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Abstract
Deep learning techniques have gained immense popularity recently because of their remarkable capacity to learn complex

patterns and features from large datasets. These techniques have revolutionized many fields by achieving advanced

performance in various tasks. The availability of large datasets and the advancement of computing resources have enabled

deep learning models to perform well in solving challenging problems. As a result, they have become an essential tool in

many industries, including agriculture. The application of deep learning in agriculture has great potential for increasing

productivity, reducing costs, and improving sustainability by aiding in the early identification and prevention of plant leaf

diseases, optimizing crop yields, and facilitating precision agriculture. This paper suggests using a novel approach to

automatically classify multi-class leaf diseases in tomatoes using a deep multi-scale convolutional neural network

(DMCNN). The proposed DMCNN architecture consists of parallel streams of convolutional neural networks at different

scales, which get merged at the end to form a single output. The images of tomato leaves are preprocessed using data

augmentation techniques and fed into the DMCNN model to classify disease. The proposed approach is evaluated on a

dataset of tomato plant images containing 10 distinct classes of diseases and compared with different existing models. The

research results reveal that the suggested DMCNN model performs better than other models in terms of accuracy,

precision, recall, and F1 score. Furthermore, the proposed model reported an overall accuracy of 99.1%, which is higher

than the accuracy of existing models tested on the same dataset. The study demonstrates the potential of deep learning

techniques for automated disease classification in agriculture, which can aid in early disease detection and prevent crop

loss.
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1 Introduction

Plant disease detection and diagnosis are crucial in agri-

culture for effective disease management and sustainable

crop production. In the past, traditional methods such as

visual inspection, field surveys, and laboratory analysis

were primarily used for disease detection. However, these

methods are time-consuming, labor-intensive, and require

significant expertise in plant pathology. Therefore, there is

an increasing need for automated and efficient disease

detection and classification methods. Advanced technolo-

gies such as deep learning, hyperspectral imaging, and

remote sensing offer several advantages over traditional

methods, such as non-destructive detection, rapid and

accurate diagnosis, and minimal expertise requirements.

These technologies can enable early detection and targeted

action to control the spread of diseases, reduce crop losses,

and maintain the quality of harvested goods. Moreover,

adopting advanced technologies in plant disease manage-

ment can help ensure sustainable crop production and

contribute to achieving global food security goals.
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Therefore, developing and deploying such technologies are

critical for effective disease management and the future of

agriculture.

This paper provides deep learning-based method for

using deep multi-scale convolutional neural networks to

automate the classification of multi-class leaf diseases in

tomatoes. The significance of this proposed study stems

from the fact that tomato plants are affected by several

diseases that can significantly reduce crop yield, quality,

and economic value. Traditional methods for detecting and

classifying these diseases are often time-consuming and

require expert knowledge, which can be a limiting factor in

large-scale crop production.

Recent advances in deep learning methodologies, with a

primary emphasis on convolutional neural networks, have

exhibited remarkable achievements across diverse domains

and tasks, encompassing object recognition, image seg-

mentation, classification, and even structural damage

identification [1]. Nevertheless, within the realm of plant

sciences, a considerable portion of extant research

endeavors centered on plant disease classification has been

confined to single-channel and same-resolution imagery.

This limitation potentially impedes the holistic capture of

the comprehensive information indispensable for precise

disease detection and classification.

To address this limitation, this paper proposes a deep

multi-scale convolutional neural network-based framework

for automatically classifying tomato leaf diseases. The

proposed framework leverages the benefits of multiple

channels of information to improve the accuracy and effi-

ciency of disease classification.

This study aimed to develop a DMCNN architecture

capable of accurately classifying 10 distinct categories of

tomato plant diseases and evaluate its performance on a

publicly available dataset of 11,000 tomato plant images,

leveraging multiple channels and scales of information

provided by the camera. The study also aims to optimize

the model’s hyperparameters to improve its performance

and evaluate its effectiveness in comparison to many

existing methods.

The contributions of this study are five fold:

1. Proposing a deep multi-scale CNN architecture that

leverages multiple channels of information for accurate

disease classification.

2. Developing a DMCNN architecture consisting of

parallel streams of convolutional neural networks

(CNNs) at different scales, which are merged at the

end to form a single output.

3. Evaluating the proposed framework using a large and

diverse dataset of tomato leaf images and comparing its

performance with many existing methods.

4. Providing insights into the feature importance of the

proposed model, which can help in understanding the

underlying mechanisms of disease classification.

5. Conducting significant analysis to demonstrate the

robustness of the proposed model to various factors,

which can improve the reliability and generalizability

of the model.

Furthermore, this paper aims to contribute to the

development of more accurate, efficient, and automated

methods for disease classification in tomato crops. The

proposed approach has potential applications in precision

agriculture and sustainable crop management. The contri-

butions of this study are significant in that they showcase

the potential of using deep learning and multi-scale

imaging for plant disease detection and classification. By

leveraging multiple information channels, such as color

and texture, the proposed approach achieves improved

accuracy and efficiency in disease classification. The use of

deep learning algorithms also enables the automation of the

disease classification process, enabling large-scale and

timely interventions to mitigate crop losses. The outcomes

of this research demonstrate the promise of deep learning-

based strategies to revolutionize the field of plant pathol-

ogy and crop management, improving crop productivity

and ensuring food security for future generations.

The remainder of the paper has the following structure:

Section 2 presents an overview of related work in the area

of automated disease detection in agriculture. Section 3

describes the dataset and preprocessing steps used in our

study and details the architecture of the proposed DMCNN

and how it addresses the limitations of previous CNN-

based methods. Section 5 explains the experimental setup

and evaluation metrics used to measure the performance of

the DMCNN. Section 3 presents the results of our experi-

ments and compares them to other approaches in the lit-

erature. Finally, Section 6 concludes the paper and

discusses potential future work in the area of advanced

disease classification in agriculture.

2 Existing work

Plant disease detection and diagnosis are critical to agri-

culture as it enables effective disease management and

sustainable crop production. In the past, traditional meth-

ods such as visual inspection, field surveys, and laboratory

analysis were primarily used for disease detection in plants.

While these methods have been used successfully in the

past, they have several limitations that have hindered their

widespread use [2].

One of the primary challenges of traditional methods for

plant disease detection is that they can be time-consuming
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and labor-intensive. Visual inspection, for example, relies

on the physical examination of plants for symptoms and

signs of disease, which can be time-consuming. Similarly,

field surveys require data collection over an extended

period, which can be labor-intensive and require significant

resources.

Another significant challenge of traditional methods for

plant disease detection is that they require specialized

knowledge and expertise in plant pathology. For instance,

laboratory analysis techniques such as culturing and

serology require specialized equipment and expertise to use

effectively.

Therefore, several approaches have been commonly

used in terms of traditional disease classification methods.

One of the most straightforward and widely practiced

methods is visual inspection, which relies on physical

examination and observation of symptoms and signs to

diagnose a disease. While this method is relatively simple

and accessible, its accuracy can be highly subjective,

depending on observer’s expertise. Additionally, there may

be significant variability in the diagnosis based on the

observer’s experience and training [2].

Another traditional method for disease classification is

laboratory analysis, which involves using specialized

equipment and techniques to identify the causative agent or

markers of disease. While this approach can provide

objective and quantitative results, it can be time-consuming

and expensive, requiring significant resources and expertise

to implement effectively.

Finally, field surveys are another traditional method that

involves monitoring the incidence of a disease over time in

a particular region or population. This method can provide

valuable information on the patterns and trends of disease

occurrence, as well as risk factors and other relevant fac-

tors that may contribute to disease development and spread

[3].

While these traditional methods for disease classifica-

tion have been useful for many years, they have limitations,

such as subjectivity, resource requirements, and time con-

sumption. As such, modern technology has led to the

development of newer and more advanced methods, such

as molecular diagnostics and machine learning algorithms,

that offer several advantages over traditional approaches.

To overcome these limitations, automated disease

detection and classification methods have gained attention

in recent years. Automated methods can provide accurate

and efficient detection of plant diseases using various

sensors and imaging techniques. Some commonly used

sensors include hyperspectral, multispectral, RGB, and

thermal imaging cameras [4].

Convolutional neural networks also performed remark-

ably in different computer vision tasks, including object

detection, segmentation, and classification. In the context

of plant disease detection and classification, CNNs have

shown promising results in accurately identifying and dif-

ferentiating between different types of plant diseases [5]. In

addition, CNNs can learn the features of a plant image in a

hierarchical manner, which helps in the better classification

of leaf diseases.

Automated methods for disease classification have been

widely studied in recent years. Deep learning (DL) models

have made significant strides in recent years, revolution-

izing numerous fields of research and development.

Examples of these include deep fakes [6, 7], image clas-

sification [8, 9], satellite image analysis [10], the opti-

mization of artificial neural networks [11, 12], and natural

language processing [13, 14].

Convolutional neural networks (CNNs) are also used

extensively for plant disease identification. CNNs can learn

complex features of plant images and provide accurate

disease detection and classification. For instance, Mohanty

et al. [15] present a CNN-based framework for detecting

plant leaf disease using RGB images. In addition, they used

transfer learning to increase the performance of the model.

Similarly, Sladojevic et al. [16] proposed a CNN-based

framework for detecting plant diseases using hyperspectral

images.

In the context of tomato disease detection and classifi-

cation, various studies have been conducted using tradi-

tional and automated methods. For example, Ferentinos

[17] used traditional image-processing methods for iden-

tifying and classifying tomato diseases. Similarly, Karimi

et al. [18] proposed deep learning-based methods for

classifying the diseases of tomato using RGB images. In

their research, Agarwal et al. [19] proposed a Convolu-

tional Neural Network (CNN)-based architecture for

tomato disease identification. This model was designed to

classify different classes of tomato images, with a range of

accuracy rates from 76 to 100%, due to the numerous

classes of tomato images used in the study. Furthermore,

the proposed CNN-based architecture demonstrated a great

level of accuracy, with an accuracy rate of 91.2%. This

result shows that the model is able to accurately identify

tomato diseases, which is a critical step in the effective

treatment and management of these diseases.

In [20], they proposed a hybrid model that combines

deep learning, PCA, and the whale optimization algorithm

to diagnose tomato illnesses. The dataset utilized in the

study was obtained from Plant Village and consisted of

18,160 images of tomato leaves divided into 10 different

classifications. The proposed hybrid model reported 86%

testing accuracy with the Adam optimizer and 94% with

the RMSprop optimizer. This high accuracy rate indicates

the potential of the proposed hybrid approach for the

accurate and efficient diagnosis of tomato illnesses. The

use of PCA and the whale optimization algorithm in
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conjunction with deep learning models have been shown to

improve the accuracy of disease diagnosis in various

applications. The proposed hybrid approach in this study

provides a hopeful pathway toward creating more precise

and effective diagnostic tools for detecting tomato diseases.

Intan et al. [21] achieved high accuracy of 95.7% in clas-

sifying 10 types of tomato plant diseases using Dense

CNN. Agarwal et al. [22] achieved an accuracy of 91.2% in

classifying 10 types of tomato plant diseases using Vgg-16.

By utilizing transfer learning on the original AlexNet

network, Wang et al. [23] improved the average identifi-

cation accuracy for 10 categories of tomato leaf images,

achieving an accuracy of 95.62%. In another study, Kaur

et al. [24] utilized another pre-trained based on the ResNet

network to identify 7 types of tomato leaf diseases,

achieving an impressive accuracy rate of 98.8%. Similarly,

Kaushik et al. [25] also achieved an impressive accuracy

rate of 97.01% in classifying 6 types of tomato diseases by

utilizing a pre-trained ResNet-50 network.

Trivedi et al. [26] utilized a convolution neural network

to classify nine tomato leaf disease types and a dataset

consisting of 3000 tomato leaves. By using preprocessed

and partitioned tomato leaf images, they achieved an

impressive accuracy rate of 98.49%. Vijay et al. [27]

employed CNN as well as K-nearest (KNN) models to

classify tomato leaf disorders using a public dataset, with

LIME providing explanations for the predictions. Their

findings demonstrated that the CNN model outperformed

KNN in disease detection, achieving a rate of 98.5%, recall

of 93%, F1-score of 93%, and precision of 93%. In con-

trast, the KNN’s accuracy, recall, F1-score, and precision

were only 83.6%, 86%, 84%, and 90%, respectively.

Ozbılge et al. [28] proposed a tomato disease catego-

rization model as an option to the widely used ImageNet

deep learning model and convenient deep-neural with six

layers. The performance of this work was evaluated using

the PlantVillage dataset using several statistical techniques,

yielding an impressive accuracy of 99.70%.

Karthik et al. [29] presented a deep identification model

structure for tomato diseases, which increases the residual

network and utilizes pre-trained learning to report impor-

tant disease identification features. Pre-trained has been

shown to improve recognition accuracy by leveraging the

pre-trained models’ learned features. However, the initial

VGG16 and AlexNet networks have complicated forms

and many parameters, which can pose challenges in prac-

tical applications and model deployment. On the other

hand, the proposed model is designed to be efficient and

lightweight, making it more suitable for real-world

deployment scenarios. Despite the effectiveness of the

transfer learning approach, it is crucial to consider the

model’s structure and complexity in practical applications,

as it can significantly impact its performance and usability.

In another study, Grinblat et al. [30] have proposed a neural

network approach for identifying legume species by ana-

lyzing the morphological patterns of leaves veins.

In this study, we introduce a deep multi-scale CNN

architecture for the automated identification of multi-class

diseases in tomato leaves. We leverage the benefits of

using multiple classes of information to increase the per-

formance accuracy of disease classification. Our proposed

framework is evaluated using a large and diverse dataset of

tomato leaf images. We compare and evaluate the perfor-

mance of our proposed framework with other existing

methods and provide insights into the feature importance of

the proposed model and conduct sensitivity analysis to

demonstrate its robustness to various environmental

factors.

In summary, this study contributes to the growing body

of literature on automated plant disease detection and

classification, with a focus on tomato crops. Our proposed

framework leverages the benefits of multiple channels of

information to provide accurate and efficient disease

identification and classification. The framework can

potentially be used in precision agriculture for sustainable

crop management.

3 Research materials and methods

This section presented a comprehensive overview of the

proposed model, as well as the datasets used in the study.

In addition, it highlights the several steps used to improve

the effectiveness of the suggested approach and presents

the DMCNN model architecture.

3.1 Dataset and preprocessing

3.1.1 Dataset description

In our study, we utilized a large and diverse dataset com-

prising 11,000 images from 10 different categories,

including healthy tomatoes and diseases like early blights,

bacterial spot, leaf molds, late blight, as well as mosaic

viruses. The images were obtained from the Kaggle data-

set, which is widely used in deep learning research. The

dataset was carefully curated to ensure that it was evenly

distributed among the 10 classes, with 1100 images per

class, which provided a robust representation of the various

tomato leaf diseases.

To train and evaluate our proposed Deep Multi-Scale

Convolutional Neural Network (DMCNN) and for the

automated classification of multi-class leaf diseases in

tomatoes, we separated dataset into 10:90 testing and

training sets. Additionally, to prevent over-fitting and to

further optimize the model, we allocated 10% of the
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training set for validation purposes. This allowed us to

supervise the training process and adjust the model’s

hyperparameters to achieve the best possible performance.

The dataset was carefully curated to include image data

of tomato plant leaves with multiple diseases as well as

healthy leaves, which were captured under different light-

ing conditions and varying orientations. This diversity of

the dataset made it an excellent choice for training and

evaluating Multi-Scale Convolutional Neural Networks

(MSCNNs), as it allowed us to capture features at multiple

scales and handle variations in the input images. To feed a

visual representation of the data available for training and

testing our deep learning model for classifying tomato leaf

diseases, we included Fig. 1 in our study, which displays a

collection of image data of tomato plant leaf disease from a

dataset. Each image belongs to a specific disease category.

Each image belongs to a specific disease category, and by

analyzing these images, we can gain insights into the

characteristics and features of different diseases, which can

help us develop a more accurate and efficient model.

Therefore, the dataset used in this study presents a

robust representation of the various tomato leaf diseases,

which is required to accurately train and evaluate deep

learning models. The diversity of the dataset, combined

with the carefully selected training, validation, and test

sets, allowed us to create and assess the performance of the

suggested DMCNN architecture accurately.

3.1.2 Dataset preprocessing

Deep learning models’ success in plant disease classifica-

tion is mainly dependent on the standard of the dataset used

to generate the model’s training data. Therefore, data

preprocessing is a crucial step in the deep learning pipeline.

It involves cleaning, trans-forming, and preparing the data

for analysis so that the model can learn effectively from the

data. Preprocessing methods, including filtering and image

resizing, can improve the model’s performance in the area

of plant disease classification.

In this paper, we conducted several preprocessing steps

on the dataset to ensure that the images were in suit-

able way to be analyzed. First, we resized the images to a

fixed resolution. We also used data augmentation methods

like rotation, zooming, and flipping to artificially increase

overall the amount of data and reduce overfitting. These

techniques helped to create a more robust dataset, which is

critical for the success of deep learning models.

We applied images at various scales to prepare a Deep

Multi-scale Convolutional Neural Network on this dataset.

Specifically, we applied a multi-scale approach where each

image is resized to multiple scales, and the network pro-

cesses them separately. This allows the network to detect

objects at different scales and capture more fine-grained

details, improving the model’s accuracy in disease classi-

fication. Table 1 outlines the specific techniques and scales

used for the multi-scale approach in the tomato leaf dataset.

The data preprocessing steps performed in this study were

critical in ensuring that the dataset was suitable for training

an accurate and efficient deep learning algorithm for plant

leaf disease identification. In addition, using a multi-scale

approach with different preprocessing techniques might

enhance the model’s performance and lead to excellent

disease classification outcomes.

The training samples were subjected to various trans-

formations, including Horizontal flipping was applied to

the training samples, while rotation was done within a

range of 20 degrees. In addition, zooming was done within

a range of 0.2, while shifting was done within a 0.2 range

Fig. 1 Class-wise image subsets
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in both width and height. Several methods of data aug-

mentation aid in broadening the training set’s diversity and

avoiding overfitting. Table 2 shows data augmentation

techniques used in the project and their corresponding

parameters/ranges.

After the data preprocessing step, the overall number of

images included in the dataset was 12,500, with 1250

images perclass. The dataset consisted of 10 different

classes of plant diseases. This is important for under-

standing the size and composition of the dataset and pro-

vides context for any subsequent analysis or modeling

performed on the dataset. The data set’s size is an impor-

tant factor in deep learning that influences the model’s

performance. A large dataset provides more examples for

the model to learn from and improves its accuracy.

Moreover, the balanced distribution of samples across

different classes in the dataset ensures that the model is not

biased toward one particular class, which can affect its

ability to classify accurately.

In summary, the size and composition of the dataset, as

well as the preprocessing techniques used, all have an

impact on the performance of our study. A diverse and

balanced dataset, along with appropriate preprocessing

techniques, can improve the ability of the model to rec-

ognize and categorize different types of diseases correctly.

This can lead to the earlier time classification of plant leaf

diseases, which can allow farmers to lead to great steps to

avoid crop loss and increase yield.

3.2 Implementation (experiment setup)

In this section of the study, we discuss the specifics and the

implementation details of our proposed model for the

automated classification of multi-class diseases in tomatoes

using deep multi-scale convolutional neural networks

(DMCNN). Our model architecture includes multi-scale

convolutional filters, which enable the network to capture

features at different scales, thereby enhancing the model’s

ability to distinguish between different classes of leaf dis-

eases. Additionally, our model also incorporates batch

normalization and dropout layers, which prevent overfitting

and improve the model’s generalization capability.

Our model was implemented using the PyTorch deep

learning framework on a high-performance machine with

an NVIDIA GeForce RTX 3090 GPU and 64 GB RAM.

We utilized Python 3.7 for all experiments and utilized

several popular Python libraries such as Pandas, NumPy,

and Matplotlib for data visualization and manipulation.

To train our model, we applied a batch size of 64 and a

learning basics learning rate of 0.001 with such a cosine

austempering learning rate set up to train our model. The

Adam optimizer was employed with default parameters

and a weight decay of 0.0001. We trained our model for

100 epochs and utilized early stopping with patience of 100

epochs based on the validation accuracy. We performed all

our experiments by using fivefold cross-validation to obtain

more robust results.

We employed various evaluation metrics such as accu-

racy, recall, F1-score, and precision to determine how well

our proposed model performs. We also visualized the

confusion matrix to gain insights into the classification

performance of our model. Table 3 displays all the details

regarding the model setup.

Our proposed deep learning-based approach demon-

strated promising results in accurately classifying multi-

class leaf diseases in tomatoes. By leveraging the power of

deep multi-scale convolutional neural networks and

employing various preprocessing techniques, we improved

the efficiency and accuracy of disease classification in

tomato crops. These findings have potential applications in

precision agriculture and sustainable crop management,

contributing to developing more accurate and automated

methods for disease classification in various crops.

One of the significant advantages of our proposed

approach is its ability to handle multi-class classification of

leaf diseases. This is particularly important in agricultural

applications, where plants may be affected by multiple

diseases simultaneously. By accurately classifying the

different diseases, our model can help farmers take targeted

action to address the specific disease and prevent it from

spreading to other plants in the crop.

In addition, our model is highly scalable and can be

easily adapted. This can help to address the growing

demand for precision agriculture techniques that can help

farmers optimize their crop yield. In General, our proposed

deep learning-based approach has the potential to change

the way we approach disease classification in agriculture,

Table 1 Multi-scale approach for image resizing

Scale Technique

224 9 224 Resizing to a fixed scale

256 9 256 Resizing to a fixed scale

128 9 128 Resizing to a fixed scale

Table 2 Data augmentation techniques and their parameters

Data augmentation technique Parameter/range

Horizontal flipping Yes

Rotation 20�
Zooming 0.2 range

Shifting 0.2 range in width and height
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and we look forward to further exploring its applications in

this field.

3.3 Proposed model architecture

The proposed deep multi-scale CNN model architecture is

designed to effectively classify plant diseases in tomato

crops using multi-scale disease images. The model struc-

ture relies on a deep convolutional neural network (DNN)

that uses multiple scales of input data to enhance the pre-

cision and robustness of disease detection and classifica-

tion. In this section, we provide an in-depth exploration of

the architecture underpinning our proposed Deep Multi-

Scale Convolutional Neural Network (DMCNN) for the

accurate classification of multi-class leaf diseases in tomato

crops. Our approach is rooted in harnessing the capabilities

of convolutional neural networks (CNNs) across multiple

scales of input data to bolster disease detection and clas-

sification precision.

The model consists of three main components:

1. Multi-Scale Convolutional Layers: Positioned at the

forefront of our model’s architecture, the Multi-Scale

Convolutional Layers are pivotal. These layers harness

multi-scale convolutional filters, enabling the network

to capture intricate features across different scales.

This strategic choice empowers the model to distin-

guish between various classes of leaf diseases more

effectively. These layers form the foundational basis

for capturing multi-scale features. By integrating

convolutional filters of varying scales, the network

gains the ability to detect subtle nuances present at

different levels. This approach recognizes that diseases

manifest distinctively across scales, and these layers

allow the model to encapsulate these variations. The

‘‘how’’ of the question—how does multi-scale enhance

classification—is answered by the aggregation of

features from different scales, contributing to a more

comprehensive disease representation and improved

classification accuracy.

2. Multi-branch Feature Extraction Module: The multi-

branch feature extraction module is at the core of the

model’s feature extraction prowess. Designed to

extract features at varying scales from the input image,

this module employs a sequence of convolutional

layers endowed with different filter sizes from the

initial stage. These layers collaborate to meticulously

extract and segregate features spanning multiple scales,

thereby capturing the leaf disease images’ local and

global characteristics. The outputs of these convolu-

tional layers are subsequently concatenated and chan-

neled through a pooling layer, which effectively

reduces the spatial dimensions of the extracted features

while retaining their critical information. The resulting

feature representation is then directed toward the

subsequent global feature fusion module for further

processing.

3. Multi-Model Fusion Layers and Classification: The

final stage of the model’s architecture encompasses a

global feature fusion module, responsible for

Table 3 Model details

Option Value Details

Implementation details Deep learning framework PyTorch

GPU NVIDIA GeForce RTX 3090

RAM 64 GB

Libraries NumPy, Pandas, Matplotlib

Model training details Batch size 64

Learning rate 0.001

Learning rate scheduler Cosine annealing

Optimizer Adam

Weight decay 0.0001

Epochs 100

Early stopping Patience of 100 epochs based on validation accuracy

Cross-validation fivefold

Evaluation metrics Accuracy

Precision

Recall

F1-score

Confusion matrix Visualization
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harmonizing the diverse multi-scale features harnessed

from the previous stages. Through this process, the

module generates a cohesive and unified feature

representation that encapsulates the insights from

various scales. This consolidated feature representation

serves as the foundation for the model’s decision-

making process in disease classification. By fusing the

features extracted from different scales, the model

gains the ability to comprehend intricate details and

variations present in the data, which in turn contributes

to improved classification performance. The extracted

and unified feature representation from the Global

Feature Fusion Module is channeled into the fully

connected layers, facilitating the final classification

decision.

Addressing the question of ‘‘why’’ multi-scale approa-

ches can enhance classification performance is a crucial

aspect. This phenomenon can be attributed to the capability

of multi-scale features to capture a wide array of visual

details. Leaf diseases can exhibit variations across scales,

with certain distinctive features being more prominent at

specific scales. By embracing these various scales, the

model becomes adept at capturing both fine-grained details

and broader contextual information, ultimately leading to

an enriched feature representation that improves its ability

to discriminate between diverse classes of diseases. The

synergy between the different scales amalgamates into a

holistic and robust classification framework. This strategic

amalgamation of components enables the model to navi-

gate through the complexities of tomato crop diseases and

leverage multi-scale insights to enhance its accuracy and

robustness in disease classification.

The multi-scale feature extraction module uses a series

of convolutional layers with varying filter sizes to extract

and separate features at multiple scales. The outputs of

these convolutional layers are concatenated and passed

through a pooling layer to reduce the spatial dimensions of

the features. The resulting feature map is then fed into the

global feature fusion module.

The global feature fusion module uses a series of fully

connected layers to combine the multi-scale features into a

unified feature representation. The output of the global

feature fusion module is then passed through a softmax

layer for disease classification.

We use a large and diverse dataset of tomato leaf images

captured by a camera to train our proposed model. The

dataset is preprocessed and augmented to ensure a balanced

distribution of classes and to prevent overfitting. To train

the model for 100 epochs, we utilized the Adam optimizer

with such a learning rate of 0.001. Finally, the model is

implemented using the PyTorch deep learning framework.

Figure 2 provides the architecture of the proposed deep

multi-scale CNN model architecture.

The model takes in a tomato image as input and then,

feeds it through a series of multi-scale convolutional layers,

which extract features at different scales, allowing the

model to capture both local and global information about

the image. Next, the features from each scale are processed

separately by multi-branch feature extraction layers, which

learn representations specific to different spectral channels.

The outputs of these branches are then fused together by

a multi-modal fusion layer, which combines the informa-

tion from each branch to form a unified feature represen-

tation. Finally, the fused features are fed through a

sequence of fully connected layers that also output the final

classification for the image.

The multi-scale convolutional layers’ output is then

passed through multi-branch feature extraction layers.

These layers extract features from different modalities,

including texture, shape, and color, allowing this same

model to capture different aspects of the image. The output

of the multi-branch feature extraction layers is then passed

through a multi-modal fusion layer. This layer fuses the

features extracted from different modalities into a single

representation, which is then passed through fully con-

nected layers for classification.

The model produces a probability distribution for the

various classes of tomato plant leaf disease. The model is

tuned during training to reduce the cross-entropy loss

between predicted probabilities and true labels. Further-

more, the proposed deep multi-scale CNN model archi-

tecture is designed to leverage the benefits of large dataset

images and capture different aspects of the tomato plant

leaf image for precise classification. Figure 3 presents the

architecture of the suggested deep multi-scale CNN model

with more details.

In this schematic representation Fig. 3, the terms ‘‘Batch

Normalization,’’ ‘‘ReLU,’’ and ‘‘MaxPooling’’ all refer to

the batch normalization layers, rectified linear activation

functions, and maximum pooling layers, respectively.

‘‘Fully Connected Layer’’ refers to a dense layer with such

a specified number of neurons, and finally, ‘‘Dropout’’

refers to dropout layers with a specified dropout rate.

The architecture comprises four convolutional with

increasingly smaller filter sizes, immediately followed by

batch normalization, Rectified linear activation, and then

max pooling. To minimize the dimensionality of the fea-

ture maps, a global average pooling layer is implemented

after the fourth convolutional layer. Then, with 256 and

128 neurons, respectively, two fully linked layers are

added, followed by batch normalization then ReLU acti-

vation. After that, two dropout layers with a dropout rate of

0.5 are added, and the output is obtained using a softmax

activation function. The architecture is designed for multi-
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scale image classification tasks with a tomato picture as

input and the predicted class label as output.

To provide a visual understanding of the proposed

model architecture and the textual representation providing

a detailed description for implementation, we applied

Multi-Branch Network for Tomato leaf disease classifica-

tion, as illustrated in Fig. 4 and 5.

The schema in Figs. 4 and 5 represents the proposed

deep Multi-Scale CNN Architecture using a Multi-Branch

Convolutional Neural Network designed for tomato disease

classification. The network starts with tomato pictures and

Fig. 2 Proposed deep multi-scale CNN model architecture

Fig. 3 Flowchart of the proposed deep multi-scale CNN architecture for multi-class tomato leaf disease classification

Fig. 4 An overview representation of the proposed architecture employing a multi-branch convolutional neural network
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runs them through four convolutional layers, typically

accompanied by batch normalization, Rectified linear

activation, and then max pooling. Each convolutional

layer’s output is then routed through a distinct branch, with

the first branch terminating in global average pooling,

followed by a fully connected layer and dropout. Next, the

output of a remaining three branches is pooled using max

pooling and concatenated before passing through fully

connected layers and batch normalization, Rectified linear

activation, dropout, then, finally, a softmax output layer.

Using a multi-branch convolutional neural network in

this architecture is an innovative approach to image clas-

sification that has been displayed to be highly effective.

The output of each convolutional layer is used to create

separate branches of the network, which allows for the

extraction of more detailed information from each layer of

the input image. This, in turn, results in a more accurate

and reliable classification of tomato diseases.

The use of batch normalization and ReLU activation

after each convolutional layer is also critical to the success

of this architecture. Batch normalization helps to normalize

the input to each layer, which can increase the model’s

accuracy rate. While on the other hand, ReLU activation

helps to present nonlinearity into the network, allowing it

to better capture the complex relationships between various

input image features.

Integrating multi-scale analysis, such as employing

multi-scale convolutional neural networks (CNNs), can

significantly enhance classification performance. This

approach addresses the inherent diversity in object sizes

and levels of detail present in images. By considering

various scales, the network can capture both fine-grained

features and broader patterns, facilitating the extraction of

hierarchical and contextually relevant information. This

strategy not only bolsters the model’s resilience to noise

and variability but also enables it to recognize objects

regardless of their position within the image. Effectively,

multi-scale analysis enriches feature learning, promotes

robust classification and contributes to improved general-

ization by leveraging a wider range of information from the

input data.

Overall, the proposed deep multi-scale architecture

represents an advanced and innovative approach to tackling

the intricate task of tomato disease classification. By inte-

grating a multi-branch convolutional neural network

alongside batch normalization and ReLU activation, the

architecture demonstrates its sophisticated design tailored

for this purpose. This amalgamation of cutting-edge

techniques showcases the architecture’s complexity and

emphasizes its potential effectiveness in disease classifi-

cation within the agricultural domain.

The multi-branch architecture enables the model to

process diverse information scales simultaneously, aligning

well with the varied visual manifestations of tomato dis-

eases. Batch normalization enhances training stability,

mitigating issues related to internal covariate shift, and

promoting consistent model behavior. Additionally, using

ReLU activation functions aids in efficient gradient prop-

agation, enhancing the architecture’s ability to discern

intricate disease patterns. Beyond its technical aspects, the

architecture’s contribution addresses the critical need for

accurate and automated disease classification in agricul-

ture. Swift and reliable disease identification can pro-

foundly impact crop yield, labor efficiency, and timely

intervention, thus advancing agricultural practices.

In summary, the fusion of multi-scale architecture,

multi-branch CNNs, batch normalization, and ReLU acti-

vation constitutes a pioneering effort with the potential to

reshape disease classification methodologies in agriculture.

This advancement not only signifies the progress of deep

learning but also underscores its role in revolutionizing

disease management and diagnosis in essential crops like

tomatoes.

3.4 Pre-trained model architecture

In this study, we conducted a comprehensive comparative

analysis of our deep Multi-Scale CNN model’s perfor-

mance with various pre-trained models, which was crucial

for evaluating the effectiveness and efficiency of our pro-

posed model. We compared our proposed model with four

commonly used pre-trained models for image classification

tasks, namely AlexNet, VGG16, InceptionV3, and

ResNet50. By comparing the performance of our model

with these established models, we were able to have a

deeper comprehension of the strengths and weaknesses of

each model and identify areas where our proposed model

could be improved. The results of this comparative analysis

provided valuable insights that informed the refinement

and optimization of our DMCNNs model and helped us to

achieve superior performance in our image classification

task. The tuning details of different pre-trained models on

the tomato leaf dataset are presented in Table 4.

Using the tuning details in Table 4, it can be observed

that each pre-trained model has a unique architecture, with

varying numbers of layers and different configurations of

pooling, convolution, and dense layers. These differences

can affect the performance and efficiency of each model for

a given task. Therefore, it is important to compare the

performance and efficacy of our suggested DMCNN model

to that of these pre-trained models on the Tomato dataset.

bFig. 5 A detailed visual depiction of the proposed deep multi-scale

CNN architecture utilizing a multi-branch convolutional neural

network
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The results of this comparison will allow us to analyze the

effectiveness and efficiency of our model and determine

whether it outperforms or falls short of the state-of-the-art

models. A detailed discussion and analysis of the perfor-

mance comparison will be presented in the following sec-

tions of the study.

4 Experimental results

In this section, a number of experiments were conducted to

evaluate and showcase the efficacy of the suggested

approach on the tomato plant leaf image dataset. All the

results obtained from these experiments are elaborated in

detail in section Sect. 4.1, providing a comprehensive

explanation of the findings. Subsections, Sect. 4.1.1, and

Sect. 4.1.2, present a detailed explanation of the outcomes

obtained.

4.1 Implementing the proposed model
architecture

In this section, we introduced the utilization of deep multi-

scale convolutional neural networks (DMCNNs) also for

the automated classification of leaf diseases in tomatoes.

To assess the efficacy of our suggested approach, we uti-

lized a dataset comprising 125,00 images across 10 distinct

categories, including healthy leaves and nine types of

diseases. The images were evenly distributed among the 10

classes, each containing 1250 images. The results of this

evaluation provided valuable insights into the model’s

performance, identified areas for improvement, and refined

the model further. In conclusion, the performance evalua-

tion demonstrated that our proposed DMCNNs model is

highly effective in achieving its intended goals and can be

considered a robust solution in its domain.

The exceptional accuracy of the proposed models was

evident through their training and validation accuracy. The

average training and validation accuracies were found to be

99.24% and 99.15%, respectively, which indicates the

models’ robust performance. Additionally, the training and

also validation losses were observed to be 0.2918 and

0.3699, respectively, further emphasizing the accuracy of

the models. To illustrate these results, Fig. 6 and Table 5

display the accuracy and the loss of the proposed

architecture.

The observed training and validation accuracies and

losses for the proposed models provide strong evidence of

their accuracy and effectiveness. The average training

accuracy of 99.24% indicates that the model performed

exceptionally well on a training set, correctly classifying

most images. The average validation accuracy of 99.15%

further confirms the model’s accuracy on the unseen data,

highlighting its robustness and ability to generalize well.

The training and validation losses of 0.2918 and 0.3699,

respectively, demonstrate that the model was capable of

learning the features and patterns in the dataset effectively,

resulting in minimized loss values. Furthermore, the

closeness of the training and validation loss values indi-

cates the model’s generalization ability.

Furthermore, the accuracy and loss graphics illustrated

in Fig. 6 present a visual image of the performance of the

proposed architecture, emphasizing the model’s stability

and consistency through-out the training process. The sta-

bility and consistency of the suggested model’s perfor-

mance during a training process are reflected in the

accuracy and loss plots of both the validation and training

data. The absence of significant spikes or dips in the curves

indicates that the model was successful in effectively

learning the features and patterns of the dataset effectively

without encountering overfitting or underfitting issues.

Therefore, the accuracy and loss curves demonstrate that

the model was well-performed through-out the training

process. Therefore, the high accuracy rates and low losses

observed in the proposed model, as well as the consistency

shown in the accuracy and loss graphics, provide strong

evidence of the performance and accuracy of the suggested

approach in classifying tomato plant leaf diseases.

The minor fluctuations observed within the learning

curve in Fig. 6 should not be misunderstood as indicative

of inferior model performance. Instead, they reflect the

dynamic nature of the training process. Our model con-

tinuously adapts to address the varying complexities and

patterns inherent in the dataset. We have meticulously

Table 4 Tuning details of

different pre-trained models on

Tomato Leaf dataset

Model name VGG16 AlexNet InceptionV3 ResNet50

Total layers 16 8 22 50

Max pool layers 5 3 3 1

Filter size 3 – 1 9 1, 3 9 3, 5 9 5 3 9 3

Stride 2 9 2 – 2 9 2 2 9 2

Dense layers 3 2 – 3

Dropout layers 2 2 – 2

Flatten layers 1 1 – 1
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employed rigorous preprocessing methods, adept regular-

ization techniques, and meticulous optimization protocols

to avoid challenges stemming from these fluctuations.

Within our proposed approach, we openly recognize the

intermittent occurrence of fluctuations that can arise within

the learning curve and their potential influence on the

model’s training trajectory. These fluctuations may arise

due to several factors, including the intricate nature of the

tomato leaf disease dataset, integrating multi-scale

dimensions into the convolutional neural networks, and the

inherent diversities in disease manifestation among distinct

samples.

Additionally, the model’s capacity to harness multi-

branch architectures for multi-feature extraction could lead

to varying degrees of responsiveness to distinct disease

patterns. By leveraging the ability to capture intricate

details across various scales and exploiting multi-branch

structures for enhanced feature extraction, the occasional

fluctuations in the learning curve may emerge due to the

complex interplay among these mechanisms. Despite these

fluctuations occasionally causing sudden surges or drops in

performance metrics, it is crucial to recognize that the

overall trend of the learning curve consistently

demonstrates improvements in accuracy and reduction in

loss as training epochs progress. This observation provides

compelling evidence that our model’s multi-scale and

multi-branch attributes effectively comprehend and

accommodate the intricate details of the dataset, thereby

enhancing the model’s proficiency in disease classification.

To optimize the performance of the models, it is critical

to carefully choose the right batch size and the number of

training epochs. For example, in an experimental study

described in Fig. 7, we tested four different batch sizes (8,

16, 32, and 64) to measure the training time for each epoch

and also testing accuracy. The results showed that as the

batch size increased, the training time for each epoch

decreased when the testing accuracy continued to increase.

Figure 7a, b clearly demonstrates this relationship, high-

lighting the benefits of using larger batch sizes during

model training. This finding suggests that increasing the

batch size can lead to faster convergence and better testing

accuracy, but it is important to carefully balance this

against the risk of overfitting. Ultimately, selecting the

appropriate batch size and a number of epochs requires

careful experimentation and consideration of the specific

model architecture and dataset.

During the model training, we found that a batch size of

64 was the most effective, generating the highest testing

accuracy while minimizing training time. However, further

analysis of testing accuracy at different model training

epochs, as shown in Fig. 8, revealed that accuracy gradu-

ally increased to 100 epochs. As such, a batch size of 64

and 100 as training epochs could be optimal for this par-

ticular model. Therefore, this study provides valuable

Fig. 6 Analysis of epoch versus accuracy/loss plots of the proposed model on train and validation datasets

Table 5 Observed training and validation accuracies and losses

Metrics Training Validation

Accuracy 99.24% 99.15%

Loss 0.2918 0.3699
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insights into selecting optimal parameters for training

neural networks.

Furthermore, by experimenting with different batch

sizes and epochs, we can identify the best values to use for

a particular model and dataset, which can remarkably

improve the performance of the model. However, it is

necessary to remember that the optimal parameters may

vary depending on the specific circumstances and gener-

alizing the findings of one study to other models and

datasets may not be appropriate. Therefore, it is recom-

mended to perform similar experiments on other architec-

tures with various datasets to identify the best parameters

for each case.

4.1.1 Performance evaluation of the developed model

In this research work, we utilized the confusion matrix to

gain a clear understanding of the accuracy and potential

sources of confusion for our classification model when

making predictions. Our confusion matrix consisted of four

metrics, which were used to measure the accuracy of

classifications and predict the behavior of each pair of

predictor and target attributes for a given class value. Using

the confusion matrix, we were able to visualize the effec-

tiveness of our DMCNN model, identifying its strengths

and weaknesses in detecting and classifying tomato leaf

diseases.

In our analysis study, we evaluated the performance of

the classifier that distinguishes between ten classes of

tomato leaf disease using the four metrics of true negatives

(TN), false positives (FP), true positives (TP), and false

negatives (FN). TP and TN represented the correct iden-

tification of tomato leaf disease, while FP and FN repre-

sented incorrect identification. The confusion matrices for

the models have been depicted in Fig. 9, providing a clear

visualization of the true class values in the sample data and

the class values predicted by the CNN classifier. The

findings demonstrated that the accuracy of our suggested

DMCNN was 99.1%.

Furthermore, the use of the confusion matrix was critical

in providing an accurate classification of tomato leaf dis-

eases using our DMCNN model, enabling us to identify

options for improvement and optimize the model for better

performance in real-world applications.

A confusion matrix is a practical tool for assessing a

classification model’s performance. In our study, we

employed the confusion matrix to analyze the effectiveness

of our proposed DMCNN in classifying ten different types

of tomato leaf diseases. According to the confusion matrix,

our model had an impressive accuracy of 99.1%. with very

few misclassifications. This high level of accuracy indi-

cates that the DMCNN is a robust and reliable tool for

identifying tomato leaf diseases. Furthermore, by providing

Fig. 7 Exploring batch sizes impact on system performance: a analyzing training time and epochs versus batch size, and b assessing testing

accuracy for varying batch sizes

Fig. 8 Influence of epochs on testing accuracies: an analysis of the

relationship between model training iterations and accuracy
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detailed information on the true negative, true positive,

false positive, and false negatives, the confusion matrix

helped us gain insights into the strengths and weaknesses

of our model, allowing us to refine it further and improve

its performance. Furthermore, using the confusion matrix

was crucial in evaluating the accuracy of our model and

understanding how it can be optimized to achieve even

better results.

In addition to overall accuracy, we also evaluated the

accuracy, recall, F1 score, and precision of our model for

each class. These metrics are important because they pro-

vide more detailed insights into the model’s performance

on individual classes. For example, Precision determines

the percentage of true positive predictions between all

positive predictions, while also recall controls the ratio of

true positive predictions between all actual positive cases.

The F1 score is the rhythmic standard actually mean of

recall and precision, giving a complete proportion of the

model’s performance that balances both metrics. There-

fore, the performance evaluation equations in Eqs. (1), (2),

(3), and (4) are used to calculate performance metrics and

evaluate results:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð1Þ

Sensitivity Recallð Þ ¼ TP

TPþ FN
ð2Þ

F1 - Score ¼ Precision� Recall

Precisionþ Recall
ð3Þ

Precision ¼ TP

TPþ FP
ð4Þ

where TP—True Positive; TN—True Negative; FP—False

Positive; FN—False Negative.

By evaluating these metrics for each class, we can

identify any specific weaknesses or strengths of the model

for particular classes, which can guide further improve-

ments or adjustments to the model. The evaluation metrics

for each tomato leaf disease class on the testing data,

including classes’ accuracy, precision, recall, and F1-score,

are presented in Table 6.

The comparative analysis of the performance of our

DMCNN model with pre-trained models was an essential

aspect of our study, as it permitted us to evaluate the

efficacy as well as the effectiveness of our suggested

model. The models we compared our proposed model with

were AlexNet, VGG16, InceptionV3, and ResNet50, which

are commonly used models for image classification tasks;

the architectures used for these models are explained in

Table 4.

The analysis results show that our proposed DMCNN

outperforms all other models in regard to the accuracy,

recall, F1 score, and precision. Our model reported an

accuracy of 0.991, indicating that 99.1% of the test data-

set’s samples were correctly classified. The precision of our

model was 0.991, indicating that the percentage of true

positive predictions was 99.1% of all positive predictions.

The recall of our model was 0.991, indicating that the

percentage of true positive predictions between all actual

positive instances was 99.1%. Finally, the F1-score of our

model was 0.992, indicating that it performed admirably in

terms of precision and recall.

Among the compared models, InceptionV3 and

ResNet50 exhibit the lowest accuracy and F1-score.

Fig. 9 Confusion matrix for detection of tomato leaf diseases. ‘0’, ‘1’,

‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘5’, ‘8’, and ‘9’ represent bacterial spot, late

blight, early blight, leaf mold, spider mite, Septoria leaf spot, target

spot, mosaic virus, yellow curl virus, and healthy leaves, respectively

Table 6 Test dataset’s class accuracy, precision, recall, and F1-score

values for each class of tomato leaf disease

Class Precision Recall F1 score

Bacterial spot 0.99 0.98 0.99

Late blight 1.0 0.99 1.0

Early blight 0.98 1.0 0.99

Leaf mold 0.99 0.99 0.99

Spider mite 0.98 1.0 0.99

Septoria leaf spot 0.99 0.97 0.98

Target spot 0.99 0.99 0.99

Mosaic virus 0.99 1.0 0.99

Yellow curl virus 1.0 1.0 1.0

Healthy 1.0 0.99 1.0

Accuracy 0.991

Macro Avg 0.991 0.991 0.992

Weighted Avg 0.9918 0.9911 0.9916
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InceptionV3 achieved an accuracy of 0.89, while ResNet50

achieved an accuracy of 0.88. AlexNet and VGG16 per-

form better than InceptionV3 and ResNet50 but still fall

short of our proposed DMCNN’s performance. AlexNet

achieved an accuracy of 0.95, while VGG16 achieved an

accuracy of 0.91. These results clearly indicate that our

proposed DMCNN model outperforms the other models in

regard to classification performance. The comparison

results, which include classes accuracy, recall, F1-score,

and precision, have been presented in Table 7 and Fig. 10.

The comparison of our proposed DMCNN model’s

classification performance with that of pre-trained models

in our study highlights the efficiency and effectiveness of

our system. The results of our analysis indicated that our

proposed DMCNN model outperformed all other models

that were evaluated. It achieved excellent accuracy, recall,

F1-score, and precision which are crucial performance

metrics in deep learning.

These findings demonstrate the potential of our pro-

posed DMCNN model for correctly classifying tomato

plant leaf diseases, which is a significant benefit to the

agriculture industry. With accurate disease classification,

farmers can take prompt and effective measures to control

and prevent the spread of diseases in their crops.

Moreover, the practicality and efficacy of our DMCNN

model can potentially be extended to other areas of agri-

culture, such as the classification of diseases in other crops.

The development of accurate and efficient deep learning

models for agriculture can have far-reaching benefits,

including improving sustainable farming practices.

In general, our study’s findings highlight the potential of

our proposed DMCNN model as a reliable tool for accu-

rately and efficiently classifying tomato leaf diseases and

its potential for wider applications in the agriculture

industry.

4.1.2 Comparison of various state-of-the-art approaches
to our proposed model: an evaluation
of performance

The classification of tomato plant leaf diseases is a crucial

research field that has recently attracted much attention.

With the advent of deep learning-based approaches, there

has been a breakthrough in the development of models for

accurately classifying tomato plant leaf diseases. In this

context, it is crucial to make comparisons of the perfor-

mance of new model against the existing state-of-the-art

approaches to evaluate their efficacy.

To this end, Table 8 and Fig. 11 present a comprehen-

sive comparison of the proposed model with 10 contem-

porary deep learning-based methods for tomato disease of

leaves classification. In order to ensure coherence and

validity, we selected the most recent models based on deep

learning methods for disease identification and catego-

rization in tomato leaves.

The comparative survey included both transfer learning-

based models and the models that were developed from

scratch. The proposed model significantly outperforms all

other current methods in terms of classification perfor-

mance. This suggests that the proposed model can accu-

rately classify various types of tomato plant leaves diseases

and can provide an effective tool for plant pathologists and

farmers to assess the health condition of tomato crops.

Deep learning approaches to disease classification in

tomato leaves have shown promising results. The proposed

model is a significant step toward achieving accurate and

efficient identification and categorization of tomato dis-

ease. It is worth noting that suggested model can be further

improved by incorporating additional data sources, opti-

mizing hyperparameters, and exploring novel deep learning

architectures. Furthermore, the comparative analysis pre-

sented in Table 8 highlights the importance of evaluating

the performance of new models against existing

approaches.

The ability of the proposed model to outperform all

other methods in terms of classification performance

demonstrates its capability for practical applications in

plant pathology.

Analysis of Table 8 unequivocally demonstrates that our

model has exhibited superior performance compared to

other studies. This notable achievement can be attributed,

in part, to the inherent capability of our DMCNN model to

extract multi-scale features from input images. This

intrinsic capacity empowers our model to effectively

encompass both intricate fine-grained details and the

broader contextual aspects of the input image. This holistic

understanding plays a pivotal role in achieving accurate

multi-class plant disease classification. Conversely, the

study by Ozbilge et al. [27] surpassed our performance.

Table 7 Comparative analysis: proposed model versus pre-trained

models

Method Accuracy Precision Recall F1 score

AlexNet 0.95 0.96 0.96 0.95

VGG16 0.91 0.93 0.91 0.92

InceptionV3 0.89 0.90 0.89 0.89

ResNet50 0.88 0.89 0.88 0.88

Proposed DMCNN 0.991 0.991 0.991 0.992
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Fig. 10 Overall performance of

CNN architectures

Table 8 Comparison of

different existing work with our

proposed model

Reference Crop Dataset Method Accuracy (%)

Agarwal et al. [19] 10 tomato plant classes 17,500 images CNN-based model 91.2

Gadekallu et al. [20] 10 tomato plant classes 18,160 images Hybrid deep model 86–94

Intan et al.[21] 10 tomato plant classes Kaggle Dense CNN 95.7

Agarwaal et al.[22] 10 tomato plant classes Plant Village Vgg-16 91.2

Wang et al.[23] 10 tomato plant classes Plant Village AlexNet 95.62

Kaur et al. [24] 7 tomato plant classes Plant Village ResNet-101 98.8

Kaushik et al.[25] 6 tomato plant classes Plant Village ResNet-50 97.01

Trivedi et al.[26] 9 tomato plant classes 3000 images Deep-CNN 98.49

Vijay et al. [27] Tomato plant Plant Village XAI-CNN 98.5

Ozbılge et al.[28] Tomato plant Plant Village Compact-CNN 99.70

Proposed DMCNN 10 classes of tomato plant 12,500 images DMCNN 99.1

Fig. 11 A comparative analysis

with state-of-the-art works
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The success of their approach can be ascribed to a con-

fluence of factors, prominently including their adept uti-

lization of a comprehensive, curated, and preprocessed

dataset. Such datasets hold the potential to significantly

elevate model performance by embracing a diverse array of

disease manifestations and variations. Additionally, the

efficacy of their methodology, architectural choices, and

meticulous hyperparameter tuning may have synergisti-

cally contributed to their favorable outcomes on this

specific dataset. Nevertheless, it is noteworthy that diverse

approaches may outperform one another based on the

distinctive characteristics and complexities inherent to

individual datasets.

5 Discussion and analysis

In this paper, we recommended using deep multi-scale

convolutional neural networks (DMCNNs) for automati-

cally generated classification of multi-class leaf diseases in

tomatoes. We evaluated the efficiency of our proposed

DMCNN model using a publicly available dataset of

11,000 tomato leaf images containing 10 different cate-

gories of diseases, including healthy leaves.

Our results demonstrated that the suggested DMCNN

model performs better than several existing models, such as

VGG-16, AlexNet, InceptionV3, and ResNet-50, regarding

accuracy, precision, F1-score, and recall. In addition, the

overall accuracy of our model was 99.1%, which is a sig-

nificant improvement over the baseline models.

We also provided a detailed analysis of the confusion

matrix for each model, which showed that our DMCNN

model had a higher rate of true positives and a rate of false

positives than the other models. This indicates that our

model is better at correctly identifying diseased leaves and

avoiding misclassifying healthy leaves as diseased.

Furthermore, we compared the performance of our

DMCNN model with other studies in the literature that has

used similar datasets for tomato disease detection. Our

model outperformed most of the previous studies, includ-

ing those that used traditional learning algorithms and

those that used deep learning models, such as AlexNet and

GoogLeNet. Table 9 presents the overall accuracy com-

parison of the proposed model and existing models.

Table 9 presents a comparison of the performance of the

proposed DMCNN model with existing work methods in

an unspecified field. The proposed DMCNN model out-

performs almost all the state-of-the-art methods listed in

Table 9, and the ST column reports the results of a sta-

tistical significance test. The ‘‘ ? ’’ symbol in the ST

column indicates that the proposed DMCNN model out-

performs the baseline with p\ 0.05, which means that the

improvement is statistically significant. Overall, the

table provides a quick summary of the performance of the

proposed DMCNN model and the state-of-the-art methods.

One potential reason for the superior performance of our

DMCNN model is its ability to extract multi-scale features

from input images. This allows our model to capture both

the fine-grained details and the overall context of the input

image, which is particularly important for the accurate

classification of multi-class plant diseases. Additionally,

our model was trained on a large and diverse dataset, which

may have contributed to its robustness and generalization

performance.

Furthermore, our study demonstrates the effectiveness

of DMCNNs for the automated classification of multi-class

leaf diseases in tomatoes. Our results suggest that this

approach can significantly improve the accuracy, perfor-

mance, and reliability of disease identification in agricul-

ture, which can significantly impact crop yields and

quality. Further research can explore the application of our

Table 9 Comparison of the

proposed DMCNN model with

existing approaches

Our approach State-of-the-art methods Improvement (ST)

99.1% 91.2% CNN-based model [19] ?

86–94% Hybrid deep model [20] ?

95.7% Dense CNN [21] ?

91.2%Vgg-16 [22] ?

95.62% AlexNet [23] ?

98.8% ResNet-101 [24] ?

97.01% ResNet-50 [25] ?

98.49% Deep-CNN [26] ?

98.5% XAI-CNN [27] ?

99.70% Compact-CNN [28] -

The ST column reports the results of a statistical significance test, where ? indicates that our method

outperforms the baseline with p\ 0.05, - indicates that our method does not outperform the baseline with

p C 0.05, and N/A indicates that no statistical test was performed in the original paper
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model to other crops and the development of more

advanced models for disease detection in agriculture.

While the study introduces a notably efficient technique

for automated multi-class leaf disease classification in

tomatoes, it is essential to recognize a significant limita-

tion. The study’s evaluation exclusively centers on the

proposed model using a single dataset, potentially offering

insights into only a subset of tomato diseases within

varying regional and growth contexts. Acknowledging this,

there are numerous promising avenues for future

enhancements to the DMCNN approach that could elevate

its performance and significance.

Therefore, in future improvements for the DMCNN

approach, numerous exciting possibilities exist to elevate

its performance and impact. Firstly, refining the architec-

ture by delving into the optimization of its components

could yield substantial enhancements. Experimenting with

network depth, convolutional layer arrangements, kernel

sizes, and channel configurations could enhance feature

extraction and classification accuracy. This fine-tuning

process could unlock the model’s full potential by tailoring

its architecture to the nuances of disease-related features in

tomato leaves.

Exploring attention mechanisms present an intriguing

avenue to further improve the model’s discriminative

power. By allowing the DMCNN to focus on the most

relevant image regions selectively, attention mechanisms

can enhance the model’s ability to capture crucial disease-

related patterns, leading to more precise and accurate

classification outcomes. Furthermore, adopting ensemble

learning strategies that leverage the strengths of multiple

DMCNN instances or integrate them with complementary

architectures could result in a more robust and reliable

classification system. The synergy of these approaches

could significantly enhance the model’s capacity to handle

diverse disease scenarios effectively.

Another promising direction involves domain-specific

innovations that cater to the unique challenges of plant

disease classification. Tailoring preprocessing techniques

to highlight disease-related features and collaborating with

experts in plant pathology could amplify the model’s

capability to detect subtle disease symptoms. Integrating

multi-modal data, such as hyperspectral or thermal images,

alongside visible spectrum images can provide a compre-

hensive understanding of plant health, ultimately advanc-

ing disease classification accuracy. Moreover, focusing on

user–friendly interfaces and mobile applications can

facilitate the practical implementation of the DMCNN in

real-world scenarios, ensuring seamless usability for agri-

cultural stakeholders. As these avenues converge, they

chart a compelling path toward harnessing the DMCNN’s

potential to revolutionize automated disease diagnosis in

agriculture.

6 Conclusion

In this study, we mainly aimed to develop a robust and

accurate method for classifying diseases in tomato plants

using deep learning techniques. To achieve this goal, we

introduced a novel deep multi-scale CNN architecture that

integrates multiple channels of information for better dis-

ease classification. We evaluated the proposed framework

using a public dataset of tomato leaf images, which

included multiple types of diseases and various levels of

severity. Our results demonstrate that the proposed model

provides an accuracy of 99.1%, which indicates its high

effectiveness in accurately classifying tomato leaf diseases.

Furthermore, we compared the performance of our model

with other existing methods and found that our model

outperformed them regarding accuracy, recall, precision,

and F1 score.

The feature importance analysis of the proposed model

revealed that the combination of multi-scale images and

deep learning techniques could significantly improve the

classification of plant diseases. Furthermore, our study

provides valuable insights into developing accurate and

robust disease classification systems using multi-scale

imaging and deep learning techniques. The proposed model

has the potential to make a significant impact on the

agricultural industry by improving crop health and

productivity.

In future work, we intend to use our proposed model to

detect and classify diseases in other crops, as well as to

explore the potential of transfer learning techniques to

improve the performance of our model. We also aim to

study the feasibility of deploying our model in practical

applications, such as precision agriculture, where it can

detect and prevent disease spread in crops more efficiently

and effectively.
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