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Abstract
White blood cells (WBC), which are human peripheral blood cells, are the most significant part of the immune system that

defends the body against microorganisms. Modifications in the morphological structure and number of subtypes of WBC

play an major role in the diagnosis of serious diseases such as anemia and leukemia. Therefore, accurate WBC classifi-

cation is clinically quite significant in the diagnosis of the disease. In last years, deep learning, especially CNN, has been

used frequently in the field of medicine because of its strong self-learning capabilities and it can extract deeper features in

images with stronger semantic information. In this study, a new CNN-based method is proposed for WBC classification.

The proposed method (PM) is a hybrid method consisting of Inception module, pyramid pooling module (PPM) and

depthwise squeeze-and-excitation block (DSEB). Inception module increases classification accuracy of CNNs by per-

forming multiple parallel convolutions at different scales. PPM captures multi-scale contextual information from the input

image by pooling features at multiple different scales. DSEB offers a structure where the network can selectively learn

about informative features and remove useless ones. For the analysis of the classification results of the PM, experiments

were carried out on three different datasets consisting of four classes (BCCD dataset), five classes (Raabin WBC dataset)

and eight classes. As a result of the experimental studies, classification accuracy was obtained 99.96% in the BCCD dataset

containing 4 classes, 99.22% in the Raabin WBC dataset containing 5 classes and 99.72% in the PBC dataset containing 8

classes. Compared with the state-of-the-art studies in the literature, the PM achieved the best accuracy in three datasets.

Keywords Peripheral blood cell images � Pyramid pooling module � Depthwise squeeze-and-excitation block �
Multibranch lightweight CNN

1 Introduction

Human blood includes dissimilar cellular entities that are

responsible for diverse functions of the body such as

immunity, coagulation, regeneration and oxygen transport

[1]. Human peripheral blood cells (PBC) consist of plate-

lets, leukocytes (white blood cell-WBC), erythrocytes (red

blood cells-RBC) and plasma [2]. PBC analysis plays an

important role in the diagnosis of many diseases such as

malaria, anemia and leukemia [3]. Unlike the entirety of

form and shape seen in platelets and RBCs, WBCs are

various in cell form and differ in cell type, which has made

WBCs the focus of most researchers, especially in medical

image segmentation [4] and classification [5]. WBCs are

principally responsible for maintaining the body from

foreign pathogens such as parasites, viruses, bacteria and

possible infections. Therefore, they play an active role in

the human immune system [6]. WBCs are divided into

some subtypes according to their morphological structures.

These subtypes are as follows: erythroblasts, platelets,

immature granulocytes (promyelocytes, myelocytes, and

metamyelocytes), monocytes, lymphocytes, basophils,

eosinophils, and neutrophils. All of these subtypes have

important duties in defending the body against microor-

ganisms such as fungi, bacteria and viruses in the human

body [7]. Thus, identification of the correct WBC is clin-

ically quite significant.

In addition, (1) accurate WBC classification is crucial

for identifying the nature of infections. By assessing the
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relative proportions of different WBC types, clinicians can

differentiate between bacterial, viral, fungal, and parasitic

infections. For instance, a high neutrophil count (neu-

trophilia) often indicates a bacterial infection, whereas an

elevated lymphocyte count (lymphocytosis) can suggest a

viral infection. This distinction guides appropriate antibi-

otic and antiviral therapy, preventing unnecessary or inef-

fective treatments [8–10]. (2) Sepsis is a life-threatening

condition caused by the body’s response to infection.

Proper WBC classification helps in diagnosing and moni-

toring sepsis. A combination of increased neutrophils and

decreased lymphocytes can be indicative of sepsis, guiding

prompt intervention and monitoring treatment response

[11, 12]. (3) Accurate WBC classification aids in diag-

nosing autoimmune diseases, where the immune system

mistakenly attacks the body’s own tissues. Conditions like

rheumatoid arthritis, lupus, and multiple sclerosis have

distinct WBC profiles that assist in diagnosis and treatment

planning. Additionally, immune deficiencies, such as

acquired immunodeficiency syndrome (AIDS), show

characteristic WBC changes, highlighting the importance

of proper classification in identifying compromised

immune function [13]. (4) In various cancers, including

leukemia, lymphoma, and solid tumors, WBC classification

plays a pivotal role. Precise identification of abnormal

WBC populations can aid in diagnosing these malignancies

and determining their stage and severity. Monitoring WBC

responses during cancer treatment provides insights into

treatment effectiveness and disease progression [14–17].

(5) Chemotherapy and immunotherapy impact WBC pop-

ulations, often causing changes such as leukopenia (low

WBC count). Accurate WBC classification helps clinicians

tailor doses and treatment regimens to minimize side

effects while maintaining therapeutic efficacy. For exam-

ple, monitoring neutrophil levels is essential to assess the

risk of infection during chemotherapy [18, 19]. (6) WBC

classification is vital in assessing compatibility for organ or

bone marrow transplantation. After transplantation, chan-

ges in WBC subsets can signal graft-versus-host disease, a

potentially severe complication where transplanted

immune cells attack the recipient’s tissues [20]. (7) Eosi-

nophils, a type of WBC, are implicated in allergic reactions

and asthma. Monitoring eosinophil counts aids in diag-

nosing and managing these conditions. Elevated eosinophil

levels can indicate ongoing allergic responses and help

guide appropriate therapies [21]. (8) In settings where

advanced diagnostic tools are scarce, basic WBC classifi-

cation remains a critical tool. It can provide rapid insights

into potential infections or immune system disorders,

enabling timely treatment decisions. To summarize, accu-

rate WBC classification enables clinicians to make

informed decisions regarding patient care, treatment

strategies, and disease management. It aids in timely and

precise diagnosis, facilitates appropriate therapeutic inter-

ventions, and contributes to improved patient outcomes.

The ability to interpret WBC profiles empowers healthcare

providers to offer targeted and personalized care, enhanc-

ing the overall quality of medical practice. In this direction,

the classification of WBCs (WBCC) in the blood is the

most major duty. WBCC can be done both automatically

and manually. Manual classification is time consuming as it

depends on the knowledge of an expert [22]. The diagnosis

of blood diseases and the treatment method according to

this diagnosis depend significantly on the WBCC. Due to

the fact that manual classification is time consuming and

imposes more workload, it has been ensured that WBC

analyses are performed automatically. Initially, automatic

WBC analyzers were used for automatic WBCC. In this

way, low-cost and fast analyzes were carried out. However,

it was found to be lower than manual classification in terms

of both detection of morphological correlations and relia-

bility [23].

The development of computer-aided methods in the task

of automatic WBCC decreases the workload of specialist

hematologists. With computer-aided automatic WBCC,

objective and rapid classification results are obtained. In

addition, large amounts of data can be processed effec-

tively. Computer-aided automatic classification is imple-

mented in three different forms: (1) traditional image

processing (TIP) [24], (2) machine learning (ML) and (3)

deep learning (DL) algorithms [3]. In TIP, some features

are extracted and then a threshold function is determined

using mathematical relationships and controlled parame-

ters. It is utilized to distinguish the features of diverse

categories which supports to perform a better classifier.

Numerous TIP methods have been improved in last years,

such as fuzzy divergence and modified thresholding

methods [25], Gram-Schmidt orthogonality process [26],

grayscale contrast [27], pixel template matching [28]. More

recently, restrictions in TIP algorithms and the raise in

computational processing power have led investigative to

develop ML methods such as Bayesian [29], random forest

[30] and support vector machines (SVM) [31] classifiers

for WBCC. These ML methods have taken into account

specific morphological WBC features that increasing the

performance of classification. Geometric, wavelet, statis-

tical, textural features were extracted from the input images

and subjected to feature selection (FS) before being fed to

classifiers such as Bayesian and SVM for classification. In

particular, DL architectures including convolutional neural

networks (CNN) are recently being used in WBCC. Tra-

ditional ML methods extract features manually. Contrary to

these methods, DL increases the classification accuracy by

automatically extracting features [32]. Thanks to its pow-

erful self-learning capabilities, CNN is able to extract

deeper features with stronger semantic information in
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images. Therefore, in last years, CNN-based studies have

begun to be conducted for the WBCC, unlike traditional

classifiers.

After the literature reviews, the motivation of our study

is as follows. (1) The classification of PBC is a pivotal

component of medical diagnostics, research, and person-

alized healthcare. Peripheral blood cell classification holds

immense value in the realm of disease identification, pro-

gression tracking, and early detection. By scrutinizing cell

counts, shapes, sizes, and distributions, medical profes-

sionals can glean crucial insights into various conditions,

including infections, anemias, and blood-related disorders.

This classification not only aids in diagnosing diseases but

also serves as a dynamic tool to monitor their advancement

and gauge treatment efficacy. Furthermore, it enables the

timely detection of ailments like leukemia in their nascent

stages, facilitating prompt intervention and heightened

treatment outcomes. The significance extends to research

endeavors, where peripheral blood cell analysis contributes

vital data for studies on disease prevalence, treatment

outcomes, and underlying mechanisms. It forms a corner-

stone for the evolving realm of personalized medicine,

empowering healthcare providers to tailor treatments based

on individual blood cell characteristics. (2) Central to PBC

classification are the diverse cell types present, including

red blood cells, WBC, and platelets, each possessing dis-

tinct functions and attributes. The correct classification of

WBC is of paramount importance in clinical practice due

to its significant implications for disease diagnosis, treat-

ment, and patient management. Here are some key reasons

highlighting the clinical importance of accurately classi-

fying WBCs: Accurate disease diagnosis, differentiation of

infections, monitoring disease progression, guiding treat-

ment strategies, assessment of immune function, evaluation

of drug toxicity, prognostic indicators and research and

clinical trials. In summary, correct WBC classification is

essential for accurate disease diagnosis, monitoring treat-

ment responses, guiding therapeutic interventions, and

predicting patient outcomes. It forms a fundamental com-

ponent of clinical assessment and decision-making, con-

tributing to improved patient care and better clinical

outcomes. (3) The use of innovative technologies such as

artificial intelligence to classify peripheral blood cells

further improves this analysis. In this direction, deep

learning and especially CNN-based methods are frequently

used in the literature. After the literature review, it was

concluded that CNN-based methods could still be devel-

oped for the classification problem of PBC and WBC types,

which would still yield good classification results. This

facts motivates us to develop new methods that can achieve

better classification accuracy.

The contributions of proposed multibranch lightweight

CNN-based model for microscopic PBC images classifi-

cation are summarized as follows.

1. In first branch of the multibranch structure proposed in

this study, the depthwise squeeze-and-excitation block

(DSEB) block structure, which is a combination of

squeeze-and-excitation (SE) block and depthwise sep-

arable convolution (DSC), was improved for the

classification of microscopic PBC images. A stronger

structure was created by adding the DSC layer to the

SE block. With the developed DSEB structure, low-

level features are weighted and combined with high-

level features effectively. This enables more effective

utilize of low-level features with only a small increase

in computational cost. Thus, the training performance

of the proposed method and the improvement of the

efficiency of the network have been ensured. The

application results prove that this structure used in the

proposed method increases the classification accuracy.

2. In this study, the Inception module was used in second

branch of the multi-branched structure proposed for the

classification of microscopic PBC images. With the use

of this module, it is purposed to improve the efficiency

and classification performance of CNNs by performing

multiple parallel convolutions at different scales. The

Inception module also includes a 1 9 1 convolutional

layer that is utilized to decrease the number of channels

in the input tensor before applying larger filters. This

helps decrease the computational cost of the network

while maintaining classification accuracy. At the same

time, it is provided in efficient saving of memory.

3. The purpose of pyramid pooling module, used in the

third branch of this study, is to capture multi-scale

contextual information from the input image by

pooling features at multiple different scales.

4. We suggest a new fusion strategy based on multibranch

network architecture, which allows methods with

dissimilar structures to merge with each other and

increases classification accuracy.

5. The proposed method was tested with three different

blood cell datasets consisting of four classes (BCCD),

five classes (Raabin WBC) and eight classes (PBC).

With the BCCD dataset, 99.96%, with the Raabin

WBC dataset, 99.22% and with the eight classes PBC

dataset, 99.72% classification accuracy results were

obtained. When both the results acquired with the

proposed method and the results in the literature are

analyzed, it is seen that our proposed Multibranch

Lightweight CNN method achieves higher classifica-

tion results for PBC classification.

Other sections of the paper are planned as follows:

Studies on peripheral blood cell classification in the
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literature are included in the related works section, which is

Sect. 2. Pyramid pooling module, depthwise squeeze-and-

excitation block (DSEB) and Inception module, which

constitute the theoretical background of the proposed

multibranch lightweight CNN are explained in Sect. 3.

Moreover, information about the datasets used in the paper

and the proposed multibranch lightweight CNN method are

included in Sect. 3. In Sect. 4, experiments related to the

datasets used and the results of these experiments are dis-

cussed. A general assessment of this paper is in Sect. 5.

2 Related works

In the literature review, some of the recent deep learning

and especially CNN-based studies for PBC classification

are as follows.

Girdhar et al. [1] developed a novel CNN architecture

for the WBCC. Studies were carried out on the blood cell

count and detection (BCCD) dataset to test the perfor-

mance of the presented CNN method. With the CNN

method, 98.55% classification accuracy was obtained in 20

epochs. Long et al. [23] proposed BloodCaps, a capsule-

based model designed for the accurate multiclassification

of a diverse and broad spectrum of blood cells for PBC

classification. Implemented on a large-scale dataset of 8

classes of human peripheral blood cells, the proposed

BloodCaps method achieved an overall accuracy of 99.3%,

outperforming convolutional neural networks such as

AlexNet (81.5%), VGG16 (97.8%), ResNet18 (95.9%) and

InceptionV3 (98.4%). Şengür et al. [33] presented a hybrid

method for the WBCC, combining image processing and

DL. After applying various image processing methods

(morphological processes, thresholding, filtering, color to

gray tone conversion and RGB to HSV transformation) on

WBC images, long-short term memory (LSTM) method is

utilized for the WBCC. When the performances of the

experiments on the BCCD are analyzed to evaluate the

classification result of the suggested hybrid method, a

classification accuracy of 92.89% was acquired. Patil et al.

[34] developed a canonical correlation analysis-based DL

method for the WBCC by joining LSTM and CNN.

Canonical correlation analysis extracts various overlapping

features from the input image, thus increasing its accuracy

compared to other similar DL methods. The classification

accuracy acquired according to the applications on the

BCCD dataset is 95.89%. Bani-Hani et al. [35] imple-

mented a new CNN method for classification of four types

of WBC images: monocytes, lymphocytes, neutrophils and

eosinophils. They also utilized the genetic algorithm for the

optimization of the hyperparameters used in the CNN

method. When the applications on the BCCD were exam-

ined, it was seen that 91.01% overall accuracy was

obtained. Liang et al. [36] improved a novel method for the

WBCC, combining the features of the LSTM and Xception

methods. When the performances of the experiments on the

BCCD are analyzed, it is seen that the overall accuracy is

90.79%. Cheuque et al. [37] created a two-phase hybrid

multilevel structure that effectively classifies four WBC

types: eosinophils and neutrophils (polymorphonuclear),

monocytes and lymphocytes (mononuclear). Primarily, a

Faster R-CNN is implemented for the recognition of the

region of interest of WBC, together with the allocate of

polymorphonuclear cells from mononuclear cells. After

allocated, two parallel CNNs with the MobileNet are uti-

lized to identify the subclasses in the another phase. The

results acquired using Monte Carlo cross-validation indi-

cate that the suggested method has an accuracy of 98.4%.

Khan et al. [38] suggested a pretrained AlexNet-based

method for the WBCC using the four-class BCCD. They

also used the FS method to choose the most efficient fea-

tures to increase the classification accuracy of WBC ima-

ges. Finally, the extreme-learning machine was utilized to

estimate the final WBC type of the microscopic WBC

images. With the suggested method, the classification

result obtained using the BCCD is 99.12%. Çınar et al. [39]
developed a hybrid CNN method consisting of pre-trained

GoogleNet and AlexNet for the classification of WBC

images. With this method, the feature vectors in the final

pooling layer of both GoogleNet and AlexNet are com-

bined and the resulting feature vector is classified with the

SVM. According to the applications on the BCCD, 99.7%

overall accuracy was found. Habibzadeh et al. [40] pre-

sented a method from the Residual network and Inception

module to classify four types of WBC in the BCCD. When

the applications made with this method are analyzed,

classification accuracy of 99.8% was obtained at 3000

epochs. Hedge et al. [3] performed studies with the pre-

trained AlexNet architecture for the classification of six

dissimilar blood cells on the WBC dataset collected by

them. They achieved 99% classification accuracy on WBC

images collected by them with the pre-trained AlexNet

architecture. Baghel et al. [41] developed a novel CNN

model to improve the classification accuracy of WBC.

When the application results on the BCCD are analyzed,

they achieved 98.91% classification accuracy at 1000

epochs. Basnet et al. [42] suggested a method for accurate

classification of WBC using deep CNN architecture. To

analyze the classification accuracy of the developed deep

CNN, a dataset consisting of 10,000 images with five

classes was used. With Deep CNN, 98.92% classification

accuracy was found. Baydilli et al. [43] developed a novel

method called capsule networks to classify WBC into five

types. The classification accuracy of the capsule networks

was tested on a small dataset, the LISC dataset consisting

of 263 blood cell images. As a result of the applications, it
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was seen that the result of 96.86% accuracy was obtained.

Shahin et al. [44] presented a new deep CNN method for

WBCC called WBCsNet. For the analysis of the classifi-

cation performance of the WBCsNet, three different gen-

eral WBC datasets consisting of 2551 images containing

five WBC types were used. The classification accuracy

achieved with WBCsNet is 96.1%. Toğaçar et al. [45]

suggested a novel combination of CNN and FS methods for

WBCC. In this method, ResNet50, GoogLeNet, AlexNet

methods are utilized as feature extractors. The features

extracted by these methods were joined and the ridge

feature selection and maximal information coefficient were

utilized to choose the most decisive features. Finally,

quadratic discriminant analysis was utilized as a classifier.

A total of 12,435 WBC images were utilized to analyze the

classification accuracy of the suggested method. In this

dataset, four types of WBC were classified as neutrophil,

monocyte, lymphocyte and eosinophil. With the suggested

method, a general accuracy of 97.95% was obtained. Ha

et al. [46] developed the semi-supervised Fine-grained

Interactive Attention Learning (FIAL) model for WBCC.

FIAL includes Semi-Supervised Teacher-Student modules

and Fine-Grained Interactive Attention. The Semi-Super-

vised Teacher-Student module uses restricted labeled WBC

images and produces estimated probability vectors for a

large amount of unlabeled WBC samples. The overall

accuracy of the FIAL on the BCCD, which is a public

dataset, is 93.2%. Hosseini et al. [47] suggested a novel

CNN architecture for the accurate classification of four

types of WBC: neutrophils, monocytes, eosinophils and

lymphocytes. The difference of the suggested method from

other methods is that hyperparameters are optimized using

random search and grid search optimization algorithms.

When the application results on the BCCD are analyzed,

97% classification accuracy was obtained. Banik et al. [48]

developed a novel CNN architecture for WBCC by joining

the features of the first and last convolutional layers and

spreading the input image to the convolutional layer.

According to the applications on the BCCD, 99.42%

overall accuracy was acquired with the method they

developed. Mohamed et al. [49] suggested a hybrid method

for WBCC consisting of logistic regression as classifier and

MobileNet-224 as feature extractor. According to the

experiments on the BCCD, they obtained 97.03% classifi-

cation accuracy. Bayat et al. [50] suggested an attention-

based method for the WBCC. More specifically, this

method consists of attention-based data augmentation,

texture-sensitive/attention mapping blocks, and attention

regularization. When the applications performed on the

BCCD containing four classes are analyzed, it is seen that

99.69% classification accuracy is achieved. Jung et al. [51]

suggested a novel CNN model, W-Net, for WBCC. The

W-Net was analyzed using a dataset including 6562 WBC

images and consisting of five WBC types. W-Net acquired

an overall accuracy of 97% as a result of the applications.

3 The proposed approach

In this section, the multibranch lightweight CNN method

for the classification of microscopic PBC images and the

methods used in theoretical background of the multibranch

lightweight CNN method are explained in detail. Besides,

the datasets utilized in the study and knowledge about these

datasets are given.

3.1 Inception module

The Inception module is a building block used in CNNs for

classification and object recognition. It was introduced in

the GoogLeNet architecture, which won the ImageNet

Large Scale Visual Recognition Challenge in 2014. This

module is designed to efficiently extract features from

images at multiple scales and resolutions by using filters of

different sizes (1� 1, 3� 3, and 5� 5) in parallel. This

allows the network to capture both fine-grained and coarse-

grained details in the image. The Inception module also

includes a 1� 1 convolutional layer, which helps to

decrease the dimensionality of the input and increase

computational performance. Besides, the module uses

pooling operations to downsample the feature maps, which

can help to decrease the impact of overfitting and develop

generalization. The Inception module can be stacked

together to form deep networks and has been shown to

acquire state-of-the-art performance on a variety of image

recognition tasks [52, 53]. The structure of the Inception

module is given in Fig. 1. In addition, detailed information

about the convolution and maxpooling layers used in the

module is given in Table 1. In Table 1, k, s, p, and f express

kernel_size, stride, padding, and filters, respectively.

3.2 Depthwise squeeze-and-excitation block
(DSEB)

In this study, the second of the methods used in the pro-

posed method is DSEB. A strong block structure was

created by adding a depthwise separable convolution

(DSC) layer to the squeeze-and-excitation (SE) block

structure. DSEB provides useful information for the clas-

sification of PBC images by weighting features with a

channel-based attention module. The features in different

layers of CNN include different details. High-level features

contain semantic information that is effective in classifi-

cation, while low-level features include spatial information

that indicates shape, texture, and scale. The DSEB in the

proposed method effectively joined high-level and low-
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level features instead of direct connection. In this way, the

DSEB enables more effective utilize of low-level features

with only a small increase in computational cost. Also, this

block plays an significant role in capturing smaller detailed

and important features for classification of PBC images.

Thus, it improves the network training performance of the

network and increases the efficient of the network. DSEB

consists of two modules (Fig. 3): (a) DSC and (b) SE

block. In DSC, the convolution process takes place in two

stages: pointwise convolution (PC) (also known as 1� 1

convolution) and depthwise convolution (DC) (Fig. 2). DC,

which is the first of these stages, performs a separate

convolution process on each channel of the input image.

The convolution process is utilized to extract spatial fea-

tures in all dimensions. PC is the 1� 1 standard convolu-

tion process on the output feature map. In this convolution,

the feature map obtained at the output of the DC using a

1� 1 filter is combined along the channels. In the standard

convolution operation, a one-step convolution operation is

applied to the input images (Fig. 2a). Contrary to standard

convolution, the use of DSC reduces the number of train-

able parameters by performing the convolution process in

two separate stages (Fig. 2b). This can prevent overfitting

problem. It also reduces transaction costs due to fewer

calculations [54, 55]. Let there be an input image of size

W � H �M as shown in Fig. 2a. Here W is the width of

the input image, H is the height and M is the number of

channels. Similarly, let there be R filters/kernels of C �
C �M convolution kernel size. When a standard convo-

lution process is implemented, the output feature map size

will be W � H � R. The operation cost of the standard

convolution process is as in Eq. (1).

Standard convolution costð Þ ¼ W � H � R� C � C �M

ð1Þ

As shown in Fig. 2b, the DSC is split into 2 convolution

processes. First, in the DC process, convolution is applied

to one channel at a time, unlike the standard convolution

process for allM channels. Here,M filters with convolution

kernel size of C � C � 1 are required. The size of the

resulting intermediate output will be W � H �M. For the

DC process, the operation cost is calculated as in Eq. (2).

In PC, 1� 1 convolution process is applied to the inter-

mediate output obtained. The kernel size of this operation

will be 1� 1�M. Assuming R filters are used, the output

size will beW � H � R. The cost obtained as a result of the

Previous Layer

1x1, 64
Conv 2D

3x3, 128
Conv 2D

5x5, 32
Conv 2D

3x3
MaxPooling2D

Concatenate

1x1, 96
Conv 2D

1x1, 16
Conv 2D

1x1, 32
Conv 2D

Fig. 1 Inception module

Table 1 Layer information in

the Inception module
Layer Name Layer details Activation Connected to

conv2d_1 f = 96, k = 1� 1, p = ’same’ ReLU Previous layer

conv2d_2 f = 16, k = 1� 1, p = ’same’ ReLU Previous layer

maxpooling2d k = 3� 3, s = 1, p = ’same’ Previous layer

conv2d_3 f = 64, k = 1� 1, p = ’same’ ReLU Previous layer

conv2d_4 f = 128, k = 3� 3, p = ’same’ ReLU conv2d_1

conv2d_5 f = 32, k = 5� 5, p = ’same’ ReLU conv2d_2

conv2d_6 f = 32, k = 1� 1, p = ’same’ ReLU maxpooling2d

Concatenate conv2d_3, conv2d_4, conv2d_5, conv2d_6
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PC process is as in Eq. (3). DSC operation cost is the sum

of the cost obtained as a result of DC and PC operations.

The calculation required to compare the operation costs

obtained as a result of the standard convolution process and

the DSC is as in Eq. (4). Considering Eq. (4), it is seen that

DSC decreases the number of trainable parameters and

computational cost compared to standard convolution. This

increases the computational power while decreasing the

computational cost and training time of the method without

affecting the performance of the method [54, 55].

Depthwise convolution costð Þ ¼ W � H �M � C � C

ð2Þ
Pointwise convolution costð Þ ¼ W � H � R�M ð3Þ
W � H �M � C � C þW � H � R�M

W � H � R� C � C �M
¼ 1

R
þ 1

C2
ð4Þ

The SE block provides a structure for CNNs that

improves channel dependencies at virtually no

computational cost. The SE block extracts important fea-

ture information by recalibrating the features it receives as

input [56, 57]. Using the SE block can improve the inter-

dependence between channels and improve feature infor-

mation useful for PBC image classifications. The schematic

structure of the SE block is given in Fig. 3. The function of

the SE block is as follows: Primarily, a feature map and the

current number of channels it has are given to the input of

the SE block. Then, using global average pooling (GAP),

each channel is converted to a single numerical value

(squeeze). Here, the feature maps for each channel are

compressed into 1� 1 feature maps using a channel

descriptor function such as GAP. This step generates a

scalar value containing general information about the

channel. The goal of squeeze is to have a global receptive

field so that the lower layers of the network can also use the

global information. After the squeeze process, the excita-

tion process is used to create weights for each feature

channel according to the parameters. Parameters are

Input 
feature map

W x H x M
(width x height x channel)

C
C

M

R filters/kernels

Output

W x H x R

Standart_convolution (cost)=W x H x R x C x C x M

Convolution 
operation

(a) Standart convolution

Input 
feature map

W x H x M
C

C
1

M filters/kernels
(C x C x 1)

Intermediate
output

W x H x M

1
1

M R filters/kernels
(1 x 1 x M)

Output

W x H x R

Depthwise_convolution (cost)=W x H x M x C x C Pointwise_convolution (cost)=W x H x R x M

Depthwise separable convolution (cost)=Depthwise_convolution (cost) + Pointwise_convolution (cost)
= W x H x M x C x C + W x H x R x M

(b) DSC

Fig. 2 a Standard convolution and b DSC
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learned to explicitly model the correlation between feature

channels. Two fully connected layers (FC layer) are used to

limit the complexity of the method and facilitate general-

ization, as well as to create a bottleneck structure for

modeling correlations between channels. The first FC layer

is used to decrease the feature size, and after the first FC it

is increased back to its original size in the second FC layer.

Between both FC layers, ReLU activation function is used

to make the network more nonlinear, which can better

adapt to the complex correlation between channels. Com-

pared to using a direct FC layer, the structure using two FC

layers has more nonlinear features, which can better adapt

to the complex correlation between channels. It can also

decrease the amount of calculations and parameters. After

FC-ReLU-FC, the sigmoid function is used to acquire

normalized weights between 0 and 1. Finally, a scaling

process is performed to weight the normalized weights

according to the characteristics of each channel [58, 59].

These operations of the SE block require almost no addi-

tional transaction costs. This block can be easily added to

any method due to its performance enhancing feature in

classification tasks.

3.3 Pyramid pooling module (PPM)

PPM is a neural network module that is commonly used in

computer vision tasks, particularly in semantic segmenta-

tion [60]. It was introduced in the paper ‘‘Pyramid Scene

Parsing Network’’ by Zhao et al. (CVPR 2017) [61]. The

PPM is designed to capture multi-scale contextual infor-

mation from the input image by applying pooling processes

at dissimilar scales. The PPM works by dividing the input

feature map into a set of non-overlapping regions of dif-

ferent sizes and then implementing pooling processes to

each of these regions. The resulting pooled features are

then concatenated and passed through a convolutional layer

to produce the final output. The PPM allows the network to

capture contextual information at multiple scales, which

can be particularly useful for tasks such as object recog-

nition and segmentation, where objects can vary signifi-

cantly in size and shape. By pooling features at different

scales, the network can capture both fine-grained details

and larger contextual information, leading to improved

performance on these tasks. Overall, the PPM is a useful

tool for increasing the performance of CNNs in computer

vision tasks that require multi-scale contextual information.

The PPM consists of four steps:

1. Image pooling: The input image is first separated into

four regions of equal size. Each region is then pooled

using a different kernel size, resulting in four different

feature maps.

2. Pyramid pooling: Each of the pooled feature maps is

then passed through a convolutional layer to decrease

the number of channels, and then upsampled to the

original size of the input image.

3. Concatenation: The four upsampled feature maps are

then concatenated along the channel dimension to

produce a single feature map.

4. Convolutional layer: The concatenated feature map is

passed through a convolutional layer to produce the

final output of the PPM.

The PPM allows the segmentation model to capture

multi-scale contextual information, which can be useful for

accurately segmenting objects of different sizes and shapes

in an image. The general structure of PPM is given in

Fig. 4. As shown in Fig. 4, a 2D convolution operation

with 128 filters and a kernel size of 3x3 is performed to

obtain a feature map before the PPM. Then, four pooling

layer scales (1� 1, 2� 2, 3� 3, 6� 6) are used to process

the resulting feature map. Each pooling layer is followed

by a 1� 1 convolutional layer to decrease the size of the

G
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LU FC

Si
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Fig. 3 Depthwise squeeze-and-excitation block (DSEB)
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input feature map and preserve the weight of the overall

features. After the 1� 1 convolution layer, an upsample

layer is created, which purposes to acquire the same feature

map size as the output of the corresponding convolutional

block through bilinear interpolation. Finally, these four

scaled features are concatenated with the feature map

obtained after the first 3� 3 convolution. After concate-

nating, 2D convolution operation with 128 filters and 3� 3

kernel size is applied to extract the final features that

ensure rich global context information for pixel-level

classification [62–64].

3.4 Datasets

In order to analyze the classification results of the multi-

branch lightweight CNN within the scope of the study,

experiments were carried out on three different PBC image

datasets. The first of the datasets is a publicly available

dataset collected by Anna et al., at the Barcelona hospital

clinic [65]. This dataset contains a total of 17,092 periph-

eral blood cell images. These images were collected from

healthy individuals who did not receive any pharmaco-

logical treatment and did not have oncological or hema-

tological and infection diseases. The images in this dataset

consist of RGB images with a size of 360� 363 pixels. In

addition, these images were labeled by specialist patholo-

gists in the hospital. The PBC dataset contains 8 different

blood cell types (or classes). These cell types are as fol-

lows: Erythroblasts (ER), Platelets (P), immature granulo-

cytes (IG) (promyelocytes, myelocytes, and

metamyelocytes), Monocytes (M), Lymphocytes (L),

Basophils (B), Eosinophils (EO), and Neutrophils (N). The

second dataset (BCCD) consists of four blood cell types

(M, L, EO, and N). It contains 12,444 microscopic blood

cell images (Dataset 2-master) in total. All images in this

dataset are 320� 240 pixels and RGB images [66]. In this

dataset (Dataset 2-master), training and test images for

each of the four blood cell types are contained in separate

folders. It include of 12,444 microscopic blood cell images

in total, including 2497 EO, 2483 L, 2478 M, and 2499 N

for training images and the 624 for N, 620 for M, 620 for L,

and 623 for EO for testing images. The third dataset used in

the study is the Raabin-WBC dataset [67]. Raabin-WBC is

a large free-access dataset recently published in 2021.

Raabin-WBC dataset possesses three sets of WBC cropped

images for classification: Train, Test-A, and Test-B. All

WBCs in Train and Test-A sets have been separately

labeled by two experts. Yet, images of Test-B have not yet

been labeled thoroughly. Therefore, in this study we only

used Train and Test-A sets. These two sets have been

collected from 56 normal peripheral blood smears (for

lymphocyte, monocyte, neutrophil, and eosinophil) and one

chronic myeloid leukemia (CML) case (for basophil) and

contain 14,514 WBC images. All these films were stained

through Giemsa technique. The normal peripheral blood

smears have been taken using the camera phone of Sam-

sung Galaxy S5 and the microscope of Olympus CX18.

Also, the CML slide has been imaged utilizing an LG G3

camera phone along with a microscope of Zeiss brand. It is

worth nothing that the images have all been taken with a

magnification of 100 [68]. The Raabin-WBC dataset con-

sists of five blood cell types (M, L, EO, N and B). It include

of 14,514 microscopic blood cell images in total, including

744 EO, 2427 L, 561 M, 6231 N and 212 B for training

images and the 2660 N, 234 M, 1034 L, 322 EO and 89 B

for testing images. Information on blood cell type and

sample images for both datasets is given in Table 2. Also,

representative images for blood cell types are given in

Fig. 5 for 8 blood cell types/classes, in Fig. 6 for BCCD

and in Fig. 7 for Raabin-WBC, respectively.

Conv2D
3x3, 128

AveragePooling2D
1x1

AveragePooling2D
2x2

AveragePooling2D
3x3

AveragePooling2D
6x6

Conv2D
3x3, 128

Conv2D
3x3, 128

Conv2D
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Conv2D
3x3, 128

Input
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Conv2D
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Fig. 4 Pyramid pooling module (PPM)

Neural Computing and Applications (2024) 36:1599–1620 1607

123



3.5 Proposed multibranch lightweight CNN
method

In this study, a multibranch lightweight CNN method is

suggested for classification of microscopic PBC images.

The proposed method includes 3 parallel methods as shown

in Fig. 8: (1) Inception module (IM), (2) depthwise

squeeze-and-excitation (DSE) block, and (3) pyramid

pooling module (PPM). Owing to the IM, (1) features at

different scales are extracted from the input blood cell

images by using different convolution kernel sizes, (2)

using 1� 1 convolution, cross-channel models that

contribute to the public feature extraction (FE) abilities of

the network are learned. This ensures high accuracy profits

in the neural network, (3) By using multiple convolution

layers, the module is enabled to benefit from multipath FE.

Using multiple features with the multi-convolution layer

increases the performance of the network. Thanks to the

DSE block, which is the combination of the DSC layer and

the SE block, the classification performance increases with

the effective use of low-level features without increasing

the total number of trainable parameters. The PPM module

is combined into the multibranch lightweight CNN method

to capture dissimilar scales of global contextual

information.

The process steps of the proposed method are as follows.

Step 1: Before applying the proposed DL-based method

to PBC images, the images in all datasets were resized to

128� 128 pixels.

Step 2: Our proposed method primarily applies 2D

convolution consisting of 3� 3 kernel size and 64 filters to

the blood cell image. Then, maxpooling (3� 3 kernel size),

2D convolution consisting of 3� 3 kernel size and 128

filters, and 2D convolution consisting of 1� 1 kernel size

and 128 filters are applied, respectively.

Step 3: After these processes, methods with different

structures (Inception module (IM), depthwise squeeze-and-

excitation (DSE) block, and pyramid pooling module

Table 2 Classes and number of

images of datasets used in the

proposed method

[65] Blood Cell Types ER P IG M L B EO N Total

Number of images 1551 2348 2895 1420 1214 1218 3117 3329 17,092

[66] Blood cell types – – – M L – EO N –

Number of images – – – 3098 3103 – 3120 3123 12,444

[67] Blood cell types – – – M L B EO N –

Number of images – – – 795 3461 301 1066 8891 14,514

ER P IG M

L B EO N

Fig. 5 Image samples from dataset consisting of 8 different blood cell

types

M L EO N

Fig. 6 Image samples from dataset consisting of 4 different blood cell types (BCCD dataset)

L M N EO B

Fig. 7 Image samples from dataset consisting of 5 different blood cell types (Raabin-WBC dataset)

1608 Neural Computing and Applications (2024) 36:1599–1620

123



Table 3 Model summary of the multibranch lightweight CNN method (for 4 classes)

Layer Output Shape Param # Connected to

input_1 (InputLayer) 128, 128, 3 0 –

conv2d 126, 126, 64 1792 input_1

max_pooling2d 42, 42, 64 0 conv2d

conv2d_1 40, 40, 128 73,856 max_pooling2d

conv2d_2 40, 40, 128 16,512 conv2d_1

conv2d_9 40, 40, 128 147,584 conv2d_2

depthwise_conv2d 40, 40, 128 1280 conv2d_9

conv2d_10 40, 40, 32 4128 depthwise_conv2d

conv2d_11 40, 40, 128 147,584 conv2d_2

global_average_pooling2d 32 0 conv2d_10

average_pooling2d 40, 40, 128 0 conv2d_11

average_pooling2d_1 20, 20, 128 0 conv2d_11

average_pooling2d_2 20, 20, 128 0 conv2d_11

average_pooling2d_3 20, 20, 128 0 conv2d_11

dense 0 0 global_average_pooling2d

conv2d_12 40, 40, 128 16,512 average_pooling2d

conv2d_13 20, 20, 128 16,512 average_pooling2d_1

conv2d_14 20, 20, 128 16,512 average_pooling2d_2

conv2d_15 20, 20, 128 16,512 average_pooling2d_3

conv2d_4 40, 40, 96 12,384 conv2d_2

conv2d_6 40, 40, 16 2064 conv2d_2

max_pooling2d_1 40, 40, 128 0 conv2d_2

dense_1 1 1 dense

up_sampling2d 40, 40, 128 0 conv2d_12

up_sampling2d_1 40, 40, 128 0 conv2d_13

up_sampling2d_2 40, 40, 128 0 conv2d_14

up_sampling2d_3 40, 40, 128 0 conv2d_15

conv2d_3 40, 40, 64 8256 conv2d_2

conv2d_5 40, 40, 128 110,720 conv2d_4

conv2d_7 40, 40, 32 12,832 conv2d_6

conv2d_8 40, 40, 32 4128 max_pooling2d_1

tf.reshape (TFOpLambda) 1, 1, 1 0 dense_1

concatenate_1 40, 40, 640 0 up_sampling2d, up_sampling2d_1,

up_sampling2d_2, up_sampling2d_3, conv2d_11

concatenate 40, 40, 256 0 conv2d_3, conv2d_5, conv2d_7, conv2d_8

multiply (Multiply) 40, 40, 128 0 conv2d_9, tf.reshape

conv2d_16 40, 40, 128 737,408 concatenate_1

concatenate_2 40, 40, 512 0 concatenate, multiply, conv2d_16

conv2d_17 38, 38, 64 294,976 concatenate_2

max_pooling2d_2 13, 13, 64 0 conv2d_17

conv2d_18 11, 11, 128 73,856 max_pooling2d_2

conv2d_19 11, 11, 128 16,512 conv2d_18

global_average_pooling2d_1 128 0 conv2d_19

batch_normalization 128 512 global_average_pooling2d_1

dropout 128 0 batch_normalization

dense_2 4 516 dropout

Total parameters 1.732.949

Trainable parameters 1.732.693

Non-trainable parameters 256
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(PPM)) are applied to the feature map obtained. These

structures consist of 3 branches parallel to each other. The

aim of using a multibranched structure in the multibranch

lightweight CNN is to enrich the features extracted from

PBC images and increase classification performance.

Step 4: The first branch contains the 2D IM. The 2D IM

consists of maxpooling and 2D convolution layers. This

module structure is given in Fig. 1. In addition, a detailed

summary of the layers of this module used in the study is

given in Table 1. The second branch contains the DSE

block module. Before the input feature map is given to the

DSE block, firstly, a 2D convolution operation consisting

of 128 filters with a size of 3� 3 kernels is applied. Then,

the obtained feature map is given as input to the DSE

block. In this block, firstly, 3� 3 DC and 1� 1 PC are

implemented to the input image. The feature map acquired

after DC and PC is given to the input of the SE block. The

use of the SE block increases the classification perfor-

mance of the networks by slightly increasing the system

cost. The SE block is given in Fig. 3. The third branch

consists of the PPM. The structure of this module is given

in Fig. 4.

Step 5: The feature maps acquired as a result of the

processes in the three branches are concatenated. 2D con-

volution consisting of 3� 3 kernel size and 64 filters,

maxpooling (3� 3 kernel size), 2D convolution consisting

of 3� 3 kernel size and 128 filters, 1 9 1 kernel size and

2D convolution consisting of 128 filters were applied to the

concatenated feature map, respectively.

Step 6: Afterward, the global average pooling (GAP) is

applied. GAP is a pooling process designed to replace FC

layers in standard CNNs. With GAP, a feature map is

generated for each corresponding category of the

classification task in the last layer. Instead of adding FC

layers on top of the feature maps, each feature map is

averaged and the resulting vector is transferred directly to

the softmax layer. In addition, the advantage of using GAP

in the proposed method is that there is no parameter to be

optimized in the GAP and thus overfitting is prevented in

this layer. The output of the GAP is given to a softmax

function to classify features and predict microscopic

peripheral blood cell images. However, before softmax,

batch normalization (BN) is applied to streamline and

speed up the training process. Then, a dropout layer of 0.5

is applied in the network to prevent overfitting. Finally,

softmax assigns probabilities to each class and the sum of

these probabilities equals one. Detailed information about

the multibranch lightweight CNN method is shown in

Table 3. When Table 3 is examined, the total number of

parameters obtained with the multibranch lightweight CNN

method for the dataset consisting of 4 classes is 1.732.949.

The total number of trainable parameters is 1.732.693.

4 Analysis of experimental results

Many experimental studies performed to analyze the clas-

sification accuracy of the multibranch lightweight CNN

architecture in detail. These experimental studies are given

in this section. In the continuation of the section, first of all,

parameter settings are detailed. Then, the classification

performance results obtained as a result of the experiments

acquired on both datasets of the proposed method are

given. Finally, comparisons were made with similar studies

in the literature.
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4.1 Parameter settings

We employ a specific set of hyperparameters to train the

model using the Keras and TensorFlow library on the

Kaggle environment. Experiments for both datasets were

performed with TPU VM v3-8, which is a hardware

accelerator in the Kaggle environment. Overall, we expect

that the use of hyperparameters, optimizers, and callbacks

in combination with Keras-TensorFlow and the Kaggle

environment will enable us to obtain state-of-the-art results

with our multibranch lightweight CNN architecture. The

hyperparameters we use include batch size, image size,

train-test-validation split, number of epochs. We utilize a

batch size of 128, an image size of 128� 128, and a train-

test-validation split of %80–%10–%10 to train our archi-

tecture. Additionally, we utilize train the model for 100

epochs. We also employ the Adam optimizer to minimize

the loss function and optimize the model. In addition to the

hyperparameters, we use two special callbacks to optimize

the training process. The first callback is the Redu-

ceLROnPlateau callback, which is used to decrease the

learning rate when the validation loss stops improving.

This helps to stabilize the training process and avoid

overfitting. In this callback, 0.000001 is taken as the lower

limit of the learning rate (min_learning_rate). In addition,

the factor value that will reduce the learning rate is 0.3. The

second callback is the ModelCheckpoint callback, which is

used to save the model weights at certain intervals during

training. This allows us to save the best model based on

validation accuracy and load it for future use.

4.2 Evaluation metrics

The proposed multibranch lightweight CNN architecture

was analyzed on the three different WBC dataset. The

efficiency of the multibranch lightweight CNN was deter-

mined using evaluation metrics such as precision, F1-score,

recall and classification accuracy. Evaluation metric pro-

vide a quantitative and objective measure of the effec-

tiveness of a model’s predictions and are essential for

evaluating its performance and recognizing areas for

improvement. These metrics provide distinct perspectives

on the model’s performance, with each having its own

unique strengths and limitations. A detailed explanation of

these metrics is presented below. Accuracy (Eq. 5), a

fundamental evaluation metric, quantifies the percentage of

correct predictions generated by the method. This metric is

computed by dividing the number of accurate predictions

by the total number of predictions made. Precision (Eq. 6),

a metric that gauges the proportion of true positives (TP) in

all the positive predictions made by the method, is com-

puted by dividing the number of TP by the sum of TP and

false positives (FP). Recall (Eq. 7), a metric that measures

the proportion of TP among all the actual positive samples

in the dataset, is calculated by dividing the number of TP

by the sum of TP and false negatives (FN). The F1 score

(Eq. 8), a harmonic mean of recall and precision, is an

indispensable metric for balancing precision and recall,

particularly in cases where the classes are imbalanced. It

provides a single score that captures both precision and

recall, rendering it a potent metric for overall model per-

formance evaluation [57].

Accuracy ¼ TP þ TN

TP þ FP þ TN þ FN
ð5Þ

Precision ¼ TP

TP þ FP
ð6Þ

Recall ¼ TP

TPþ FN
ð7Þ

F1� score ¼ 2� Precision � Recall

Precision þ Recall
ð8Þ

True negatives (TN), false negatives (FN), false posi-

tives (FP) and true positives (TP) values in Eq. (5), (6), (7)

and (8) are obtained from the confusion matrix. These

values are as follows: number of correctly identified WBC

types: TP, number of WBC correctly distinguished as not

the target WBC types: TN, number of incorrectly identified

WBC types: FN, number of WBC incorrectly distinguished

as not the target WBC types: FP.

4.3 Experimental results

Confusion matrices for datasets containing both 4 classes

and 8 classes are given in Tables 4 and 5, respectively.

Based on the confusion matrix in Table 4, it appears that all

315 eosinophil images were predicted correctly. Similarly,

293 of the 294 lymphocyte images, all of 297 monocyte

and 338 neutrophil images appear to be predicted suc-

cessfully. Table 4 shows that one prediction incorrectly

classified lymphocytes as neutrophils. Considering Table 5,

Table 4 Confusion matrix obtained for the BCCD dataset consisting

of 4 classes

True label Test dataset for multi-classification

Predicted label

Eosinophil Lymphocyte Monocyte Neutrophil

Eosinophil 315 0 0 0

Lymphocyte 0 293 0 1

Monocyte 0 0 297 0

Neutrophil 0 0 0 338
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only 1 image (as eosinophil) out of 121 basophil images

was incorrectly predicted. Similarly, only 1 image (as

neutrophil) out of 324 eosinophil images appeared to be

predicted incorrectly. When other classes were examined,

155 of 156 erythroblast images, 289 out of 293 IG images,

all 114 lymphocyte images, 125 out of 129 monocyte

images, 311 out of 319 neutrophil images, all 253 platelet

images were successfully predicted.

The F1-score, recall, precision and accuracy values of

the multibranch lightweight CNN architecture according to

each WBC types, as well as the TP, TN, FN and FP values

of the proposed method for the BCCD dataset containing 4

classes are shown in Table 6. According to Table 6, it is

seen that eosinophil and monocyte images are classified

100% correctly, and lymphocyte and neutrophil images are

99.92% correctly classified. Eosinophils from four cell

types achieved 100% accuracy, recall, precision and F1-

score. Lymphocytes achieved 99.92% accuracy, 99.83%

F1-score, 99.66% recall and 100% precision. Monocytes

achieved 100% accuracy, recall, F1-score and precision.

Finally, Neutrophils achieved 99.92% accuracy, 100%

recall, 99.70% precision and 99.85% F1-score. Considering

all evaluation criteria, monocytes and eosinophils have the

highest precision, F1-score, accuracy and recall. The macro

average classification accuracy of these four cell types is

99.96%, the precision value is 99.925%, the recall value is

99.915%, and the F1-score value is 99.92%. Macro-aver-

aged precision, accuracy, F1-score and recall values are

calculated using the arithmetic mean of all precision,

accuracy, recall, and F1-score values per class.

The precision, accuracy, F1-score and recall values of

the multibranch lightweight CNN architecture according to

each WBC types, as well as the TP, TN, FN and FP values

of the proposed method for the dataset containing 8 classes

are given in Table 7. According to Table 7, the precision,

F1-score, recall and accuracy values for Basophil are as

follows: 100%, 99.58%, 99.17% and 99.94%, respectively.

The precision, F1-score, recall and accuracy values for

Eosinophil are as follows: 99.69%, 99.69%, 99.69% and

99.88%, respectively. The precision, F1-score, recall and

accuracy values for Erythroblast are as follows: 99.36%,

99.36%, 99.36% and 99.88%, respectively. The precision,

F1-score, recall and accuracy values for IG are as follows:

97.31%, 97.97%, 98.63% and 99.3%, respectively. The

precision, F1-score, recall and accuracy values for Lym-

phocyte are as follows: 97.44%, 98.70%, 100% and

99.82%, respectively. The precision, F1-score, recall and

accuracy values for Monocyte are as follows: 99.21%,

Table 5 Confusion matrix obtained for the dataset consisting of 8 classes

True label Test dataset for multi-classification

Predicted label

Basophil Eosinophil Erythroblast IG Lymphocyte Monocyte Neutrophil Platelet

Basophil 120 1 0 0 0 0 0 0

Eosinophil 0 323 0 0 0 0 1 0

Erythroblast 0 0 155 0 1 0 0 0

IG 0 0 0 289 0 1 3 0

Lymphocyte 0 0 0 0 114 0 0 0

Monocyte 0 0 0 1 2 125 1 0

Neutrophil 0 0 1 7 0 0 311 0

Platelet 0 0 0 0 0 0 0 253

Table 6 Performance metrics

for the our multibranch

lightweight CNN (for dataset

consisting of 4 classes)

Performance metrics Eosinophil Lymphocyte Monocyte Neutrophil Macro average

TP 315 293 297 338

TN 928 950 946 905

FP 0 0 0 1

FN 0 1 0 0

Accuracy 100% 99.92% 100% 99.92% 99.96%

Precision 100% 100% 100% 99.70% 99.925%

Recall 100% 99.66% 100% 100% 99.915%

F1-score 100% 99.83% 100% 99.85% 99.92%
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98.04%, 96.9% and 99.71%, respectively. The precision,

F1-score, recall and accuracy values for Neutrophil are as

follows: 98.42%, 97.95%, 97.49% and 99.24%, respec-

tively. The precision, F1-score, recall and accuracy values

for Platelet are as follows: 100%, 100%, 100% and 100%,

respectively. According to all the evaluation criteria in

Table 7, the best result was found in the Platelet class with

100%. When the macro average of all classes is taken, it is

seen that 99.72% overall accuracy, 98.91% F1-score,

98.91% recall and 98.93% precision values are obtained.

Another dataset used in the experimental studies is the

Raabin WBC dataset containing 5 classes. The confusion

matrix obtained as a result of the experimental studies

performed on this dataset with the proposed method is

given in Table 8. Based on the confusion matrix in Table 8,

it appears that all 32 basophil images were predicted cor-

rectly. When other classes were examined, 114 of 122

eosinophil images, 335 out of 340 lymphocyte images, 66

out of 73 monocyte images and 876 out of 884 neutrophil

images were successfully predicted. The F1-score, recall,

precision and accuracy values of the multibranch light-

weight CNN architecture according to each WBC types, as

well as the TP, TN, FN and FP values of the proposed

method for the Raabin WBC dataset containing 5 classes

are shown in Table 9. According to Table 9, the precision,

F1-score, recall and accuracy values for Basophil are as

follows: 100%, 100%, 100% and 100%. The precision, F1-

score, recall and accuracy values for Eosinophil are as

follows: 95%, 94.21%, 93.44% and 99.03%, respectively.

The precision, F1-score, recall and accuracy values for

Lymphocyte are as follows: 97.67%, 98.10%, 98.53% and

99.09%, respectively. The precision, F1-score, recall and

accuracy values for Monocyte are as follows: 94.29%,

92.31%, 90.41% and 99.23%, respectively. The precision,

F1-score, recall and accuracy values for Neutrophil are as

follows: 98.87%, 98.98%, 99.10% and 98.75%, respec-

tively. According to all the evaluation criteria in Table 9,

the best result was found in the Basophil class with 100%.

When the macro average of all classes is taken, it is seen

that 99.22% overall accuracy, 96.72% F1-score, 96.30%

recall and 97.17% precision values are obtained.

Comparison of the our multibranch lightweight CNN

architecture with different methods in the literature is given

in Tables 10, 11, 12 and 13. Comparisons were made by

taking the macroaverage values of the evaluation criteria

calculated for each type of WBC in all methods. The

proposed method has 99.96% accuracy, average 99.92%

F1-score, recall and precision values for a BCCD dataset

containing 4 classes. Similarly, for a dataset containing 8

classes, it has 99.72% accuracy, an average of 99% F1-

score, recall and precision values. In addition, it has

99.22% accuracy, 97.17% precision, 96.30% recall and

96.72% F1-score values as a result of experimental studies

on the Raabin WBC dataset containing 5 classes. It is seen

Table 7 Performance metrics for the our multibranch lightweight CNN (for dataset consisting of 8 classes)

Performance metrics Basophil Eosinophil Erythroblast IG Lymphocyte Monocyte Neutrophil Platelet Macro average

TP 120 323 155 289 114 125 311 253

TN 1570 1367 1535 1401 1576 1565 1379 1437

FP 0 1 1 8 3 1 5 0

FN 1 1 1 4 0 4 8 0

Accuracy 99.94% 99.88% 99.88% 99.3% 99.82% 99.71% 99.24% 100% 99.72%

Precision 100% 99.69% 99.36% 97.31% 97.44% 99.21% 98.42% 100% 98.93%

Recall 99.17% 99.69% 99.36% 98.63% 100% 96.9% 97.49% 100% 98.91%

F1-score 99.58% 99.69% 99.36% 97.97% 98.70% 98.04% 97.95% 100% 98.91%

Table 8 Confusion matrix

obtained for the Raabin-WBC

dataset consisting of 5 classes

True label Test dataset for multi-classification

Predicted label

Basophil Eosinophil Lymphocyte Monocyte Neutrophil

Basophil 32 0 0 0 0

Eosinophil 0 114 0 1 7

Lymphocyte 0 1 335 2 2

Monocyte 0 1 5 66 1

Neutrophil 0 4 3 1 876
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that the our multibranch lightweight CNN architecture for

three datasets gives better results than other CNN-based

architectures. The closest result to the our multibranch

lightweight CNN was obtained with 99.8% for the BCCD

dataset containing 4 classes using the proposed

ResNet ? Inception method by Habibzadeh et al. [40].

Among the other methods, the closest results to the our

multibranch lightweight CNN are Çınar et al. [39] with

99.7% accuracy, Bayat et al. [50] with 99.69% accuracy,

Banik et al. [48] with 99.42% accuracy, and Khan et al.

[38] with 99.12% accuracy. The worst classification

accuracy result obtained using the 4-class dataset was

found by Liang et al. [36] with 90.79%. Using the dataset

containing 8 classes among the methods used for com-

parison, Long et al. [23] achieved 99.3% classification

accuracy with the BloodCaps (Capsule Network) method

they developed. In addition, 94.65% accuracy result was

found with the Nucleus segmentation algorithm ? SVM

method developed by Tavakoli et al. [68] in the Raabin

WBC dataset containing 5 classes. Similarly, the classifi-

cation accuracy results obtained with other studies using

the Raabin WBC dataset are as follows. A deep learning

framework by coupling the pre-trained ResNet and Den-

seNet with SCAM method developed by Chen et al. [69]

achieved 98.71% accuracy. 98.33% and 98.83% accuracy

values were found in the ViT-Base-16 and ConvNeXt-Tiny

methods developed by Tsutsui et al. [70], respectively.

While 98.86% accuracy was found with the MobileNetV3-

Small method developed by Katar et al. [71], 98.00%

accuracy was found with the hybrid model (YOLO and

Detectron2) method developed by Akalin et al. [72]. When

compared with recent studies in the literature using the

Raabin WBC dataset, the effectiveness of the proposed

method is seen with an accuracy of 99.22%.

In addition, comparisons were made with CNN-based

methods such as AlexNet, ResNet18, VGG16, ResNet50,

InceptionV3, DenseNet121, DenseNet201 and MobileNet

to compare the classification accuracy results in all three

Table 9 Performance metrics

for the our multibranch

lightweight CNN (for Raabin-

WBC dataset consisting of 5

classes)

Performance metrics Basophil Eosinophil Lymphocyte Monocyte Neutrophil Macro Average

TP 32 114 335 66 876

TN 1391 1309 1088 1357 547

FP 0 6 8 4 10

FN 0 8 5 7 8

Accuracy 100% 99.03% 99.09% 99.23% 98.75% 99.22%

Precision 100% 95% 97.67% 94.29% 98.87% 97.17%

Recall 100% 93.44% 98.53% 90.41% 99.10% 96.30%

F1-score 100% 94.21% 98.10% 92.31% 98.98% 96.72%

Table 10 Comparison of the our multibranch lightweight CNN in WBC classification with different methods in the literature

Literature Classifier method Number of blood cell type classes Image

number

Datasets Accuracy

(%)

[1] CNN 4 (Monocytes, Lymphocytes, Eosinophils, Neutrophils) 12,444 [66] 98.55

[33] LSTM 4 (Monocytes, Lymphocytes, Eosinophils, Neutrophils) 12,444 [66] 92.89

[34] CNN ? RNN 4 (Monocytes, Lymphocytes, Eosinophils, Neutrophils) 12,444 [66] 95.89

[35] CNN 4 (Monocytes, Lymphocytes, Eosinophils, Neutrophils) 12,444 [66] 91.01

[36] CNN ? RNN 4 (Monocytes, Lymphocytes, Eosinophils, Neutrophils) 12,444 [66] 90.79

[37] Faster R-CNN with MobileNet

model

4 (Monocytes, Lymphocytes, Eosinophils, Neutrophils) 12,444 [66] 98.4

[38] AlexNet ? ELM 4 (Monocytes, Lymphocytes, Eosinophils, Neutrophils) 12,444 [66] 99.12

[39] AlexNet ? GoogleNet ? SVM 4 (Monocytes, Lymphocytes, Eosinophils, Neutrophils) 12,444 [66] 99.7

[40] Inception ? ResNet 4 (Monocytes, Lymphocytes, Eosinophils, Neutrophils) 12,444 [66] 99.8

[3] AlexNet 6 (Basophils, Monocytes, Lymphocytes, Eosinophils,

Neutrophils, Abnormal)

3513 Collected 99

[41] CNN 4 (Monocytes, Lymphocytes, Eosinophils, Neutrophils) 12,444 [66] 98.91

[42] Deep CNN 5 (Basophils, Monocytes, Lymphocytes, Eosinophils,

Neutrophils)

10,000 [73] 98.92
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datasets. All results are given in Table 14. In the BCCD

dataset with 4 classes, AlexNet architecture gives the worst

classification result with 99.20%. The best classification

result is obtained with the proposed method with 99.96%.

Among the other methods, classification accuracy is

obtained 99.76% with ResNet18, 99.52% with VGG16,

99.84% with ResNet50-InceptionV3-DenseNet121, and

99.92% with DenseNet201-MobileNet. It is seen that the

classification accuracy values obtained in the BCCD

dataset are very close to each other. In the experimental

studies performed on the Raabin WBC dataset containing 5

classes, AlexNet gives the worst classification result with

96.90%. The best classification result is obtained by the

proposed method with 99.22%. Among the other methods,

classification accuracy is obtained 98.55% with ResNet18,

97.73% with VGG16, 98.55% with ResNet50, 97.24% with

InceptionV3, 98.76% with DenseNet121, 98.62% with

DenseNet201 and 98.90% with MobileNet. It is clearly

seen that the proposed method is more successful than all

other methods on the Raabin WBC dataset. Finally, on a

large-scale PBC dataset containing 8 classes, the our

multibranch lightweight CNN acquired an classification

accuracy of 99.72%, surpassing CNN methods such as

ResNet50 (98.30%), DenseNet121 (99.01%), DenseNet201

(98.77%), MobileNet (98.60%), InceptionV3 (98.62%),

ResNet-18 (98.48%), VGG16 (97.8%), AlexNet (96.96%)

and BloodCaps (99.3%). In addition to this, it is seen that

the number of trainable parameters is less with the pro-

posed method in all three datasets.

4.4 Ablation analysis

Ablation analysis was performed to demonstrate the

effectiveness of the fusion strategy used in the proposed

method. The results of the ablation analysis are given in

Table 15. The proposed method (Model 4) is a multibranch

lightweight CNN method for classification of microscopic

PBC images. This CNN method consists of Inception

module, depthwise squeeze-and-excitation (DSE) block

and pyramid pooling module. When Table 15 is examined,

the classification accuracy results obtained with the pro-

posed method (Model 4) are as follows: 99.96% with

BCCD dataset containing 4 classes, 99.22% with Raabin

WBC dataset containing 5 classes and 99.72% with PBC

Table 11 Comparison of the our multibranch lightweight CNN in WBC classification with different methods in the literature (continued)

Literature Classifier method Number of blood cell type classes Image

number

Datasets Accuracy

(%)

[43] Capsule network 5 (Basophils, Monocytes, Lymphocytes, Eosinophils,

Neutrophils)

263 [74] 96.86

[44] CNN ? transfer learning 5 (Basophils, Monocytes, Lymphocytes, Eosinophils,

Neutrophils)

125 [75] 29.2

[44] CNN ? transfer learning 5 (Basophils, Monocytes, Lymphocytes, Eosinophils,

Neutrophils)

254 [74] 62.6

[45] ResNet ? GoogleNet ? AlexNet 4 (Monocytes, Lymphocytes, Eosinophils,

Neutrophils)

12,435 [66] 97.95

[44] CNN ? Transfer Learning 5 (Basophils, Monocytes, Lymphocytes, Eosinophils,

Neutrophils)

2172 [76] 96.1

[46] Fine-grained Interactive Attention

Learning

4 (Monocytes, Lymphocytes, Eosinophils,

Neutrophils)

12,444 [66] 93.2

[47] Optimized CNN 4 (Monocytes, Lymphocytes, Eosinophils,

Neutrophils)

12,453 [66] 97

[48] CNN 4 (Monocytes, Lymphocytes, Eosinophils,

Neutrophils)

12,444 [66] 99.42

[49] MobileNet-224 4 (Monocytes, Lymphocytes, Eosinophils,

Neutrophils)

12,500 [66] 97.03

[50] CNN (Xception) 4 (Monocytes, Lymphocytes, Eosinophils,

Neutrophils)

12,444 [66] 98.99

[50] CNN (ResNet) 4 (Monocytes, Lymphocytes, Eosinophils,

Neutrophils)

12,444 [66] 99.15

[50] CNN (EfficientNet) 4 (Monocytes, Lymphocytes, Eosinophils,

Neutrophils)

12,444 [66] 99.69

[51] CNN 5 (Basophils, Monocytes, Lymphocytes, Eosinophils,

Neutrophils)

6562 Collected 97
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dataset containing 8 classes. The classification accuracy

results obtained in Model 1, where only the Inception

module is used, are as follows: 99.76% with BCCD dataset

containing 4 classes, 98.14% with Raabin WBC dataset

containing 5 classes and 98.71% with PBC dataset con-

taining 8 classes. The classification accuracy results

obtained in Model 2, where only the depthwise squeeze-

and-excitation (DSE) block is used, are as follows: 99.60%

with BCCD dataset containing 4 classes, 97.31% with

Raabin WBC dataset containing 5 classes and 98.54% with

PBC dataset containing 8 classes. The classification

accuracy results obtained in Model 3, where only the

Pyramid pooling module is used, are as follows: 99.84%

with BCCD dataset containing 4 classes, 97.86% with

Raabin WBC dataset containing 5 classes and 98.36% with

PBC dataset containing 8 classes. When all model results

in Table 15 are analyzed, it is seen that the results are low,

especially in Raabin WBC and PBC data sets when the

models are used separately. However, the best classifica-

tion results were obtained in Model 4 where all models

were used together.

Table 12 Comparison of the our multibranch lightweight CNN in WBC classification with different methods in the literature (continued)

Literature Classifier method Number of blood cell type classes Image

number

Datasets Accuracy

(%)

[51] CNN and further training 5 (Basophils, Monocytes, Lymphocytes,

Eosinophils, Neutrophils)

254 [74] 96

[77] Ensemble of CNN (ResNet50, VGG16,

VGG19, Xception, Inception V3)

7 (Basophils, Monocytes, Atypical

Lymphocytes, Lymphocytes, Eosinophils,

Neutrophilic stab granulocyte, Neutrophilic

granulocyte)

2000 Collected 88.5

[23] BloodCaps (Capsule Network) 8 (Erythroblasts, Platelets, immature

granulocytes (promyelocytes, myelocytes, and

metamyelocytes), Monocytes, Lymphocytes,

Basophils, Eosinophils, Neutrophils)

17,092 [65] 99.3

[68] Nucleus segmentation algorithm ? SVM 5 (Basophils, Monocytes, Lymphocytes,

Eosinophils, Neutrophils)

14,514 [67] 94.65

[69] A deep learning framework by coupling the

pre-trained ResNet and DenseNet with

SCAM (spatial and channel attention

module)

5 (Basophils, Monocytes, Lymphocytes,

Eosinophils, Neutrophils)

14,514 [67] 98.71

[70] ViT-Base-16 5 (Basophils, Monocytes, Lymphocytes,

Eosinophils, Neutrophils)

14,514 [67] 98.33

[70] ConvNeXt-Tiny 5 (Basophils, Monocytes, Lymphocytes,

Eosinophils, Neutrophils)

14,514 [67] 98.83

[71] MobileNetV3-Small 5 (Basophils, Monocytes, Lymphocytes,

Eosinophils, Neutrophils)

16,633 [67] 98.86

[72] Hybrid Model (YOLO and Detectron2) 5 (Basophils, Monocytes, Lymphocytes,

Eosinophils, Neutrophils)

1000 [67] 98.00

Table 13 Comparison of the our multibranch lightweight CNN in WBC classification with different methods in the literature (continued)

Proposed

Method

Multibranch

Lightweight CNN

4 (Monocytes, Lymphocytes, Eosinophils, Neutrophils) 12,444 [66] 99.96

Proposed

Method

Multibranch
Lightweight
CNN

5 (Basophils, Monocytes, Lymphocytes, Eosinophils, Neutrophils) 14,514 [67] 99.22

Proposed

Method

Multibranch
Lightweight
CNN

8 (Erythroblasts, Platelets, immature granulocytes (promyelocytes, myelocytes,
and metamyelocytes), Monocytes, Lymphocytes, Basophils, Eosinophils,
Neutrophils)

17,092 [65] 99.72

*Bold indicates best result
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5 Conclusions and future prospects

In this paper, we proposed a novel CNN-based architecture

(multibranch lightweight CNN) for classification of PBC.

The proposed architecture consists of three branches par-

allel to each other. These branches include the Inception

module, depthwise squeeze-and-excitation block (DSEB),

and pyramid pooling module (PPM). The proposed CNN

method is a hybrid method consisting of the combination of

these modules and is called the multibranch lightweight

CNN method. With the use of Inception module, it is

purposed to improve the efficiency and classification per-

formance of CNNs by performing multiple parallel con-

volutions at different scales. DSEB offers a structure where

the network can selectively learn about informative fea-

tures and remove useless ones. This block requires almost

no additional transaction costs. It can be easily added to

any model due to its performance enhancing feature in

Table 14 Accuracy results (%)

and number of trainable

parameters of the some methods

used for comparison with the

our multibranch lightweight

CNN

Dataset Method Class Number of parameters Accuracy (%)

BCCD dataset (4 classes) AlexNet 4 21.616.708 99.20

ResNet18 4 11.201.604 99.76

VGG16 4 14.717.764 99.52

ResNet50 4 23.546.884 99.84

InceptionV3 4 21.780.644 99.84

DenseNet121 4 6.960.004 99.84

DenseNet201 4 18.104.452 99.92

MobileNet 4 3.213.124 99.92

Proposed method 4 1.732.693 99.96

Raabin WBC dataset (5 classes) AlexNet 5 21.620.805 96.90

ResNet18 5 11.209.797 98.55

VGG16 5 14.718.277 97.73

ResNet50 5 23.548.933 98.55

InceptionV3 5 21.782.693 97.24

DenseNet121 5 6.961.029 98.76

DenseNet201 5 18.106.373 98.62

MobileNet 5 3.214.149 98.90

Proposed method 5 1.732.822 99.22

PBC dataset (8 classes) AlexNet 8 21.633.096 96.96

VGG16 8 14.719.816 97.8

ResNet18 8 11.234.376 98.48

ResNet50 8 23.555.080 98.30

InceptionV3 8 21.788.840 98.62

DenseNet121 8 6.964.104 99.01

DenseNet201 8 18.112.136 98.77

MobileNet 8 3.217.224 98.60

BloodCaps 8 6.394.835 99.3

Proposed method 8 1.733.209 99.72

*Bold indicates best result

Table 15 Ablation analysis

Model Inception Module DSEB Pyramid pooling module BCCD (4 classes) (%) Raabin WBC (5 classes) (%) PBC (8 classes) (%)

Model 1 X – – 99.76 98.14 98.71

Model 2 – X – 99.60 97.31 98.54

Model 3 – – X 99.84 97.86 98.36

Model 4 X X X 99.96 99.22 99.72
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classification tasks. PPM capture multi-scale contextual

information from the input image by pooling features at

multiple dissimilar scales. Finally, in the proposed method,

the GAP layer is utilized instead of FC layers before the

classification layer. The advantage of using this layer is

that there is no parameter to optimize and thus overfitting is

avoided in this layer. PBC, BCCD, Raabin WBC datasets

were utilized to analysis the accuracy of the our multi-

branch lightweight CNN. According to the experimental

studies, 99.96% accuracy in the BCCD, 99.22% accuracy

in the Raabin WBC and 99.72% in the PBC was obtained.

The our multibranch lightweight CNN has been compared

with the CNN-based methods made in the literature in

recent years and it has been seen that the our multibranch

lightweight CNN gives better results. In addition, experi-

ments were carried out with different CNN methods

(ResNet50, DenseNet121, DenseNet201, MobileNet,

InceptionV3, ResNet-18, VGG16, AlexNet and Blood-

Caps) on the datasets consisting of BCCD, Raabin WBC

and PBC. The proposed method achieved better results

with less trainable parameters. According to these results, it

can be deduced that the our multibranch lightweight CNN

can be used as an alternative method for clinical experi-

ments, since it can accurately extract PBC features with

high efficiency for PBC classification.

In future studies, (1) it is planned to test the proposed

approach on different PBC datasets in real time. In addi-

tion, studies are being carried out on the development of an

expert system so that hematologists can carry out their

procedures in a shorter time and more effectively.
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