language model BERT?CNN-

gram

0.90 0.90 0.90 0.90

Fine-grained BERT?CNN-

gram

0.82 0.75 0.74 0.75

Akhter et al.

[25]

Binary-Class Roman Urdu

dataset

Character-level tri-gram LogitBoost 99.2

Urdu offensive

dataset

Simple

logistic

95.9
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performance for hate speech detection. On the other hand, a

major drawback of deep learning models is their black-box

nature which hinders explainability about contribution of

different features towards prediction [60]. To open these

black boxes, researchers are actively working to make

decisions of deep learning predictors explainable and

transparent to retrace results.

The paper in hand proposes an optimized architecture of

ULMFIT language model for Roman Urdu language.

Specifically, we train multiple variants of ULMFIT lan-

guage model by altering its hyper-parameters such as

number of layers, number of neurons, batch size and size of

statistical vectors at embedding layer. Prime objective

behind large-scale experimentation is to analyse the impact

of different hyper-parameters for training language models

over challenging language, writing of which does not fol-

low any grammatical rules and standard dictionary. Fur-

thermore, on top of ULMFIT model, we propose a novel

classifier that makes use of two different types of attention,

namely, attention head and aggregation attention. In the

proposed classifier, we reap two different benefits from

attention layers, firstly we utilize their potential to focus on

more important words that facilitate classifier to accurately

discriminate content into predefined classes. Secondly, we

utilize them to make classifier decisions explainable and

accountable. Following subsections briefly illustrate details

of language model and proposed classifier.

3.1.1 Language model

Following working paradigm of ULMFIT language model,

we designed an optimal RU-ULMFIT model that is

graphically illustrated in Fig. 1. RU-ULMFIT consists of

three different layers, namely, embedding layer, LSTM

layer and output layer. RU-ULMFIT takes textual data in a

sequential manner where its learning objective is to take a

few words as input and predict next word as an output. In

this way, RU-ULMFIT learns optimal weights of both

embedding and LSTM layers. After training RU-ULMFIT

language model in an unsupervised fashion, output layer

also known as language model head is removed and lan-

guage model base is connected with proposed classifier

which is briefly described in Sect. 3.1.2. A comprehensive

detail about all three layers of language model is provided

in following subsections.

Embedding layer

The embedding layer takes a sequence of words as input

and produces a 2-dimensional weight matrix where each

row indicates a statistical vector of a word. The number of

columns denotes the embedding dimensions and the

Input Layer
R
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w
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D
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Input D
ropout 

w
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D

istribution
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......
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0.0000 0.5312 0.432 0.672 ....

0.1723 0.0000 0.427 0.310 ....

......
0.0000 0.2312 0.631 0.982 ....

0.1343 0.2302 0.000 0.352 ....

0.0000 0.5312 0.432 0.672 ....
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0.1343 0.2302 0.000 0.352 ....

Embedding layer
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acha

...
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pyaar
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. . . .
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LSTM

...
.
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LSTM Layer

Vector
Dropout

Softm
ax Layer

LM-Base LM-HeadFig. 1 Graphical illustration of

proposed language model
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number of rows corresponds to unique words of vocabu-

lary. The challenge of dense numerical representation of

Roman Urdu words is addressed by empowering embed-

ding layer with two different types of dropouts, namely,

word dropout and vector dropout. Word dropout randomly

makes a whole embedding vector of word zero and vector

dropout randomly makes some values zero from a word

embedding vector. These dropout strategies prevent model

from learning specific words patterns and facilitate it for

capturing semantic context of data.

LSTM layer

Statistical vectors of words generated by embedding

layer are passed to LSTM layer, which is potentially more

effective at identifying long-range dependencies in

sequential data. The key difference between LSTM net-

work and RNN is the use of memory cells instead of hidden

layer updates. Additionally, LSTM is capable of analysing

data at every time step and is far more resistant to the

vanishing gradients problem. LSTM uses three different

gates, namely; input gate, forget gate and output gate to

regulate the flow of information. The input gate shown by it
symbol in Eq. 1 regulates how much new information can

be transmitted at the current time step. The information

from the preceding time step is either lost or forwarded in

the network based on the decision made by the forget gate,

denoted as ft in Eq. 2. The output gate designated as ot in

Eq. 3 uses current information to decide how much infor-

mation is sent from the last time step. Mathematically,

working of LSTM unit can be expressed as follow:

it ¼ rðwi � xt þ ui � ht�1Þ ð1Þ

ft ¼ rðwf � xt þ uf � ht�1Þ ð2Þ

ot ¼ rðw� � xt þ u� � ht�1Þ ð3Þ

cit ¼ tanhðwc � xt þ u� � ht�1Þ ð4Þ

ct ¼ tanhðit � cit þ ft � cit�1Þ ð5Þ

ht ¼ ðot � tanhcitÞ ð6Þ

Here, xt denotes a higher order residual vector fed each

time step, and [wf , w�, wc, ui, uf , u�] refer to weight

matrices. A � represents the element-wise product and ct
indicates the state of the memory cell. Model overfitting is

a major issue during model training, leading to inaccurate

results. This can be accomplished by limiting capacity of

active neurons without modifying existing LSTM unit.

This would allow LSTM to perform regularization on

hidden weights using a generalized dropout mask. In con-

trast to traditional approaches instead of performing oper-

ations on hidden state vectors, the dropout mask acts

between time step or memory cell updates before each

forward or backward pass. The dropped neurons do not

participate throughout a forward and backward pass, since

the identical weights are maintained throughout numerous

time steps.

Output layer

Softmax takes LSTM layer extracted features and pre-

dicts the next candidate word in the sentence. The pre-

dicted candidate word is compared with the actual word.

Categorical cross-entropy function computes loss based on

the difference between actual and predicted values. Com-

puted loss is utilized to update weights of both LSTM and

embedding layers. The mathematical expressions of soft-

max and categorical cross-entropy function are illustrated

in Eqs. 7 and 8, respectively.:

f ðSiÞ ¼
esiPC
j e

s
j

ð7Þ

CE ¼ �
XXC

i

tilogðf ðsiÞÞ ð8Þ

In this equation, t stands for one-hot encoding of ground

truth label, si stands for probability score computed for

each class in C, and f(si) stands for softmax activation used

before calculating cross-entropy loss.

Algorithm 1 illustrates pseudo code of language model.

Algorithm 1 Pseudo code for Language Model Training
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3.1.2 Proposed classifier

With an aim to more precisely distinguish between normal

and hate content, we propose a novel classifier graphical

illustration of which is shown in Fig. 2. Proposed classifier

reaps the benefits of two different types of attention,

namely, attention head and aggregation head, whereas at

input it takes pre-trained RU-ULMFIT language model-

based LSTM layer extracted features in parallel at both

attention layers. Outputs of both attention layers are fed

separately to normalization layers that increase

generalizability of vector distribution. The outputs of nor-

malization layers are passed to two dropout layers which

randomly drop values from feature vector. Processed fea-

tures are further passed to fully connected layers which

generate output of 50-dimensional space. These feature

vectors are once more passed to the normalization and

dropout layers prior to feeding these outputs to the softmax

layers. Finally, predictive probabilities of softmax layers

from two parallel pipelines are averaged using an ensemble

layer that predicts class label. Following subsections briefly

describe different modules of proposed classifier.

Neural Computing and Applications (2024) 36:3077–3100 3083

123



Attention module

Researchers have introduced diverse types of attention

layers, where motivation behind each type comes from how

we correlate words in a sentence or pay visual attention to

different regions of an image [61]. In natural language

processing, while discriminating textual samples into dif-

ferent classes, attention layers assign higher scores to more

discriminative words which occur more frequently in one

class and less frequently in other classes. In order to opti-

mize input feature space based on their importance, pro-

posed classifier makes use of two different types of

attention mechanisms, namely, attention head and aggre-

gated attention. Attention head aids to distinguish relevant

set of words belonging to particular class, while aggrega-

tion attention learns correlation among different words of

an input sentence in order to retain contextual dependency

of a sentence.

Figure 3 illustrates working paradigm of attention head

that assigns scores to input features based on their contri-

bution to predict class labels. It can be seen from Fig. 3,

textual words are passed to pre-trained language model,

where LSTM layers extract and encode semantics and

contextual information of words into d-dimensional sta-

tistical vectors by using hidden and cell states of LSTM

unit. Equation 9 mathematically denotes computation of

hidden state for an input word. Specifically, for current

‘‘ith’’ word hidden state ‘‘Ht’’ can be calculated using

previous hidden state ‘‘Ht�1’ and current input vector ‘‘Xi’’. Ht ¼ FðHt�1;XiÞ ð9Þ

In Eq. 9, F represents nonlinear activation operation that

Fig. 2 Graphical illustration of proposed classifier

Fig. 3 Graphical illustration of attention head
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extracts nonlinear patterns of features. The hidden states of

input sentence generated through LSTM layer are further

passed to attention head layer. An attention head layer

makes use of two linear layers that learn the linear rela-

tionship between different words and produces a vectors

against each input word. All a vectors obtained against the

corresponding input sentence are passed to softmax func-

tion that provides attention scores denoted by b. For a

particular sentence X ¼ X1;X2:::::;Xn, ait value and atten-

tion wight bit of ‘‘ith’’ word at time stamp ‘‘t’’ are computed

using Eqs. 10 and 11, respectively.

ait ¼ tT tanhðw1 � ½Ht�1;Ct�1� þ w2XiÞ ð10Þ

bit ¼ softmaxðaitÞ ¼
expðaitÞPn
k¼1 expðaitÞ

ð11Þ

In above equations, t, w1 and w2 represent trainable

parameters of the attention module, while Ht�1 and Ct�1

refer to previous hidden and cell states of an LSTM unit,

respectively. Here, ai estimates the significance of ith

feature of input sentence and bi refers to attention score of

ith feature of input sentence. Finally, the weighted output

Attt of an input sentence is computed by multiplying each

input vector Xiwith its corresponding attention head score

bi, which is math mathematically expressed in Eq. 12:

Attt ¼ ðb1t X1
t ; b

2
t X

2
t ::::::; b

n
t X

n
t Þ

T ð12Þ

Hence, we obtain optimized feature vectors of input sen-

tences by replacing d-dimensional statistical representation

of input vector Xt with output Attt of attention head. In

contrast to Xt, where all input features are given equal

importance, Attt assigns higher scores to more informative

features and reduces the impact of redundant and irrelevant

features. Unlike attention head, the aggregation head is

computationally less expensive as it comprises of only one

fully connected layer that learns correlations among dif-

ferent words of sentences. Finally, the aggregated attention

score Aggt for an input sentence is computed by multi-

plying vector of each input word Xi with its corresponding

output of fully connected layer denoted by Ci, which is

mathematically expressed in Eq. 13. These optimized

attention-based feature vectors of input sentence are then

fed to classifier for predicting class label.

Aggt ¼ ðC1
t X

1
t ;C

2
t X

2
t ::::::;C

n
t X

n
t Þ

T ð13Þ

Normalization layer

The distribution of input features in all layers varies

during training as the parameters of the preceding layers

change, which makes it challenging to train neural net-

works. As a result, the training of models with saturating

nonlinearity is very complex and lengthy due to the need

for lower learning rates and rigorous parameter initializa-

tion. This behaviour is known as internal covariance shift.

The weights obtained during prior iterations of a neural

network are completely declared ineffective by internal

covariance shift. As a result, generalization capacity of

model is affected by internal covariance, which affects

model convergence. To address the issue of internal

covariance shift, batch normalization is incorporated in

model architecture and carried out for each mini-batch

across hidden layers of deep neural network. Batch nor-

malization has been very effective in a variety of deep

learning applications because it prevents the network input

to output mapping from over-focusing any specific node of

input distribution, which speeds up training, improves

convergence and increases generalizability. We utilize

considerably greater learning rates using batch normaliza-

tion while being less concerned about initialization

standards.

Dropout layer

To improve the quality of extracted hidden features by

avoiding model overfitting, dropout layer incorporates a

regularization factor that removes few connections among

hidden layers [62]. In proposed Passion-Net predictor, we

utilize Bernoulli distribution to uniformly drop connections

among different neurons based on probability value.

However, the neurons are randomly dropped during net-

work training, while in testing phase, the network com-

putes the dropping probability against each neuron.

Fully connected layer

Fully connected layers perform linear transformation for

learning nonlinear relations of features. Primarily these

layers facilitate predictor to assign class label based on

entire context of features, because in fully connected layer,

each neuron has connections with all other neurons of

preceding layer.

Algorithm 2 illustrates pseudo code of proposed

classifier.
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Algorithm 2 Pseudo code of Classifier

3.1.3 Interpretability

Machine learning approaches are being used in different

industrial processes ranging from automation in oil man-

ufacturing [63] to energy management by forecasting

energy generation and distribution [64, 65]. These

approaches are also facilitating healthcare systems by

facilitating applications competent in understanding hidden

language of Genomic and Proteomic sequences [66, 67].

Moreover, in last few years, deep learning-based

approaches have dominated machine learning-based

approaches, by producing state-of-the-art performance for

diverse natural language processing (NLP) [62, 68] tasks

including hate speech detection [17], sentence classifica-

tion [55], information retrieval [41] and machine transla-

tion [69]. However, practical applications are still

dependent on machine learning-based approaches because

of their understandable decisions. In contrast to this,

decisions made by deep learning algorithms are not inter-

pretable [70]. The major hindrance to use deep learning
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models for real-world problems is their black-box nature

towards features contribution and sole focus on

performance.

In order to make deep learning models suitable for real-

time applications, researchers are actively studying and

exploring their feature extraction strategies. Understanding

of these strategies also known as interpretability increases

human trust in deep learning predictors by providing

knowledge about features contributions for a particular

decision. However, interpreting deep learning models fea-

ture extraction criterion is difficult due to their complex

architectures, particularly for NLP applications that deal

with discrete inputs. With an aim to make proposed pre-

dictor decisions interpretable, we utilized attention weights

to highlight features contributions for a particular decision.

3.2 Benchmark datasets

This section briefly describes the details of two public

benchmark datasets that are used to train and evaluate

proposed Roman Urdu hate speech detector. We utilized

RUHSOLD dataset, that was developed by Rizwan et al.

[24]. In order to develop a comprehensive Roman Urdu

hate speech dataset, authors first developed a lexicon of

hateful words by searching for such keywords online and

interviewing people. Developed lexicon contains abusive

and derogatory words along with slurs or terms pertaining

to religious hate and sexual language. Using lexicon words

along with a separate collection of roman Urdu common

words, authors retrieved 20,000 tweets and performed a

manual preliminary analysis to find new slang, abuses and

identify frequently occurring common words. Three inde-

pendent annotators manually labelled Roman Urdu tweets.

During the annotation process, all conflicts were resolved

through majority vote among three annotators. Tweets on

which a consensus cannot be reached or that could not

reckon to provide sufficient information for class annota-

tion were discarded. Furthermore, authors annotated tweets

in two different settings. In first setting, tweets were

annotated against two classes (Hate-Offensive, Normal)

and named this annotated dataset as coarse-grained dataset.

In second setting, they further annotated Hate-Offensive

content against four more classes based on the level of

hate. Authors referred to this type of annotated dataset as

‘‘fine-grained dataset’’. In terms of statistics, details of both

coarse-grained and fine-grained datasets are summarized in

Fig. 4.

Coarse-grained dataset contains 10013 tweets, where

4,664 tweet samples belong to ‘‘Hate-Offensive‘‘ class and

5349 tweet samples belong to ‘‘Normal’’ class. Authors

split the dataset into train, test and validation sets with 70,

20 and 10 % ratio. This way, train, test and validation set

contain 7209, 2003 and 801 tweet samples, respectively.

Dataset contains 20,821 unique words, where maximum

number of words in a sentence are 71 and minimum

number of words in a sentence is 1, while average number

of words in a sentence are 16. On the other hand, there are

16,421 tweets in the fine-grained dataset, where 3939

tweets belong to ‘‘Abusive/Offensive’’ class, 1282 tweets

belong to ‘‘Religious Hate’’ class, 1276 tweets belong to

‘‘Sexism’’ class, 1052 tweets belong to ‘‘Profane’’ class,

and 8772 tweets belong to ‘‘Normal’’ class. This dataset

was also split in train, test and validation sets with 44, 12,

44 split ratio. This way, train, test and validation set con-

tain 7209, 2003 and 7209 tweet samples, respectively.

There were 19,826 unique corpus words in this dataset,

where maximum, minimum and average number of words

in a sentence were same as for coarse-grained dataset. The

label definitions of fine-grained dataset are summarized as

follows:

• Abusive/offensive Profanity, strongly impolite, rude or

vulgar language expressed with fighting or hurtful

words in order to insult a targeted individual or group

• Religious hate Language used to express hatred towards

a targeted individual or group based on their religious

beliefs or lack of any religious beliefs and the use of

religion to incite violence or propagate hatred against a

targeted individual or group

• Sexism Language used to express hatred towards a

targeted individual or group based on gender or sexual

orientation

• Profane The use of vulgar, foul or obscene language

without an intended target

Fig. 4 Statistics of benchmark datasets
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• Normal Content that does not fall into any of the above

categories.

3.3 Evaluation measures

In order to evaluate the performance of proposed detector,

we utilize six distinct evaluation measures that have been

widely used to access the performance of existing hate

speech detectors [35, 36, 71–73]. We have only summa-

rized these metrics because they are described in depth in

several research studies [71–73]. The most intuitive per-

formance metric is accuracy, which computes the ratio of

correctly predicted samples to total samples. Precision

indicates what percentage of all projected positive out-

comes really fall into the positive class. While recall

indicates what fraction of all samples in a particular class

was accurately predicted in the same class by the classifier.

The F1-score takes the harmonic mean of precision and

recall scores. As a result, this score considers both false

positives and false negatives. The mathematical expres-

sions to compute the performance values of accuracy,

precision, recall and F1-score are illustrated in Eq. 14.

f ðxÞ ¼

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN

Precision ¼ TP

TPþ FP

Recall ¼ TP

TPþ FN

F1� Score ¼ 2� Precision� Recall

Precisionþ Recall

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð14Þ

In addition to these four evaluation metrics, AUC-ROC and

AUPRC are used to examine the hate speech detector. The

AUC-ROC curve is a performance assessment metric for

classification tasks that access the performance of a model

at various threshold values. AUC indicates the degree or

measure of separability, while ROC is a probability curve.

It indicates how well the model can discriminate between

classes. The AUC indicates how well the model predicts

0 s as 0 s and 1 s as 1 s. This graph shows the relationship

between Recall or True Positive Rate (TPR) and False

Positive Rate (FPR). The AUC of an excellent model is

close to 1, indicating that it has a high level of separability.

AUC around 0 indicates a bad model, which implies it has

the lowest measure of separability. In reality, it indicates

that the outcome is reciprocated. It predicts 0 s to be 1 s

and 1 s to be 0 s. When AUC = 0.5, the model has no

ability to distinguish between classes.

AUPRC is a classification evaluation technique that

visualizes performance over a range of thresholds. Apart

from visual examination of a PR curve, the region under a

PR curve (AUPRC) is frequently used in algorithm

assessment as a generic measure of efficiency, regardless of

any specific threshold or operating stage. The point (recall

= 0, precision = 1) on a PR curve that corresponds to a

decision threshold of 1 is the top left corner, where every

case is categorized as negative since all projected proba-

bilities are less than 1. Precision is low at the lower right

corner of a PR curve, where recall = 1. Because all pro-

jected probabilities are larger than 0, this equates to a 0

decision threshold, where every sample is classified as

positive. The points in between that make up the PR curve

are calculated by calculating the accuracy and recall for

various decision thresholds between 1 and 0.

4 Experimental setup

Proposed predictor is developed on top of seven different

APIs, namely, Pytorch,3 Pandas,4 Fastai,5 dash,6 Plotly,7

matplotlib8 and numpy.9 With an aim to design more

robust and precise predictor, we optimized different hyper-

parameters of language model and classifier. Table 2

illustrates search space of each hyper-parameter for opti-

mization along with optimal values of all hyper-parame-

ters. Furthermore, for a fair performance comparison with

existing predictors [10, 23–25], following evaluation cri-

teria of existing predictors [10, 23–25], we utilized stan-

dard train and validation sets to train classifier and for the

optimization of hyper-parameters. Finally, we used test sets

to evaluate the performance of proposed predictor.

5 Results

This section quantifies the performance of proposed clas-

sifier with random embeddings at different settings of

architecture such as with different attention layers. It

illustrates performance gain achieved by proposed classi-

fier when random embedding layer is replaced with pre-

trained language model. Furthermore, it summarizes the

performance trends of the proposed classifier when the

language model was trained with different LSTM layers. It

also highlights the impact of batch size and learning rate on

the predictive performance of proposed classifier. Finally,

3 https://pytorch.org/.
4 https://pandas.pydata.org/.
5 https://www.fast.ai/.
6 https://dash.plotly.com/reference.
7 https://plotly.com/.
8 https://matplotlib.org/.
9 https://numpy.org/.
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it compares the performance of proposed classifier with

existing Roman Urdu hate speech predictors.

5.1 In-depth performance analysis of proposed
classifier

Table 3 illustrates the impact of different kinds of attention

mechanisms on the predictive performance of proposed

classifier. It also highlights predictive performance of

proposed classifier at two different settings of pipeline by

performing early and post-fusion of both attention layers.

Furthermore, it quantifies the impact of randomly initial-

ized word embeddings and pre-trained language model on

the predictive performance of proposed classifier across

coarse-grained and fine-grained versions of benchmark

datasets in terms of accuracy, precision, recall and F1-

score.

It is evident in Table 3, using random word embeddings,

among all five versions of classifier, two different versions,

namely, classifier without any attention layer and classifier

version with attention head layer produced almost similar

and highest performance figure of 87% across all four

evaluation metrics over coarse-grained dataset. However,

over fine-grained dataset, classifier with early fusion of

attention head and aggregation attention achieve the

highest performance figure of 77% across all four evalua-

tion metrics followed by 75% performance achieved by

classifier version with late fusion of attention head and

aggregation.

With the use of pre-trained language model, the per-

formance of all five different versions of classifiers gets

improved. More specifically, over both coarse- and fine-

grained datasets, proposed classifier version without using

any attention layers manages to boost performance up to

96% and 89%, respectively, whereas the performance of

other versions of classifier which reap the benefits of

attention layers reach the peak of 99% and 93% in terms of

precision, recall, accuracy and F1-score. Among all five

versions, proposed classifier version with late fusion of

attention head and aggregation achieves the best perfor-

mance across both benchmark datasets.

Figure 5 sheds light on confusion matrices of all four

attention-based versions of classifiers along with pre-

trained language model. Over coarse-grained dataset,

classifier versions using late fusion of both attentions and

standalone attention head manage to produce almost sim-

ilar and best true positive scores. While in terms of true

negative score, late fusion-based version of the classifier

beats the attention head-based classifier version with a

minute margin. Hence, it can be inferred that late fusion of

both attentions has superior performance than other atten-

tion-based versions of classifier. Over fine-grained dataset,

once again late fusion-based classifier produces highest

true positive score for the religious hate class. However,

late fusion and all other versions of classifier have shown

high performance fluctuation for four different classes

including sexism, profane, abusive and normal. It is evident

from Fig. 5 that all four versions of classifiers remain fail

to accurately predict samples of three classes, namely,

religious, sexism and profane, and most of the samples

from these classes are wrongly categorized into abusive

classes. Primarily, the context of these classes is almost

similar to abusive class which hinder classifiers from

accurately distinguishing between them and eventually

wrongly categorized them into abusive class.

Performance comparison of all four versions of classifier

based on different attention mechanisms in terms of

AUROC and AUPRC is graphically illustrated in Fig. 6. It

is evident from Fig. 6 that classifier versions based on

attention head and late fusion of both attentions produced

almost similar and highest performance across both

benchmark datasets. In contrast to this, classifier versions

using aggregation attention and early fusion of both

attention mechanisms do not perform well over both

datasets. Hence, late fusion of both attentions enables

classifier to capture more discriminative features leading

Table 2 A comprehensive summary of search space and optimal values of hyper-parameters

Expression Search space Optimal value

Language model Classifier

Number of LSTM layers 1,2,3 1 –

Number of neurons 100, 150, 200, 250, 300 200 –

Weight Decay 1e�1, 1e�2, 1e�3, 1e�4, 1e�5 1e�3 1e�5

Batch size 16, 32, 64, 128, 256 32 32

Dropout 1e�1, 1e�2, 1e�3, 1e�4, 1e�5 1e�3 1e�3

Embedding size 32, 64, 128, 200, 256 200 200

Learning rate 1e�2, 1e�3, 2e�3, 3e�3, 4e�3, 5e�3, 6e�3, 15e�4, 25e�4, 35e�4, 45e�4, 55e�4 1e�2 1e�3
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Table 3 Impact of language model and attention mechanisms on the performance of proposed classifier across coarse-grained and fine-grained

dataset in terms of four different evaluation metrics

Coarse-grained dataset Fine-grained dataset

Classifier Precision Recall Accuracy F1-

score

Precision Recall Accuracy F1-

score

Simple classifier 0.877 0.877 0.877 0.877 0.729 0.737 0.737 0.731

Attention head-based simple classifier 0.87 0.87 0.87 0.87 0.76 0.759 0.759 0.755

Aggregation attention-based simple classifier 0.82 0.82 0.82 0.82 0.722 0.732 0.732 0.724

Early fusion of attention head and aggregation-based simple

classifier

0.859 0.859 0.859 0.859 0.76 0.765 0.765 0.761

Post-fusion of attention head and aggregation-based simple

classifier

0.855 0.855 0.855 0.855 0.747 0.753 0.753 0.748

Language models ? classifier

pre-trained language model ? classifier 0.961 0.961 0.961 0.961 0.892 0.895 0.895 0.892

pre-trained language model ? attention head-based classifier 0.985 0.985 0.985 0.985 0.923 0.923 0.923 0.923

pre-trained language model ? aggregation attention-based

classifier

0.983 0.983 0.983 0.983 0.919 0.919 0.919 0.918

pre-trained language model ? early fusion of attention head

and aggregation-based classifier

0.98 0.98 0.98 0.98 0.921 0.921 0.921 0.92

pre-trained language model ? post-fusion of attention head

and aggregation-based classifier

0.987 0.987 0.987 0.987 0.926 0.926 0.926 0.926

Fig. 5 Confusion matrices of coarse-grained and fine-grained datasets at different settings of proposed classifier
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towards better performance in comparison with other ver-

sions of classifier across both datasets.

Figure 6 depicts that over fine-grained dataset, classifier

versions utilizing aggregation attention and early fusion

produce performance scores with a negligible difference

and secure 3rd and last position in terms of performance.

Moreover, attention head-based classifier manages to beat

performances of aggregated attention and early fusion-

based classifiers which secures 3rd and last position over

fine-grained dataset. Hence, classifier version using late

fusion of both attentions again outperforms other versions

of classifiers over both benchmark datasets.

In a nutshell, across different evaluation measures, all

different versions of classifiers achieve higher performance

figures on coarse-grained dataset as compared to fine-

grained dataset. Mainly, this is because coarse-grained

dataset has only two classes, namely, hate and normal

content, whereas fine-grained dataset has five different

classes. It seems classifier precisely discriminates between

hate and non-hate content but while discriminating hate

content into further categories it is less precise as compared

to discrimination between hate and non-hate. Performance

of all five versions of classifier boosted when randomly

initialized word embeddings are replaced with pre-trained

language model. This performance booster illustrates that

language model captures more comprehensive patterns

among hate and non-hate content. Among different ver-

sions of proposed classifier, classifier with late fusion of

both attention layers produces more prominent

performance.

Fig. 6 AUROC and AUPRC
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5.2 Impact of neural architecture and model
training-related hyper-parameters
on the performance of proposed classifier

Figure 7 describes the impact of different numbers of

LSTM layers in language model and embeddings sizes on

the performance of proposed classifier that makes use of

two different attention layers with late fusion strategy. In

language model, a number of LSTM layers are tweaked

from 1-to-3 and neural embedding sizes are changed from

32 to 256.

As shown by Fig. 7, over coarse-grained dataset, pro-

posed classifier achieves better performance with one layer

LSTM-based pre-trained language model using an

embedding size of 200. With the increase of LSTM layers

in pre-trained language model, the performance of pro-

posed classifier significantly drops such as with two and

three LSTM layers, accuracy declines from 99% to 90%.

However, with the increase of embedding sizes up to 200,

performance of proposed classifier improves regardless of

number of LSTM layers in pre-trained language model.

Over fine-grained dataset, proposed classifier once again

achieves better performance with single layer LSTM-based

pre-trained language model and embedding size of 200.

Like coarse-grained dataset, here, accuracy of proposed

classifier also drops by a significant margin of 13% with

the increase of LSTM layers in language model. Further-

more, change of embedding size from 32 to 256 proves

effective across different numbers of LSTM layers such as

one, two and three LSTM layers based pre-trained lan-

guage models generate more effective embeddings using

the sizes of 200, 256 and 128, respectively. However, it is

important to mention that change of classifier performance

with different embedding size is more prominent with only

one LSTM layer based pre-trained language model and

almost negligible with two and three LSTM layers based

pre-trained language models.

Overall, the combination of using only one LSTM layer

and higher embedding dimensions proves effective for

language model training. Proposed classifier achieves the

best performance across both versions of dataset using pre-

trained language model with one layer of LSTM and an

embedding size of 200. Also, proposed classifier achieves

higher accuracy across all different settings over coarse-

grained dataset as compared to fine-grained dataset. Using

the optimized architecture of pre-trained language model,

we optimize different hyper-parameters of proposed clas-

sifier to further enhance the predictive performance for

roman Urdu hate speech detection.

Figure 8 illustrates the change in accuracy with the

change of batch size from 16-to-256 over coarse-grained

and fine-grained variants of benchmark dataset. Over both

variants of datasets, proposed classifier achieves best

Fig. 7 Proposed classifier performance analysis using pre-trained language model with different number of LSTM layers and embedding sizes

Fig. 8 Proposed classifier performance analysis using different batch

sizes over coarse-grained and fine-grained version of benchmark

dataset

3092 Neural Computing and Applications (2024) 36:3077–3100

123



performances around 0.987 and 0.926 with batch size of

32. Second best performance on coarse-grained around

0.984 and on fine-grained around 0.924 is achieved using

batch size of 16 and 128, respectively. On both variants of

dataset, proposed classifier achieves lower performance

around 0.977 and 0.912 using the batch size of 256.

Overall, optimal value of batch size brings a small

improvement of around 1% in the performance of proposed

classifier on coarse-grained dataset and a decent improve-

ment of around 2% on fine-grained dataset.

Figure 9 demonstrates the impact of different learning

rates on the performance of proposed classifier across both

variants of the dataset. As is shown by Fig. 9, change in

learning rate from 0.005 to 0.006 does not significantly

influence the performance of proposed classifier produced

on coarse-grained dataset. Proposed classifier performance

of 98% remains constant at most learning rates except

0.005, 0.0045, 0.0055 and 0.006 where it drops by almost

1%. Over fine-grained dataset, proposed classifier perfor-

mance only increases from 90% to 92% when learning rate

is changed from 0.005 to 0.001; however, afterwards it

almost keeps dropping by slight margin before ending

around 89% with 0.006 learning rate.

Overall, across both variants of dataset, proposed clas-

sifier accuracy improves by almost 2% with the change in

learning rate. Proposed classifier attains the peak accuracy

on coarse-grained variant of dataset using learning rate of

0.001-to-0.0035, and on fine-grained variant of dataset

using learning rate of 0.001. In a nutshell, proposed clas-

sifier achieves the best performance using the batch size of

32 and learning rate of 0.001 over coarse-grained and fine-

grained versions of dataset.

5.3 Performance comparison of proposed
predictor with existing predictors

Table 4 compares the performance of proposed and exist-

ing Roman Urdu hate speech predictors over two bench-

mark datasets in terms of four different evaluation

measures. Over coarse-grained dataset, from existing pre-

dictors, two predictors, namely, meta predictor based on

SVM, AdaBoost, random forest and deep learning predic-

tor based on words n-gram BERT embeddings and con-

volutional neural network (CNN) classifier produce similar

and best predictive performance of 90% in terms of accu-

racy, precision, recall and F1. Afterwards, four different

predictors named; BERT, LAMB optimizer-based BERT,

combination of LASER and BERT embeddings with

GBDT classifier and conjunction of domain-specific pre-

trained words n-gram embeddings and CNN classifier

produce 2nd highest performance figure of 89% in terms of

all evaluation measures. Four different predictors, namely,

words n-gram XLM-RoBERTa embeddings-based CNN

classifier, RomUrEm?CNN, RomUrEm and FastText

classifier produce similar and 3rd highest performance by

achieving 88% accuracy, precision, recall and F1-score.

XLM-RoBERTa managed to produce 85% accuracy that is

even less than the performance of pre-trained word

embeddings-based CNN predictor which produce 87%

accuracy. Furthermore, words n-grams based CNN pre-

dictor produces 81% performance. ELMO predictor pro-

duces 79% performance and among all existing predictors,

LASER predictor produces least performance figure of

76%. On the other hand, proposed predictor, that reaps the

benefits of pre-trained language model, different attention

mechanisms and neural optimization strategies, manages to

outperform all existing best performing predictors by sig-

nificant margin of 9% in terms of accuracy, precision,

recall and F1-score.

Over fine-grained datasets, from existing predictors,

once again deep learning predictor based on words n-gram

BERT embeddings and CNN classifier produce best per-

formance figures of 82%, 75%, 74% and 75% in terms of

accuracy, precision, recall and F1-score, respectively.

Words n-gram RoBERTa embeddings-based CNN predic-

tor produce 2nd highest performance figure of 81%, 74%,

71% and 72% in terms of accuracy, precision, recall and

F1-score, respectively. Two predictors, namely, LAMB

Fig. 9 Proposed classifier

performance analysis using

different learning rates over

coarse-grained and fine-grained

version of benchmark dataset
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optimizer-based BERT and combination of LASER and

BERT embeddings with GBDT classifier, manage to pro-

duce 3rd highest performance of 80% in terms of accuracy.

Afterwards, XLM-RoBERTa and RomUrEm predictors

produce 79% performance that is better than BERT, Fas-

tText and ML meta predictor (SVM?AB?RF) that pro-

duce 77% accuracy. CNN with pre-trained Fasttext

embeddings produces performance figures 78%, 70%, 67%

and 68% in terms of accuracy, precision, recall and F1-

score. Proposed predictor achieves the peak performance of

92.6% in terms of all measures and this predictive per-

formance is 11% better than existing best performing

predictor.

A critical performance analysis indicates that among

existing predictors best performer on both coarse- and fine-

grained datasets is words n-gram BERT embeddings and

CNN classifier based predictor. BERT-based predictor has

produced state-of-the-art performance for several NLP

classification tasks related to resource-rich languages like

English but here for Roman Urdu language although it

remain top performer, but it remains fail to produce decent

performance due to several possible variations of same

word that exist in Roman Urdu text. These advanced lan-

guage models make use of masking strategy to acquire

context aware representation of text; however, due to high

variability of same words these models lack to explore the

semantics of words. Furthermore, diversity of words-based

performance degradation is also more prominent from the

comparison of simple BERT predictor and n-gram based

BERT predictor. Simple BERT-based predictor remains

fail to capture semantics and correlations of words due to

diversity of same words. Furthermore, in n-gram based

settings the diversity of words is overcome at some level

and it produces better performance. To overcome challenge

of high variability of words, we train simple language

model which is capable of learning semantics of words by

Table 4 Performance comparison of proposed and existing predictors over coarse-grained and fine-grained datasets in terms of four different

evaluation metrics

Classifier Coarse-grained dataset Fine-grained dataset

Accuracy Precision Recall F1-

Score

Accuracy Precision Recall F1-

Score

LASER 0.76 0.76 0.76 0.76 0.67 0.59 0.52 0.54

ELMo 0.79 0.79 0.79 0.79 0.6 0.66 0.5 0.55

BERT 0.89 0.9 0.89 0.89 0.77 0.72 0.65 0.67

XLM-RoBERTa 0.85 0.85 0.85 0.85 0.79 0.7 0.75 0.72

FastText 0.88 0.88 0.88 0.88 0.77 0.69 0.63 0.66

RomUrEm 0.88 0.88 0.88 0.88 0.79 0.76 0.63 0.67

LSTM?GBDT 0.54 0.58 0.51 0.38 0.53 0.2 0.2 0.15

BERT?LASER?GBDT 0.89 0.89 0.89 0.89 0.8 0.73 0.7 0.71

FastText?CNN 0.87 0.87 0.87 0.87 0.78 0.7 0.67 0.68

SVM?RF?AB 0.9 0.9 0.9 0.9 0.77 0.73 0.62 0.67

BERT?LAMB 0.9 0.9 0.89 0.89 0.8 0.72 0.73 0.72

RomUrEm?CNN 0.88 0.89 0.88 0.88 0.72 0.63 0.52 0.55

BiLSTM with Attention 0.86 0.86 0.85 0.85 0.76 0.67 0.63 0.65

BERT?CNN-gram 0.9 0.9 0.9 0.9 0.82 0.75 0.74 0.75

XLM-RoBERTa?CNN-

gram

0.88 0.88 0.88 0.88 0.81 0.74 0.71 0.72

FastText?CNN-gram 0.81 0.81 0.8 0.8 0.66 0.45 0.41 0.42

RomUrEm?CNN-gram 0.89 0.89 0.89 0.89 0.75 0.68 0.61 0.64

Proposed 0.987 0.987 0.987 0.987 0.926 0.926 0.926 0.926

LASER: Learning Approach for Speculative Execution and Replication, ELMo: Embeddings from Language Model, BERT: Bidirectional

Encoder Representations from Transformers, XLM-RoBERTa: Cross-lingual Language Model-Robustly Optimized BERT Pre-training

Approach, FastText, RomUrEm: Domain-specific Roman Urdu Embedding, LSTM?GBDT: ensemble of Long Short-Term Memory and

Gradient Boosting Decision Tree, BERT?LASER?GBDT: pre-trained multilingual BERT and LASER embedding with GBDT classifier,

FastText?CNN: Fasttext embedding along with CNN, SVM?RF?AB: ensemble of linear SVM, random forest and Adaboost, BERT?LAMB:

pre-trained BERT embedding with LAMB optimizer, RomUrEm?CNN: Domain-specific Roman Urdu Embedding with CNN, BiLSTM with

Attention, BERT?CNN-gram: pre-trained words n-gram based BERT embedding with CNN classifier, XLM-RoBERTa?CNN-gram: words

n-gram based XLM-RoBERTa embeddings with CNN classifier, FastText?CNN-gram: words n-gram based Fasttext embeddings with CNN

classifier, RomUrEm?CNN-gram: words n-gram based Domain-specific Roman Urdu embedding with CNN classifier

Bold values illustrate predictor’s highest performance values
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predicting every next word. Furthermore, proposed classi-

fier also utilizes the potential of two different attention

mechanisms to learn the discriminative features and a

precise yet robust classifier to make accurate discrimina-

tion between hate and non-hate content. Furthermore,

existing predictors are not well generalized as they produce

highly variable performance on both datasets, e.g. machine

learning meta predictor produces highest performance on

coarse-grained dataset but over fine-grained dataset, four

other predictors produce better performance as compared

to meta predictor. Similarly, 2nd top performer of fine-

grained dataset word n-grams based XLM-RoBERTa and

CNN classifier falls on 3rd number for coarse-grained

dataset.

Overall, on fine-grained dataset, all predictors achieve

lower performances across all evaluation metrics as com-

pared to their performances on coarse-grained dataset.

Mainly this performance drop is due to large number of

classes in fine-grained dataset. Specifically, coarse-grained

dataset has only two class labels (hate, normal) and fine-

grained dataset has five labels (sexism, abusive, profane,

religious hate and normal). Moreover, in fine-grained

dataset, context of samples is similar that confuse predic-

tors and drop their predictive performance.

6 Proposed predictor interpretability

Proposed predictor produces decent performance over both

public benchmark datasets; however, due to black-box

decisions of proposed predictor, we utilize attention

weights to highlight important words on the basis of which

predictor decides class label. Attention layers focus on

important features and assigns high score to the important

features. The classification layer of predictor decides class

label based on the informative features; hence, classifica-

tion layer also focuses on the features which get high

scores from attention layer.

In order to demonstrate the class label decision of the

proposed predictor the interpretability module categorizes

words into five different groups based on threshold values

of attention weights ranging from 0 to 1. Each group of

words is represented with a unique red colour depending on

their contribution to decision-making. The opacity of red

colour varies based on attention score of words, for

instance, the darkest red colour indicates the group of

words with highest and lightest red colour reflects the

words having the least impact on decision-making.

Figure 10 illustrates interpretable decisions of proposed

predictor for five different data samples. As shown in each

sample, the darkest red colour indicates words that have an

attention weight between 0.9 and 1.0 and are the most

significant for detecting class labels. Likewise, 2nd most

important group of words involved in class label decisions

have attention weights between 0.7 and 0.89. Moreover,

Fig. 10 A subset of test samples

representing interpretability of

proposed predictor
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the 3rd and 4th most important group of words have their

attention weights ranging from 0.5 to 0.69 and 0.20 to 0.49,

respectively.

In the first sample, proposed predictor has assigned

correct class label and also the interpretability module

highlighted the most relevant words that put this sample

into sexism class. Similarly, in 2nd, 3rd and 5th samples

assigned classes and highlighted words are correct. How-

ever, in 4th sample although the predictor assigned correct

class label and five words get highest and same attention

scores. Among these five words, only two words belong to

assigned class label but other three words do not belong to

assigned class keywords, hence do not support decision of

predictor. It indicates in this particular sample although

proposed predictor took right decision but due to incorrect

attention scores of three irrelevant words the confidence of

decision is low.

7 Ablation study

To make sure proposed predictor generalizability for real-

time hate speech detection, we performed two different

ablation studies. In first study, we extracted and visualized

internal representation of predictor. Here, objective is to

make sure weather learned representation contains enough

discriminative patterns which classifier can utilize for

accurate prediction of relevant classes. To perform this

analysis, extracted feature vectors are passed to TSNE,

which reduces the dimensions and produces a two-

dimensional feature space. Further reduced feature space is

visualized by assigning different colours to samples of

distinct classes. Figure 11 illustrates predictor internal

representation for two benchmark datasets test sets. A high

level analysis of Fig. 11 reveals that clusters of different

classes are significantly separated from each other. This

visual analysis concludes that proposed predictor is com-

petent in extracting discriminative patterns among samples

of distinct classes.

In second ablation study, objective is to make sure

weather predictor makes right decisions when distribution

of input vectors slightly varies. This is essential because it

may be possible that predictor produces better performance

on current data but it does not make right decisions in real-

time settings because real-time data may slightly differ

from its training corpus. To ensure predictor generaliz-

ability, we applied probability value test (p value) that

illustrates predictor behaviour by slightly modifying input

data. p value test first segregates data into k folds and

iteratively it takes one fold as test set and other folds as

training set and it computes model performance for all k

folds. Furthermore, it computes model performance for

number of permutations time where in each permutation it

slightly varies training set distribution and computes test

set performance for each fold. Specifically, for each per-

mutation it compares predictor performance with its per-

formance on original data. Equation 15 illustrates

mathematical expression for computing p value, where

permutation performance denotes predictor performance

Fig. 11 Visualization of internal representation of proposed classifier
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with modified distribution and real data performance

denotes to predictor performance at real data.

p value

¼
P

ðPermutation performance[ ¼ RealData performanceÞ þ 1

Number of Permutationsþ 1

ð15Þ

Over both coarse- and fine-grained datasets, we performed

experimentation under fivefold cross-validation for 100

permutations. Over coarse-grained dataset, proposed pre-

dictor produces p value of 0.01 and p value of 0.03 over

fine-grained dataset. The lowest p value reveals that pro-

posed predictor has potential to categorize Roman Urdu

text into hate content or normal, even when Roman Urdu

text distribution is slightly different from the distribution of

text on which model is trained.

Fig. 12 Overview of web server

developed for Roman Urdu

Hate speech detection
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8 Web interface

On top of proposed predictor, we developed web interface

that will facilitate real-time hate speech detection. Fig-

ure 12 illustrates graphical workflow of web interface that

provides two different options for input, namely, text-based

and web-based hate speech detection. Text-based input

module can be used to detect hate content from phrase

pasted in text field, while web-based input module requires

web or YouTube link. It will first crawl comments from the

given URL, then it will separate Roman Urdu language

based comments. Further, it will assign class labels to input

text or comment and will also provide statistics of labels. In

future, we will enrich this interface by providing predictors

related to other languages.

9 Conclusion

Nowadays people are addicted to spending more time on

social media platforms rather than the time they spend on

other physical and social activities such as drinking, eating

and sports. Proposed predictor will facilitate in developing

peaceful society by eliminating and blocking spread of hate

content from social media platforms. In the marathon of

developing computational predictors for hate speech

detection, researchers have developed two different types

of predictors language-specific and multilingual models

which can detect hate content from multiple languages.

Among both types of predictors, multilingual predictors

have less predictive performance. Language-specific pow-

erful predictors are only developed for common languages

such as English and Chinese. Specifically, for Urdu lan-

guage, researchers have developed deep learning-based

predictors by leveraging most recent language models;

however, they remain fail to produce decent performance.

Following the need of a robust and precise predictor for

Urdu language, the paper in hand presents a novel predictor

that makes use of language modelling strategies and dif-

ferent types of attention mechanisms. Experimental results

reveal that over two public benchmark datasets, proposed

predictor outperforms existing predictors with significant

accuracy margins of 8.7%, and 10.6%. Moreover, we uti-

lize attention scores to make proposed predictor decisions

interpretable which makes it more reliable for filtering hate

content from unseen data.
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