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Abstract
Electroencephalogram (EEG) signals show the electrical activity of the brain, which are one of the inputs of the brain–

computer interface (BCI). The BCI provides the communication path between the brain and the computer. One of the

critical applications of BCI is Motor imagery (MI). MI is a mental process that a person practices or simulates a particular

movement without physically acting. BCI allows the person to communicate with their environment independently of

peripheral muscles and nerves, using EEG brain signals by assistive devices such as wheelchairs, robotic arms, and

computers. In this paper, a space learning concept is proposed for EEG motor imagery signal classification. Our innovation

in the proposed method is to increase and then, reduce the data dimensions, which has led to learning the efficient space for

signals classification. It is based on two techniques: Multi-Kernel Learning (MKL) and dimension reduction. The com-

posite kernel is made of a combination of four kernels by The Heuristic MKL Algorithm. This algorithm uses heuristic

rules to estimate the weight of kernels with high accuracy and very little computational complexity. The weight associated

with each base kernel and its parameters is calculated by the Equilibrium Optimizer. Dimensions of data are reduced to

avoid the curse of dimensions. In this step, the number of dimensions of reduced space and the mapping matrix are learned

to reduce the dimensions of data linearly. We selected ELM, KNN, and SVM classifiers for classification. The BCI

Competition dataset was used for evaluation, which consists of five subsets aa, al, ay, aw, av, and two classes of the right

hand and right foot. The proposed method with the ELM was improved the average classification accuracy and standard

deviation by 3.9% and 2.28, respectively, and achieved 91.4% accuracy. The lower standard deviation than other methods

shows that our method is more robust than all other methods to subject variety. The proposed method is compared with

twelve state-of-the-art methods and has shown higher accuracy than other methods such as the deep convolutional neural

networks. The results show the superiority of the proposed method over other methods in the Wilcoxon signed test.
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1 Introduction

BCI applications have attracted the attention of many

researchers recently [1–3]. One application of BCI is Motor

imagery (MI) which creates a new communication method

for disabled people that they have no dependence on

muscle control. BCI allows the person to communicate

with their environment independently of peripheral mus-

cles and nerves, using EEG brain signals by assistive

devices such as wheelchairs, robotic arms, and computers.

It improves the quality of life of people with disabilities

[4, 5].

The EEG signal indicates the electrical activity of the

brain. These signals are nonlinear and contain useful

information about the state of the brain. These signals are

recorded by electrodes placed on the scalp [5, 6]. EEG

signals are used to diagnose problems such as Epilepsy [7],

Emotion detection [8], Alzheimer’s [9] and lie detection

[10].

MI is a mental process that a person practices or simu-

lates a particular movement without physically acting [11].

In [12], the EEG signals of motor imagery are filtered by

the CSP methods. Then, these data are transferred to the
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five-dimensional phase space. The PCA is used for feature

extraction and phase space dimension reduction. Poincare

sections are applied to analyze data trajectory in phase

space. The parameters needed for the phase space recon-

struction and the Poincare coefficients are adjusted via an

evolutionary algorithm. Finally, signals are classified by

SVM.

In [13], a method is proposed for EEG motor imagery

classification with four classes. Features are obtained using

different feature extraction methods, such as the Phase

Locking Value (PLV) and the higher order Statistics (HOS)

method. The nonlinear principal component analysis

(NLPCA) method was employed for dimension reduction.

Features are classified using backpropagation neural net-

work (BPNN), k-Nearest neighbors (k-NN), and support

vector machine (SVM). Classification accuracy by NLPCA

and SVM for PLV and HOS features is higher than other

classifiers.

In [14], conditional empirical mode decomposition

(CEMD) is used for feature extraction. In CEMD, two

conditions of correlation coefficients and relative energy

occupancy rate are used to select IMFs. Then, EEG signals

are reconstructed from selected IMFs. A model called

1DMSCNN is used for motor imagery EEG signals clas-

sification. This model is based on a convolutional neural

network (CNN) with a multi-scale convolution feature

extraction strategy. An intelligent wheelchair system is

designed and implemented based on this proposed algo-

rithm. Jana [15] is used Fourier transform (FFT) to feature

extraction of the BCI Competition III dataset Iva. DNN,

SVM, KNN, Naive Bayes, Random Forest and Decision

Tree are used in the classification step. SVM is used with

two Sigmoid and RBF kernels. KNN is used with param-

eter k = 3. The maximum depth of trees in the Decision

Tree method is equal to 3. The DNN achieves the highest

classification performance. Here, the DNN has two hidden

layers that have 7 and 6 neurons, respectively. The BCI

Competition III dataset Iva is used for evaluation.

The motivation for this paper is as follows. In the

existing methods, the concepts of increasing and decreas-

ing dimensions of data were not present simultaneously.

On the other hand, the number of features in this applica-

tion is not very large for each subject. Therefore, the data

can be moved to another space to provide richer discrim-

inant data and higher classification accuracy. The kernel

functions commonly fall into two categories, global and

local kernel functions. The global kernel function has

strong extrapolation characteristics, but the local kernel

function has better interpolating characteristics. The single

kernel function has specific limitations. Therefore, we

decided to present a new efficient space for learning based

on Multi-kernel learning. Since each kernel function has

parameters, we used the meta-heuristic algorithm to fine-

tune these parameters and dimension reduction. In this

study, a space learning concept is proposed for multi-

channel motor imagery EEG signals classification. Four

kernels are employed to map the features extracted by CSP

in a high-dimensional space that obtain better discriminant

information. The four kernels are combined using the

multi-kernel learning approach based on Meta-heuristic

optimization. The weight and parameters associated with

each base kernel in the composite kernel are adjusted using

the optimizer. Data dimensions increase after mapping to

the space generated by the kernels, and the curse of

dimensions occurs. Thus, the dimensions of the data should

be reduced. The dimensions number of reduced space and

the mapping matrix is obtained by the optimizer.

After the dimensional reduction step, the data are fed as

input to the classifier. Three classifiers of KNN, ELM, and

SVM are used. The proposed method is applied to the BCI

Competition III dataset Iva for evaluation. Experimental

results show that the proposed method outperforms other

methods. The rest of the paper is structured as follows. In

Sect. 2, the basic concepts used in the paper are described.

The proposed method is presented in Sect. 3. In Sect. 4, the

proposed method is evaluated. Finally, the conclusion is

presented in Sect. 5.

2 Literature review

In this section, the methods used in the proposed method

are reviewed. CSP for feature extraction, Multi-Kernel

Learning (MKL) for combining base kernels and mapping

data to a higher-dimensional space are described.

Equilibrium Optimizer (EO) is explained for finding opti-

mal values for parameters. ELM, KNN, and SVM classi-

fiers are described for EEG signal classification.

2.1 Common spatial pattern

Common spatial pattern (CSP) is a feature extraction

method that extracts the features of each class by applying

spatial filters to the input signals. CSP and its variants have

been considered for feature extraction for the application of

MI in recent years [16–18]. CSP is an effective method to

extract features in the classification of BCI-related two-

class movement patterns. Assuming XR;XL 2 RN�M EEG

signals are recorded from two classes, N is the number of

channels, and M is the number of samples per channel.

First, the normalized spatial covariance matrix is calculated

for each class:
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C ¼ EE0

trace EE0ð Þ ð1Þ

Trace (.) is the sum of the diagonal elements, 0 is the

transpose of the matrix, and E is XL orXR. The composite

spatial covariance is obtained according to the following

equation: decomposed into matrices of eigenvectors (Uc)

and the corresponding diagonal matrix of eigenvalues (k).

Cc ¼ CL þ CR ¼ UckU
0
c ð2Þ

CL and CR are the average of the normalized covariance

matrix of the right and left-hand classes. The diagonal

matrix of eigenvalues k is arranged in descending order.

The whitening transformation matrix is obtained as:

p ¼ k�
1
2U0

c ð3Þ

The data are calculated using the white matrix as

follows:

SL ¼ pCLp
0 SR ¼ pCRp

0 ð4Þ

That SR and SL have common eigenvectors, and the sum

of corresponding values is equal to the identity matrix:

SL ¼ BkLB
0; SR ¼ BkRB

0; kL þ kR ¼ I ð5Þ

The eigenvector with the largest eigenvalue corresponds

to one class, and the eigenvector with the smallest eigen-

value corresponds to the other class. In the next step, the

projection matrix is calculated:

W ¼ B0 p ð6Þ

The matrix W contains spatial filters that apply to the

inputs and maximize the variance of the signals in the first

class and minimize them in the other class at the same time.

Then, it extracts first-class features from the filtered sig-

nals. So that the variance ratio between the two classes is

maximized. The EEG signal of each class is filtered by the

W matrix:

Z ¼ WE ð7Þ

where E can be XR or XL [19, 20].

2.2 Multi-kernel learning (MKL)

The kernel function is represented as the inner product of

the data points, which is interpreted as the similarity

between the data points. Suppose T ¼ ðxi; yiÞ
� �n

i¼1
is the

training dataset, and n is the number of labeled features

samples. xi is ith sample, and yi is the class label for

samples where yi 2 þ1;�1f g. M base kernels

K1;K2; . . .;KMf g is made from samples where

Km xi; xj
� �

¼ \um xið Þ;um xj
� �

[ is the mth basis kernel

function, where transfers data to a higher dimension space

(Hilbert space). The combination function consists of a set

d = (d1; d2,…, dM). The MKL algorithm obtains composite

kernel (kcÞ by tuning the parameters of this function. The

combination function can be linear or nonlinear. The

nonlinear function is rarely used in machine learning

because it has high computational complexity.

kc ¼
XM

m¼1

dmKm;

s:t: dm � 0

XM

m¼1

dm ¼ 1

ð8Þ

kc: Composite kernel, mth basis kernel, M: Number of base

kernels and dm 2 d is the weight associated with m kernel

is estimated by MKL algorithms [21–23].

2.3 Equilibrium optimizer (EO)

Like most metaheuristic algorithms, Equilibrium Optimizer

(EO) uses the initial population to start the optimization

process. In EO, each particle acts as a search agent with its

position. There is no knowledge about the equilibrium state

at the beginning of the optimization process. Four particles

are considered as candidates to provide a particle search

pattern. EO sets a large number for the fitness value of the

Equilibrium candidates. The fitness value is calculated for

population particles and compared with the fitness value of

four candidate particles. If the fitness value of the selected

particle is less than the candidate particle, the two particles

will be replaced. Finally, the average of four candidate

particles is calculated. The four candidate particles with

their average construct the equilibrium pool set. The par-

ticle position updates according to the best available

solutions (equilibrium candidates) until reaching the equi-

librium state finally. The equilibrium state is the most

optimal state of the algorithm, which is the final conver-

gence state of the algorithm [24].

2.4 Classifier

SVM: Support vector machines (SVM) searches a hyper-

plane for data classification. This method selects the opti-

mal the hyperplane that has the maximum margin with the

data. Margin is the distance between the nearest examples

and the hyperplane [8].

KNN: K-nearest neighbor (KNN) is one of the classifiers

used by many researchers for EEG signals classification

[25–27]. For a new test sample X, KNN finds the K nearest

neighbor of X in the training set with distance metric. From

this, K sample is done voting to determine the label of

sample X. The X label is equal to the label with the

maximum number of votes [28].
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ELM: Extreme learning machine (ELM) is modeled as

follows [29, 30]:

XL

j¼1

bjh Xið Þ ¼ yj; i ¼ 1; . . .;N ð9Þ

L: Hidden nodes, h Xið Þ: nonlinear feature map, bj: the

vector of weight that connects the jth hidden neuron to

output neurons. Different functions are used to map fea-

tures in ELM, such as sigmoid. The hidden layer output

matrix (H) is calculated as follows:

H a1; . . .; aL; b1; . . .; bL; x1; . . .; xNð Þ

¼
h1 x1ð Þ � � � hL x1ð Þ

..

. . .
. ..

.

h1 xNð Þ � � � hL xNð Þ

0

B@

1

CA 2 RN�L ð10Þ

aj ¼ aj1; aj2; . . .; ajD
� �T 2 RD is a weight vector that

connects the input neurons to jth hidden neuron. bjis the jth

hidden node bias. These two parameters are calculated

randomly. The output weight vector eb is calculated as

follows:

~b ¼ Hyy ð11Þ

The symbol y is represented by the Moore–Penrose

generalized inverse and y ¼ y1; . . .; yN½ �T: The ELM deci-

sion function for a new test bX is as follows:

y ¼ sign h bX
� 	

eb
� 	

ð12Þ

3 The proposed method

The proposed method consists of four phases. These phases

are shown in Algorithm 1. First, the input signals are pre-

processed. In phase 2, features are extracted by CSP. In the

next phase, the data are mapped to another space using a

combination of multi-kernels. The parameters and weight

related to each kernel are calculated by the Meta-heuristic

optimization method. Data mapping in the new space

increases the dimensions of the data and causes the curse of

dimensions problem. The dimension of data is reduced

through the optimizer. The number of dimensions of

reduced space and the mapping matrix are obtained using

the optimizer. In phase 4, the data are used as the classifier

input to determine the test sample label. Also, the code of

the activation function and the number of hidden layer

neurons in the ELM classifier is determined by the

optimizer.

3.1 Pre-processing

By selecting the data from the appropriate frequency band,

signals are obtained that lead to better feature extraction

and more accurate classification. At this phase, the primary

EEG signals are filtered by a Butterworth band-pass filter

(BPF) in the range of 8–30 Hz. It leads to finding useful

data for motor imagery. Also, BPF is used to remove low

and high-frequency noise [31–33]. Studies are shown that

MI-related event-related desynchronization (ERD) and

event-related synchronization (ERS) phenomena occur in

a(8–13) and b(13–30) rhythms [34, 35]. ERD refers to a

decrease in rhythmic activity associated with motor events.

ERS refers to an increase in rhythmic activity [36].

Butterworth band-pass filter is performed by Transfer

function coefficients (a,b) to the input signal. These coef-

ficients are row vectors of length 2 n?1 for band-pass

filters. n is the filter order. The order filter is equal to the

maximum delay used to generate the output sample.

Transfer function H(z) is as follows [37]:

H zð Þ ¼ b 1ð Þ þ b 2ð Þz�1 þ . . .þ b nþ 1ð Þz�n

a 1ð Þ þ a 2ð Þz�1 þ . . .þ a nþ 1ð Þz�n
ð13Þ

As a result:

Y zð Þ ¼ H zð ÞX zð Þ ð14Þ

Y zð Þ is z-transform of the filter output signal filter. X zð Þ
is the z-transform of the filter input signal X: The input

signal and filtered signal are related subject aw right hand,

and foot classes are shown in Fig. 1.
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3.2 Feature extraction

In this phase, the features were extracted from filtered

signals by CSP with the parameter M = 1. The matrix W ¼
w1;w2; . . .w2M½ � 2 RN�2M contains spatial filters. Feature

vector a from input signal E is obtained (Eq. 15). The log

operator is used to normalize the distribution and reduce

the range of changes in the obtained features [29].

a ¼ log var Z
0� 	h i

ð15Þ

var(.) is the variance. For example, the output of this step,

the feature vector of the two classes for the subject aw is

shown in Fig. 2.

3.3 Space learning

In this phase, a learning space is devised that is based on

multi-kernel and dimension reduction techniques. This

phase includes Parameter tuning, Feature map with kernels,

and Dimension reduction.

3.3.1 Feature map with kernels

As shown in Fig. 2, there is a lot of overlap between the

obtained features of the two classes in the previous step. So

the features are mapped to another space with high

dimensions using the composite kernel. The kernel com-

posite is a combination of base kernels in Table 1.

The Linear kernel is simple and does not require

parameter tuning. The RBF kernel is a local kernel with

good learning ability and is compatible with many condi-

tions such as high dimension, low dimension, and large or

small sample. It requires few parameters compared to other

kernel functions. Therefore, it is comfortable for regular-

ization. The RBF has a wide convergence domain and poor

generalization ability. The Polynomial kernel is a global

kernel with low learning ability and high generalization

ability. If the degree of a polynomial is too high, the

generalization ability decreases and the problem of over-

fitting may occur. By trial and error method, we decided to

use the RBF kernel twice because it better resulted. The

RBF has a wide convergence domain and poor general-

ization ability. The Polynomial kernel is a global kernel

with low learning ability and high generalization ability. If

the degree of a polynomial is too high, the generalization

ability decreases and the problem of overfitting may occur

[38, 39]. By trial and error method, we decided to use the

RBF kernel twice because it better resulted. To combining

base kernels, it is needed to learning the parameter and

weight-related each base kernel that is adjusted with a

Meta-heuristic optimizer (Figs. 3, 4).

3.3.2 Parameters tuning, dimension reduction

The Meta-heuristic MKL algorithms can estimate the

weight of kernels in a composite kernel (Eq. 8). These

algorithms use Meta-heuristic rules to estimate the weight

of kernels [21]. The weight of the base kernels and their

parameters are adjusted through EO. EO has parameters

such as generation rate used to enhance EO in exploration

and exploitation, local optima avoidance. It also performs

better than other algorithms such as PSO, GWO, GA, GSA,

SSA, CMA-ES, and LSHADE [24]. In the EO, the number

of particles as the population, the maximum number of

iterations and the run number are considered 40, 25, and 5,

Fig. 1 A: Right-hand class signals from channel 1, B: Right-foot class signals from channel 1
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respectively. The search interval is considered between

[ - 1 1] so that the data space is the same. The dimensions

of the data increase after mapping by the composite kernel.

The number of reduced space dimensions and mapping

matrix is obtained through EO. These are used for

dimension reduction in data linearly. The number of

dimensions is considered [1 10].

3.3.2.1 Fitness function The inputs of the fitness function

are the particle population and feature vectors of train data.

The composite kernel matrix is made from four kernels

k1; k2; k3; k4f g from the input samples. The data are divi-

ded into three parts: Test, Train and Validation. One of the

study’s innovations is that the value of the fitness function

is equal to the value of the validation error. Also, in this

function, train and test errors are calculated. The coding of

particles using SVM and KNN classifiers is equal to an

array called particle that is as follows:

The first four particles are the weight associated with

each base kernel in the composite kernel. Particle 5 is the

value of the RBF parameter. It is used as an input for the

two RBF kernels. The value of the polynomial is known as

particle 6. Particle 7 shows the number of dimensions that

data will reduce to that. Particle 8 is the W mapping matrix,

which is used to the dimensions of the data linearly. The

dimension reduction is calculated with Eq. 16. X is the

output matrix of the composite kernel.

Xnew ¼ X �W :; 1 : particle 7ð Þð Þ ð16Þ

The fitness function for this method is summarized in

Algorithm 2.

The coding of particles in fitness function using the

ELM classifier is as follows:

Particle 7 denotes the code of the Activation function

where presented in Table 2. For example, when Particle 7

is 1, the sigmoid function is selected. It is a changed scale

in the range [1 5]. Particle 8 represents the number of

hidden layer neurons that changed the scale to [2 50]. The

dimension reduction is calculated linearly by Eq. 17.

Xnew ¼ X �W :; 1 : particle 9ð Þð Þ ð17Þ

The fitness function for this method is stated in Algo-

rithm 3.

3.4 Classification

In this step, the data are sent as input to the classifier to

determine the test sample label. SVM, KNN and ELM are

selected for classification. SVM is a fast classifier that is

not sensitive to overtraining and high-dimensional data. It
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has good generalization performance. The KNN algorithm

has no explicit training phase for classification, and all the

work happens during prediction. It can learn nonlinear

decision boundaries [40]. In this paper, the KNN classifier

is used the majority voting method because it is less sen-

sitive to noise data [28]. Here, KNN is with parameter

K = 1. ELM has good scalability and fast learning speed.

The weights of the hidden layer are tuning-free [29, 30]. In

ELM, the input layer neurons are equal to the number of

features. The number of output neurons is equal to the

number of classes. The number of hidden layer neurons and

the activation function are obtained through EO. Five

activation functions are defined, as shown in Table 2.

4 Experimental results

4.1 Data description

BCI Competition III dataset Iva [41] is used to evaluate the

proposed method. It contains EEG data from 118 elec-

trodes with a sampling rate of 100 Hz for healthy subjects

(aa, al, aw, av, ay). It contains EEG data measured at the

sampling rate of 100 Hz from 118 electrodes with 10–20

International System of Electrodes. The EEG signals were

recorded for five subjects (aw, aa, al, ay, av) during the

imaginations of the right foot or hand movement. The

number of trials was 280 for each subject [42]. Table 3

shows the number of labeled trial samples for each subject.

4.2 Experimental evaluation

In this section, the results of the proposed method are

presented. The fivefold subset cross-validation method is

used for the final evaluation. The data are divided into three

parts test, train, and validation.

For example, the results on the subject aw with the KNN

classifier are shown in Table 4.

In this table, the optimizer runs five times and searches

for the optimal values in each run. The values of the kernel

weight are considered in the range [0 1] because the weight

of the kernel doesn’t accept a negative value [21, 22].

8

9

10

11

12

13

14

8 9 10 11 12 13

Fe
at

ur
e

2

Feature 1

Right foot

Right hand

Fig. 2 The feature vector of two classes (Right foot, Right hand) for

the subject aw

Table 1 Functions of the basic kernels used in the composite kernel

Kernel Formula

Linear k x; yð Þ ¼ xT :yþ C

Polynomial k x; yð Þ ¼ xT :yþ cð Þd

d: polynomial degree

RBF k x; yð Þ ¼ e �ckx�yk2ð Þ,c[ 0

kx� yk:norm of the distance is x, y

Fig. 3 Representation of particles using the KNN, SVM classifiers

Fig. 4 Representation of particles using ELM classifier

Table 2 Activation functions used in the ELM Classifier

Code Activation function Formula

1 Sigmoid f xð Þ ¼ 1
1þe�x

2 sinusoid f xð Þ ¼ sin xð Þ
3 Hard Limit

f xð Þ ¼ 1; x� 0

�1; otherwise




4 Triangular basis function
f xð Þ ¼ 1 � abs xð Þ;�1� x� 1

0; otherwise




5 Gaussian f xð Þ ¼ e�x2
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Different experiments have shown that the higher the RBF

kernel parameter, the lower its learning ability [38]. For

this purpose, the value of this parameter is limited to 50 by

the trial and error method. The value of this parameter is

scaled to the range [1 50]. If the polynomial kernel

parameter is high, the overfitting problem occurs [38]. The

value of this parameter is considered by changing the scale

in the range [2 4]. The Dimension column shows the

number of dimensions that the data are reduced. This value

has changed the scale in the [1 10]. Another particle

obtained by the optimizer is the mapping matrix (W). This

matrix has dimensions to the value of Dimension. It is not

presented in these tables. In the fitness function are cal-

culated the validation error, Train, and Test in each run.

Finally, the average of these errors and the accuracy of

each are calculated.

Table 3 Number of labeled

trials for each subject for BCI

Competition III dataset Iva

Subject Number of trials Number of Right-hand trails Number of Right-foot trails

aa 168 80 88

al 224 112 112

av 84 42 42

aw 56 30 26

ay 28 18 10

Table 4 Results obtained by the proposed method with KNN classifier on subject aw

Run

number

Optimal values obtained by Equilibrium Optimizer (EO) Accuracy of Test

(%)
Linear

weight

RBF no.1

weight

RBF no.2

weight

Polynomial

weight

RBF

parameter

Polynomial

parameter

Dimension

1 0.3455 0.6051 0.1231 0.0977 35 2 2 89.1

0.9437 0.9327 0.8256 0.2896 28 3 5 100

0.8329 0.4065 0.8624 0.613 14 2 3 98.2

0.7642 0.0528 0.5221 0.2508 38 2 9 90.9

0.3046 0.6458 0.7162 0.4028 13 3 7 90.9

2 0.6268 0.8791 0.4846 0.2963 37 2 3 100

1 0.5291 1 0.2673 22 2 3 81.8

0.8965 0.5235 0.7229 0.6732 35 2 7 89.1

0.0217 0.3709 0.4049 0.3008 4 2 2 81.8

0.6078 0.9311 0.2697 0.5624 6 3 2 81.8

3 0.3169 0.0734 0.2016 0.9119 19 2 4 100

0.9398 0.8944 0.7375 0.1353 49 2 4 100

0.7086 0.8054 0.6895 0.1618 39 3 3 100

0.2014 0.7854 0.8831 0.0934 28 2 5 98.2

0.6838 1 0.4331 0.6067 21 2 3 100

4 0.1424 0.0905 1 0.15 34 3 1 83.6

0.1987 1 0.4189 0.8636 46 2 4 100

1 0.794 1 0.5954 26 2 3 100

0.1639 0.0707 0.65 0.1274 14 2 6 98.2

1 0.4215 0.0085 0.1167 22 2 3 100

5 0.528 0.0749 0.8874 0.0084 11 3 1 100

0.0700 0.3101 0.6712 0.0329 17 4 5 100

0.5776 0.0163 0.4424 0.221 49 2 8 100

0.0182 0.6644 0.7368 0.6617 20 2 4 90.9

0.8004 0.183 0.2852 0.103 34 2 4 100

Average

95
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The results on the subject aw with the SVM classifier are

shown in Table 5. The descriptions of Table 5 columns are

similar to Table 4.

The results on the subject aw with the ELM classifier are

shown in Table 6. In this table, the Activation Function

code column determines the activation function. A scale

change is used to the range [1 5] for the value of this

column. The number of hidden layer neurons column

shows the optimal number of hidden layer neurons. If the

number of neurons in the hidden layer is small, a classifi-

cation error will occur, and if it is high, it will complicate

the hidden layer. Therefore, this value is defined range [2

50] neurons by changing the scale.

The accuracy of the classification of the proposed

method with three classifiers is shown in Table 7.

According to the table, the SVM has the highest accu-

racy on the subject av. ELM has higher accuracy on the

subjects aa, al and aw. KNN has much more accuracy on

the subject ay with 99.5%. ELM has the highest average

classifier accuracy, which is 91.4%. The KNN and ELM

have the highest recall and precision values in aa,

respectively. In the subject al, ELM has the highest value

of recall and precision. The SVM classifier has the highest

recall and precision values in the av subject. KNN and

SVM have the highest recall and precision values in the aw

subject, respectively. KNN has the highest recall and pre-

cision values in the ay subject with 99.7% and 99%,

respectively. F-score was obtained 0.88 in aa subject by

ELM and KNN. Also, KNN and SVM have an F-score of

0.99 in ay subject.

The time order of the training phase is

O Iter � n� Tfitð Þ where Tfit, Iter, n are the running time

of the fitness function, the number of iterations and the

number of particles, respectively. The time order is O Tfitð Þ
in the test phase. The advantages of the proposed method

can be summarized as follows: New efficient space

Table 5 Results obtained by the proposed method with SVM classifier on subject aw

Run

number

Optimal values obtained by Equilibrium Optimizer (EO) Accuracy of Test

(%)
Linear

weight

RBF no.1

weight

RBF no.2

weight

Polynomial

weight

RBF

parameter

Polynomial

parameter

Dimension

1 0.1146 0.7776 0.5897 0.0158 10 2 2 90.9

0.0405 0.0614 0.0633 0.99 38 2 5 89.1

0.0049 0.1844 0.1492 0.8085 30 3 9 90.9

0.4676 0.7945 0.6849 0.428 13 2 4 90.9

0.1918 0.2773 0.4606 0.336 11 2 4 89.1

2 0.1973 0.1989 0.0468 0.1016 26 2 2 100

0.7391 0.8964 0.3934 0.1084 36 2 6 98.2

0.5807 0.3292 0.7287 0.8881 26 3 4 98.2

0.75 0.1813 0.8252 0.2032 30 3 8 100

1 0.3144 1 0.4313 45 2 3 98.2

3 0.5146 0.6109 1 0.0107 28 3 3 100

0.7175 0.1305 0.0684 0.5835 26 2 2 100

0.1286 0.3084 0.4424 0.2227 43 2 5 100

1 0.0855 1 0.1398 28 2 9 90.9

0.2363 0.3634 0.7502 0.2275 39 2 3 96.4

4 0.954 0.9541 0.1924 0.7462 20 2 4 100

1 0.806 0.0533 0.1847 27 3 5 100

0.4818 0.369 0.2679 0.0011 29 3 9 100

0.1516 0.7248 0.1217 0.5238 16 2 2 100

0.9749 0.3824 0.6121 0.0419 42 2 4 100

5 0.8132 0.0748 0.2077 0.7834 24 2 7 90.9

0.7757 0.1915 0.6867 0.8941 40 3 8 90.9

0.6636 0.3311 0.277 0.8512 25 2 7 90.9

0.4311 0.2632 0.5319 0.418 48 3 7 90.9

0.747 0.4954 0.3712 0.1365 39 2 6 89.1

Average 95.4
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learning based on Multi-kernel learning resulted in dis-

criminant data and higher classification accuracy. The time

order in the test phase is low. Also, one of the innovations

is the value of the fitness function is equal to the value of

the validation error. Train error is not used as a fitness

value to avoid the overfitting problem.

Table 6 Results obtained by the proposed method with ELM classifier on subject aw

Run

number

Optimal values obtained by Equilibrium Optimizer (EO) Accuracy

of Test (%)
Linear

weight

RBF

no.1

weight

RBF

no.2

weight

Polynomial

weight

RBF

parameter

Polynomial

parameter

Activation

Function

code

Number of

hidden layer

neurons

Dimension

1 0.7386 0.2982 0.5482 0.3583 48 2 3 27 3 89.1

0.3646 0.4345 0.6885 0.9862 27 3 4 19 6 92.7

0.7161 0.3882 0.8199 0.2169 26 3 1 12 7 89.1

0.3978 0.3627 1 1 29 2 5 18 9 92.7

0.3773 0.8955 0.476 0.7587 10 3 5 18 3 90.9

2 0.6768 0.0618 0.3299 0.0032 19 3 5 8 4 100

0.5934 0.3143 0.57 0.4487 11 3 5 17 5 100

0.2243 0.0831 0.0672 0.3732 22 2 1 16 4 94.5

0.9172 0.5509 0.1862 0.0309 36 3 5 15 5 100

0.1391 1 1 0.5448 21 3 2 11 7 98.2

3 0.0779 0.1452 0.525 0.6177 25 2 2 26 8 100

0.4879 0.5772 0.9521 0.4898 10 2 5 50 10 94.5

0.5859 0.4111 0.5625 0.6133 21 3 2 27 4 100

0.7507 0.5889 0.6699 0.6382 36 2 4 34 1 100

0.1296 0.0486 0.2403 0.0779 26 2 1 28 3 89.1

4 1 0.0007 1 1 39 3 2 16 5 94.5

0.8108 0.6922 1 0.6688 23 3 5 26 5 94.5

0.1447 1 0.3902 0.6649 39 2 1 39 2 100

0.3509 0.8739 0.6842 0.7755 24 2 1 13 5 100

0.223 1 0.9352 0.1753 28 3 1 14 3 100

5 0.2681 0.4861 0.7531 0.8388 40 3 5 18 5 98.2

0.3662 0.722 0.9234 1 44 2 5 49 9 92.7

1 0.8867 0.8106 0.6042 40 2 5 15 8 94.5

0.5956 1 1 1 1 3 4 23 6 100

0.0771 0.2369 0.0025 0.7973 36 3 2 4 3 92.7

Average

95.9

Table 7 Classification

performance evaluation criteria

of the proposed method

Subjects Accuracy (%) Precision (%) Recall (%) F- score

SVM KNN ELM SVM KNN ELM SVM KNN ELM SVM KNN ELM

aa 85.5 87.8 87.9 86 87.9 87.6 86 87.9 88.2 0.86 0.88 0.88

al 96.7 96.6 98.7 96.8 96.8 98.7 96.8 96.5 98.8 0.97 0.97 0.99

av 79.8 71.5 78.5 81.2 69.2 77.3 80.5 70.2 77.6 0.81 0.70 0.77

aw 95.4 95 95.9 96 94.8 95.8 95 96 95.9 0.95 0.95 0.96

ay 98.7 99.5 95.9 98.9 99 96.4 98.7 99.7 95.9 0.99 0.99 0.96

Average 91.2 90.1 91.4 91.8 89.5 91.2 91.4 90.1 91.3 0.9 0.9 0.9
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4.3 Compare with state-of-the-art methods

In this section, a comparison is made between the proposed

method and the last state-of-the-art methods. Method 1

refers to the proposed method with the KNN classifier.

Method 2 refers to the proposed method with the SVM

classifier. Method 3 refers to the proposed method with the

ELM classifier. According to Table 8, these methods are

compared with twelve methods.

In [29], the multi-kernel Extreme learning machine

(MKELM) method is presented for motor imagery classi-

fication. The combination of two Gaussian and polynomial

kernels is used to map features extracted by CSP to the

nonlinear feature space. Then, classification was performed

by the ELM algorithm. In [43], a correlation-based channel

selection (CCS) method is proposed to select the channels

that contain more correlated information. Then, features

are extracted by regularized CSP (RCSP). SVM with the

RBF kernel is used for classification. In [44], a new deep

architecture called the DSSMM (Deep Stacked Support

Matrix Machine) is based on the principle of stacked

generalization. DSSMM is constructed in a layer-by-layer

technique. Each layer contains an SMM module that can

maintain structural information between rows or columns

in the EEG feature matrix. SMM can grasp the feature

matrices’ structural information. SMM can grasp the fea-

ture matrices’ structural information.

In [45], P-LTCSP (PLV-modulated Local temporal

common spatial patterns) method is proposed for feature

extraction. P-LTCSP incorporate PLV (Phase locking

value) into LTCSP. LTCSP is an effective method of

obtaining the temporally local manifold of EEG time ser-

ies. PLV is applied to quantify the phase relationship

between samples. PL to quantify the phase relationship

between samples. PLV is used as the weight between two

EEG samples. LDA classifier is used for motor imagery

EEG signals classification. In [46], filter band CSP

(FCCSP) is proposed for MI classification. FCCSP

employs two regularization parameters in order to increase

robustness and reduce the estimation variance. All EEG

signal is divided into frequency sub-bands. The sub-band is

divided using wavelet packet. Features were extracted from

sub-bands by (Component regularized CSP) CRCSP. The

final features selected by mRMR are fed to LDA for

classification.

In [47], a method is proposed a bispectrum-based

channel selection (BCS) for MI tasks classification. Bis-

pectrum is a statistical analysis method used to analyze the

interactions between EEG signals. Bispectrum for each

channel is Computed in all trials. Channels without

redundant information are selected based on the larger

f-scores. F-score is based on the sum of logarithmic

amplitudes (SLA) and the first-order spectral moment

(FOSM) features from the bispectrum. Features extracted

by CSP are classified by SVM. In [48], a binary harmony

search algorithm (BHS) is proposed to channel selection.

Harmony search (HS) is a new meta-heuristic optimizer.

The BHS is binary coded, in which every harmony vector

length is equal to the channels available number in the data

set. If the decision variable holds a value of 1, the related

channel is selected. The sparse representation-based clas-

sification (SRC), SVM, and LDA are performed on the

Table 8 Comparison of proposed methods with other methods

Methods aa al av aw ay Average Rank Final Rank

ACC (%) Rank ACC (%) Rank ACC (%) Rank ACC (%) Rank ACC (%) Rank

[29],(2018) 83.3 5 98.5 4 71.4 9 91.3 8 93.1 6 6.4 5

[43],(2019) 82.5 6 96.8 6 71.1 10 92.9 5 93.9 4 6.2 4

[44],(2020) 75.89 12 100 1 76.53 4 89.73 11 76.19 14 8.4 8

[45],(2020) 71.39 14 90.27 13 59.38 14 62.07 15 58.53 15 14.2 13

[46],(2020) 72.32 13 98.21 5 68.87 12 78.57 14 92.06 8 10.4 11

[47],(2020) 82.1 7 95 10 72.1 6 90.7 9 91.8 10 8.4 8

[48],(2021) 70 15 96.7 7 70 11 85 13 93.3 5 10.2 10

[49],(2021) 81.8 8 96.1 9 72.5 5 92.1 7 90.3 11 8 7

[50],(2021) 86.07 3 98.57 3 52.14 15 96.07 1 92.14 9 6.2 4

[51],(2022) 81.25 9 100 1 77.55 3 90.63 10 77.38 13 7.2 6

[52],(2022) 78.3 10 93.6 11 68.6 13 87.9 12 92.7 7 10.6 12

[53],(2022) 78.12 11 92.4 12 71.88 7 92.33 6 88.02 12 9.6 9

Method1 87.8 2 96.6 8 71.5 8 95 4 99.5 1 4.6 3

Method2 85.5 4 96.7 7 79.8 1 95.4 3 98.7 2 3.4 2

Method3 87.9 1 98.7 2 78.5 2 95.9 2 95.9 3 2 1
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CSP extracted features, which the BHS-SRC has higher

accuracy.

In [49], a spatial-frequency-temporal (SFT)-3D CNN

model is proposed for MI classification. The SFT-3DCNN

model consists of 8 layers. First layer is the input layer. The

three layers are the SFT convolution layers. Four layers are

the fully connection layers and the layer of output. Novel

3D CNN with three fully connected layers is proposed for

the extraction of SFT features and classification. In [50],

common time–frequency-spatial patterns (CTFSP) are

proposed to extract sparse CSP features from multi-band

filtered EEG. First, EEG signals are pre-processed with a

Butterworth band-pass filter of 8–30 Hz. Then, the EEG

signals are divided into seven frequency bands. Features

are extracted from the frequency band by CSP. The most

significant features are selected from frequency bands by

LASSO. Classification is done by the voting result of three

SVM classifiers.

The Deep Stacked Feature Representation (DSFR)

method is proposed in [51]. The DSFR employed a set of

feature decoding modules (FDMs). Each FDM includes a

CSP and a support matrix machine (SMM). The architec-

ture of DSFR has several layers. Each layer is an FDM,

which needs to be fed with the predictions of all the pre-

vious layers and the original EEG feature to produce the

EEG feature representation and prediction. In [52], the

objective Firefly Algorithm (FA) is proposed to find an

optimal EEG channel set. Then, the Channel set is ranked

using fisher information index criteria. Regularized Com-

mon Spatial Pattern with Aggregation (RCSPA) is used for

feature extraction. The RCSPA has two regularization

parameters which control the bias-variance tradeoff among

MI tasks. Regularized Support Vector Machine (SVM) is

used for motor imagery tasks classification.

In [53], Multiobjective X-shaped Binary Butterfly

Optimization Algorithm (MX-BBOA) is used to select

EEG channels. The MX-BBOA method target to hold a

balance between the classification accuracy and the number

of channels. This method examines the butterfly’s natural

behavior with dual sigmoid functions to solve the channel

selection problem. Features are extracted by Multivariate

Empirical Mode Decomposition (MEMD). SVM, Naive

Bayes and Decision Tree were used for classification, and

SVM has higher performance.

According to Table 8, Method 3, Method 2, and Method

1 have higher accuracy compared to other methods with

rank 1, 2, 3, respectively. Method 3 and method 2 have

higher accuracy in all subjects from [49] that used deep

convolutional neural network. Method 1 has higher accu-

racy in four subjects from [49].

As you can see in Fig. 5, the proposed Method3 were

performed better in subject aa. Method2 and Method1 have
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Fig. 5 Comparison of proposed

Methods in terms of Accuracy

with other methods

Table 9 Comparison of the average classification accuracy and

Standard deviation of the proposed methods and other methods

Methods Average Standard deviation

ACC (%) Rank

[29],(2018) 87.5 4 10.53

[43],(2019) 87.4 5 10.6

[44],(2020) 83.7 12 10.85

[45],(2020) 68.32 15 13.29

[46],(2020) 82.01 13 12.67

[47],(2020) 86.3 7 9.28

[48],(2021) 80.2 14 12.61

[49],(2021) 86.6 6 9.43

[50],(2021) 85 9 18.96

[51],(2022) 85.36 8 9.79

[52],(2022) 84.2 11 10.64

[53],(2022) 84.55 10 9.17

Method 1 90.1 3 11.24

Method 2 91.2 2 8.16

Method 3 91.4 1 8.25
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higher accuracy compared to other methods in av, ay

subjects, respectively. Table 9 shows the comparison of the

average classification accuracy of the proposed methods

and other methods.

Method3, Method 2 and Method 1 have higher accuracy

than other methods with 91.4%, 91.2% and 90.1, respec-

tively. Standard deviation has been used for robustness. As

you can see in Table 9, the proposed methods in Method 2

and Method3 have lower standard deviations and are more

Table 10 Results of Wilcoxon

signed-rank test Method1 and

other methods

Methods P-value Test number Superior Inferior Similar

Method 1 vs. [29] 0.1875 5 4 1 0

Method 1 vs. [43] 0.125 5 4 1 0

Method 1 vs. [44] 0.3125 5 3 2 0

Method 1 vs. [45] 0.0625 5 5 0 0

Method 1 vs. [46] 0.125 5 4 1 0

Method 1 vs. [47] 0.125 5 4 1 0

Method 1 vs. [48] 0.125 5 4 1 0

Method 1 vs. [49] 0.1875 5 4 1 0

Method 1 vs. [50] 0.4375 5 3 2 0

Method 1 vs. [51] 0.4375 5 3 2 0

Method 1 vs. [52] 0.0625 5 5 0 0

Method 1 vs. [53] 0.125 5 4 1 0

Table 11 Results of Wilcoxon

signed-rank test Method2 and

other methods

Methods P-value Test number Superior Inferior Similar

Method 2 vs. [29] 0.125 5 4 1 0

Method 2 vs. [43] 0.125 5 4 1 0

Method 2 vs. [44] 0.1875 5 4 1 0

Method 2 vs. [45] 0.0625 5 5 0 0

Method 2 vs. [46] 0.125 5 4 1 0

Method 2 vs. [47] 0.0625 5 5 0 0

Method 2 vs. [48] 0.125 5 4 0 1

Method 2 vs. [49] 0.0625 5 5 0 0

Method 2 vs. [50] 0.8125 5 2 3 0

Method 2 vs. [51] 0.1875 5 4 1 0

Method 2 vs. [52] 0.0625 5 5 0 0

Method 2 vs. [53] 0.0625 5 5 0 0

Table 12 Results of Wilcoxon

signed-rank test Method3 and

other methods

Methods P-value Test number Superior Inferior Similar

Method 3 vs. [29] 0.0625 5 5 0 0

Method 3 vs. [43] 0.0625 5 5 0 0

Method 3 vs. [44] 0.125 5 4 1 0

Method 3 vs. [45] 0.0625 5 5 0 0

Method 3 vs. [46] 0.0625 5 5 0 0

Method 3 vs. [47] 0.0625 5 5 0 0

Method 3 vs. [48] 0.0625 5 5 0 0

Method 3 vs. [49] 0.0625 5 5 0 0

Method 3 vs. [50] 0.1875 5 5 0 0

Method 3 vs. [51] 0.1875 5 4 1 0

Method 3 vs. [52] 0.0625 5 5 0 0

Method 3 vs. [53] 0.0625 5 5 0 0
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robust. The proposed method by the ELM was improved

the average classification accuracy and standard deviation

by 3.9% and 2.28, respectively.

The Wilcoxon signed-rank test is a pairwise test that

shows the differences between the behaviors of the two

algorithms [54]. P-values are positive values between 0 and

1. The smaller the P-value, the better performance. The

results of this test for method1 are shown (See Table 10).

As shown in Table 10, the Superior column shows the

number of subjects that our method outperforms other

methods. As Table 10 states, the number of subjects on that

Method 1 performs better than [45] and [52] is 5. The

number of subjects on that Method 1 performs better than

[29, 43, 46–49] and [53] is 4. The number of subjects on

that this method performs better than [44, 50] and [51] is 3.

Therefore, the overall results show that Method 1 is better

than twelve states of the art methods.

Experimental results of Wilcoxon signed-rank test

Method 2 and other methods are shown in Table 11. The

number of subjects on that Method 2 performs better than

[45, 47, 49, 52] and [53] is 5. The number of subjects on

that Method 2 performs better than [29, 43, 44, 46, 48] and

[51] is 4.

The results of Wilcoxon signed-rank test Method 3 and

other methods are given in Table 12. The number of sub-

jects on that Method 3 performs better than

[29, 43, 45–50, 52] and [53] is 5. The number of subjects

on that Method 3 performs better than [44, 51] is 4. As you

can see, Method 3 has superiority in other states of the art

methods. The overall results show Method 3 is better than

method1 and method 2.

5 Conclusion

In this study, efficient space learning based on kernel trick

and dimension reduction was presented for multichannel

motor imagery EEG signals. Dimension increase in data is

done with the multi-kernel learning method. The parame-

ters are optimized using the optimization method in this

step. Also, dimension reduction is used to overcome the

curse of dimension problem. The composite kernel is

obtained to map the features extracted by CSP. The com-

posite kernel was the combination of three types of the

kernels, i.e., RBF, polynomial and linear kernel by Meta-

heuristic MKL algorithm. The parameters associated with

each base kernel and their weights in the composite kernel

were calculated by the EO. After data mapping, dimensions

of the data were reduced to maximum of ten dimensions.

The number of reduced dimensions and mapping matrix

were obtained using EO. Data dimension are reduced by

mapping matrix linearly that its columns are equal to the

number of reduced dimensions. Three classifiers of KNN,

SVM and ELM were selected for the proposed method.

Also, the number of hidden layer neurons and the code of

the classifier activation function were calculated by EO in

ELM. The proposed method with ELM has higher accuracy

than the other two classifiers. The results indicate the

superiority of the proposed method to state-of-the-art

methods. This method can be employed for EEG signals

classification in other applications such as, epileptic diag-

nosis, emotion recognition and other MI signals

classification.
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