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Abstract
Multimodal multi-objective optimization problems (MMOPs) are widely present in real life. Due to the need of balancing

between convergence and diversity in multi-objective optimization, as well as the need of balancing between diversities in

objective and decision spaces, exploring the Pareto optimal front and Pareto optimal solution set becomes rather difficult in

solving MMOPs. Recently, some multimodal multi-objective optimization algorithms have emerged. However, most of

them are convergence-first, which may result in poor diversity of the solution set in decision space. To remedy this defect,

in this paper, a determinantal point process (DPP)-assisted evolutionary algorithm is proposed to effectively solve MMOPs.

In the proposed method, i) the DPPs are used to select subsets to consider convergence and diversity in both objective and

decision spaces; ii) a kernel matrix is designed to retain solutions with poor convergence but good diversity in the decision

space to explore the equivalent Pareto optimal solution sets; and iii) we propose a framework that combines the population

and archive to better solve MMOPs. The results show that the proposed algorithm achieves the best performance in 18 of

the 28 benchmark problems compared to six state-of-the-art algorithms.

Keywords Multimodal multi-objective optimization � Evolutionary algorithm � Determinantal point processes �
Subset selection � Decision space diversity.

1 Introduction

Multi-objective optimization problems (MOPs) exist

widely in real life, which aim to optimize multiple objec-

tive functions simultaneously. Without loss of generality,

we give the following formula to describe:

Minimize FðxÞ ¼ ðf1ðxÞ; f2ðxÞ; � � � ; fmðxÞÞ

subject to x ¼ ðx1; x2; . . .; xnÞ 2 X
; ð1Þ

where X � Rn denotes the search space; m is the number of

objective functions; x ¼ ðx1; . . .; xnÞ is a n-dimensional

decision vector; and n is the number of decision variables.

Due to the conflict between multiple objectives, there is no

single solution that can make multiple objectives reach the

optimal simultaneously [1]. Therefore, we need to find a set

of Pareto optimal solutions (PS), which map to the objec-

tive space and form the Pareto optimal front (PF).

There are multiple Pareto optimal solution sets (PSs)

corresponding to the same point on the PF, that is, the

multimodal multi-objective optimization problems

(MMOPs). Such practical problems abound, for example:

flow-shop scheduling [2], path-planning [3], mining

stable spatiotemporal patterns [4], multi-objective knap-

sack optimization [5], map-based [6] and the credit card

fraud detection [7]. But since multiple solutions in the

decision space correspond to a point on PF, some of which

are inaccessible, we need to find as many equivalent

solutions as possible. In other words, because some Pareto
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solution sets are not feasible in practice, it is necessary to

provide alternative solutions for decision makers [8].

In the past two decades, a large number of multi-ob-

jective optimization evolutionary algorithms (MOEAs)

have been proposed to solve MOPs with great success [9].

These MOEAs can be broadly divided into three cate-

gories: (1) Pareto dominance-based algorithms, e.g., non-

dominated sorting genetic algorithm II (NSGA-II) [10],

strength Pareto evolutionary algorithm 2 (SPEA2) [11]; (2)

indicator-based algorithms, e.g., e-dominance-based

MOEA (GDE-MOEA) [12], Two_Arch2 [13]; and (3)

decomposition-based algorithms, e.g., MOEA based on

decomposition (MOEA/D) [14], and reference vector gui-

ded evolutionary algorithm (RVEA) [15]. However, since

they only consider the convergence and diversity of the

objective space, their ability to solve MMOPs is limited.

In recent years, many multimodal multi-objective opti-

mization evolutionary algorithms (MMOEAs) have been

proposed, such as decision space-based niching NSGA-II

(DNNSGAII) [16], MO_Ring_SCD_PSO [3], MMOEADC

[17], DN-MMOES [18], MMEAWI [19] and HREA [20].

They are based on existing MOEAs, to a certain extent,

with the addition of techniques to account for the diversity

of the decision space [21], but most of them are conver-

gence-first. That is, when selecting the solutions of next-

generation population, the convergence of objective space

is the first priority, and then, the diversity in decision space

is considered. As a result, non-dominated solutions are

preferred, so that these algorithms converge quickly to

easily detectable PSs. In addition, most solutions are

selected one by one. In this way, those solutions that are

less convergent in the decision space, but more diverse,

will be deleted. Therefore, it is difficult to fully explore the

decision space and many PSs cannot be found. Under the

same parameter settings to that of Sect. 4.1.3, some rep-

resentative results are presented, which prove the defi-

ciency and limitation of convergence-first methods

mentioned above. We test two convergence-first

MMOEAs, MO_Ring_SCD_PSO on MMF5 and

MMMOP2, DNNSGAII on MMF6 and MMMOP1. Fig-

ure 1 shows the results. The different colored lines in

Fig. 1a represent that there are 6 equivalent PSs of the

same PF on MMMOP1. Similarly, there are 4 equivalent

PSs of the same PF on MMF5 and MMF6 in Fig. 1b and d.

In Fig. 1c, MMMOP2 has 5 equivalent PSs. It clearly

shows that MO_Ring_SCD_PSO could not find all PSs,

and the obtained solutions by DNNSGAII had poor

diversity in the decision space.

To solve the above problems, this study puts forward an

MMOEA based on determinantal point processes (DPPs),

termed MMOEADPPs. The algorithm uses DPPs to select

the subset of the population, which aims to better balance

convergence and diversity in both objective and decision

spaces. Besides, we introduce an archive to maintain non-

dominated solutions so as to better converge to the PF of

the objective space and also improve the diversity of the

decision space to search for more PSs. Experimental results

show that our algorithm outperforms other six state-of-the-

art algorithms on 28 benchmark problems. The main con-

tributions of this work can be summarized as follows:

• Introduce the DPPs: We introduce the DPPs into

MMOEA. Compared with the existing MMOEAs to

select next generation one by one, it selects a subset at

one time according to the probability model. Since the

probability model comprehensively considers conver-

gence and diversity in both spaces, based on it, the

subset selected by DPPs not only considers conver-

gence, but also maximizes the diversity of the two

spaces. As a result, the current solutions with poor

convergence but good diversity are preserved, which

will facilitate the exploration of sparse regions of the

decision space.

• A kernel matrix: A kernel matrix is designed to

represent the convergence, diversity of the objective

space and diversity of the decision space. For this

reason, the trade-off solution subset that takes all three

into account will be chosen through DPPs. The

convergence of the objective space is represented based

on the non-dominated fronts, and the Euclidean

distance between individuals is used to measure the

diversity of the objective space and decision space.

• A framework of the population and archive: For the

purpose of better solving MMOPs, we propose a

framework which integrates the population and archive.

In the selection of solutions in the population, conver-

gence and diversity in both objective and decision

spaces are considered comprehensively by adopting

DPPs. Accordingly, the algorithm can avoid falling into

the local PS and better explore equivalent PSs in the

decision space, while the archive can retain solution set

that can represent PF and multiple PSs in non-

dominated solutions. As a consequence, the conver-

gence and diversity performance of the algorithm is

guaranteed.

The remainder of this article is organized as follows.

Section 2 briefly introduces the DPPs and the related work

of MMOEAs. Then, the proposed algorithm MMOEADPPs

is elaborated in Sect. 3. In Sect. 4, the results of the

experiments and the corresponding analyses are presented.

Finally, the conclusions and future research directions are

given in Sect. 5.
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2 Related work and motivations

2.1 DPPs

In machine learning (ML), the goal of a subset selection

problem is to select a more diverse subset of items from a

ground set. The balance of the consideration of diversity in

ML problems often through the use of DPPs to keep, where

DPP gives diversity on subsets such that the probability of

choosing two similar terms is (inversely) correlated. In

other words, the more similar items are, the less likely they

are to be sampled simultaneously. DPPs apply to many

practical problems, such as the web search problems [22],

product recommendation [23] and graph sampling [24].

The point process measures the probability of selecting an

instance Y of set Y, which of the finite discrete points, i.e.,

Y ¼ 1; � � � ;Nf g, can be defined as follows:

Fig. 1 Representative experimental results of convergence-first

MMOEAs. a MO_Ring_SCD_PSO on MMMOP2 in objective space.

b MO_Ring_SCD_PSO on MMF5 in decision space. c DNNSGAII

on MMMOP1 in objective space. d DNNSGAII on MMF6 in decision

space. None of these algorithms could fully explore PF and PSs.

Furthermore, there were large sparse areas in the decision space

Neural Computing and Applications (2024) 36:1381–1411 1383

123



PLðY ¼ YÞ ¼ detðLYÞ
detðLþ IÞ ; ð2Þ

where L is an N � N semi-definite kernel matrix; it is

equivalent to a table describing the relationship between

any two individuals in population P. The diversity and

convergence relationship between any two individuals in

the population can be queried by this relation table. I is an

identity matrix with size of N. det() is the determinant.

When we set the subset size to k, we can get a variation of

DPP, i.e., kDPP. k represents the size of the subset that

needs to be selected. Different values are taken in different

test problems according to the population size N designed

in Table 3. In other words, in our proposed algorithm, k =

N. The formula is described as follows:

Pk
LðY ¼ YÞ ¼ detðLYÞP

Y0¼k detðLY0 Þ ; ð3Þ

However, its time complexity is as high as OðNkÞ, so that it

is very difficult to solve. In order to solve this problem, in

[22], Kulesza and Taskar came up with a method: With the

help of matrix eigenvalue decomposition, the above oper-

ations can be divided into two steps. First, the kernel matrix

L ¼
PN

n¼1 knvnv
T
n is decomposed into the set of eigenval-

ues k and the set of eigenvectors V. Then, subset J is

extracted from V according to the following formula, and

its size is k; then, the probability of this subset being

selected is:

PrðJ ¼ J Þ ¼
Q

n2J knP
J¼k

Q
m2J km

: ð4Þ

Thus, k individuals with large differences are selected as

reference frames from the complete set P. Then, based on

the eigenvectors set J , the offspring individual i is

extracted with the following formula as probability, to

evaluate the quality of each individual, until population

size reach requirements.

PrðiÞ ¼
1

jVj
X

v2V
ðvTn eiÞ

2; ð5Þ

where only the ith element of ei is 1, and the rest is

0, i.e., ei ¼ ð0; � � � ; 1; � � � ; 0Þ.

2.2 Existing MMOEAs

2.2.1 Convergence-first MMOEAs

Most algorithms pay more attention to convergence, but

not enough diversity in the decision space. Peng et al. [8]

proposed a diversity-enhanced subset selection framework

to solve MMOPs. It first looks for uniformly distributed

objective vectors in the objective space; then, the

corresponding equivalent solutions of these objective vec-

tors are found in the decision space. Finally, the remaining

solutions are selected from the already found equivalent

solutions. However, it removes the dominated solutions

before initially selecting the uniformly distributed objec-

tive vector. TriMOEATAR [25] suggested to use double

archives and recombination strategies to select the next

generation of the population, but the convergence archive

focuses more on non-dominated solutions. Li et al. [26]

also proposed a method using two-archive. The fitness

scheme adopted to update the population is designed by

selecting from non-dominated solutions. MO_R-

ing_PSO_SCD [3] used an index-based ring-topology

particle swarm optimizer (PSO) and its special crowding

distance are calculated according to non-dominated rank-

ing. Tanabe and Ishibuchi [27] suggested a framework

using decomposition-based evolutionary algorithms based

on assignment, deletion and addition operations. The same

subproblem may be allocated more than one individual,

after that the one with the best convergence will be

selected. CEA-LES [28] devised a layer-to-layer strategy to

better locate equivalent PSs. However, clearing-based

niching mechanism is applied after non-dominated ranking.

In other words, it prefers the non-dominated solution. Li

et al. [29] proposed a self-organizing quantum-inspired

particle swarm-based algorithm. The algorithm maintains a

non-dominated solution set by a maximum–minimum dis-

tance among solutions. MMOEADC [17] devised an

MMOEA through dual clustering in decision and objective

spaces. Firstly, the solutions in the decision space are

divided into clusters to select individuals as population.

Then it clusters the population in the objective space. After

that, individuals in the most crowded clusters with the

worst diversity are removed. However, local PSs give

priority to the selection from the non-dominated solutions

in the local cluster. Fan and Yan [30] suggested a method

to embed zoning search in MMOEAs to improve their

performance. The entire decision space is decomposed into

multiple subspaces. In each subspace, an MMOEA will be

selected to explore the PSs and PF. As a result, the chosen

algorithm affects its performance. HREA [20] devised a

hierarchy ranking approach to choose individuals desired

by decision makers. However, the local convergence

quality evaluation strategy is also based on non-dominated

solutions. Li et al. [31] embedded grid search technique

into the algorithm. Besides, an environment selection

strategy is designed to remove inferior convergence indi-

viduals to better approach the non-dominated solutions.

2.2.2 Convergence-balanced MMOEAs

In the past two years, more and more studies have focused

on how to balance convergence and diversity in both

1384 Neural Computing and Applications (2024) 36:1381–1411

123



objective and decision spaces. DN-MMOES [18] presented

a two-stage double niched method. The niching strategy is

first carried out in the decision space. Moreover, density

operator is designed for the diversity of decision space. In

addition, the mating pool selection strategy is not adopted.

Therefore, it is possible to avoid selecting high-conver-

gence individuals to produce offspring. MMEAWI [19]

proposed a method for evaluating potential convergence

quality that prioritizes diversity and through this weight

indicator to guide the population evolution. CPDEA [21]

suggested a convergence-penalized density mechanism to

choose the next generation. In CPDEA, the selection cri-

terion is based on the transformed distances which mea-

sured by the local convergence quality.

2.2.3 Motivation

The traditional selection operator lacks the evaluation of

the overall quality of the solution set, so it is easy to lead to

the abandonment of many solutions which have poor

convergence but are in favor of exploring the decision

space and objective space [32]. In addition, most of the

MMOEAs proposed in recent years are convergence-first,

which makes the diversity of the solution set not good

enough, as shown in Fig. 1.

In MaOEADPPs [33], a new selection strategy in the

multi-objective field is proposed. According to a ML

technology, i.e., DPPs, it is considered to select the overall

solution set at one time, the algorithm works well in

dealing with many-objective optimization problems. In

DPPs, the probability that two elements are extracted as

part of a subset is related not only to the probability that a

single element is extracted, but also to the correlation of the

two elements. That is, the higher probability a single ele-

ment is selected, and at the same time, the lower the

similarity between the elements, the more likely this set is

to be selected. DPPs can better recall a more diverse subset.

Based on this, we can get a more evenly distributed solu-

tion set. Inspired by it, we try to extend this idea to

MMOEA. By designing the kernel matrix and using it to

represent the convergence and diversity of the objective

space and decision space, the three can be comprehensively

considered and balanced according to the subset selected

by DPPs. Thereby avoiding the above-mentioned defects of

the traditional selection operator, and does not give too

high priority to convergence like many MMOEAs. Fur-

thermore, since different PSs of MMOPs are difficult to be

fully detected, it is necessary to retain solutions that are not

so convergent, but evenly distributed around equivalent

PSs.

In view of the above-mentioned considerations, in

Sect. 3, we will describe the proposed algorithm in detail,

including the design of the kernel matrix, the framework of

population and archive and population update.

3 Proposed algorithm

3.1 The kernel matrix

A kernel matrix is designed to represent the convergence

and diversity of the objective space and decision space, so

that the solution subset selected by the DPPs can better

balance the above properties. Moreover, it is mainly used

to assist the selection of the population.

Given a population P, x is an individual in it, and n is

the number of individuals. In [34], Liu et al. proposed that

whether normalization leads to differences in algorithm

performance. Therefore, the population should be normal-

ized before computing the kernel matrix. Consequently, we

use the following normalization method to normalize the

individuals in both objective and decision spaces. Its for-

mula is described as follows:

f iðxÞ ¼
fiðxÞ � z�i
znadi � z�i

; ð6Þ

where z�, znad are the maximum and minimum values

among these individuals, respectively. They are calculated

by the following formulas:

z�i ¼ minðffiðxÞjx 2 PgÞ; ð7Þ

znadi ¼ maxðffiðxÞjx 2 PgÞ; ð8Þ

The kernel matrix L is devised to assist the population in

producing the next generation. For two individuals

x; y 2 P, we employ the following formula to calculate its

elements Lxy:

Lxy ¼ Dobj
xy D

dec
xy =

ffiffiffiffi
F

e
p

; ð9Þ

where F is used to evaluate the convergence of individu-

als. It is the non-dominated level of individuals in the

population P obtained after performing non-dominated

sorting. In addition, Dobj
xy ;D

dec
xy are used to measure the

diversity of individuals in the objective space and decision

space. They are both calculated by the following formula:

Dðx;yÞ ¼ expð�dðx; yÞÞ; ð10Þ

where dðx; yÞ is the Euclidean distance between individuals
x and y. In this way, Dobj

xy ;D
dec
xy are inversely proportional to

the Euclidean distance between individuals. Therefore, the

similarity between individuals is also taken into account in

the selection of the kernel matrix L. It is worth pointing out

that the individuals x and y appearing in the above formula

have been normalized.
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3.2 The framework of MMOEADPPs

The overall flowchart of the proposedMMOEADPPs is shown

in Fig. 2. In particular, the population P and the archiveA are

initialized.After that, a loopdescribedbelowwill continueuntil

the termination condition is satisfied. First, mating pools are

selected from the population and archive separately. Next, the

offspring are produced and merged from the mating pools.

Then, the next generation of the population and archive will be

selected. The archive A will be as the final output when the

termination condition is met.

Algorithm 1 Framework of MMOEADPPs

Algorithm 1 shows the pseudocode of the overall

framework of our proposed MMOEADPPs. First of all,

setting current generation g to 0 and randomly initializing

the population P (lines 1-2). Next, according to Eqs. (7)

and (8), the ideal point and the nadir point of the objective

space and the decision space are initialized, respectively

(lines 3-4). Then, using HREA’s archive update strategy to

initialize the archive A based on P (line 5), we set the

maximum archive size to population size N in this study.

The termination criterion is the maximum number of

generations Gmax set in advance. When the termination

criterion has not been met (line 6), the following steps will

be performed continuously.

• The mating pool M1 will consist of randomly selected

N/2 solutions from P (line 7) and the offspring O1 will

be generated by the GA operator (line 8).

• Afterward, N/2 solutions selected at random from A

form the mating pool M2 (line 9) and the offspring O2

will be generated by the GA operator (line 10).

• Then, O1 and O2 are combined to offspring set O (line

11).

• Next, the ideal points of the offspring in the objective

space and the decision space are updated (line 12).

• Subsequently, the next generation of P will be selected

according to Algorithm 2 (line 13).

• And then, choosing the next generation of A by

HREA’s archive update strategy (line 14).

• After that, the nadir points of the objective and decision

spaces in P will be updated and the generation index

g increase by one (line 15-16).

At the end of evolution, A will be taken as the final

solution set.

3.3 Update of the population

The update of the population is based on DPPs. As given in

Algorithm 2, the population update steps are as follows:

• First of all, the population P is set to the union of itself

and the offspring O (line 1). The reason for this is that

there may be solutions in the offspring that exist in
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promising regions where PS may be present; at the

same time, the information of solutions in the current

population can also be fully utilized to explore more

equivalent PSs.

• Normalizing P by Eq. (6) (line 2) to ensure that the

solutions range within [0, 1].

• Then, the diversity of solutions in P in the objective

space and decision space is evaluated according to

Eq. (10) (line 3–4).

• Afterward, performing fast non-dominated sort in P

and the non-dominated fronts of the solutions are stored

in F (line 5).

• Next, calculating the kernel matrix according to Eq. (9),

which is able to characterize the convergence and

diversity of solutions in both decision and objective

spaces (line 6).

• Subsequently, subsets are selected by the choose of

DPPs-selection (line 7–8).

• Finally, the population P will be output as the next

generation (line 9).

Algorithm 2 UpdatePop( P, O, N, z�obj, z
nad
obj , z

�
dec, z

nad
dec )

Algorithm 3 DPPs-selection( L, N )

A detailed description of the selection of determinantal

point processes (DPPs-selection) is given in Algorithm 3.

First, a set of eigenvectors fvrgNr¼1 and eigenvalues fkrg
N
r¼1

are obtained by eigendecomposition of the kernel matrix L

(line 1). Then, the eigenvalues in fkrgNr¼1 are arranged in

descending order to select the eigenvectors from fvrgNr¼1

which associate with the k maximum eigenvalues (line 2).

The k individuals with large differences are selected as the

reference system. k is the desired subset size, which in our

proposed algorithm is the population size N. After that, an

empty set S for output is created (line 3); Next, according
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to the individual quality, extracting one offspring index i in

each iteration until the population size reaches the

requirement (line 4). The specific steps of iteration are as

follows:

• First, picking the index of the element with the

maximum value of
P

v2VðvTn eiÞ
2
from N, where the

dimension of ei is N, only the ith element of ei is 1, and

the rest is 0 (line 5).

• Then, adding the selected solution index to the index set

S (line 6).

• Subsequently, finding out the orthonormal basis for the

subspace of V which is orthogonal to ei (line 7).

At last, the selected set of element indexes S is returned as

output.

Although the update of the population comprehensively

considers the convergence and diversity of individuals in

the objective space and decision space, since the kernel

matrix gives a relatively higher weight to the diversity, it

focuses more on the consideration of diversity. Therefore,

we introduce an archive that places extra emphasis on

convergence of solutions while maintaining solution

diversity. The archive update strategy of HREA preserves

the non-dominated solutions to constitute the global PF. At

the same time, the dominated solutions with good diversity

and quality are retained to form a local PF. In addition, it

balances the number of solutions on each PF to obtain a

well-distributed PF [20]. For this reason, in our approach,

we borrow its strategy of updating archive.

3.4 Computational complexity analysis

Each generation of the proposed MMOEADPPs needs to

perform the following steps: (1) mating selection; (2)

crossover and mutation; (3) update the population; and (4)

update the archive. The mating pool uses a random selec-

tion method, so it consumes a runtime of O(N), where N is

the size of the population. GA operator is used to generate

offspring from parents. Therefore, the computational

complexity of crossover and mutation is O(nN), where n is

the scale of the decision variables. In addition, we adopt the

DPPs for the updating process of the population, which

needs a runtime of OðmN2Þ, where m is the number of

objectives. Furthermore, the update of the archive takes

OðN3Þ. In consequence, the total computational complexity

required by MMOEADPPs is OðN3Þ.

4 Experimental results and analysis

In this section, we conduct experiments to verify the

effectiveness of the proposed MMOEADPPs for solving

MMOPs. First, the relevant settings of the experiments will

be explained in detail in Sect. 4.1. Next, we demonstrate

the feasibility and effectiveness of our proposed tech-

niques, including the normalization of individuals, updat-

ing the population through DPPs, and the framework of the

population and archive by separation experiments in

Sect. 4.2. In Sect. 4.3, MMOEADPPs is compared with six

state-of-the-art MMOEAs on two MMOP benchmarks.

Subsequently, the parameter sensitivity of parameter e will

be analyzed in Sect. 4.4. Finally, in Sect. 4.5, we use the

proposed MMOEADPPs to deal with multimodal multi-

objective location selection problem. All experiments for

this work are carried out on the PlatEMO v3.4 [35] on a PC

configured with an Intel i9-9900X @ 3.50GHz and 64G

RAM.

Fig. 2 Flowchart of the framework of MMOEADPPs

Table 1 Parameters and the number of PS segments in the MMF test

suite

Problem m n Number of PS segments

MMF1 2 2 2

MMF2 2 2 2

MMF3 2 2 2

MMF4 2 2 4

MMF5 2 2 4

MMF6 2 2 4

MMF7 2 2 2

MMF8 2 2 4
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4.1 Experimental settings

4.1.1 Benchmark for test

Two widely used benchmarks, MMF [3] and MMMOP

[25], were selected as test problems to prove the validity of

proposed MMOEADPPs. Table 1 gives a detailed intro-

duction of the MMF test suite, including the number of

objective functions m, the number of decision variables

n and the number of equivalent PS segments corresponding

Table 2 Parameters and the

number of PS segments in the

MMMOP test suite

Problems Parameters Number of PS segments

m n KA KB ci di

MMMOP1-

A

2 3 1 1 – – 5KA

MMMOP1-

B

3 7 1 4 – – 5KA

MMMOP2-

A

2 3 1 1 – – 6KA

MMMOP2-

B

3 7 1 4 – – 6KA

MMMOP3-

A

2 2 0 1 – 3
Q

i¼m;���;mþKA�1 ci �
Q

i¼1;���;m�1 di

MMMOP3-

B

3 7 0 5 – 2
Q

i¼m;���;mþKA�1 ci �
Q

i¼1;���;m�1 di

MMMOP3-

C

2 6 1 4 3 3
Q

i¼m;���;mþKA�1 ci �
Q

i¼1;���;m�1 di

MMMOP3-

D

3 7 1 4 2 2
Q

i¼m;���;mþKA�1 ci �
Q

i¼1;���;m�1 di

MMMOP4-

A

2 2 0 1 – 4
Q

i¼m;���;mþKA�1 ci �
Q

i¼1;���;m�1 di

MMMOP4-

B

3 7 0 5 – 3
Q

i¼m;���;mþKA�1 ci �
Q

i¼1;���;m�1 di

MMMOP4-

C

2 6 1 4 2 4
Q

i¼m;���;mþKA�1 ci �
Q

i¼1;���;m�1 di

MMMOP4-

D

3 7 1 4 2 3
Q

i¼m;���;mþKA�1 ci �
Q

i¼1;���;m�1 di

MMMOP5-

A

2 2 0 1 – 3
Q

i¼m;���;mþKA�1 ci �
Q

i¼1;���;m�1 di

MMMOP5-

B

3 7 0 5 – 1
Q

i¼m;���;mþKA�1 ci �
Q

i¼1;���;m�1 di

MMMOP5-

C

2 6 1 4 2 2
Q

i¼m;���;mþKA�1 ci �
Q

i¼1;���;m�1 di

MMMOP5-

D

3 7 1 4 2 1
Q

i¼m;���;mþKA�1 ci �
Q

i¼1;���;m�1 di

MMMOP6-

A

2 2 0 1 2 – 4KA=2 �
Q

i¼mþKA;���;n ci

MMMOP6-

B

3 3 0 2 2 – 4KA=2 �
Q

i¼mþKA;���;n ci

MMMOP6-

C

2 4 2 1 2 – 4KA=2 �
Q

i¼mþKA;���;n ci

MMMOP6-

D

3 5 2 1 2 – 4KA=2 �
Q

i¼mþKA;���;n ci

Table 3 Parameter settings on

test problems, where N is the

population size and Gmax is the

maximal number of generations

m N Gmax

MMF1-8 2 200 200

MMMOP 2 300 200

3 300 300
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to the same PF. Similarly, the detailed introduction of the

MMMOP test suite is given in Table 2. The lines with

different colors for all figures in this article represent dif-

ferent PSs corresponding to the same PF.

4.1.2 Algorithms for comparison

Six state-of-the-art MMOEAs designed for MMOPs were

selected as comparison algorithms to confirm the validity

of our algorithm. They are listed below:

• Convergence-first algorithms: MO_Ring_PSO_SCD

[3], DNNSGAII [16], TriMOEATAR [25],

MMOEADC [17], HREA [20].

• Convergence-balanced algorithm: MMEAWI [19].

4.1.3 Parameter settings

The settings of specific parameters to all algorithms were

consistent with those recommended in the original litera-

ture. For MO_Ring_PSO_SCD, C1 ¼ C2 ¼ 2:05 and

W ¼ 0:7298. As to TriMOEATAR, pcon, rniche, �peak were

separately set to 0.5, 0.1 and 0.01. With regard to HREA,

p ¼ 0:5 and � was set to 0.3. That is, the default parameters

in PlatEMO were used.

All algorithms except MO_Ring_PSO_SCD used GA

operator to generate offspring. The crossover and mutation

operators were simulated binary crossover (SBX) [36] and

polynomial mutation (PM) [37], respectively. Their

parameter settings were as follows:

• The crossover probability pc was set to 1; distribution

index was gc ¼ 20;

• The mutation probability pm was set to 1/n, where n was

the number of decision variables; distribution index was

gc ¼ 20;

The main idea in designing the population size N and

maximum number of generations Gmax of experiments is to

ensure that all algorithms have a chance to converge to PF

and explore PSs as much as possible. With this in mind, we

set them up as shown in Table 3. The parameter e of our

MMOEADPPs is in the population update, which is tem-

porarily set to 2. Its sensitivity studies are described in

detail in Sect. 4.4.

4.1.4 Performance indicators

IGDX [38] and HV [39] are selected as performance

indicators to compare the performance of different algo-

rithms. IGDX can check how well the solution set found by

the algorithm matches the real PSs, since the true PSs of

the test problems we choose are known. It is calculated

according to the following formula:

IGDXðXÞ ¼ 1

jX�j
X

y2X�
minx2XfEDðx; yÞg; ð11Þ

where X is the obtained solution set and X� is the set of

uniformly distributed reference points on the true PS. In

this study, 10,000 uniformly distributed points were sam-

pled on the real PS to calculate IGDX. EDðx; yÞ is the

Euclidean distance between x and y. By measuring the

Table 4 Statistical results of IGDX obtained by MMOEADPPs and its variants on MMF benchmark problems

Problem M D MMOEADualC MMOEADNNSGAII MMOEAPSO MMOEAWI MMOEADPPs

MMF1 2 2 3.1567e-2

(4.19e-4)-

3.1917e-2 (6.33e-4)

-

3.2332e-2

(1.09e-3)-

3.3271e-2

(1.10e-3)-

3.1315e22
(5.74e24)

MMF2 2 2 2.5878e-2 (1.62e-2)

-

3.3363e-2 (1.31e-2)

-

3.7006e-2

(1.94e-2)-

2.1064e-2 (1.15e-2)

-

1.0231e22
(1.84e23)

MMF3 2 2 1.9598e-2 (1.14e-2)

-

2.6584e-2 (1.62e-2)

-

2.5341e-2

(1.15e-2)-

1.5216e-2 (7.07e-3)

-

8.4017e23
(1.08e23)

MMF4 2 2 1.6470e22 (3.72e24)
þ

1.6789e-2 (4.11e-4)

þ
1.6736e-2 (4.99e-4)

þ
1.7961e-2 (4.86e-4)

�
1.7886e-2

(5.81e-4)

MMF5 2 2 5.5796e-2 (1.11e-3)

-

5.6097e-2 (1.04e-3)

-

5.6749e-2

(1.41e-3)-

5.8664e-2

(1.95e-3)-

5.4984e22
(7.51e24)

MMF6 2 2 5.2990e-2 (9.42e-4)

�
5.2956e-2 (8.86e-4)

�
5.3394e-2 (1.20e-3)

-

5.4777e-2

(1.59e-3)-

5.2746e22
(1.14e23)

MMF7 2 2 1.8672e-2 (1.10e-3)

þ
1.8310e22 (7.76e24)
þ

1.8996e-2 (1.18e-3)

þ
1.9120e-2 (1.05e-3)

þ
2.0908e-2

(2.08e-3)

MMF8 2 2 5.8482e-2 (1.59e-2)

-

5.4429e-2 (1.85e-2)

-

5.8838e-2

(2.20e-2)-

4.7559e-2

(7.84e-3)-

3.7800e22
(2.46e23)

þ=� = � 2/5/1 2/5/1 2/6/0 1/6/1

The best value of each row is bold
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distance between the reference vector and the nearest point

found, IGDX can well represent the diversity and conver-

gence of the algorithm in the decision space. It is worth

pointing out that a smaller value of IGDX indicates that an

MMOEA is more efficient.

HV represents the volume or hypervolume enclosed

between the obtained solution set and the reference points

in the objective space. It measures the convergence and

spread of the solution set in the objective space. HV of the

obtained solution set X is calculated according to the fol-

lowing formula:

HVðXÞ ¼ VOL
S

x2X
½f1ðxÞ; r�1� � � � � � ½fmðxÞ; r�m�

� �
;

ð12Þ

where VOLðÞ is the Lebesgue measure. r� is a set of ref-

erence points in the objective space. When calculating HV,

Table 5 Statistical results of IGDX obtained by MMOEADPPs and its variants on MMMOP benchmark problems

Problem M D MMOEADualC MMOEADNNSGAII MMOEAPSO MMOEAWI MMOEADPPs

MMMOP1-A 2 3 3.3641e-2 (3.05e-2)

-

4.8295e-2 (4.83e-2)

-

5.0563e-2 (4.43e-2)

-

1.4891e-2 (1.72e-2)

�
4.5048e23
(6.35e25)

MMMOP1-B 3 7 4.1503e-1 (6.53e-2)

-

4.3001e-1 (6.67e-2)

-

4.1199e-1 (6.67e-2)

-

4.3360e-1 (5.99e-2)

-

3.3432e21
(1.29e22)

MMMOP2-A 2 3 3.4225e-3 (1.26e-3)

�
4.5729e-3 (4.38e-3)

�
4.3032e-3 (4.37e-3)

�
3.4405e-3 (1.65e-3)

�
3.2668e23
(5.22e24)

MMMOP2-B 3 7 2.6194e-1 (2.36e-2)

�
2.9630e-1 (2.22e-2)

-

2.9696e-1 (5.66e-2)

-

3.0368e-1 (2.09e-2)

-

2.6084e21
(2.16e22)

MMMOP3-A 2 2 7.0328e-3 (7.74e-4)

þ
6.8216e23 (5.02e24)
þ

6.8745e-3 (7.57e-4)

þ
7.3708e-3 (9.17e-4)

?

8.4427e-3

(1.22e-3)

MMMOP3-B 3 7 2.9540e-1 (2.67e-2)

-

2.5433e-1 (3.37e-2)

�
2.4689e-1 (4.43e-2)

�
2.5064e-1 (5.31e-2)

�
2.2075e21
(6.92e22)

MMMOP3-C 2 6 9.0582e-2 (3.52e-2)

þ
7.8251e-2 (3.77e-2)

þ
7.3755e22
(4.16e22) þ

1.1085e-1 (4.15e-2)

�
1.2772e-1

(4.21e-2)

MMMOP3-D 3 7 2.3466e-1 (3.25e-2)

-

2.2526e-1 (3.36e-2)

-

2.0239e-1 (4.64e-2)

�
2.0157e21
(5.06e22) �

2.0264e-1

(3.37e-2)

MMMOP4-A 2 2 8.8347e-4 (5.54e-6)

-

8.7981e-4 (6.20e-6)

-

8.7828e-4 (4.80e-6)

-

8.7228e-4 (4.57e-6)

-

8.6758e24
(7.35e26)

MMMOP4-B 3 7 2.4548e-2 (3.95e-4)

þ
2.4111e-2 (1.18e-4)

þ
2.4053e-2 (1.10e-4)

þ
2.3949e22
(1.77e24) þ

2.5450e-2

(6.84e-4)

MMMOP4-C 2 6 1.0971e-1 (1.25e-1)

�
1.2780e-1 (1.25e-1)

�
1.3530e-1 (1.25e-1)

-

9.4437e-2 (1.21e-1)

�
5.2994e23
(4.13e23)

MMMOP4-D 3 7 3.5480e-2 (8.27e-4)

�
3.4599e-2 (1.89e-4)

þ
3.4502e22
(1.77e24) þ

4.2107e-2 (4.16e-2)

-

3.5623e-2

(6.36e-4)

MMMOP5-A 2 2 8.8190e-4 (5.16e-6)

-

8.8194e-4 (5.80e-6)

-

8.7927e-4 (4.42e-6)

-

8.7026e-4 (2.78e-6)

-

8.6252e24
(3.57e26)

MMMOP5-B 3 7 2.4005e-2 (1.28e-4)

þ
2.4155e-2 (9.24e-5)

-

2.4063e-2 (9.57e-5)

�
2.3911e22
(8.38e25) þ

2.4091e-2

(1.16e-4)

MMMOP5-C 2 6 8.4951e-2 (1.19e-1)

�
1.5155e-1 (1.23e-1)

-

9.4587e-2 (1.21e-1)

�
1.0228e-1 (1.23e-1)

�
3.2553e23
(1.87e23)

MMMOP5-D 3 7 6.5025e-2 (7.87e-2)

�
9.5348e-2 (1.02e-1)

�
7.2563e-2 (8.63e-2)

�
5.7402e-2 (6.94e-2)

�
3.4699e22
(1.91e24)

MMMOP6-A 2 2 4.0826e-3 (2.37e-4)

�
3.9961e-3 (2.43e-4)

þ
3.9433e23
(1.69e24) þ

3.9710e-3 (8.45e-5)

þ
4.1092e-3

(7.55e-5)

MMMOP6-B 3 3 4.4395e-2 (4.47e-4)

-

4.3487e22 (2.49e24)
þ

4.3554e-2 (3.02e-4)

�
4.3743e-2 (3.20e-4)

�
4.3689e-2

(2.74e-4)

MMMOP6-C 2 4 3.2536e-1 (1.03e-1)

-

3.3035e-1 (8.94e-2)

-

3.3107e-1 (9.57e-2)

-

3.1020e-1 (8.48e-2)

-

3.2868e22
(4.67e23)

MMMOP6-D 3 5 3.4676e-1 (9.75e-2)

-

3.2251e-1 (9.71e-2)

-

3.2812e-1 (1.08e-1)

-

3.4300e-1 (8.97e-2)

-

1.4141e21
(4.42e22)

þ=� = � 4/9/7 6/10/4 5/8/7 4/7/9

The best value of each row is bold
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Table 6 Statistical results of HV obtained by MMOEADPPs and its variants on MMF benchmark problems

Problem M D MMOEADualC MMOEADNNSGAII MMOEAPSO MMOEAWI MMOEADPPs

MMF1 2 2 9.0659e-1 (1.46e-4)

�
9.0656e-1 (2.37e-4)

�
9.0659e-1 (1.83e-4)

�
9.0660e-1 (2.68e-4)

�
9.0664e21
(1.67e24)

MMF2 2 2 8.5863e-1 (3.69e-3)

�
8.5796e-1 (2.74e-3)

-

8.5794e-1 (3.52e-3)

-

8.5843e-1 (3.24e-3)

-

8.5989e21
(1.56e24)

MMF3 2 2 8.1269e-1 (2.98e-3)

�
8.1226e-1 (1.83e-3)

-

8.1190e-1 (3.54e-3)

-

8.1331e-1 (3.81e-4)

-

8.1354e21
(1.52e24)

MMF4 2 2 7.2255e21 (1.66e24)
þ

7.2239e-1 (9.83e-5)

�
7.2238e-1 (2.73e-4)

�
7.2235e-1 (1.11e-4)

-

7.2241e-1

(8.64e-5)

MMF5 2 2 9.6883e-1 (1.09e-4)

�
9.6881e-1 (1.46e-4)

�
9.6886e-1 (9.51e-5)

�
9.6886e21 (4.31e25)
�

9.6885e-1

(6.60e-5)

MMF6 2 2 9.5323e-1 (1.58e-4)

�
9.5317e-1 (1.79e-4)

�
9.5324e-1 (1.59e-4)

�
9.5323e-1 (1.41e-4)

�
9.5326e21
(9.89e25)

MMF7 2 2 8.8375e-1 (2.15e-4)

þ
8.8382e21 (1.08e24)
þ

8.8371e-1 (1.89e-4)

�
8.8376e-1 (2.55e-4)

þ
8.8358e-1

(3.97e-4)

MMF8 2 2 9.7049e21 (3.01e24)
þ

9.7048e-1 (3.32e-4)

þ
9.7043e-1 (4.70e-4)

�
9.7026e-1 (5.25e-4)

�
9.7022e-1

(4.73e-4)

þ=� = � 3/0/5 2/2/4 0/2/6 1/3/4

The best value of each row is bold

Fig. 3 Solutions obtained by MMOEADPPs and its variants in decision space with the median IGDX value among 30 runs on MMF4.

a MMOEADualC, b MMOEADNNSGAII, c MMOEAPSO, d MMOEAWI, e MMOEADPPs

Fig. 4 Solutions obtained by MMOEADPPs and its variants in decision space with the median IGDX value among 30 runs on MMMOP3-A.

a MMOEADualC, b MMOEADNNSGAII, c MMOEAPSO, d MMOEAWI, e MMOEADPPs
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the objective values should be normalized first. In the

normalized space, the reference point is ð1:1; 1:1; � � � ; 1:1Þ.
Note that a larger HV value generally represents a better

result.

To ensure the reliability of the results, all the experi-

mental outcomes of this study are obtained by running each

algorithm independently for 30 times on each test problem.

The mean and standard deviation values of IGDX are

recorded. The experimental results are statistically ana-

lyzed using the Friedman test with Bonferroni correction at

a significance level of 0.05 on the KEEL software [40].

Moreover, in the following table, ‘‘?,’’ ‘‘-’’ and ‘‘�,’’

respectively, indicate that the performance of other algo-

rithms is significantly better than, significantly worse than

or similar to MMOEADPPs.

4.2 Studies on proposed components

In this section, we design different algorithm variants to

demonstrate the effectiveness of our proposed strategies.

4.2.1 The effectiveness of embedded DPPs

In order to prove the effectiveness of incorporating DPPs

into MMOEA, we replaced DPPs with the environment

selection strategies of some advanced algorithms, including

three convergence-first ones: MMOEADC [17],

DNNSGAII [16], MO_Ring_PSO_SCD [3] and one con-

vergence-balanced MMOEA: MMEAWI [19]. The average

and standard deviation results of IGDX and HV obtained

from 30 independent runs are shown in Tables 4, 5 and 6. It

can be seen from the experimental results that

MMOEADPPs performed better than other algorithm

variants on the whole. However, on MMF, MMOEADPPs

Fig. 5 Solutions obtained by MMOEADPPs and its variants in decision space with the median IGDX value among 30 runs on MMMOP6-A.

a MMOEADualC, b MMOEADNNSGAII, c MMOEAPSO, d MMOEAWI, e MMOEADPPs

Table 7 Statistical results of IGDX obtained by MMOEADPPs and its variants on MMF benchmark problems

Problem M D MMOEADPPsArchive MMOEADPPsPop MMOEADPPsNonormalized MMOEADPPsMPhybrid MMOEADPPs

MMF1 2 2 3.3530e-2 (1.27e-3)

-

4.5017e-2

(5.77e-4) -

3.1956e-2 (7.72e-4) - 3.1315e-2 (5.74e-4) � 3.1310e22
(4.99e24)

MMF2 2 2 4.9873e-2 (2.59e-2)

-

1.7167e-2

(6.10e-4) -

1.1196e-2 (1.68e-3) - 1.0231e-2 (1.84e-3) � 9.3810e23
(8.97e24)

MMF3 2 2 2.7956e-2 (1.06e-2)

-

1.5917e-2

(4.77e-4) -

9.2471e-3 (1.15e-3) - 8.4017e23 (1.08e23) � 8.6748e-3

(9.50e-4)

MMF4 2 2 1.7918e-2 (5.77e-4)

�
3.4108e-2

(9.43e-4) -

1.7983e-2 (6.29e-4) � 1.7886e-2 (5.81e-4) � 1.7831e22
(4.18e24)

MMF5 2 2 5.9843e-2 (2.51e-3)

-

7.3022e-2

(1.06e-3) -

5.5688e-2 (1.15e-3) - 5.4984e-2 (8.70e-4) � 5.4984e22
(7.51e24)

MMF6 2 2 5.5188e-2 (1.92e-3)

-

6.2426e-2

(1.08e-3) -

5.2991e-2 (1.03e-3) � 5.2746e-2 (1.14e-3) � 5.2577e22
(8.90e24)

MMF7 2 2 1.9134e22 (8.06e24)
þ

3.6794e-2

(1.41e-3) -

2.1321e-2 (1.87e-3) � 2.0908e-2 (2.08e-3) � 2.0558e-2

(1.24e-3)

MMF8 2 2 8.2428e-2 (3.12e-2)

-

7.3123e-2

(3.29e-3) -

3.7129e22 (2.31e23) � 3.7800e-2 (2.46e-3) � 3.7315e-2

(2.26e-3)

þ=� = � 1/6/1 0/8/0 0/4/4 0/0/8

The best value of each row is bold
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was slightly worse on MMF4 and MMF7. For better

observation, Fig. 3 shows the final solution distribution in

decision space with the median IGDX values obtained by

each algorithm on MMF4. As we can see, there is only a

very small difference between MMOEADPPs and others.

MMOEADPPs finally found the PS and had a relatively

good diversity. On MMMOP, although MMOEADPPs

performed well in most instances, its disadvantage was

clear on MMMOP3-A and MMMOP6-A. To investigate

the causes of this phenomenon, Figs. 4 and 5, respectively,

show the distribution of each algorithm in the objective

space of MMMOP3-A and in the decision space of

MMMOP6-A with the median IGDX values among 30

runs. It can be seen that on MMMOP3-A, MMOEADPPs

failed to converge completely to PF, there were still many

solutions floating in the objective space. For MMMOP6-A,

Table 8 Statistical results of IGDX obtained by MMOEADPPs and its variants on MMMOP benchmark problems

Problem M D MMOEADPPsArchive MMOEADPPsPop MMOEADPPsNonormalized MMOEADPPsMPhybrid MMOEADPPs

MMMOP1-

A

2 3 4.5002e-2 (5.41e-2)

-

2.4453e-2

(1.08e-3) -

6.7842e-2 (7.49e-2) - 4.5048e-3 (6.35e-5) � 4.5031e23
(7.58e25)

MMMOP1-

B

3 7 4.3866e-1 (6.75e-2)

-

3.5493e-1

(8.82e-3) -

4.6669e-1 (7.16e-2) - 3.2732e21 (1.19e22) 1 3.3432e-1

(1.29e-2)

MMMOP2-

A

2 3 4.3969e-3 (5.56e-3)

-

9.3045e-3

(1.71e-3) -

3.2668e-3 (5.22e-4) � 3.2446e-3 (3.87e-4) � 3.1848e23
(3.67e24)

MMMOP2-

B

3 7 3.0178e-1 (5.84e-2)

-

2.1869e21
(9.98e23) 1

2.7037e-1 (2.07e-2) � 2.6321e-1 (1.88e-2) � 2.6084e-1

(2.16e-2)

MMMOP3-

A

2 2 6.8833e23 (5.81e24)
1

1.1632e-2

(1.04e-3) -

8.1288e-3 (9.62e-4) � 8.5515e-3 (1.14e-3) � 8.4427e-3

(1.22e-3)

MMMOP3-

B

3 7 3.5582e-1 (3.84e-2)

-

1.4324e21
(4.82e23) 1

2.4398e-1 (4.58e-2) � 2.3672e-1 (3.96e-2) � 2.5064e-1

(5.31e-2)

MMMOP3-

C

2 6 1.7485e-1 (2.79e-2)

-

6.4174e22
(3.01e23) 1

1.2510e-1 (3.82e-2) � 1.0980e-1 (3.44e-2) � 1.2772e-1

(4.21e-2)

MMMOP3-

D

3 7 3.1559e-1 (3.79e-2)

-

1.5238e21
(5.12e23) 1

1.7892e-1 (2.55e-2) ? 2.0053e-1 (3.35e-2) � 2.0264e-1

(3.37e-2)

MMMOP4-

A

2 2 8.6088e24 (2.65e26)
1

1.3756e-2

(6.03e-4) -

8.6217e-4 (5.10e-6) ? 8.6556e-4 (4.07e-6) � 8.6758e-4

(7.35e-6)

MMMOP4-

B

3 7 2.3870e22 (1.02e24)
1

2.3881e-1

(1.54e-2) -

2.3923e-2 (2.23e-4) ? 2.5133e-2 (4.84e-4) � 2.5450e-2

(6.84e-4)

MMMOP4-

C

2 6 1.3450e-1 (1.26e-1)

�
1.4217e-1

(2.41e-2) -

1.1921e-1 (1.17e-1) - 1.0456e-2 (7.47e-3) - 5.2994e23
(4.13e23)

MMMOP4-

D

3 7 5.7103e-2 (6.96e-2)

-

2.2590e-1

(1.52e-2) -

8.7092e-2 (9.70e-2) - 3.5753e-2 (8.82e-4) � 3.5623e22
(6.36e24)

MMMOP5-

A

2 2 8.6252e-4 (3.57e-6)

�
1.4405e-2

(6.98e-4) -

8.6421e-4 (6.11e-6) � 8.6349e-4 (3.90e-6) � 8.6154e24
(3.75e26)

MMMOP5-

B

3 7 2.3880e22 (9.29e25)
1

1.7875e-1

(1.71e-2) -

2.3950e-2 (1.78e-4) ? 2.4102e-2 (9.23e-5) � 2.4091e-2

(1.16e-4)

MMMOP5-

C

2 6 1.2638e-1 (1.26e-1)

�
1.1640e-1

(2.47e-2) -

1.2463e-1 (1.20e-1) - 5.0358e-3 (3.55e-3) - 3.2553e23
(1.87e23)

MMMOP5-

D

3 7 7.2299e-2 (8.64e-2)

-

1.7044e-1

(1.80e-2) -

8.0235e-2 (9.26e-2) � 3.4673e22 (1.59e24) � 3.4699e-2

(1.91e-4)

MMMOP6-

A

2 2 4.1732e-3 (1.93e-4)

�
1.0468e-2

(2.58e-4) -

4.0719e23 (1.38e24) � 4.1135e-3 (1.17e-4) � 4.1092e-3

(7.55e-5)

MMMOP6-

B

3 3 4.3689e-2 (2.74e-4)

�
5.3500e-2

(5.28e-4) -

4.3678e-2 (3.50e-4) � 4.3841e-2 (3.41e-4) - 4.3610e22
(2.95e24)

MMMOP6-

C

2 4 2.8720e-1 (8.05e-2)

-

2.6019e22
(7.28e24) 1

2.9018e-1 (1.55e-1) - 2.7507e-2 (2.25e-3) ? 3.2868e-2

(4.67e-3)

MMMOP6-

D

3 5 3.7299e-1 (8.31e-2)

-

9.3445e22
(8.90e24) 1

3.5086e-1 (9.79e-2) - 1.0785e-1 (3.51e-2) ? 1.4141e-1

(4.42e-2)

þ=� = � 4/11/5 6/14/0 4/7/9 3/3/14

The best value of each row is bold
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each algorithm performed very well. However, because

MMOEADPPs retained a few extreme points, its IGDX

index value was not good enough. But at the same time, the

variant with the best IGDX indicator was not distributed

continuously enough, indicating that the measurement of

IGDX indicator was sometimes not accurate enough. In

conclusion, the feasibility of embedding DPPs into

MMOEA is confirmed.

4.2.2 The effectiveness of the proposed framework

In this section, we demonstrate the validity of the proposed

framework by comparing MMOEADPPs with some of its

variants:

• MMOEADPPsArchive: In this variant, population is

not used in evolution to verify the need for population

and archive framework.

• MMOEADPPsPop: Just population evolves to prove the

framework works.

• MMOEADPPsNonormalized: Individuals are not nor-

malized before computing the kernel matrix.

• MMOEADPPsMPhybrid: Mating pool is selected from

the union of population and archive.

The results of IGDX and HV are shown in Tables 7, 5

and 9, from which we can see the performance of

MMOEADPPs was significantly better than that of

MMOEADPPsArchive, MMOEADPPsPop and

MMOEADPPsNonormalized, but similar to that of

MMOEADPPsMPhybrid, which may be due to the fact that

the quality of the offspring produced was not greatly

affected by the mixing of the mating pools. Besides,

Table 9 Statistical results of HV obtained by MMOEADPPs and its variants on MMF benchmark problems

Problem M D MMOEADPPsArchive MMOEADPPsPop MMOEADPPsNonormalized MMOEADPPsMPhybrid MMOEADPPs

MMF1 2 2 9.0651e-1 (1.26e-4)

-

9.0584e-1

(1.70e-4) -

9.0649e-1 (1.56e-4) - 9.0657e-1 (1.29e-4) � 9.0659e21
(1.83e24)

MMF2 2 2 8.5691e-1 (3.68e-3)

-

8.5539e-1

(4.83e-4) -

8.5978e-1 (2.05e-4) - 8.5986e-1 (1.42e-4) � 8.5989e21
(1.56e24)

MMF3 2 2 8.1173e-1 (2.07e-3)

-

8.0834e-1

(4.93e-4) -

8.1337e-1 (2.27e-4) - 8.1346e-1 (1.83e-4) - 8.1354e21
(1.52e24)

MMF4 2 2 7.2230e-1 (2.48e-4)

�
7.2034e-1

(2.07e-4) -

7.2233e-1 (1.20e-4) - 7.2237e-1 (1.06e-4) � 7.2241e21
(8.64e25)

MMF5 2 2 9.6876e-1 (1.32e-4)

-

9.6864e-1

(5.52e-5) -

9.6883e-1 (7.92e-5) � 9.6886e21 (3.37e25) � 9.6885e-1

(6.60e-5)

MMF6 2 2 9.5318e-1 (1.53e-4)

-

9.5307e-1

(6.84e-5) -

9.5321e-1 (1.39e-4) � 9.5323e-1 (1.58e-4) � 9.5324e21
(1.27e24)

MMF7 2 2 8.8376e21 (1.28e24)
þ

8.8170e-1

(1.22e-3) -

8.8356e-1 (2.89e-4) � 8.8365e-1 (2.19e-4) � 8.8358e-1

(3.97e-4)

MMF8 2 2 9.7041e-1 (3.43e-4)

�
9.6874e-1

(1.59e-3) -

9.7068e21 (2.44e24) þ 9.7008e-1 (5.50e-4) � 9.7022e-1

(4.73e-4)

þ=� = � 1/5/2 0/8/0 1/4/3 0/1/7

The best value of each row is bold

Fig. 6 Solutions obtained by MMOEADPPs and its variants

MMOEADPPsArchive in objective space with the median IGDX

value among 30 runs on MMMOP4-A. a MMOEADPPsArchive,

b MMOEADPPs

Fig. 7 Solutions obtained by MMOEADPPs and its variants

MMOEADPPsPop in decision space with the median IGDX value

among 30 runs on MMMOP6-C. a MMOEADPPsPop,

b MMOEADPPs
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without normalizing the individuals, the results were less

than satisfactory. This possibly because it made the values

in the kernel matrix had a large discrepancy, which was not

conducive to the selection of subset by DPPs. On MMF, the

superiority of MMOEADPPs was almost clear. However,

on MMMOP, MMOEADPPsArchive was significantly

better than MMOEADPPs on MMMOP4-A, MMMOP4-B

and MMOEADPPsPop was also on MMMOP3,

MMMOP6-C and MMMOP6-D. This phenomenon may be

because, on some problems, it is more beneficial to explore

and exploit equivalent PSs if all number of evaluations are

given to individuals in the population that are emphasis on

diversity or all of them are given to individuals in the

archives that are biased toward convergence. In order to

further find the reason, Figs. 6 and 7 show the distribution

in the MMMOP4-A objective space and in the MMMOP6-

C decision space with the median IGDX values, respec-

tively. Figure 6 shows that MMOEADPPs did not suffi-

ciently explore the equivalent PSs, and there were still

large uncaptured areas. Meanwhile, compared to

MMOEADPPsArchive, MMOEADPPs had several

extreme points, making its IGDX value inferior to that of

MMOEADPPsArchive. Therefore, the ability of

MMOEADPPs to deal with extreme points needs to be

further improved. In Fig. 7, MMOEADPPs apparently did

not find all the PS fragments, and there were some sparse

places. But overall, our proposed population and archive

framework is quite effective and achieves good results.

4.3 Comparisons with other methods

In this section, MMOEADPPs is compared with six state-

of-the-art algorithms.

4.3.1 Comparison on MMF

The mean and standard deviation results of IGDX and HV

for 30 independent runs are presented in Tables 10 and 11.

On MMF, MMOEADPPs achieved the best results on all

instances except MMF2. All results in decision space and

objective space of MMOEADPPs based on the average

IGDX value of 30 runs are given in Figs. 8 and 9. The

solutions in objective and decision space with the median

IGDX value among 30 runs on MMF2 are shown in

Figs. 10 and 11. We can clearly observe that the diversity

of MMOEADPPs was only slightly worse than that of

MMOEADC, and the reason was that the diversity on the

PS of decision space and PF of objective space were not

Table 10 Statistical results of IGDX on MMF obtained by MMOEADPPs and other MMOEAs in comparison

Problem M D DNNSGAII HREA MMEAWI MMOEADC MO_Ring_PSO_SCD TriMOEATAR MMOEADPPs

MMF1 2 2 4.0630e-2

(1.09e-3)

-

4.5555e-2

(3.04e-3)

-

3.9315e-2

(2.38e-3)

-

4.4168e-2

(1.50e-3)

-

7.0439e-2

(1.53e-2) -

5.0633e-2

(5.95e-3) -

3.1315e22
(5.74e24)

MMF2 2 2 3.8920e-2

(2.76e-2)

-

1.1003e-2

(2.57e-3)

�

1.2651e-2

(5.00e-3)

-

9.6972e23
(4.61e23)
þ

5.4905e-2

(1.99e-2) -

5.8015e-2

(3.54e-2) -

1.0231e-2

(1.84e-3)

MMF3 2 2 2.9610e-2

(2.08e-2)

-

9.7549e-3

(1.70e-3)

-

9.6593e-3

(1.75e-3)

-

8.7299e-3

(3.29e-3)

�

3.9927e-2

(1.29e-2) -

4.1935e-2

(1.91e-2) -

8.4017e23
(1.08e23)

MMF4 2 2 2.7888e-2

(2.43e-3)

-

3.0238e-2

(3.08e-3)

-

2.2946e-2

(9.17e-4)

-

2.2331e-2

(2.58e-3)

-

5.8339e-2

(1.87e-2) -

9.3070e-2

(1.48e-1) -

1.7886e22
(5.81e24)

MMF5 2 2 8.0978e-2

(4.99e-3)

-

7.6525e-2

(4.61e-3)

-

6.8993e-2

(2.24e-3)

-

7.6504e-2

(2.73e-3)

-

1.2223e-1

(2.00e-2) -

8.7805e-2

(8.89e-3) -

5.4984e22
(7.51e24)

MMF6 2 2 7.1807e-2

(4.00e-3)

-

6.9031e-2

(4.51e-3)

-

6.1703e-2

(1.81e-3)

-

6.8639e-2

(2.35e-3)

-

1.0263e-1

(1.29e-2) -

7.6052e-2

(7.19e-3) -

5.2746e22
(1.14e23)

MMF7 2 2 2.1696e-2

(1.29e-3)

-

2.4422e-2

(1.83e-3)

-

2.3600e-2

(1.46e-3)

-

2.5461e-2

(3.90e-3)

-

5.1773e-2

(1.14e-2) -

2.9677e-2

(2.03e-2) -

2.0908e22
(2.08e23)

MMF8 2 2 6.6935e-2

(1.68e-2)

-

6.1039e-2

(5.19e-3)

-

5.0133e-2

(3.90e-3)

-

4.5980e-2

(5.23e-3)

-

1.5853e-1

(5.86e-2) -

4.3409e-1

(7.98e-2) -

3.7800e22
(2.46e23)

þ=� = � 0/8/0 0/7/1 0/8/0 1/6/1 0/8/0 0/8/0

The best value of each row is bold
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good enough. It can be seen that for the problem that the PS

is distributed near the edge of decision space, rather than

widely distributed in the whole decision space, the

performance of MMOEADPPs have need of further

promotion.

Table 11 Statistical results of HV on MMF obtained by MMOEADPPs and other MMOEAs in comparison

Problem M D DNNSGAII HREA MMEAWI MMOEADC MO_Ring_PSO_SCD TriMOEATAR MMOEADPPs

MMF1 2 2 9.0678e21
(1.89e24)
þ

9.0536e-1

(1.18e-3)

-

9.0641e-1

(4.47e-4)

-

9.0537e-1

(1.19e-3)

-

9.0569e-1

(5.95e-4) -

9.0566e-1

(2.23e-3) -

9.0659e-1

(1.83e-4)

MMF2 2 2 8.5814e-1

(4.14e-3)

-

8.5872e-1

(8.95e-4)

-

8.5950e-1

(5.24e-4)

-

8.5945e-1

(2.55e-4)

-

8.4849e-1

(3.60e-3) -

8.5520e-1

(3.70e-3) -

8.5989e21
(1.56e24)

MMF3 2 2 8.1282e-1

(1.03e-3)

-

8.1213e-1

(4.76e-4)

-

8.1301e-1

(2.64e-4)

-

8.1265e-1

(4.32e-4)

-

8.0210e-1

(3.24e-3) -

8.0856e-1

(3.77e-3) -

8.1354e21
(1.52e24)

MMF4 2 2 7.2171e-1

(1.42e-3)

-

7.2081e-1

(1.36e-3)

-

7.2215e-1

(1.43e-4)

-

7.2299e21
(3.97e24)
þ

7.2234e-1

(1.41e-4) �
7.0769e-1

(3.41e-2) -

7.2241e-1

(8.64e-5)

MMF5 2 2 9.6867e-1

(2.61e-4)

-

9.6858e-1

(1.81e-4)

-

9.6881e-1

(1.53e-4)

�

9.6834e-1

(4.21e-4)

-

9.6870e-1

(2.39e-4) -

9.6858e-1

(9.47e-4) �
9.6885e21
(6.60e25)

MMF6 2 2 9.5315e-1

(2.47e-4)

�

9.5258e-1

(5.28e-4)

-

9.5323e-1

(1.95e-4)

�

9.5263e-1

(8.68e-4)

-

9.5307e-1

(2.33e-4) -

9.5334e21
(3.15e24) þ

9.5323e-1

(1.58e-4)

MMF7 2 2 8.8410e-1

(7.60e-5)

þ

8.8334e-1

(6.78e-4)

�

8.8360e-1

(1.76e-4)

�

8.8288e-1

(1.77e-3)

�

8.8359e-1

(4.02e-4) �
8.8411e21
(8.51e24) þ

8.8358e-1

(3.97e-4)

MMF8 2 2 9.7022e-1

(4.28e-4)

�

9.6941e-1

(1.43e-3)

-

9.7013e-1

(5.61e-4)

�

9.7040e-1

(4.10e-4)

�

9.7052e21
(2.13e24) þ

9.6777e-1

(1.16e-2) -

9.7022e-1

(4.73e-4)

þ=� = � 2/4/2 0/7/1 0/4/4 1/5/2 1/5/2 2/5/1

The best value of each row is bold

Fig. 8 Solutions in objective space with the median IGDX value among 30 runs on MMF instances obtained by MMOEADPPs
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Figure 12 shows the PSs explored by all algorithms in

the decision space on MMF5 based on the median IGDX.

As mentioned earlier, each problem in the MMF test set

has two equivalent PSs, which is also shown in Fig. 9. As

shown in Fig. 12, all algorithms had found the two

equivalent PSs, but only MMOEADPPs had the most

comprehensive exploration of them, and its distribution in

the decision space was also the most uniform. To further

illustrate the comparison, the results of all algorithms on

MMF8 in decision space are selected and shown in Fig. 13.

It can be seen that, except for MO_Ring_PSO_SCD and

TriMOEATAR, which could not fully explore the PSs of

the decision space, other algorithms could roughly cover

the entire PSs. This was probably because MO_R-

ing_PSO_SCD only considered the diversity on the global

PS of the decision space and ignored the local ones. Sim-

ilarly, TriMOEATAR still paid more attention to the

solutions with good convergence in the objective space,

while MMOEADPPs achieved the best diversity of deci-

sion space compared to other algorithms. However, from

Fig. 9 Solutions with in decision space the median IGDX value among 30 runs on MMF instances obtained by MMOEADPPs

Fig. 10 Solutions in objective space with the median IGDX value among 30 runs on MMF2. a DNNSGAII, b HREA, c MMEAWI,

d MMOEADC, e MO_Ring_PSO_SCD, f TriMOEATAR, g MMOEADPPs
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the distribution of MMOEADPPs, it can be seen that it

retained several dominated solutions, which means that the

ability of MMOEADPPs to control the dominated solutions

in the final solution set needs to be improved. Figure 14

shows the convergence curves of MMOEADPPs and other

algorithms on MMF5 and MMF8. It can be seen that

MMOEADPPs not only converges faster, but also has the

best final results.

4.3.2 Comparison on MMMOP

Table 12 shows the average and standard deviation results

of IGDX values achieved by all algorithms on MMMOP,

from which we can see, on the selected 20 test problems,

MMOEADPPs achieved the best results than other algo-

rithms on 11 test instances, followed by TriMOEATAR

with nine for the best results. But we all know that

Fig. 11 Solutions in decision space with the median IGDX value among 30 runs on MMF2. a DNNSGAII, b HREA, c MMEAWI,

d MMOEADC, e MO_Ring_PSO_SCD, f TriMOEATAR, g MMOEADPPs and h true PS

Fig. 12 Solutions in decision space with the median IGDX value among 30 runs on MMF5. a DNNSGAII, b HREA, c MMEAWI,

d MMOEADC, e MO_Ring_PSO_SCD, f TriMOEATAR, g MMOEADPPs and h true PS
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TriMOEATAR is tailored for MMMOP by the proposer of

the MMMOP test set. Moreover, its decision variable

analysis is out of reality, there are almost no independent

convergence-related variables in real-world problems, and

most of the variables are related [41]. At the same time, its

recombination strategy makes the size of the final popu-

lation expand by a factor of peak solutions based on the

original population size N, which is unfair to the compar-

ison of other algorithms [42]. But from the experimental

results, our algorithm MMOEADPPs performed better than

TriMOEATAR. It also reflects that MMOEADPPs has a

strong ability to solve MMOPs. Figures 15 and 16,

respectively, show the distribution of MMOEADPPs in

objective space and decision space on almost all test cases

of MMMOP with the median IGDX values among 30 runs.

In addition, Table 13 presents the multiple-problem sta-

tistical results of Friedman test.

However, on MMMOP3, the performance of

MMOEADPPs was not good enough. To further analyze

the reasons, in Figs. 17 and 18, we plot the results explored

by all algorithms on MMMOP3-B. It can be seen that the

final solution set of MMOEADPPs was relatively widely

distributed in the decision space, so that it did not accu-

rately explore the PSs, which also prevented it from

Fig. 13 Solutions in decision space with the median IGDX value among 30 runs on MMF8. a DNNSGAII, b HREA, c MMEAWI,

d MMOEADC, e MO_Ring_PSO_SCD, f TriMOEATAR, g MMOEADPPs and h true PS

Fig. 14 Convergence curves of

IGDX obtained by

MMOEADPPs and other

methods on MMF5 and MMF8

corresponding to results shown

in Figs. 12 and 13
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Table 12 Statistical results of IGDX on MMMOP obtained by MMOEADPPs and other MMOEAs in comparison

Problem M D DNNSGAII HREA MMEAWI MMOEADC MO_Ring_PSO_SCD TriMOEATAR MMOEADPPs

MMMOP1-

A

2 3 1.6884e-1

(6.35e-2)

-

1.8812e-2

(3.30e-3)

-

1.3171e-2

(1.41e-2)

-

1.9464e-2

(3.37e-2)

-

2.1543e-1

(5.11e-2) -

2.2024e23
(4.93e25) 1

4.5048e-3

(6.35e-5)

MMMOP1-

B

3 7 5.9537e-1

(6.65e-2)

-

4.4006e-1

(9.78e-3)

-

4.3416e-1

(9.49e-3)

-

4.5095e-1

(5.23e-3)

-

6.1854e-1

(3.43e-2) -

2.1748e21
(1.92e22) 1

3.3432e-1

(1.29e-2)

MMMOP2-

A

2 3 9.7013e-2

(9.97e-2)

-

5.2071e-3

(8.57e-4)

-

6.0368e-3

(5.72e-3)

-

3.5588e-3

(2.84e-4)

-

1.5385e-1

(7.41e-2) -

2.1916e-2

(3.58e-3) -

3.2668e23
(5.22e24)

MMMOP2-

B

3 7 8.3858e-1

(6.29e-2)

-

4.2342e-1

(2.35e-2)

-

3.1748e-1

(3.02e-2)

-

5.1110e-1

(5.06e-2)

-

6.9086e-1

(6.26e-2) -

1.0223e21
(8.39e23) 1

2.6084e-1

(2.16e-2)

MMMOP3-

A

2 2 6.2526e-3

(3.24e-4)

?

9.0024e-3

(4.70e-4)

-

6.6941e-3

(3.45e-4)

?

7.6073e-3

(3.10e-4)

?

1.0866e-2

(1.18e-3) -

8.8065e24
(3.19e26) 1

8.4427e-3

(1.22e-3)

MMMOP3-

B

3 7 1.1070e-1

(3.29e-3)

?

4.4553e-1

(3.70e-2)

-

8.5079e-2

(2.60e-3)

?

2.3697e-1

(1.20e-2)

?

2.9119e-1

(2.20e-2) -

2.9595e22
(4.40e24) 1

2.5064e-1

(5.31e-2)

MMMOP3-

C

2 6 6.3655e-2

(5.86e-2)

?

3.4441e-1

(3.24e-2)

-

1.8560e-2

(9.48e-4)

?

5.6123e-2

(5.12e-3)

?

1.7701e-1

(2.57e-2) -

3.2510e23
(8.88e24) 1

1.2772e-1

(4.21e-2)

MMMOP3-

D

3 7 1.1670e-1

(4.79e-3)

?

4.2197e-1

(2.94e-2)

-

8.9204e-2

(2.58e-3)

?

2.4396e-1

(1.40e-2)

-

3.3314e-1

(2.53e-2) -

2.9784e22
(5.04e24) 1

2.0264e-1

(3.37e-2)

MMMOP4-

A

2 2 1.1228e-3

(5.01e-5)

-

1.9297e-3

(2.59e-4)

-

1.4032e-3

(6.85e-5)

-

2.7933e-3

(6.92e-4)

-

1.0581e-2

(2.76e-3) -

1.0534e-3

(7.00e-6) -

8.6758e24
(7.35e26)

MMMOP4-

B

3 7 3.1754e-2

(6.92e-4)

-

4.8427e-1

(3.88e-2)

-

2.8000e-2

(4.54e-4)

-

2.8067e-1

(5.41e-2)

-

4.8640e-1

(3.47e-2) -

3.2862e-2

(4.92e-3) -

2.5450e22
(6.84e24)

MMMOP4-

C

2 6 2.1750e-1

(7.86e-2)

-

3.2242e-1

(2.64e-2)

-

4.1028e-2

(2.94e-2)

-

2.6411e-2

(5.95e-2)

-

4.6993e-1

(5.04e-2) -

7.8922e-2

(1.01e-1) -

5.2994e23
(4.13e23)

MMMOP4-

D

3 7 2.0451e-1

(7.44e-2)

-

4.6727e-1

(4.57e-2)

-

4.1176e-2

(6.95e-4)

-

3.4207e-1

(1.10e-1)

-

5.1336e-1

(4.45e-2) -

4.8170e-2

(6.03e-2) -

3.5623e22
(6.36e24)

MMMOP5-

A

2 2 1.1316e-3

(2.38e-5)

-

1.8337e-3

(2.39e-4)

-

1.4149e-3

(5.89e-5)

-

1.5795e-3

(1.16e-4)

-

9.0532e-3

(3.14e-3) -

1.2674e-3

(8.52e-5) -

8.6252e24
(3.57e26)

MMMOP5-

B

3 7 3.2262e-2

(7.78e-4)

-

5.0112e-1

(3.98e-2)

-

2.8162e-2

(4.80e-4)

-

1.1651e-1

(7.29e-2)

-

4.8831e-1

(4.37e-2) -

3.1391e-2

(1.17e-3) -

2.4091e22
(1.16e24)

MMMOP5-

C

2 6 2.3454e-1

(5.30e-2)

-

3.2128e-1

(2.98e-2)

-

1.1370e-1

(7.98e-2)

-

3.9711e-2

(7.57e-2)

-

4.3858e-1

(5.90e-2) -

6.5485e-2

(1.07e-1) -

3.2553e23
(1.87e23)

MMMOP5-

D

3 7 2.1874e-1

(6.16e-2)

-

4.8688e-1

(3.70e-2)

-

4.1299e-2

(6.88e-4)

-

1.3548e-1

(7.42e-2)

-

4.9143e-1

(4.17e-2) -

3.1077e22
(1.51e23) 1

3.4699e-2

(1.91e-4)

MMMOP6-

A

2 2 6.1105e-3

(7.59e-4)

-

5.9356e-3

(3.63e-4)

-

5.3949e-3

(1.99e-4)

-

6.4022e-3

(8.16e-4)

-

8.5966e-3

(1.21e-3) -

5.0120e-3

(3.32e-4) -

4.1092e23
(7.55e25)

MMMOP6-

B

3 3 5.9472e-2

(1.76e-3)

-

5.3317e-2

(1.17e-3)

-

5.3561e-2

(1.12e-3)

-

6.9328e-2

(2.45e-3)

-

6.6450e-2

(5.98e-3) -

5.3115e-2

(1.17e-3) -

4.3689e22
(2.74e24)

MMMOP6-

C

2 4 3.9208e-1

(4.56e-2)

-

3.2868e-2

(4.67e-3)

�

2.0835e-1

(3.19e-2)

-

3.5697e-2

(2.71e-2)

-

1.2387e-1

(2.27e-2) -

1.5177e-1

(9.62e-2) -

3.2834e22
(2.38e23)
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converging completely to the PF. Therefore, the conver-

gence of MMOEADPPs on some problems needs to be

strengthened. Likewise, MMMOP4-C and MMMOP5-A

are selected. Figs. 19 and 20 gives the results on

MMMOP4-C with the median IGDX values, the results on

MMMOP5-A are shown in Figs. 21 and 22, to further

study the comparisons. On MMMOP4-C, it can be seen

that only MMOEADPPs detected all equivalent PSs, and

the convergence to the PS in the decision space was also

more consistent. MMOEADPPs also achieved the best

convergence and diversity on MMMOP5-A; although the

fragment coverage with two PSs was not complete, it was

overall very uniform. It is worth noting that when the

solution set is very close to the PSs in the decision space,

the coordinates of the distribution map will be more

detailed, so that it looks a little messy due to excessive

zooming, as in the diagram of MMOEADPPs in Fig. 22.

The convergence curves obtained by MMOEADPPs and

other methods on MMMOP4 and MMMOP6 are shown in

Fig. 23. We can observe that compared with other algo-

rithms, MMOEADPPs has better convergence

performance.

Table 12 (continued)

Problem M D DNNSGAII HREA MMEAWI MMOEADC MO_Ring_PSO_SCD TriMOEATAR MMOEADPPs

MMMOP6-

D

3 5 3.4388e-1

(4.41e-2)

-

2.2608e-1

(8.05e-3)

-

1.7638e-1

(2.34e-2)

-

1.4090e-1

(1.26e-2)

�

1.6413e-1

(1.56e-2) �
8.9695e22
(3.56e22) 1

1.4141e-1

(4.42e-2)

?/-/� 4/16/0 0/19/1 4/16/0 3/16/1 0/19/1 9/11/0

The best value of each row is bold

Fig. 15 Solutions in objective space with the median IGDX value among 30 runs on MMMOP instances obtained by MMOEADPPs
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4.4 Sensitivity analysis of parameter

In this section, we analyze the influence of different values

of parameter e introduced in Eq. (9) in Sect. 3.1, which

reflects the weight of the non-dominant layer F in the

kernel matrix L. Therefore, a larger e means that conver-

gence has a higher weight in the selection of subset via

DPPs, which leads to less focus on diversity. Based on this,

in order to study the influence brought by different settings

of parameter, we set several variants with different e val-

ues, i.e., f1; 2; 4; 6; 8g. The mean values and standard

deviations of IGDX and HV obtained from 30 independent

runs on 28 test problems are given in Tables 15, 16 and 17.

Furthermore, to further investigate the sensitivity of the

parameters, we perform a multiple-problem analysis.

Table 14 shows the average ranking of algorithm variants

with different parameter settings by the Friedman test.

It can be seen from the tables that as e increases, such as

6 or 8, the performance of the algorithm is significantly

reduced. This is due to the loss of diversity caused by too

large e. When e is small, e.g., 1, 2, there is relatively small

difference on MMF. Reasonably, since we introduce an

archive to further ensure the convergence of the algorithm

while maintaining diversity, it can be expected that the

kernel matrix will achieve better performance when con-

sidering the quality of the solution in a more emphasis on

diversity way. Since the problems in the MMMOP test set

have more PSs, a higher diversity weight, that is, e ¼ 1,

Fig. 16 Solutions in decision space with the median IGDX value among 30 runs on MMMOP instances obtained by MMOEADPPs

Table 13 Average Rankings of IGDX and HV by the Friedman test

for MMOEADPPs and other MMOEAs in comparison

Algorithm Ranking(IGDX) Ranking(HV)

DNNSGAII 4.5 3.375

HREA 4.875 5.125

MMEAWI 3.0714 3.25

MMOEADC 3.8571 4.375

MO-Ring-PSO-SCD 6.4286 4.125

TriMOEATAR 3.4643 5.0625

MMOEADPPs 1.8036 2.6875

Bold values indicate the best results
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yields slightly better results than e ¼ 2. However, from our

statistical analysis of all experimental results, as shown in

Table 14, the best average rankings on both IGDX and HV

are consistently obtained when e ¼ 2. As a result, e ¼ 2 is

considered to be set to better balance convergence and

diversity.

4.5 Application

In this section, MMOEADPPs is compared with the other

six algorithms on the multimodal multi-objective location

selection problem [43], which is a simple real-world

Fig. 17 Solutions in objective space with the median IGDX value among 30 runs on MMMOP3-B. a DNNSGAII, b HREA, c MMEAWI,

d MMOEADC, e MO_Ring_PSO_SCD, f TriMOEATAR, g MMOEADPPs

Fig. 18 Solutions in decision space with the median IGDX value among 30 runs on MMMOP3-B. a DNNSGAII, b HREA, c MMEAWI,

d MMOEADC, e MO_Ring_PSO_SCD, f TriMOEATAR, g MMOEADPPs and h true PS
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example, as shown in Fig. 24. In this map, tenants want to

find locations that are close enough to hospitals, schools

and convenience stores. Thus, this is a problem of distance

minimization. Three non-dominated options with the same

minimum distance to these objective locations are shown in

Fig. 24, which are Option 1, Option 2 and Option 3,

respectively.

There are more convenience stores next to Option 1,

which may be more convenient for buying and living, but

its location is relatively remote. Option 2 has more schools

around it, so it may lead to higher rents. Option 3 locates in

the suburb of the city, which makes it cheaper to rent. For

some tenants, the convenience of life or low rents is more

important, for others, the school district environment is

necessary. If algorithms are unable to obtain multiple

Fig. 19 Solutions in objective space with the median IGDX value among 30 runs on MMMOP4-C. a DNNSGAII, b HREA, c MMEAWI,

d MMOEADC, e MO_Ring_PSO_SCD, f TriMOEATAR, g MMOEADPPs

Fig. 20 Solutions in decision space with the median IGDX value among 30 runs on MMMOP4-C. a DNNSGAII, b HREA, c MMEAWI,

d MMOEADC, e MO_Ring_PSO_SCD, f TriMOEATAR, g MMOEADPPs and h true PS

Neural Computing and Applications (2024) 36:1381–1411 1405

123



Pareto optimal solutions satisfying the conditions, they

cannot meet the needs of different tenants. In this situation,

it is valuable to retain more equivalent Pareto optimal

solutions.

MMOEADPPs conducts comparative experiments on

this problem with six other algorithms. The mean and

standard deviation results of IGDX and HV for 30 inde-

pendent runs are presented in Table 18. As given in

Table 18, MMOEADPPs achieves the best results in both

IGDX and HV indicators, and MMEAWI also has a good

result on HV indicator, probably because it proposes a

weighted indicator to evaluate the potential convergence

ability of individuals. Figure 25 shows the final solutions

obtained by MMOEADPPs on this problem with the

median IGDX value among 30 runs. Figure 25 shows that

MMOEADPPs finds all the Pareto optimal regions and has

Fig. 21 Solutions in objective space with the median IGDX value among 30 runs on MMMOP5-A. a DNNSGAII, b HREA, c MMEAWI,

d MMOEADC, e MO_Ring_PSO_SCD, f TriMOEATAR, g MMOEADPPs

Fig. 22 Solutions in decision space with the median IGDX value among 30 runs on MMMOP5-A. a DNNSGAII, b HREA, c MMEAWI,

d MMOEADC, e MO_Ring_PSO_SCD, f TriMOEATAR, g MMOEADPPs and h true PS
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a remarkable diversity; however, there are also some

extreme points that do not converge well, probably because

the algorithm adopts a convergence-balanced strategy. In

conclusion, MMOEADPPs can effectively locate multiple

Pareto optimal regions, which is an effective approach to

deal with multimodal multi-objective problems.

5 Conclusions and future work

In this study, we apply DPPs to solve MMOPs for the first

time. Different from the traditional method of selecting

solutions one by one, MMOEADPPs select the subset at

one time, which is used to balance the convergence and

diversity of both objective space and decision space. By

taking advantage of the DPPs’ self-selection property

according to the probability and the correlation between

individuals, the solution set obtained by our algorithm has

better diversity. At the same time, the key of the design,

that is, the kernel matrix, can comprehensively consider the

convergence and diversity of the objective space and the

diversity of the decision space, and can be well balanced

among these three. In addition, the framework of popula-

tion and archive is proposed. The population is used to

better search the objective space and decision space, and

the archive is used to store non-dominated solutions which

can represent the PF and PSs. In the process of population

evolution, we retain individuals with good convergence

and more diversity, so as to improve the diversity of the

whole. In the archive, individuals representing the global

optimal PF as well as multiple different PSs are selected

from the non-dominated solutions. In this way, we can

avoid falling into local optimum, and at the same time, the

search space is explored more to find more equivalent PSs.

Experiments confirm the effectiveness of our proposed

strategy and its superiority compared with six state-of-the-

art algorithms.

However, during the experiments, we also found some

limitations. For example, the convergence of

MMOEADPPs on some problems was not strong enough

under the existing population size and maximum number of

evaluations, the existence of some extreme points made the

algorithm sometimes not converge well to PF. Therefore,

Fig. 23 Convergence curves of

IGDX obtained by

MMOEADPPs and other

methods on MMMOP4-C and

MMMOP6-A

Table 14 Average rankings of IGDX and HV by the Friedman test for

MMOEADPPs and its variants with different parameter settings

Algorithm Ranking(IGDX) Ranking(HV)

MMOEADPPs-e1 2.3571 2.625

MMOEADPPs-e4 2.875 3.25

MMOEADPPs-e6 3.5714 3.25

MMOEADPPs-e8 4.0357 3.25

MMOEADPPs 2.1607 2.549

Fig. 24 Illustration of the multimodal multi-objective location

selection problem
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we will further search for methods to effectively remove

extreme points. In addition, how to better improve the

diversity of the solution set obtained by MMOEADPPs is

also worthy of further study. Since the kernel matrix of

DPPs-selection is a key component of the proposed algo-

rithm MMOEADPPs, we will try to improve it further in

future work and consider how to solve the phenomenon

that the extreme points appearing in part of the test prob-

lems affect the final convergence. Finally, it is worthwhile

to test MMOEADPPs on the imbalanced distance mini-

mization benchmark problems (IDMPs) [21] and extend

Table 15 Statistical results of IGDX obtained by MMOEADPPs and its variants with different parameter settings for enlarging and reducing

factors on MMF benchmark problems

Problem M D MMOEADPPs-e1 MMOEADPPs-e4 MMOEADPPs-e6 MMOEADPPs-e8 MMOEADPPs

MMF1 2 2 3.1535e-2 (6.81e-4)

�
3.1795e-2 (5.98e-4)

-

3.1831e-2 (6.41e-4)

-

3.2076e-2 (6.82e-4)

-

3.1315e22
(5.74e24)

MMF2 2 2 1.0231e-2 (1.84e-3)

�
1.0805e-2 (1.14e-3)

-

1.2775e-2 (2.00e-3)

-

1.3699e-2 (2.43e-3)

-

1.0224e22
(2.34e23)

MMF3 2 2 8.4606e-3 (1.46e-3)

�
9.9730e-3 (1.95e-3)

-

1.0249e-2 (1.46e-3)

-

1.0868e-2 (1.49e-3)

-

8.4017e23
(1.08e23)

MMF4 2 2 1.7886e-2 (5.81e-4)

�
1.7760e-2 (4.50e-4)

�
1.8157e-2 (4.97e-4)

-

1.7828e-2 (4.27e-4)

�
1.7647e22
(3.93e24)

MMF5 2 2 5.5989e-2 (8.92e-4)

-

5.5501e-2 (9.27e-4)

-

5.5690e-2 (7.36e-4)

-

5.5876e-2 (7.35e-4)

-

5.4984e22
(7.51e24)

MMF6 2 2 5.2935e-2 (1.12e-3)

�
5.3216e-2 (1.17e-3)

�
5.3159e-2 (1.12e-3)

�
5.3199e-2 (7.98e-4)

�
5.2746e22
(1.14e23)

MMF7 2 2 2.0908e-2 (2.08e-3)

�
2.0854e-2 (1.32e-3)

�
2.0936e-2 (1.64e-3)

�
2.0760e-2 (1.42e-3)

�
2.0167e22
(1.28e23)

MMF8 2 2 4.2655e-2 (6.32e-3)

-

3.7800e-2 (2.46e-3)

�
3.8126e-2 (1.94e-3)

�
3.8518e-2 (2.05e-3)

�
3.7751e22
(1.72e23)

þ=� = � 0/2/6 0/4/4 0/5/3 0/4/4

The best value of each row is bold

Table 16 Statistical results of HV obtained by MMOEADPPs and its variants with different parameter settings for enlarging and reducing factors

on MMF benchmark problems. Best result in each row is highlighted

Problem M D MMOEADPPs-e1 MMOEADPPs-e4 MMOEADPPs-e6 MMOEADPPs-e8 MMOEADPPs

MMF1 2 2 9.0659e-1 (1.83e-4)

�
9.0648e-1 (2.35e-4)

-

9.0656e-1 (1.09e-4)

�
9.0654e-1 (1.70e-4)

�
9.0660e21
(8.96e25)

MMF2 2 2 8.6004e21 (1.78e24)
þ

8.5962e-1 (1.86e-4)

-

8.5941e-1 (3.91e-4)

-

8.5934e-1 (3.31e-4)

-

8.5989e-1

(1.56e-4)

MMF3 2 2 8.1362e21 (1.57e24)
þ

8.1322e-1 (2.36e-4)

-

8.1317e-1 (2.66e-4)

-

8.1304e-1 (2.50e-4)

-

8.1354e-1

(1.52e-4)

MMF4 2 2 7.2239e-1 (1.28e-4)

�
7.2237e-1 (1.53e-4)

�
7.2239e-1 (8.77e-5)

�
7.2237e-1 (1.06e-4)

�
7.2241e21
(8.64e25)

MMF5 2 2 9.6884e-1 (8.88e-5)

�
9.6885e-1 (6.60e-5)

�
9.6883e-1 (8.53e-5)

�
9.6881e-1 (9.82e-5)

-

9.6885e21
(4.52e25)

MMF6 2 2 9.5318e-1 (2.35e-4)

�
9.5324e-1 (9.59e-5)

�
9.5323e-1 (1.58e-4)

�
9.5324e-1 (6.46e-5)

�
9.5326e21
(7.66e25)

MMF7 2 2 8.8362e-1 (2.34e-4)

�
8.8354e-1 (2.29e-4)

�
8.8358e-1 (3.97e-4)

�
8.8358e-1 (2.58e-4)

�
8.8364e21
(2.45e24)

MMF8 2 2 9.7022e-1 (4.73e-4)

�
9.7008e-1 (3.85e-4)

�
9.7030e-1 (4.55e-4)

�
9.7031e-1 (4.33e-4)

�
9.7034e21
(2.96e24)

þ=� = � 2/0/6 0/3/5 0/2/6 0/3/5

Best value of each row is bold
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Table 17 Statistical results of IGDX obtained by MMOEADPPs and its variants with different parameter settings for enlarging and reducing

factors on MMMOP benchmark problems

Problem M D MMOEADPPs-e1 MMOEADPPs-e4 MMOEADPPs-e6 MMOEADPPs-e8 MMOEADPPs

MMMOP1-

A

2 3 4.4651e23 (8.45e25)
1

7.2025e-3 (8.81e-3)

-

1.2288e-2 (1.44e-2)

-

1.3157e-2 (1.46e-2)

-

4.5048e-3

(6.35e-5)

MMMOP1-

B

3 7 3.7932e-1 (3.59e-2)

-

3.3432e-1 (1.29e-2)

�
3.3999e-1 (1.41e-2)

�
3.4982e-1 (2.40e-2)

-

3.2826e21
(1.03e22)

MMMOP2-

A

2 3 3.2668e-3 (5.22e-4)

�
3.2792e-3 (3.48e-4)

�
3.0214e-3 (3.35e-4)

�
3.3855e-3 (9.94e-4)

�
3.0019e23
(2.86e24)

MMMOP2-

B

3 7 2.6784e-1 (2.18e-2)

�
2.6844e-1 (1.74e-2)

�
2.6882e-1 (1.37e-2)

�
2.7243e-1 (1.85e-2)

-

2.6084e21
(2.16e22)

MMMOP3-

A

2 2 7.2342e23 (1.11e23)
1

9.2730e-3 (9.18e-4)

-

9.0378e-3 (1.16e-3)

�
9.0446e-3 (9.93e-4)

-

8.4427e-3

(1.22e-3)

MMMOP3-

B

3 7 2.5166e-1 (3.69e-2)

�
2.5064e-1 (5.31e-2)

�
2.5280e-1 (2.46e-2)

�
2.5829e-1 (3.16e-2)

�
2.4410e21
(3.21e22)

MMMOP3-

C

2 6 8.1665e22 (4.16e22)
1

1.8368e-1 (2.84e-2)

-

1.7839e-1 (3.35e-2)

-

1.7468e-1 (2.27e-2)

-

1.2772e-1

(4.21e-2)

MMMOP3-

D

3 7 2.0935e-1 (4.04e-2)

�
2.2106e-1 (2.80e-2)

-

2.4396e-1 (2.14e-2)

-

2.6047e-1 (3.52e-2)

-

2.0264e21
(3.37e22)

MMMOP4-

A

2 2 8.7219e-4 (3.87e-6)

-

8.6758e-4 (7.35e-6)

�
8.6791e-4 (1.06e-5)

�
8.6844e-4 (6.08e-6)

�
8.6647e24
(8.04e26)

MMMOP4-

B

3 7 2.3969e22 (2.23e24)
1

2.5835e-2 (1.00e-3)

�
2.5670e-2 (1.05e-3)

�
2.5393e-2 (1.03e-3)

�
2.5450e-2

(6.84e-4)

MMMOP4-

C

2 6 2.2128e23 (4.61e24)
1

2.8677e-2 (4.90e-2)

-

7.3580e-2 (9.19e-2)

-

7.8304e-2 (8.87e-2)

-

5.2994e-3

(4.13e-3)

MMMOP4-

D

3 7 3.4299e22 (2.15e24)
1

3.7225e-2 (1.83e-3)

-

3.6397e-2 (1.14e-3)

-

3.6472e-2 (1.18e-3)

-

3.5623e-2

(6.36e-4)

MMMOP5-

A

2 2 8.6991e-4 (2.48e-6)

-

8.6185e-4 (7.72e-6)

?

8.6105e-4 (7.01e-6)

�
8.6093e24 (7.47e26)
�

8.6252e-4

(3.57e-6)

MMMOP5-

B

3 7 2.3641e22 (8.12e25)
1

2.4131e-2 (3.48e-4)

�
2.4106e-2 (2.82e-4)

�
2.4209e-2 (5.58e-4)

�
2.4091e-2

(1.16e-4)

MMMOP5-

C

2 6 1.9786e23 (1.88e24)
1

1.7167e-2 (2.47e-2)

-

6.9113e-2 (1.02e-1)

-

7.9084e-2 (1.06e-1)

-

3.2553e-3

(1.87e-3)

MMMOP5-

D

3 7 3.4048e22 (1.38e24)
1

3.4749e-2 (3.21e-4)

�
3.4825e-2 (6.77e-4)

�
3.9032e-2 (2.37e-2)

�
3.4699e-2

(1.91e-4)

MMMOP6-

A

2 2 4.0964e-3 (1.35e-4)

�
4.1092e-3 (7.55e-5)

�
4.1382e-3 (1.51e-4)

�
4.1292e-3 (1.06e-4)

�
4.0685e23
(9.70e25)

MMMOP6-

B

3 3 4.3815e-2 (3.64e-4)

�
4.3916e-2 (3.14e-4)

-

4.3984e-2 (2.72e-4)

-

4.3993e-2 (3.92e-4)

-

4.3689e22
(2.74e24)

MMMOP6-

C

2 4 1.9171e-1 (1.05e-1)

-

3.8126e-2 (5.21e-3)

-

4.2674e-2 (5.25e-3)

-

4.9304e-2 (6.58e-3)

-

3.2868e22
(4.67e23)

MMMOP6-

D

3 5 3.1084e-1 (1.11e-1)

-

9.4404e22 (1.95e23)
1

9.6575e-2 (2.25e-3)

?

9.7635e-2 (2.11e-3)

?

1.4141e-1

(4.42e-2)

þ=� = � 9/5/6 2/9/9 1/8/11 1/11/8

Best result in each row is bold
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our algorithm for solving some real-world engineering

problems in the future.
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