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Abstract
Mental stress is a significant risk factor for several maladies and can negatively impact a person’s quality of life, including

their work and personal relationships. Traditional methods of detecting mental stress through interviews and questionnaires

may not capture individuals’ instantaneous emotional responses. In this study, the method of experience sampling was used

to analyze the participants’ immediate affective responses, which provides a more comprehensive and dynamic under-

standing of the participants’ experiences. WorkStress3D dataset was compiled using information gathered from 20 par-

ticipants for three distinct modalities. During an average of one week, 175 h of data containing physiological signals such

as BVP, EDA, and body temperature, as well as facial expressions and auditory data, were collected from a single subject.

We present a novel fusion model that uses double-early fusion approaches to combine data from multiple modalities. The

model’s F1 score of 0.94 with a loss of 0.18 is very encouraging, showing that it can accurately identify and classify

varying degrees of stress. Furthermore, we investigate the utilization of transfer learning techniques to improve the efficacy

of our stress detection system. Despite our efforts, we were unable to attain better results than the fusion model. Transfer

learning resulted in an accuracy of 0.93 and a loss of 0.17, illustrating the difficulty of adapting pre-trained models to the

task of stress analysis. The results we obtained emphasize the significance of multi-modal fusion in stress detection and the

importance of selecting the most suitable model architecture for the given task. The proposed fusion model demonstrates

its potential for achieving an accurate and robust classification of stress. This research contributes to the field of stress

analysis and contributes to the development of effective models for stress detection.
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1 Introduction

Modern society has become inseparable from stress, which

makes it nearly impossible to prevent stress factors. In

every aspect of existence, people are exposed to different

types and levels of stress. Stress is an internal experience

that occurs as a result of a person leaving their comfort

zone and undergoing a change in their daily routine. It

renders a person incapable of coping with threats to their

physical, emotional, or mental health, and can even result

in the development of chronic diseases. According to the

World Health Organization [1], stress-related disorders

have emerged, including chronic stress caused by mal-

functions, decreased well-being, increased disease rates,

fatigue syndrome, and depression.

Several tests and questionnaires, such as the perceived

stress scale (PSS) [2] and the stress response inventory

(SRI) [3], can be used to assess mental stress. However, the

signs of stress can only be examined after the individual

has experienced stress [4], and there are only subjective

solutions available, delaying the ultimate result. It can even

be incorrectly evaluated if the individual does not recog-

nize that they are under stress. To ensure a correct diag-

nosis, it is essential to look beyond the person’s words and
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provide a more objective evaluation method. In such situ-

ations, it is possible to study an individual’s unconscious

physiological signals [5–8] or to make a more precise

evaluation by combining them with facial images [9] and a

person’s voice. The most significant acquisition is the use

of methods, such as experience sampling (ES), that enable

you to detect the event at the time of the incident, as

opposed to analysis performed after the incident has

occurred.

The experience sampling method is one of the most

effective applications for analyzing daily life. The method

of experience sampling permits the use of multiple sensors,

recording channels, and application-based evaluations.

This technique is also known as an ‘‘ecological instant

assessment,’’ which is a journaling technique that evaluates

the current environment and mental state. Using this

method with technological devices enables the capture of

instantaneous experiences in real-time by randomly [10] or

at regular intervals posing queries to participants. Its ability

to be incorporated into everyday life also expands its field

of application: from tracing tobacco, alcohol, cannabis, or

opium addiction [11] to chronic pain treatment [12], cog-

nitive impairments, and susceptibility to stress [13], fatigue

self-management programs, and enhancing the quality of

life by minimizing fatigue [14]. It has been utilized fre-

quently in recent medical assessments [15].

The widespread use of smart devices facilitated by

emerging technology has transformed the way we interact

with technology and opened up new avenues for under-

standing and addressing the complex phenomenon of

environmental stress [16, 17]. Smartphones, smartwatches,

and fitness trackers have become an integral part of our

daily existence, providing unprecedented opportunities to

monitor and analyze various aspects of the human experi-

ence. Wearable devices equipped with sophisticated sen-

sors have made it possible to collect a vast quantity of

personal data that exceeds traditional self-reporting mea-

sures. These devices are capable of capturing physiological

signals such as heart rate, heart rate variability, electro-

dermal activity, and sleep patterns, providing objective and

real-time insights into the physical and emotional states of

individuals. In addition, they enable the monitoring of

emotion and cognition via techniques such as facial

expression analysis, speech recognition, and activity

tracking, thereby providing a multidimensional under-

standing of the subjective experiences of individuals. The

availability of such abundant and context-specific data has

sparked interest in the use of intelligent devices to detect

and prevent ecological stress. Stress, a pervasive and

debilitating condition that affects individuals in numerous

spheres of life, poses significant obstacles to both indi-

vidual and societal productivity. By leveraging wearable

devices and the wealth of data they provide, researchers

and practitioners can gain a deeper understanding of the

triggers, patterns, and consequences of stress, ultimately

leading to the development of effective stress management

and prevention strategies.

In addition to the opportunities presented by wearable

devices and stress monitoring, there are crucial factors to

consider. Privacy and data security are of the utmost

importance, as the collection of personal information raises

questions regarding data ownership, consent, and respon-

sible data management practices. For widespread accep-

tance and ethical implementation of these technologies, it

is essential to strike a balance between the benefits of data-

driven stress detection and the preservation of individuals’

privacy rights. In view of these opportunities and chal-

lenges, the purpose of this study is to investigate the

potential of smart devices and wearable technology for

stress detection and management in ecological environ-

ments. Using the rich and diverse data collected from

ubiquitous devices, including physiological signals, emo-

tion recognition, and contextual information, we aim to

develop a comprehensive framework that integrates these

multiple modalities for accurate, real-time stress detection.

Through this research, we hope to contribute to the

expanding corpus of knowledge on stress detection and

prevention and pave the way for innovative and individu-

alized interventions that enhance the well-being of indi-

viduals in the face of everyday stressors.

The specific objective of this study is to develop a

method for early detection of mental stress in the work-

place as a whole. This method eliminates the need to

induce stress artificially in participants. By responding to

specific inquiries at designated times throughout the day,

participants are asked to convey their mood. In addition,

participants are required to input data into a mobile

application that assesses heart rate variability (HRV), a

well-established physiological indicator of stress. The

application’s collected data are then analyzed using

machine learning algorithms to accurately detect and pre-

dict stress levels. By focusing on workplace stress detec-

tion, this study seeks to provide valuable insights into

identifying and addressing stress in occupational settings,

with the ultimate objective of developing effective stress

management and prevention strategies. The contributions

of the study to the literature are listed below:

• A fusion dataset that includes multi-sensor signals,

facial images, and audio recordings has been painstak-

ingly developed utilizing data from study participants.

This large and varied dataset can be used to facilitate

future studies and developments in stress detection

techniques. The fusion database is used as a resource

for testing and benchmarking cutting-edge models and

algorithms.
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• An improved deep learning architecture was developed

for the identification of the seven basic emotions: anger,

disgust, fear, happiness, sorrow, surprise, and apathy.

This architecture provides a sophisticated framework

for reliably identifying and categorizing stress-related

emotions by integrating image and signal-based anal-

ysis. Building this framework helps us comprehend the

nuanced nature of our reactions to stress.

• The study compares and contrasts different deep

learning architectures and uses multi-sensor data to

determine which is most effective for detecting stress.

The study finds the best methods of stress detection and

evaluation by comparing and contrasting various

methods and algorithms. In particular, the investigation

demonstrates that blood volume pulse (BVP) and

electrodermal activity (EDA) signals are very applica-

ble in stress detection. These results shed light on the

most appropriate methods for precise stress assessment

and hence contribute to the optimization of stress

detection models and algorithms.

• By combining the aforementioned contributions, this

study makes important strides forward in our under-

standing of how to recognize and prevent stress. The

research improves our understanding of the underlying

mechanisms of stress and provides valuable insights

into effective strategies for detecting, managing, and

preventing stress in a variety of contexts by leveraging

the fusion database, sophisticated deep learning archi-

tecture, and comparative analysis.

2 Related work

Advances in stress detection have been made possible by

new modalities and the application of machine learning

methods. We discuss previous research that has investi-

gated stress detection through a variety of channels, such as

physiological signals, audio-based methods, and facial

expressions. We also explore the feature extraction and

selection, machine learning models, and data fusion and

integration that are used in stress detection as part of the

machine learning and data analysis methodologies. By

reviewing the relevant literature, we can learn about the

various strategies that have been used for the problem of

stress detection.

2.1 Modalities for stress detection

2.1.1 Physiological signals

Physiological signals of stress reactions have been appre-

ciated for quite some time. These readings are objective

indicators of the body’s physiological processes and reac-

tions to stress. The electrocardiogram (ECG), electroder-

mal activity (EDA), electromyography (EMG), respiration,

and electroencephalogram (EEG) are only a few of the

physiological signals that have been widely explored for

stress detection. The ECG is used to monitor the heart’s

electrical activity [18] and get knowledge about the heart’s

inner workings. Heart rate variability (HRV), the quan-

tification of differences in the time intervals between

consecutive heartbeats [19], is one feature that may be

extracted from ECG data through analysis. An index of

autonomic nervous system function and emotional stabil-

ity, HRV has been linked to stress levels. Galvanic skin

response (GSR) or EDA assesses the skin’s electrical

conductivity. Sweat gland activity affects EDA and is

controlled by the sympathetic nervous system. Changes in

skin conductance occur as a result of increased sympathetic

activity under stress. Emotional arousal and stress levels

can be deduced from an examination of EDA signals. EMG

records the electrical potential changes caused by con-

tracting muscles. Muscle tension and activation can be

reflected in EMG readings, both of which are linked to the

body’s stress response. When people are under stress, they

tend to tense up and do more with their muscles. It is

possible to learn a great deal about stress-related facial

expressions and bruxism (teeth grinding) by analyzing

EMG signals from specific muscle groups, such as the

forehead or jaw. One such vital physiological indication

that may provide useful information for identifying stress is

respiration. Respiratory signals record details about

breathing, including the rate, depth, and variability of

breaths. When under stress, the body alters its breathing to

better prepare for fight-or-flight reactions. Abnormalities in

breathing patterns and the physiological responses to stress

can be uncovered by analyzing respiratory signals. The

electrical activity of the brain can be measured with a

physiological signal called an EEG. Electrodes are placed

on the scalp to record electrical activity in the brain in the

form of an EEG signal. Cognitive and emotional processes,

such as the stress reaction, can be understood by analysis of

EEG data. Different mental states and stress levels are

related to different frequency bands in the EEG spectral

distribution, including alpha, beta, theta, and delta waves.

Researchers can examine stress-related cognitive and

affective states, as well as their brain correlates, by ana-

lyzing EEG data. Several signal processing methods are

used to make sense of physiological signals. Frequency or

time-domain properties can be extracted from physiologi-

cal signals using signal processing techniques including the

Fourier transform, the wavelet transform, and time-fre-

quency analysis. Using these qualities, stress-related pat-

terns can be identified by capturing the signals’ underlying

dynamics and properties.
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2.1.2 Audio-based approaches

Stress levels can be inferred from an individual’s speech

and voice characteristics [20] using audio-based methods.

Emotional states, such as stress, can be gleaned from one’s

voice through the application of various methods of feature

extraction. Prosody [21] is one of the most important ele-

ments used to analyze audio data for stress detection.

Prosody is the term used to describe how speakers alter

their voices, rhythms, and rhythms to enhance their mes-

sages. It’s common for people to raise their pitch, enhance

their intensity, and speak more quickly when under stress.

Signal processing methods like pitch analysis, energy

estimate, and speech rate calculation can be used to

quantify these prosodic shifts. Speech is another crucial

characteristic that can be determined from audio waves.

Stress levels can be deduced from a person’s word choice

and the way they express themselves verbally [22]. Senti-

ment analysis, keyword extraction, and semantic analysis

are just some of the NLP methods that have been investi-

gated for application with speech content. Words or lan-

guage patterns that are indicators of stress or emotional

distress can be isolated with the use of these methods.

Audio signals can convey information not just through

the prosody and content of speech, but also through non-

verbal vocal cues. Laughter sighs, hesitance, and variations

in breathing patterns are all examples of nonverbal cues

that can express emotion. Long pauses, sighs, and erratic

breathing patterns may all be signs of stress. The devel-

opment of stress detection algorithms can benefit from the

analysis of these nonverbal indicators in audio recordings.

Audio-based stress detection relies heavily on machine

learning methods. They can be taught using audio data in

which people’s stress levels have been marked or self-re-

ported. Support vector machines (SVM), hidden Markov

models (HMM), and deep learning models (e.g., recurrent

neural networks or convolutional neural networks) are only

some of the machine learning techniques that have been

used to categorize audio signals into stress levels [23].

Combining data from many audio aspects or modalities is

one way to enhance the precision of stress detection based

on audio. A more complete picture of a person’s stress

level, for instance, can be obtained by integrating prosodic

traits with speech content or nonverbal signs. It’s important

to recognize the obstacles that audio-based stress detection

methods must overcome. The quality of the data used to

train stress detection models can be negatively impacted by

factors such as environmental noise, speaker unpre-

dictability, and language variations. In order to reliably and

accurately detect stress from audio signals, robust feature

extraction techniques and algorithms are required.

2.1.3 Facial expressions

Expressions on a person’s face can tell you a lot about how

they’re feeling, including whether or not they’re stressed.

Capturing and deciphering facial movements and muscle

activations to infer stress levels is the goal of facial

expression analysis [24]. The use of computer vision

algorithms to identify and follow the motion of facial

features is an important part of facial expression analysis. It

is feasible to extract facial features that reflect distinct

emotional states, including stress, by examining the posi-

tions and movements of face landmarks such as the eye-

brows, eyes, nose, and lips [25]. Methods including optical

flow analysis [26], geometric modeling and facial landmark

detection are frequently used in this setting. Analysis of

facial expressions is commonly performed using the facial

action coding system (FACS). Action units (AUs), which

are used to code and measure face motions, are linked to

individual muscle activations. Some permutations of AUs

are more predictive of particular emotional expressions,

such as those associated with stress than others.

Researchers can deduce a person’s stress levels from the

detection and analysis of these AUs.

Convolutional neural networks (CNNs) and other deep

learning advancements have significantly boosted the

accuracy of facial expression interpretation. Emotion

detection accuracy is greatly improved by CNN-based

models’ ability to learn to automatically extract discrimi-

native characteristics from facial photos. These models are

able to generalize well to new data since they are trained on

big labeled datasets of facial expressions. Dynamic facial

expressions, in addition to static ones, can reveal a lot

about a person’s stress levels. Micro-expressions, or fleet-

ing facial expressions, are faint and transient, but they

might betray hidden emotions or tension. These micro-

expressions are captured with high-speed cameras or spe-

cialized equipment and then detected and interpreted with

cutting-edge analysis methods. Significant progress in

stress detection has been made by the combination of facial

expression analysis and machine learning methods. Accu-

rate and reliable stress detection systems have also been

demonstrated to be possible with the help of ensemble

approaches, which combine many classifiers or models.

Facial expression-based stress detection can benefit

greatly from fusion methods. More information about a

person’s stress level can be gleaned through a combination

of facial expression elements with physiological data and

audio-based indicators. Stress can be detected by facial

expressions, but this task is complicated by factors such as

individual differences in expression, lighting, and occlu-

sions, and the requirement for huge annotated datasets for

deep learning model training. To overcome these obstacles

and enhance the accuracy and generalizability of facial
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expression-based stress detection systems, robust facial

expression analysis techniques, such as preprocessing

procedures, feature selection, and model training strategies,

are necessary.

2.2 Machine learning and data analysis
techniques for stress detection

2.2.1 Feature extraction and selection

Extracting and selecting significant characteristics from

data collected via several modalities is crucial for efficient

stress detection. The goal of stress-related feature extrac-

tion methods is to collect data that is meaningful and

indicative of an individual’s stress levels. Heart rate vari-

ability (HRV), skin conductance response (SCR), respira-

tory rate, and blood pressure are only a few of the

properties that can be derived from physiological inputs.

These characteristics shed light on the workings of the

autonomic nervous system and the physiological alter-

ations that occur in response to stress.

A number of acoustic parameters, such as pitch, inten-

sity, speech rate, spectral properties, and voice quality, can

be extracted from voice recordings and used for stress

detection. Emotional and stress states can be detected by

these observable differences in how people speak, sound,

and use prosody. Using features taken from images or

recordings of the face, stress can be detected. Various face

expressions can be indicated by a combination of facial

muscle movements represented by facial action units

(AUs). Furthermore, information about a person’s stress

levels can be gleaned from their look, including geometric

features like the distances between face landmarks and

appearance-based features like texture patterns and color

distributions. To improve the efficacy of stress detection

models, researchers have developed feature selection

methods to zero in on the most informative and discrimi-

native features. The objective is to optimize the discrimi-

native ability of the stress detection system while

simultaneously decreasing the number of dimensions

involved. Recursive feature elimination (RFE) and

sequential forward/backward selection are two examples of

wrapper methods that can be used with other approaches

such as correlation analysis and mutual information. Time-

varying and frequency-specific stress-related patterns in

physiological and acoustic data can be revealed by

employing advanced feature extraction techniques like

wavelet transformations, empirical mode decomposition

(EMD), and time-frequency analysis via spectrograms or

wavelet scalograms.

When choosing features for stress detection, it is crucial

to take into account the modality-specific traits and phys-

iological relevance. The selection of significant traits can

be guided by domain expertise and a prior understanding of

stress’s physiological and psychological elements. In

addition, real-time processing, computational confusion,

and interpretability are all factors that should guide the

selection of features for a stress detection system. The

dimensionality of the data can be reduced and the neces-

sary information extracted from the data by combining

effective feature selection methods with appropriate feature

extraction techniques. This makes it easier to create models

for detecting stress that is both effective and efficient,

which in turn leads to more precise and trustworthy

assessments of stress in a variety of contexts.

2.2.2 Machine learning models

Because they allow the creation of prediction models that

can learn patterns and relationships from the collected

variables, machine learning techniques play a significant

role in stress detection. Stress detection tasks have been

used with supervised, unsupervised, and semi-supervised

machine learning techniques. Stress detection typically

employs supervised learning methods due to the avail-

ability of a labeled dataset for model training. Support

vector machines (SVM), random forests, decision trees,

and neural networks are only a few of the classification

techniques that have shown great promise in the classifi-

cation of stress. These algorithms study the retrieved data

and learn to categorize stress levels and make predictions

about future stress conditions. For supervised learning

models to work, a training dataset that accurately portrays

the spectrum of stresses is necessary. When labeled data

are scarce or nonexistent, unsupervised learning methods

are used. On the basis of the collected features, clustering

techniques like K-means, hierarchical clustering, and

gaussian mixture models can classify stress patterns into

groups with high similarity. Through the use of unsuper-

vised learning, we can get insight into the variability of

stress responses across persons and contexts. To train stress

detection models, semi-supervised learning uses both

labeled and unlabeled data. To drive the learning process,

this method makes use of the small amount of labeled data

available, while the vast amount of unlabeled data is used

to capture a more comprehensive picture of stress patterns.

In order to make the most of labeled and unlabeled data,

several methods have been investigated for use in stress

detection. These include self-training, co-training, and

multi-view learning.

In recent years, there has been a lot of interest in using

deep learning models for the detection of stress, especially

convolutional neural networks (CNNs) and recurrent neural

networks (RNNs). Convolutional neural networks (CNNs)

are well-suited for facial expression-based stress detection

due to their proficiency in extracting spatial characteristics
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from pictures or spectrograms. However, RNNs excel in

sequential data processing and have been used effectively

in both audio and physiologically-based stress detection

tasks. Stress detection research has also looked into transfer

learning, a method that uses already-trained models on

huge datasets. Even when there is a dearth of stress-specific

data, stress detection systems can take advantage of the

information obtained on comparable tasks or datasets by

fine-tuning pre-trained models. Considerations such as data

type, availability of labeled or unlabeled samples, model

confusion, and human interpretability all play a role in

deciding which machine learning model to use. To achieve

reliable and effective stress detection, researchers must

carefully pick and assess the right machine-learning algo-

rithms based on these factors.

2.2.3 Data fusion and integration

For a more complete picture of an individual’s stress level,

it’s helpful to combine data from several different modal-

ities or sources. Data fusion and integration methods aim to

increase stress detection performance by capitalizing on the

synergistic benefits of many modalities [27]. Two main

groups of methods exist for fusing data: early fusion and

late fusion [28]. Raw or preprocessed characteristics from

several modalities are fused early on to form a unified

representation. It is possible to build a fused feature vector

by concatenating or combining the features of different

types of data, such as physiological signals, audio features,

and facial expression features. Using early fusion methods,

the model can pick up on complicated interactions between

modalities and learn from integrated data. Data with vari-

ous dimensions and sizes across modalities may present

difficulties for early fusion. On the other hand, late fusion

entails developing distinct models for each modality and

integrating their forecasts at a later time. Voting, weighted

averaging, and stacking are all viable options for combin-

ing the forecasts. By modeling each modality indepen-

dently, late fusion approaches make it possible to include

properties that are unique to each modality. In addition,

late fusion can independently deal with modalities that

have various dimensions and sizes. However, the interac-

tions and dependencies between modalities in the early

stages of the model may be missed by a late fusion.

Multi-modal fusion approaches [27], such as decision-

level fusion and feature-level fusion, have also been

investigated for use in stress detection, in addition to early

and late fusion. The output decisions or scores from many

modality-specific models are fused at the decision level to

provide a single prediction. The predictions can be aggre-

gated using a variety of fusion procedures, such as majority

voting, weighted voting, and fusion based on fuzzy logic.

However, feature-level fusion involves merging features

from different modalities through statistical procedures like

mean, median, or concatenation. The goal of feature-level

fusion is to extract valuable, modality-specific information

that can then be fed into the model.

Moreover, data integration methods take into account

the incorporation of additional relevant data sources, such

as contextual information or self-reported data, in addition

to the fusion of several modalities. A person’s stress

reaction can be affected by their surroundings, their level

of activity, the time of day, and their social contacts.

Understanding stress in certain settings can be improved by

combining contextual knowledge with multi-modal data.

Subjective information regarding an individual’s perceived

stress levels and experiences can be gleaned from self-

reported data gathered via questionnaires or diaries. A

more complete picture of an individual’s stress level can be

obtained by combining self-reported data with objective

measurements such as physiological, auditory, or facial

expression data. Modality features, data availability, data

source confusion, stress detection job difficulty, and com-

putational resources are all important considerations when

deciding on a data fusion and integration technique. When

designing a stress detection system, scientists must weigh

the benefits and drawbacks of various fusion methods to

settle on the most appropriate strategy.

3 Methodology

In this research, we propose a comprehensive strategy for

stress detection by fusing multiple modalities using deep

learning architectures. In our approach, electrodermal

activity, blood volume pressure, skin temperature,

accelerometer, speech, and facial expressions are consid-

ered as modalities. Each modality is subjected to a rigorous

preprocessing procedure to guarantee data quality and

dependability. Early fusion occurs in two phases during the

fusion process. First, the biosignal modalities (EDA, BVP,

TEMP, and ACC) are combined to capture the temporal

dynamics of physiological stress-responsive signals. The

combined biosignal modality is then combined with facial

expressions and audio waves to generate a comprehensive

picture of stress levels. These fusion structures facilitate

accurate and dependable detection of stress by capturing

and interpreting pertinent information from multiple

modalities. Figure 1 depicts the architecture and procedure

of our multi-modality stress detection system, illustrating

the techniques utilized in this investigation.
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3.1 Experience sampling mobile application
development

The development of the mobile ES software necessitated a

comprehensive strategy in order to produce a robust data

collection instrument for our stress research. For efficient

communication between the mobile application and the

remote server, the software architecture utilized industry-

standard protocols such as RESTful APIs. To collect real-

time stress data, the ES software utilized sophisticated

scheduling algorithms that allowed participants to report

their stress levels and experiences at predetermined inter-

vals or in response to specific events. The scheduling

module managed the timing and frequency of prompts

intelligently, taking into account variables such as partici-

pant availability, contextual relevance, and user prefer-

ences. In addition, the software was integrated with the

device’s native notification system, allowing for timely,

non-intrusive prompts to optimize participant engagement

while minimizing disruption to their daily activities. To

assure data integrity and reduce recall bias, the ES software

implemented secure and dependable mechanisms for data

logging. User responses and contextual data were instan-

taneously encrypted and transmitted to the backend server.

Data storage complied with stringent privacy and security

protocols, and participants provided explicit consent for

data collection and use. In addition, the software included

data validation mechanisms to detect and manage incorrect

or inconsistent inputs, ensuring the accuracy and reliability

of the collected data. During the development process,

compatibility and scalability played a significant role. The

ES software was developed to support prominent mobile

operating systems such as iOS and Android. The codebase

adhered to industry standards and made use of modular and

extensible architectures, allowing for future expansions and

modifications. The backend infrastructure of the software

was designed to manage concurrent user requests, employ

load-balancing techniques, and scale horizontally to

accommodate increasing participant numbers without

compromising performance or data integrity.

After the application prototype was created, the type of

ES application to be developed was determined. Our

study’s ES technique was intended to be a random half-

hourly schedule with seven alerts each day between 10 a.m.

and 8 p.m. Six times throughout the day, participants’

smartphones would alert them with a link to an immediate

survey. Electrodermal activity, heart rate, blood pressure,

and skin temperature were all measured and recorded

Fig. 1 The general pipeline of the proposed model for automatic stress recognition using facial expressions, audio, and physiological signals
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concurrently for 15 min. Participants were also asked to

document their own emotional experiences through pho-

tographs and audio recordings. No artificial stress was

created for this study; rather, researchers looked for and

graded stress in the context of everyday work. Stress in the

workplace was studied by collecting data from a wide

range of professions in an effort to produce a representative

cross-section of society. The inclusion of both high- and

low-stress professions enriched our understanding of stress

in its many forms.

We determined which questions to be asked after

determining the frequency of use. The structure and

question order of the questionnaire were meticulously

designed to encourage neutral and objective responses. The

responses of participants and research outcomes may be

influenced by factors such as the order and structure of the

questions posed. In contrast to questions with predeter-

mined response options, such as the Likert scale, open-

ended questions enable respondents to respond on their

own terms. While responses to open-ended inquiries tend

to be more in-depth, the rate of non-responses may be

higher. For grading purposes, the seven-point Likert scale

is extensively employed. In this research, Likert scale

questionnaires utilized both 4- and 5-point scales. The

research utilized a number of Likert-scale questionnaires

and a demographics questionnaire. Age, gender, occupa-

tion, marital status, smoking status, and medication use

were among the eleven queries included in the question-

naire’s demographic section. Six items comprised the brief

questionnaire that was completed alongside physiological

signals:

1. How do you currently feel? Options: Happy, Unhappy,

Good, Bad, Neutral, Relaxed, Satisfied, Energetic,

Excited, Tired, Nervous, Sad, Angry, Worried, Lonely,

Guilty, Sick, and Other

2. What are you doing at the moment? Options: Work,

rest, food/drink, cleaning, sports, hobby, awareness

work, listening to music, watching videos, free time,

and other

3. Is anyone else with you? Options: Manager, Owner,

Colleague, Family Members, Partner, Friend, Stran-

gers, Pets, and Nobody

4. Is there someone or something currently troubling you?

Options: Yes, No and I Don’t Know

5. Would you prefer to be somewhere else right now?

Options: Yes No and I Don’t Know

6. Do you have the energy to complete additional tasks

today? Options: Yes No and I Don’t Know

The general stress test, the PANAS brief scale, and other

surveys all contributed to the investigation of the emotional

states of study participants. The general stress test derives a

stress score from the responses of participants to twenty

scenarios of normal, ordinary life. It asks questions such as

‘‘Would you attempt to cross the street when the red light is

about to turn on?’’ and rates your likelihood of doing so

based on how close the light is to turning red. The PANAS

scale is a concise, five-point Likert scale questionnaire used

to assess positive and negative emotions. These surveys

were conducted for statistical purposes and to gain a better

understanding of the attitudes and behaviors of the sample

population. The questionnaire’s questions are enumerated

below.

1. Are you attempting to juggle multiple jobs in a short

period of time?

2. Do you grow impatient in cases of business disrup-

tions or delays?

3. Do you always feel like you have to win in the games

you play, even if it’s for fun?

4. Do you try to cross the traffic light with your car

when the red light is about to turn on?

5. Even if you need help with something you do, would

you refrain from asking?

6. Do you always feel the need to earn the admiration

of others and be respected?

7. Do you always criticize the way others do their job?

8. Do you frequently look at your watch or a clock?

9. Do you ever have excessive ambitions to improve

your achievements and position?

10. Do you get the idea that time is not enough for you?

11. Do you have the habit of doing more than one task at

once?

12. Do you often feel nervous or angry?

13. Do you find it difficult to find time for yourself and

your hobbies?

14. Do you have a tendency to talk quickly or speed up

conversations?

15. Do you consider yourself a difficult person to

get along with?

16. Do your friends or relatives say that it’s hard to

get along with you?

17. Do you have a tendency to be involved in more than

one project?

18. Do you often set deadlines for finishing your work?

19. Do you feel guilty when you take time off to rest or

sit idle?

20. Do you ever put too much responsibility on yourself?

As a final step, different modalities for data collection

have been established: (1) survey data on general stress

positive–negative emotions, and real-time mood detection;

(2) facial expressions captured in real time; (3) audio sig-

nals; and (4) physiological signal data (Fig. 2). Participants

were required to create an account in order to continuously

capture data for seven days. They were presented with a

screen requesting demographic information after
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registering in. User profiles, instantaneous surveys,

extreme emotional experiences, the General Stress Test,

the PANAS scale, and application preferences were all

available. The participants’ demographic information was

collected beforehand, and they then completed a 20-ques-

tion survey titled the general stress test to assess their

emotional reactivity to commonplace events. This stan-

dardized measure of stress utilized a four-point Likert scale

with the following response options: ‘‘Never,’’ ‘‘Some-

times,’’ ‘‘Often,’’ and ‘‘Always.’’ After completing the

survey, participants were provided with comprehensive

feedback regarding their performance. When experiencing

extreme emotions, participants captured both video and

audio. Participants shot photographs expressing their cur-

rent mood and discussed the experience verbally. The

PANAS scale required participants to rate their level of five

positive and five negative emotions on a Likert scale

ranging from 0 to 5. The spectrum of emotions examined

included initiative, concentration, inspiration, vigilance,

anxiety, rage, melancholy, resentment, and humiliation.

Before sending notifications, using their cameras, or

recording their audio during emotional highs and lows,

users were required to register for the application. Six

notifications were sent throughout the course of the day to

remind participants to review their instant self-reporting

progress.

In addition to requiring participants to answer specific

questions, the system also allows them to document pho-

tographs and sounds during times of extreme emotions,

enabling the collection of biometric data quickly.

3.1.1 Dataset of Workplace Stress in 3
Dimension(WorkStress3D)

Workplace stress in three dimensions (WorkStress3D) is

the name of the dataset we gathered, which consists of

three modalities: biosignals, facial expressions, and speech

signals. Throughout the research, participants wore a wrist-

worn Empatica E4 sensor device. They were given ques-

tionnaires to complete and asked to disclose their physio-

logical data collected over a seven-day period. The

smartphone captured survey data and visual/auditory

aspects, whereas the wrist-worn sensor device recorded

physiological information including electrodermal activity,

heart rate, blood volume pressure, skin temperature, and

accelerometer readings. With the Experience Sampling

(ES) application deployed on the mobile devices of par-

ticipants, data administration was simplified. The survey

questions, which consisted of six concise and direct

inquiries, were crafted with great care to accurately capture

respondents’ sentiments. Participants were also encouraged

to photograph and record audio recordings of their expe-

riences with intense emotions. Four times a day for a

maximum of 15 min each, physiological indicators were

recorded. The wearable sensor device collected physio-

logical data continuously for 150 min during each record-

ing session, while the mobile application collected

immediate survey data in real-time.

Twenty participants were included in the research. The

participants included a computer engineer, a research

assistant, a judge, a lawyer, a doctor, a marketer, an

entrepreneur, a professor, a secretary, and a self-employed

individual. There were approximately 35% women and

65% males, with a mean age of 38.7. Seventy percent of

the participants were employed in the private sector,

compared to thirty percent in the public sector. Twenty-five

percent of the participants smoked, while 75% did not.

Eighty percent of the participants in the study reported

being in excellent health, while twenty percent reported

having a medical condition. In addition to minor ailments

and injuries, eczema and a heart condition were also

mentioned. One participant bowed out prior to the con-

clusion of the study and was therefore not included in the

final analysis.

In addition to the data acquired from the participants, the

study used multiple public datasets to train the model.

These datasets included Cohn-Kanade (CK), Ryerson

Audio-Visual Database of Emotional Speech and Song

(RAVDESS), Toronto Emotional Speech Set (TESS), and

facial expression recognition 2013 (Fer2013). The audio

datasets contained recordings of human utterances from

various sources, while the facial expression datasets con-

tained tagged photographs of people’s facial expressions.

3.2 Proposed Deep Multi-modality Fusion Model

We present a deep multi-modality fusion model that

combines the pre-processed image, audio signal, and

physiological data to efficiently harness the information

from many modalities and accomplish robust emotion

Fig. 2 Sample views of mobile app: a home screen, b navigation, and

c audio signal recording screen
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recognition. The model’s goal is to accurately anticipate

emotional states by capturing the supplementary properties

of each modality and capitalizing on their synergistic

benefits. In order to extract meaningful representations

from raw data, the suggested fusion model uses a deep

learning architecture.

3.3 Prepocessing of WorkStress3D Dataset

The WorkStress3D dataset was created by combining data

from multiple sources to leverage the benefits of multiple

modalities and enhance comprehension of the emotional

states of participants. By integrating and extracting perti-

nent information, the purpose of the fusion dataset was to

improve the data’s performance and classification preci-

sion. Multiple iterations of data consolidation, reduction,

and fusion were required to produce the final fusion

dataset.

1. Visual Data Pre-processing: The original 1152 x 2048

pixels and RGB hues were lost in the preprocessing of

the collected face expression images. It was necessary

to separate the actual facial expression from the

background in order to facilitate feature extraction

and subsequent image processing. This was accom-

plished through face alignment, normalization, and

augmentation. Additionally, all photographs were

scaled down to the lowest resolution feasible for the

study.

2. Audio Signal Pre-processing: The spectrum charac-

teristics of the collected audio signals were investi-

gated. Using a binary scale, we extracted power spectra

and discovered that mel spectra capture the most

significant auditory details. Following these proce-

dures, the audio data were more accurately represented,

which facilitated further analysis and fusion.

3. Physiological Signal Pre-processing: The physiolog-

ical signals of participants were sampled at varying

frequencies using the wrist-worn Empatica E4 sensor

device. To resolve this issue, a downsampling tech-

nique was used to make the frequencies of the signals

more uniform. Downsampling was chosen to achieve a

balance between computing efficiency and accuracy.

By downsampling all physiological inputs to 4 Hz,

consistency and effective fusion were attained.

4. Feature Transformation: Quadratic features were

subjected to polynomial feature transformations to

capture higher-order correlations and enhance the

representation of physiological signals. By integrating

the physiological signals’ raw data, additional features

were generated. The objective was to more precisely

depict the physiological responses of participants and

to capture nonlinear interactions.

After we complete the preprocessing, we have labeled the

dataset. The labeling process involved trained human

annotators who carefully classified each data instance as

either stressful or stress-free based on established criteria.

The WorkStress3D dataset was generated by combining

processed visual information, auditory signals, and physi-

ological data. Using this dataset, researchers were able to

combine and combine modalities to gain a more complete

understanding of the emotions of individuals. The dataset

served as the basis for additional modeling and analysis,

enabling the development of efficient emotion recognition

and classification algorithms.

3.3.1 Modality-Specific Subnetworks

The proposed deep multi-modality fusion model relies

heavily on the specialized subnetworks for each input

modality, which are responsible for extracting modality-

specific features. As a result, the model can learn modality-

specific representations that are particularly well-suited for

emotion recognition based on the image, audio, and

physiological inputs.

A function fimageðIÞ, where I is the input face image,

stands in for the image subnetwork. To extract basic visual

characteristics, we use a CNN architecture that has been

pre-trained on a large-scale image dataset, such VGGNet or

ResNet, when we fine-tuned the CNN layers for emotion

recognition to tailor the learned characteristics to the

problem at hand. Here is how we can write down the image

subnetwork:

V ¼ fimageðIÞ ð1Þ

where V stands for the image characteristics that are unique

to a given modality.

The audio subnetwork is represented by the notation

faudioðAÞ, where A is the audio signal that is being input.

We used specialized audio analysis networks trained to

detect temporal dynamics and auditory patterns, such as

RNNs and CNNs. The audio subnetwork can be written in

the form of:

U ¼ faudioðAÞ ð2Þ

where U stands for the acoustic characteristics unique to

the modality in question.

Similarly, the input physiological signals are denoted by

P in the representation of the physiological subnetwork,

fphysioðPÞ. In order to describe the temporal dynamics and

spatial patterns in the physiological data, we used either

RNNs or CNNs. The physiological subnetwork can be

written as follows using a convolutional network:

W ¼ fphysioðPÞ ð3Þ
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where W stands for physiological characteristics unique to

the modality in question.

Subnetworks tailored to each modality are trained and

optimized using loss functions and optimization tech-

niques. The individual networks are trained to separate out

modality-specific characteristics. In this way, the model is

guaranteed to accurately collect the specific data associated

with each modality, paving the way for a multifaceted

comprehension of emotional states.

In conclusion, the V, U, and W features are the outputs

of the modality-specific subnetworks, which extract

modality-specific features from the input data. These

characteristics serve as rich representations that aid in the

fusing process of our proposed deep multi-modality fusion

model, which in turn makes it easier to gain a holistic

comprehension of human emotions.

3.3.2 Fusion Layers

We suggested deep multi-modality fusion model uses a

fusion layer to bring together information from several

sources, such as images, speech, and physiological data,

into a single cohesive representation. Image, sound, and

physiological characteristics that are unique to each

modality will be denoted by V, U, and W. The fusion layer

combines all of these properties into one unified repre-

sentation, denoted by the notation F. With a fully con-

nected layer and a nonlinear activation function, the fusion

layer can be realized. To express the fusion process

mathematically, we have:

F ¼ rðWf ½V;U;W� þ bf Þ ð4Þ

where Wf is the weight matrix and bf is the bias vector of

the fusion layer. The union of the modality-specific char-

acteristics along the feature dimension is represented by the

notation ½V;U;W�. An example of a nonlinear activation

function is the sigmoid or rectified linear unit (ReLU),

which is represented by the function rð�Þ. The model is

able to capture the intricate interactions and dependencies

across modalities because of the fusion layer’s ability to

incorporate complementary information from numerous

modalities. The picture, audio, and physiological subnet-

works’ feature extractions are fused at the fusion layer to

produce a representation that is representative of a holistic

understanding of emotions.

The fusion layer’s Wf and bf parameters are trained to

find the best possible fusion weights for the emotion

recognition task as a whole. The fusion layer connects

modality-specific data to a comprehensive emotion pre-

diction. As has been demonstrated, a fully connected layer

with a nonlinear activation function is used in the fusion

layer to integrate the V, U, and W features that are unique

to each modality. The model’s ability to accurately predict

feelings is due, in part, to the fact that the fused repre-

sentationF captures the comprehensive information from

many modalities.

3.3.3 Classification layer

Predicting emotions using the fused representation F

acquired from the fusion layer is the job of the classifica-

tion layer in the proposed deep multi-modality fusion

model. This layer uses a softmax activation function after a

completely connected base layer. Let us call the set of

probabilities associated with each emotion category that

has been predictedY. The mathematical definition of the

categorization layer is as follows:

Y ¼ softmaxðWcFþ bcÞ ð5Þ

where Wc is the weight matrix of the classification layer

andbc is the bias vector. Matrix multiplication, represented

by the symbol �.
The predicted probability of emotions is meaningful and

interpretable since the softmax activation function assures

that they always add up to 1. This term means:

softmaxðxÞ ¼ expðxÞ
PC

i¼1 expðxiÞ
ð6Þ

where x is a real-valued score vector and C is the total

number of emotion categories.

The loss between the predicted probability Y and the

ground truth emotion labels is minimized by training with

optimum values for the classification layer parameters Wc

and bc. The classification layer is the last step of the deep

multi-modality fusion model, and it is responsible for con-

verting the fused representationF into emotion probabilities.

The model applies the softmax function to each class of

emotions, giving each class a probability that represents how

likely the input sample is to belong to that class.

As all the above points have demonstrated, predicting

the emotion probabilities Y from the fused representation F

is the job of the classification layer, which employs a fully

connected layer followed by the softmax activation func-

tion. The probabilities are normalized and easily under-

stood thanks to the softmax function. During training, the

model’s performance in emotion classification is optimized

by learning the values of the parameters Wc and bc.

4 Experimental results

The experimental results section of this study investigates

emotional responses by analyzing biosignals collected

from multiple sensors as well as images and audio signals
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obtained through the mobile application. Using a compre-

hensive list of seven emotion labels, the video and audio

data were methodically analyzed to capture a wide range of

emotional states. Positive emotions were used to symbolize

stress-free situations, while negative emotions were used to

represent stressful situations. In order to create a labeled

dataset for stress prediction, the seven-day experiment

survey responses of the participants were considered. The

survey responses served as a valuable resource for distin-

guishing stress-related emotional manifestations from

physiological signals. Specifically, the positive emotional

expressions were labeled as ‘‘stress-free,’’ signifying

emotional well-being, whereas the negative emotional

expressions were labeled as ‘‘stressful,’’ indicating instan-

ces of elevated stress. This study sought to develop a

comprehensive comprehension of the relationship between

emotional responses and stress levels by meticulously

labeling and classifying the emotional expressions captured

from the collected data. In all experiments, datasets were

separated into training and test sets of 80% and 20%,

respectively. This analysis provides the basis for the sub-

sequent evaluation and performance evaluation of the

proposed deep multi-modality fusion model.

4.1 Survey findings and implications

We began by conducting a series of assessments with the

goal of better comprehending how the participants’ base-

line circumstances were affected by their surrounding

environment. We present the results of our analysis

regarding the activities that participants engage in when

experiencing negative emotions such as anger, fear, rage,

anxiety, unhappiness, or sadness in order to gain a deeper

understanding of the relationship between negative emo-

tions, stress factors, and individual experiences. By ana-

lyzing the activities that participants engaged in during

instances of negative emotions, we intended to identify key

triggers and contexts that contribute to the occurrence of

such emotions, particularly in work-related and social

contexts. According to the results of the survey, the vast

majority of respondents’ unpleasant emotions (62%)

occurred during job activities, followed by conversations

with coworkers (19%), eating/drinking (9%), interacting on

social media (4%), and doing chores (3%). Understanding

these triggers can aid in the development of targeted

interventions and strategies to reduce negative emotions

and enhance well-being in these situations.

The most stressful experiences of the participants were

analyzed to see if there were any commonalities that could

shed light on the sources of stress in people’s lives. The

survey found that 71% of people who try to beat the signal

at a crosswalk when it’s about to turn red are under stress.

A significant rate of association (77%) was also found

between stress and a tendency toward rapid speech and

accelerated discourse. In addition, 76 percent of respon-

dents identified as ‘‘someone who is difficult to get along

with,’’ a trait that has been shown to increase the likelihood

of experiencing stress. Physical fitness may have an effect

on stress levels, as seen by the 84% association found

between the individuals’ body mass index and stress.

By comparing respondents’ PANAS-reported feelings to

their total stress levels, we were able to delve deeper into

the psychological aspects of stress. The poll results

(Table 1) showed a 0.97 correlation between being

unhappy and being stressed. Similarly, there was a 0.96

association between shame and stress. The association

between vigilance and stress was calculated to be 0.82,

which is statistically significant.

As a whole, the investigation of survey results, com-

bined with the descriptive results and numerical evaluation

measures, provides a comprehensive picture of the rela-

tionship between negative emotions, stress factors, and

individual experiences, with valuable implications for

designing targeted interventions, promoting well-being,

and nurturing psychological resilience in work-related and

social contexts.

4.2 Stress modeling via individual data source

In this paper, we report on the findings of our separate

studies analyzing facial expressions and audio data to

determine the relevance of each of these types of data for

the prediction of stress. The purpose of this experiment is

to evaluate the efficacy of various data sets in terms of

producing accurate forecasts of stress. For the analysis, in

particular, CNN- and RNN-based deep learning models are

utilized.

Table 1 The relationship between stress and emotions as measured by

the Spearman Correlation between PANAS scale parameters and

general stress scores

Emotions Correlation value

Active 0.04

Determined 0.54

Attention 0.57

Inspired 0.63

Vigilance 0.82

Fear 0.05

Angry 0.09

Unhappiness 0.97

Hostility 0.22

Shame 0.96
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4.2.1 Face expressions as an indicator of stress

Expressions on the face are an excellent indicator of

emotional states, including stress. Figure 3 shows a sample

cross-section of facial expressions collected from partici-

pants. We used a CNN model that was trained to classify

stress levels based on facial expression data in order to

evaluate the efficacy of facial expressions in stress pre-

diction. Prior to classifying stress based on facial expres-

sions, a succession of preprocessing steps was carried out.

The facial expression data were converted to pixel repre-

sentations and normalized to ensure consistency and

eliminate any possible biases.

Figure 4 depicts the classification outcomes of the deep

learning model for stress prediction based on facial

expressions.

The WorkStress3D dataset containing 1375 stress-free

and 1677 strained facial expressions was utilized to gen-

erate the confusion matrix. 1106 (80.43%) of the stress-free

expressions were correctly identified as stress-free, while

269 (19.57%) were incorrectly predicted as anxious. 1542

(91.95%) of the strained facial expressions were correctly

identified as stressed, while 135 (8.05%) were incorrectly

identified as stress-free. Additionally, Table 2 shows the

performance of the CNN model, which indicates high

precision, recall, and an average F1 score of 85% for stress

prediction based on facial expressions.

When studied with deep learning strategies, the findings

suggest that facial expressions have the potential to serve

as a trustworthy indicator for the prediction of stress,

achieving high levels of accuracy and performance.

4.2.2 Speech signal as an indicator of stress

One of our experiments involved detecting stress through

speech by analyzing audio signals to identify and classify

individuals’ stress levels. This method transforms raw

audio data into pixel representations with Mel-spectro-

grams, which provide a visual representation of the audio

signal. Figure 5 illustrates the waveforms and power

spectrum of stressed audio.

The visual representations enable us to analyze the

acoustic characteristics of stressful audio samples. It

ensures that noises that are equally spaced on the scale are

perceived as being equally spaced by humans. Using the

Mel Scale, speech processing can capture the subtleties of

how humans interpret sounds. Mel Spectrograms are visual

representations of audio on the Mel Scale as opposed to the

frequency domain. They enable us to visualize how distinct

shapes and patterns are assumed by various sounds. These

Mel Spectrograms are transformed into Mel Frequency

Cepstral Coefficients (MFCCs) for stress detection in order

to capture temporal dynamics between audio frames.

To facilitate stress detection, it is necessary to generate

Mel-spectrograms that resemble images. This involves

producing Mel-spectrogram segments that resemble RGB

images and meet the input specifications of image CNNs.

The audio signal is converted into three channels repre-

senting the static, delta, and delta-delta characteristics of

Mel-spectrogram segments, with dimensions suitable for

CNN model input. Figure 6 depicts the confusion matrix

generated by the deep learning model for stress prediction

using audio data.

Fig. 3 Sample images from the WorkStress3D dataset: a facial

expressions displaying signs of stress and tension, including furrowed

brows and tense muscles, indicating elevated levels of stress, b facial

expressions reflect a relaxed and tranquil state with a pleasant

demeanor and the absence of stress-related characteristics, indicating

low levels of stress

Fig. 4 Confusion matrix for estimating stress from facial expressions

Table 2 Performance of the CNN model for facial expression-based

stress prediction

Stress situation Precision Recall F1 score

Stress free 0.89 0.80 0.84

Stressful 0.85 0.91 0.87
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The dataset containing 404 stress-free and 781 stressful

audio samples was used to generate the confusion matrix.

274 (67.82%) of the stress-free samples were correctly

classified as stress-free, whereas 130 (32.17%) were

incorrectly predicted as anxious. In the case of stressed

audio samples, 707 (90.65%) were correctly identified as

stressed, whereas 73 (9.34%) were incorrectly identified as

stress-free. The performance of the CNN model is sum-

marized in Table 3, which demonstrates high precision,

recall, and an average F1 score of 79% for stress prediction

based on audio data.

The results demonstrate the efficacy of audio data

analysis for predicting stress. We can accurately identify

stress levels by analyzing the acoustic characteristics of

speech and other audio signals. This provides vital insight

into the emotional states of individuals and enables the

development of targeted interventions and stress manage-

ment support systems.

4.2.3 Biosignal as an indicator of stress

The aim of the investigation was to discover how the

participants’ sympathetic nervous systems responded to

stress. The obtained physiological data is divided into two

groups, ‘‘stressed’’ and ‘‘stress-free,’’. Under these condi-

tions, the distributions of physiological signals show that

65.9% of the data is related to stress, whereas 34.1% rep-

resents stress-free states. It should be noted that although

environmental conditions and the position of the device

electrodes during measurement could have an effect, it is

not considered significant in this investigation. EDA has a

sample rate of 4 Hz and is one of the physiological signals

of interest. There are three primary aspects of EDA: skin

conductivity, phasic, and tonic components. To discrimi-

nate between tonic and phasic characteristics, a threshold

of about 0.05 ms is applied to the skin conductivity read-

ing. Phasic parameters are those that happen in response to

stimuli, while tonic parameters describe ongoing electrical

processes. Changes in these factors are thought to be

indicative of arousal states. Examples of EDA signals in

stressful and non-stressful conditions are shown in Fig. 7.

Data on skin temperature, recorded at a constant 4 Hz

and expressed in degrees Celsius, show higher variation

under stress than under normal circumstances. Figure 8

depicts the range of skin temperatures experienced by a

person in a variety of conditions.

Fig. 5 Sample views of a the stressful audio signal and b the signal’s

power spectrum

Fig. 6 Confusion matrix for estimating stress from audio data

Table 3 CNN model performances for audio data

Stress situation Precision Recall F1 score

Stress free 0.78 0.67 0.72

Stressful 0.84 0.90 0.86
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Blood pressure data is provided by the BVP signal,

which is sampled at a fixed rate of 64 Hz. BVP has greater

frequency and amplitude under stress compared to non-

stressful conditions, as seen by the signals displayed in

Fig. 9 acquired by the Photoplethysmography (PPG)

sensor.

In addition, the study makes use of accelerometer data

collected at a constant rate of 64 Hz to measure the con-

tinuous gravitational force (g) in all three spatial dimen-

sions (x, y, and z). The stress-free and stressful

accelerometer signals are shown in Fig. 10.

All the gathered physiological signals are normalized

and modeled across 15- , 30- , and 60-second intervals. In

this study, we evaluate four different neural network

models for stress detection throughout these intervals. The

test results for each model and data frame combination are

shown in Table 4.

According to the statistics in Table 4, the non-sequential

DNN model produces the best performance for all window

sizes. This model’s superior performance can be attributed

to its parallel design. Figure 11 shows that the best results

come from using a time window of 60 s.

The performance of triple signal combinations in terms

of stress analysis is evaluated using the optimal model and

physiological signal windows. The validation accuracy of

the non-sequential DNN model is presented in Table 5. The

accuracy is shown for triple and binary combinations of

physiological inputs measured over a period of 60 s.

According to the data presented in Table 5, the signal

combination of EDA and BVP is the most efficient one for

reaching a high level of performance. When compared to

other combinations of physiological signals, the perfor-

mance of this combination of signals is significantly higher

when modeled in binary form. The fundamental purpose of

this research is to construct a model for the early detection

of stress in order to address issues related to the workplace,

including stress and depression brought on by negative

emotions. The identification of stress can be a first step

toward its management, and it also has the potential to lead

to research on the avoidance of stress.

4.3 Stress modeling with multi-modal fusion

We have used the early fusion technique to create a com-

plex fusion model in order to take advantage of the diverse

and complementary data available from many sources. This

approach incorporates acoustic data, biosignals, and facial

expressions into a unified framework for stress prediction.

To improve the model’s stress classification accuracy and

robustness, we fuse these different modalities early on to

allow for joint analysis and feature extraction. Facial

expressions, audio data, and biosignals can potentially be

readily combined through the fusion model’s well-thought-

out architecture. The early fusion technique, which allows

the model to merge the input from many modalities at an

early stage, is key to this architecture. The model is able to

identify and capture complex patterns and correlations

between various modalities and stress levels because of the

Fig. 7 Sample from a raw signal of EDA that gathered under stress-

free and stressful situations

Fig. 8 Sample from a skin temperature signal that gathered under

stress-free positive emotions and stressful situations

Fig. 9 BVP signal sample for stress-free positive emotions and

stressful situations

Fig. 10 Sample view from accelerometer signal for a stress-free

positive emotions and b stressful situations
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integrated representation that is sent down through the

layers.

In particular, we used an early fusion method to incor-

porate biosignals as the major modality into the overall

fusion process. In the first phase of our preliminary fusion

strategy, we merged the biosignal data sets together. We

generated a unified picture of the individual’s physiological

state under stress by combining signals from the individ-

ual’s EDA, BVP, skin temperature, and accelerometer data.

We were able to capture the interaction and synergistic

effects of many biosignals in stress detection by fusing

them early on. Next, we incorporated the remaining

modalities, including speech and facial emotions, into the

early fusion process by creating a multi-channel feature

map. By combining the biosignals with these other sources

of information, we were able to create a multi-modal

depiction of stress that was both physiological and

behavioral in nature.

We have done extensive experiments using the training

set to systematically evaluate the efficacy of our fusion

model. Eighty percent of the multi-modal data was used to

train the fusion model, while the remaining twenty percent

was used as a test dataset for careful evaluation of the

model’s efficacy. We use a 10-fold cross-validation method

to achieve accurate performance evaluation using physio-

logical signals. In the training phase, we utilize the use of

the sparse categorical cross-entropy loss function, which is

useful for classification tasks that involve a number of

different classes. Seven distinct layers comprise the well-

defined architecture of the CNN utilized in this investiga-

tion. These layers consist of six convolutional layers and

one completely connected layer, contributing to the

robustness and expressiveness of the network. In the initial

convolutional layer (C1), 64 particles with a square shape

and 5x5 dimensions are utilized. These kernels are con-

volved with the input data using the same 2x2 pixel pad-

ding and stride configuration. The succeeding

convolutional layer, C2, consists of 64 5x5 filters with a

2x2 stride setting. The C3 and C4 layers inherit the same

number of filters, stride, buffering, and kernel size as the

C2 layer, but with 128 more kernels. The C5 and C6 layers

that follow introduce 256 kernels of size 3x3 with a stride

setting of 2x2 pixels. The final convolutional layer is fol-

lowed by a flattening layer, which reformats the output into

a vector format to facilitate its integration with the next

fully connected layer. The 128 neurons in the fully con-

nected layer contribute to the extraction of higher-level

features. Notably, the final entirely connected layer has the

same number of neurons as the classes being classified,

ensuring a proper mapping of features to target classes. We

also fine-tuned the following parameters: learning rates

(e.g., 0.001, 0.01), batch sizes (e.g., 16, 32), and regular-

ization techniques (e.g., L1 regularization, dropout).

In order to achieve an optimal value for this loss func-

tion, the models are trained, which ultimately enables a

more accurate classification of the various levels of stress.

In terms of stress prediction, our fusion model performs

exceptionally well, as evidenced by its high levels of

accuracy, precision, recall, and F1 score. These metrics are

Table 4 Comparison of testing

accuracy and loss results for

different data frames and

network architectures

15 sec frames 30 sec frames 60 sec frames

Models Acc - Loss Acc - Loss Acc - Loss

Sequential DNN 0.89–0.27 0.91–0.21 0.91–0.21

Non sequential DNN 0.91–0.23 0.93–0.15 0.94–0.18

Sequential LSTM 0.72–0.53 0.85–0.34 0.87–0.28

Non sequential Bi-LSTM 0.84–0.36 0.88–0.28 0.86–0.32

Sequential GRU 0.86–0.33 0.91–0.21 0.92–0.18

Fig. 11 Accuracy and loss results in the context of the 60-second time

window

Table 5 Non-sequential DNN model performances for triple and

binary combinations of 60 s long physiological signals

Signal Combinations Val. Acc.

EDA, BVP, TEMP 68

BVP, TEMP, ACC 63

EDA, TEMP, ACC 66

EDA, BVP, ACC 67

EDA, BVP 70

BVP, TEMP 69

EDA, TEMP 70

TEMP, ACC 65

EDA, ACC 67

BVP, ACC 70
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strong indicators of the model’s ability to distinguish

between stress-free and stressful circumstances. The fusion

model has shown exceptional proficiency in capturing the

numerous linkages and nuances contained in the multi-

modal data, with an average F1 score of 0.94 which can be

shown in Fig. 12.

The proposed multimodel fusion model’s stellar results

demonstrate the value of using early fusion to combine data

from multiple sources. The model goes beyond the limi-

tations of individual data sources to provide a more com-

plete picture of an individual’s emotional state by

capitalizing on the complimentary nature of facial

expressions, audio data, and biosignals. According to this

all-encompassing knowledge, the proposed model can

reliably anticipate stresses with high precision. In addition

to advancing stress analysis as a whole, the proposed fusion

model’s successful implementation paves the way for the

creation of very complex systems and applications in the

real world. Individuals can be equipped with the tools they

need to effectively manage and reduce stress through the

use of multi-modal data analysis to the design of targeted

treatments and supportive infrastructures. The potential for

this innovative strategy to revolutionize stress management

practices, improve people’s overall health, and cultivate

psychological resilience is enormous.

4.4 Impact of transfer learning on stress
modeling

In our pursuit of accurate stress modeling, we initially

investigated the use of state-of-the-art pre-trained models,

including VGG16 and ResNet, as the base models. These

models, which have been pre-trained on massive datasets

for image recognition tasks, are renowned for their potent

feature extraction capabilities. However, despite their

success in image-related tasks, applying these pre-trained

models directly to our biosignal data for modeling stress

yielded suboptimal results, with accuracy rates scarcely

exceeding 60%. This result suggested that the generic

features learned by these models may not effectively cap-

ture the unique patterns and subtleties present in stress-

related biosignals. We turned our focus to custom transfer

learning in order to address this difficulty. Our goal was to

transfer the knowledge gained by models trained on audio

and image data, which are more closely related to biosignal

analysis, to our biosignal stress modeling task since it

captures together during experiments. We utilized a two-

step procedure to accomplish this. Initially, we selected the

model that had been trained on audio and image data with

the CNN model. This pre-trained model had learned to

extract pertinent facial expression clues and auditory fea-

tures, such as prosody, intonation, and spectral character-

istics, which could potentially capture crucial information

about a speaker’s emotional state during speech. Using the

biosignal dataset, we then fine-tuned the previously trained

model that can be seen in Fig. 13. This required retraining

specific layers of the model while leaving the earlier layers

unchanged, thereby preserving the learned representations

from speech and facial images. We intended to adapt the

pre-trained model to the unique characteristics of stress-

related biosignals in this manner.

Table 6 demonstrates the beneficial effects of artificial

neural network models for stress detection based on bio-

logical signals. The table summarizes, for various data

window lengths for physiological signals, the success and

loss rates attained by various models.

Three distinct window frames are used to evaluate the

models: 15 s, 30 s, and 60 s. Across all frames, the non-

sequential DNN consistently demonstrates greater accuracy

and lower loss rates than the other evaluated models.

Notably, the non-sequential DNN attains accuracy values

in the range of 0.92 to 0.93 and loss values in the range of

0.21 to 0.17, indicating its robust performance in stress

detection. In comparison, the sequential DNN, sequential

LSTM, non-sequential Bidirectional LSTM, and sequential

GRU models exhibit lower accuracy and greater loss rates.

These models obtain accuracy values ranging from 0.77 to

0.93 and loss values ranging from 0.19 to 0.46, indicating

that their stress detection capabilities have room for

improvement.

We aimed to improve biosignal-based stress recognition

by leveraging the feature extraction capabilities of the pre-

trained model through transfer learning. By incorporating

the learned representations and patterns from audio and

video modalities, we sought to improve our biosignal stress

modeling framework. These results highlight the promise

of transfer learning as a beneficial strategy in stress mod-

eling since it allows fusion structures to draw on the

expertise of pre-trained models to enhance their sensitivity

and specificity in stress detection. More work is needed to

fully understand and improve transfer learning’s potential

for improving stress detection over a wide range of window

lengths and application domains.

Fig. 12 Performance of the proposed multi-model fusion model:

a accuracy and b loss curve
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5 Discussion

5.1 Main findings

The discussion of the key findings of our study delves

deeply into the intricate complexities of multi-modality

integration for stress detection. Our research uncovers the

profound impact of integrating multiple modalities, such as

biosignals, facial expressions, and sound waves, on the

accuracy, robustness, and reliability of stress detection

models through meticulous experimentation and in-depth

analysis. This study demonstrates the remarkable efficacy

of the double early fusion method, which combines

biosignals, facial expressions, and audio signals simulta-

neously. By orchestrating this fusion with a sophisticated

2D CNN architecture, we successfully synchronize the rich

visual and auditory stimuli that encompass both physio-

logical responses and emotional manifestations. This

fusion of diverse modalities generates a comprehensive and

multidimensional representation of stress levels, thereby

significantly enhancing the discriminative power of the

stress detection system.

Moreover, our research on the inherent temporal

dynamics of physiological signals reveals invaluable

insights into stress-related events. Utilizing the capabilities

of time series models, we decode the biosignals’ intricate

patterns, fluctuations, and temporal dependencies. By

meticulously examining the temporal aspect, we reveal the

subtle nuances of stress progression and dynamics, thereby

enabling a granular and subtle analysis of stress over time.

Intricate interactions between deep learning architectures

and multi-modal data integration provide additional sup-

port for the impressive results we obtained. The potent

combination of CNN and LSTM models demonstrates their

exceptional capacity to capture and decipher intricate

relationships and patterns embedded within multi-modal

data. The multilayered neural networks effectively exploit

the heterogeneous information present in biosignals, facial

expressions, and sound waves by adapting to the various

data sources. This adaptability enables the models to

extract and exploit latent characteristics and correlations,

resulting in enhanced stress detection capabilities.

5.2 Threats to validity

Potential threats to validity that could affect the reliability

and generalizability of the findings should be taken into

account when evaluating the results of any research project

[29]. Research is said to have high validity if it reliably

measures the variables of interest and if the findings can be

extrapolated to other populations or settings. Here, we

discuss about the risks to internal and external validity that

our study of experience sampling for identifying mental

stress faced. Our capacity to interpret and apply our results

is enhanced by our attention to and consideration of these

limitations.

5.2.1 Internal validity

The study may be limited in its applicability because of

sampling error caused by the relatively small amount of

participants. Selection biases, such as those based on

Fig. 13 Transfer learning technique with facial expressions, speech

data and biosignal

Table 6 Effects of transfer

learning technique on fusion

structures

15 sec frames 30 sec frames 60 sec frames

Models Acc - Loss Acc - Loss Acc - Loss

Sequential DNN 0.89–0.26 0.92–0.21 0.91–0.22

Non sequential DNN 0.92–0.21 0.92–0.19 0.93–0.17

Sequential LSTM 0.77–0.46 0.81–0.40 0.83–0.36

Non sequential Bi-LSTM 0.86–0.33 0.89–0.26 0.91–0.22

Sequential GRU 0.87–0.31 0.92–0.20 0.93–0.19
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demographics or other traits, could potentially influence the

findings. Confounding variables or demand characteristics

may influence participant responses and affect the validity

of the results of the experimental design of the study,

including the length of the experiments and the specific

tasks assigned to participants, which is not carefully con-

sidered. Measurement reliability concerns the potential for

measurement errors or noise to affect the results of the

study due to variations in the accuracy and reliability of the

physiological sensors used to gather data, such as BVP,

EDA, and BT, as well as the image and auditory data.

5.2.2 External validity

It is possible that the results of this study cannot be

extrapolated to other people or settings. The people who

took part in this study were chosen according to certain

criteria, thus their opinions might not reflect those of the

general public. Although data is obtained in a natural set-

ting with participants going about their regular workday,

not all participants can reflect jobs with the same level of

stress as white-collar workers. From the perspective of

ecological validity, it is possible that the complexity and

diversity of real-world mental stress circumstances were

not captured by the use of experience sampling and the

specific tasks assigned to participants. Only job-related

stress was examined. It is possible that the ecological

validity of the findings and their application in natural

settings for everyday stress only are constrained by the fact

that the participants selected for the experimental setup did

not experience particularly acute stress.

6 Conclusions

The objective of this research was to examine the feasi-

bility of individual stress modeling by fusing information

from multiple sources (facial expressions, speech, and

biosignals) into a single model utilizing early fusion. The

research has led to some significant discoveries and addi-

tions to the discipline of stress analysis. In the first place,

we evaluated the multi-model fusion structure and dis-

covered that fusing facial expressions, speech, and

biosignals together increased stress classification perfor-

mance over using any one modality alone. The proposed

fusion model demonstrates its remarkable precision and

accuracy in detecting and classifying stress levels, with an

F1 score of 0.94 and a low loss of 0.18, exceeding the

results of single modalities. Classifying stresses accurately

also required picking the right time span in the sequential

data. We discovered that a 30-second time window was the

most effective, followed by 15- and 60-second ones. Given

these results, a moderate time window duration appears to

be the sweet spot for recording essential physiological and

behavioral patterns while avoiding the loss of crucial

temporal information. The proposed research emphasizes

the relevance of considering numerous data sources and

ideal frame size, as well as the efficacy of a multi-model

fusion strategy, and so on. In addition to the fusion model,

we conducted a stress prediction experiment using transfer

learning, but we were unable to surpass the performance of

the fusion model in stress detection despite utilizing

transfer learning techniques. In spite of this, we have

reduced the loss score by 0.01 points. Transfer learning

yielded an accuracy of 0.93 and a loss of 0.17, which were

inferior to the fusion model’s remarkable results. Although

transfer learning has been shown to be effective in

numerous domains, it appears that stress analysis requires a

more specialized approach. Despite this, the obtained

results demonstrate a high level of accuracy and emphasize

the significance of selecting the most appropriate model

architecture for a given task. To explore alternative

strategies and potentially build upon these findings, addi-

tional research and refinement are necessary. These results

add to the growing body of knowledge on stress analysis

and provide clues for how to improve existing stress

detection programs.

Acknowledgements This work was supported by the Scientific

Research Projects Coordination Unit of Istanbul Kultur University

with project number: IKU-BAP2012. Within the scope of the study,

data were collected with the permission of the ethics committee of

Istanbul Kultur University, with the decision dated 20.05.2020 and

numbered 2020.29.

Data availability The WorkStress3D dataset generated during and/or

analyzed during the current study is available in the Mendeley

repository https://data.mendeley.com/datasets/t93xcwm75r/5.

Declarations

Conflict of Interests The authors declare that they have no known

competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References

1. Jacobs N, Myin-Germeys Inez, Cathérine Derom P, Delespaul J
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