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Abstract
Recent publications have proposed the use of tools based on artificial neural networks to infer the cooling capacity of

refrigeration compressors from the results of pressure rise tests, which are quick tests used for production quality assurance.

However, the typical rigs used in such tests were not designed to evaluate compressor performance, so the uncertainty in

the inferred cooling capacity is high. This paper proposes an improved test rig aiming a better correlation of its results with

cooling capacity. A committee of multilayer perceptron artificial neural networks was used to make the cooling capacity

inferences from the results obtained in the improved test rig. A method that combines bootstrap techniques with Monte

Carlo simulations was used to assure the reliability of the results. The average absolute difference observed between the

results of the proposed method and the results of traditional tests done in laboratory was 0.35%, with standard deviation of

0.47%. In addition, the average uncertainty of the inferences was 4.3% for the test samples, which is close to the

uncertainty of 3.0% observed in traditional tests, both for a coverage probability of 95%. The time required to carry out the

proposed test is about 1 min, thus enabling an increase in the sampling of tested compressors with respect to the traditional

method used in industry.

Keywords Artificial neural network ensembles � Hermetic compressors � Cooling capacity inference � Monte Carlo

simulation � Bootstrapping � Pressure rise rate

1 Introduction

Several researches have been carried out in order to

improve refrigeration compressor energy efficiency, due to

market competitiveness and environmental factors, given

that most of the energy consumption in a vapor compres-

sion refrigeration system is associated with the compressor.

To this end, compressor testing has become an important

and daily activity for both research and development and

product quality assurance [3].

One of the most important variables to obtain in com-

pressor performance evaluation is the cooling capacity

(CC). There are several tests capable of providing the CC

of a compressor. These tests are regulated by international

standards, such as ANSI/ASHRAE 23 [2], DIN EN

13771-1 [5], and ISO 917 [10], to allow the comparison of

results between different manufacturers. Even though ISO

917 is currently withdrawn, it is still used as a consolidated

standard in the compressor industry. Despite the differ-

ences between the standards—mainly the allowable
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measurement uncertainty and operating limits—they

require the measurement to occur under steady-state con-

ditions in special refrigeration circuits. Among the methods

provided in standards, the most used in industry is the

calorimeter, presented in Flesch and Normey-Rico [7]. The

main problem in this method is the long transient, which

takes a few hours, resulting in long test times [12]. This

duration impacts directly the production chain, since

sample tests must occur in order to release the products to

the customers, and sometimes the batches have some dis-

patch delay caused by the difficulty in generating these

results in a timely manner.

Previous researches aimed to reduce the duration of

performance tests using two approaches: by improving the

controllers of the test rig, reducing test duration to

approximately 2 h [7, 16], and by using artificial neural

networks (ANNs) to identify the time instant the measured

variables reach steady state [1, 13]. However, even with the

advances regarding total test time reduction, it is still in the

order of about 1 h, making it unfit for use as a production

line quality control method for every compressor produced,

limiting the tests to a few samples, given the fact that the

production cycle is generally much faster than traditional

tests. This problem could be solved by using multiple

calorimeters in parallel to account for the production line;

however, the cost around US$200,000 per rig makes this

solution unfeasible in practice. As a result, manufacturers

tend to use other tests for quality control and quick

response on production line, such as the pressure rise test

(PRT) described in Coral et al. [3]. Among other quantities,

it measures the pressure rise rate (PRR) within a vessel of

known volume, which is a quantity proportional to the

mass flow rate generated by the compressor.

Coral et al. [4] proposed the use of ANNs to estimate the

CC based on the PRR and other measured quantities during

the PRT, along with a combination of the Monte Carlo

method with bootstrap aggregating to express the inference

of the uncertainties of ANNs. In Pacheco et al. [11], a

similar approach was taken, but the method for expressing

inference uncertainty was improved. Using the PRT com-

bined with ANNs, it was possible to reduce the time for

inferring the CC to a few seconds.

Despite significantly reducing the test time, the pro-

duction line test rig was not designed to evaluate perfor-

mance, particularly due to the lack of laboratory conditions

for testing and the large measurement uncertainty of the

instruments used. The data previously used in Coral et al.

[4] and Pacheco et al. [11] rely on three main variables: the

PRR, the electrical power consumed, and the compressor

shell temperature, with measurement uncertainties of

�15 kPas�1, �6W, and �6 �C, respectively. In addition to

these two factors, the quality of the estimates provided by

the PRT is affected by the temperature measurement. A

study presented in Vitor et al. [18] shows that using motor

winding resistance to estimate temperature for this purpose

is better than using the compressor shell temperature, given

the lower uncertainty and the faster dynamic response of

the winding resistance for changes in temperature caused

during the test.

In this paper, a more reliable method to estimate the CC

is proposed. A better result for the inference of CC is

obtained by combining a new ANN model and a test rig in

laboratory conditions, with a greater number of controlled

and monitored variables, that are measured with smaller

uncertainty. In addition, different models of compressors

were used for training the neural model, in contrast to

Pacheco et al. [11], in which a CC estimate was made for

several examples of only one compressor model. The new

measurement rig seeks to achieve CC uncertainty values

closer to the ones of traditional rigs described in interna-

tional standards, but reducing testing time from a few hours

to a couple minutes, in order to improve the percentage of

samples used for product quality assurance in each pro-

duction batch.

The main novelties of this study are:

• development of a more reliable method to estimate CC

based on data measured in quick quality assurance tests;

• proposition of a test rig which is able to increase

measurement sampling for quality assurance tests by

about 2000 times over traditional methods;

• experimental study considering several compressor

models of different CC values.

This paper is organized in five sections. Details about the

traditional tests to measure CC, the PRR test, and the

correlation between CC and PRR are presented in Sect. 2.

The proposed test rig and the neural model used for CC

inference are presented in Sect. 3. The results of a case

study of tests carried out in a laboratory environment are

presented in Sect. 4. Finally, in Sect. 5, the results are

summarized and the conclusions of the work are presented.

2 Problem description

In this section, tests performed on compressors are pre-

sented, encompassing both the traditional tests described in

international standards and tests that measure PRR. Addi-

tionally, the correlation between CC and PRR obtained

from both types of tests is discussed.
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2.1 Traditional tests

Cooling capacity is a measure of the capability of a com-

pressor to produce mass flow rate of a refrigerant fluid for

given suction and discharge pressures. It is described by:

/0 ¼ qmf

Vga

Vgl
ðhg1 � hf1Þ; ð1Þ

where /0 is the cooling capacity, qmf is the mass flow rate

of the refrigerant fluid, Vga is the specific volume of the

refrigerant vapor at the suction inlet, Vgl is the specific

volume of refrigerant vapor at the suction conditions cor-

responding to the specified test conditions, hg1 is the

specific enthalpy of the refrigerant entering the compressor

at the specified test conditions, and hf1 is the specific

enthalpy of the refrigerant liquid at saturation temperature

corresponding to compressor discharge pressure specified

in the test conditions [10].

The standard ISO 917 [10] presents nine different

methods to estimate the CC. The simplest method for

determining mass flow rate in a refrigeration circuit is to

measure it directly using mass flow meters. The standard

determines that two different methods must be used, and

they must not deviate by more than 4% between results. To

use those methods, special test rigs must be composed by

refrigeration circuit, specialized instrumentation, con-

trollers, and data acquisition systems, costing hundreds of

thousands of U.S. dollars. As an example, Flesch and

Normey-Rico [7] described a test rig, with the piping and

instrumentation diagram presented in Fig. 1, which

involves both the measurement of mass flow rate in the

liquid phase and the calorimetry method in the evaporator.

This rig is the state of the art for measuring cooling

capacity, and yet it takes about 2 h to perform the test. No

significant improvement in test time using regular

calorimeter test rigs has been observed in the last years, so

it is expected that improvement based solely on control

methods has reached an economically viable limit. In this

context, novel test topologies gain particular attention to

reduce test time, although the test results are not obtained

according to the methods described in the international

standards currently in use.

2.2 Pressure rise tests

The PRT is a common way of assessing hermetic com-

pressor quality in manufacturing lines. It evaluates the

ability of the compressor to pressurize a vessel. The total

test duration is typically less than 7 s, making it possible to

evaluate each compressor produced in a factory with high

production flow. In the typical test configuration, as shown

in Fig. 2, the suction terminal of the unit under test is open

to the environment and the discharge terminal is coupled to

a pressure vessel of known volume. The pressure vessel is

connected to an external pressure line, which has two basic

functions: to keep the discharge pressure constant and to

rise it to a preset value depending on the test phase. The

test consists of cycling different pressures applied to the

known volume and its main steps are shown in Fig. 3,

which illustrates a typical discharge pressure profile for the

test cycle.

At the time instant t0 the compressor motor is started.

The discharge pressure rises until a steady-state value P1,

obtained at t1. In the time interval between t1 and t2, the

active electrical power consumed is measured. At t2, the

external pressurization line begins to rise the discharge

pressure, up to a new level P2, and the vessel is sealed at t3,

so that the compressor continues the pressure rise in the

vessel by itself up to the time instant t4. The PRR is

Fig. 1 Calorimeter piping and instrumentation diagram Fig. 2 PRT piping and instrumentation diagram
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measured from t3 to t4. The time required between t0 and t4
is usually less than 5 s.

The PRT is usually the last stage of a compressor

assembly line, which can have many topologies. In some

situations, the measurement is done right after the drying of

the shell paint in a stove and in this case the variability of

temperatures can be quite large, since the drying is usually

done in batches and there are different times for each

compressor to reach the test station after the drying process

is finished. However, some of the parameters obtained in

the test are strongly affected by the compressor tempera-

ture, as can be seen in Fig. 4, for PRR and active electrical

power consumed (consumption). This happens because

changes in the compressor internal temperature modify the

density of the refrigerant fluid at the inlet of the com-

pression cylinder [17], which translates directly as a change

in the mass flow rate, given that the volumetric flow rate is

constant [6]. In addition, the winding resistance of the

induction motor associated with the compressor changes

with temperature, which affects the electrical power con-

sumed [8]. Owing to the hermetic characteristics of the

compressors, the shell temperature is measured and used to

compensate part of those changes, since the temperature of

the compressor motor winding cannot be measured

directly, as discussed in Coral et al. [4].

2.3 Correlation between CC and PRR

Both the CC and the PRR depend on the compressor

capability to generate mass flow. The relationship between

these parameters was shown in Pacheco et al. [11] and can

be expressed by:

/0 ¼
PVM

ZRT
Prr

1

P
� 1

Z

oZ

oP

� ��

� oT

ot

1

T
þ 1

Z

oZ

oT

� ��
Vga

Vgl
ðhg1 � hf1Þ;

ð2Þ

where P is the gas pressure, V is the volume,M is the molar

mass, Z is the compressibility factor, R is the universal

constant of gases, and T is the absolute temperature. The

relation presented in (2) highlights the nonlinearity

between the quantities, which happens because P, T, and

Vga are not constant during the test, and Z is also depen-

dent upon P and T. The temperature increases over time, as

a result of the compression process and heat exchange

between the compressor parts and the refrigerant fluid. In

addition, the initial vessel temperature is not controlled,

and the temperature is not homogeneous inside it.

While a mixed empirical-analytical model could

potentially address the problem at hand, developing and

solving the resulting model would be time-consuming and

complicated. Given the high level of complexity required

to estimate CC, ANNs offer a viable solution. These net-

works are recommended for modeling complex nonlinear

tasks, where mathematical models for real physical phe-

nomena are difficult or impossible [9, 15]. Besides, given

the dependency upon P and T, the use of low uncertainty

instrumentation along with controlled conditions ensures

lower variation on these quantities when using them in a

regression tool.

Fig. 3 Typical discharge pressure profile for PRT cycles

Fig. 4 Impact of the compressor shell temperature on different

variables for three samples of the same model: a PRR;

b Consumption
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3 Experimental analysis

Taking into account the PRT and its limitations regarding

the test time and measured variables, we propose a new test

rig that improves the correlation between CC and PRR.

The proposed test is not as quick as the PRT, but it is

considerably quicker than calorimeter tests and provides a

better CC measurement confidence in relation to the PRT.

3.1 Proposed test rig

The proposed test rig is an upgrade of the rig presented in

Sect. 2.2. The new rig, called laboratory pressure rise rig

(LPRR), operates in a laboratory environment, where

parameters such as temperature are more constant. The

non-dependence on production cycle time allows for the

test to be conducted without requiring an external pres-

surization line. For the test proposed in this work, the

pressure rise is performed by the compressor from the

value used for measurement of the electric consumption up

to a predefined maximum pressure. This should allow to

characterize the pressure rise behavior over a wider range

of pressures, and of all compressors over the same range,

independently of their pressure rise rates. The piping and

instrumentation diagram of the proposed LPRR is pre-

sented in Fig. 5.

The proposed test rig has the following additional

measurements when compared to the PRT rig used in the

production line: suction temperature, discharge vessel

temperature, compressor ambient temperature, ohmic

resistance of the motor winding, suction pressure, and

motor angular speed. Among the new monitored variables,

a control loop was designed for the suction pressure to

remain constant at 100 kPa in all tests, ensuring uniformity

of this parameter. The compressor ambient temperature

also remained at constant values due to the fact that the

tests were carried out in a laboratory environment, where

the temperature was controlled. The discharge pressure

transducer was replaced by one with lower uncertainty. In

addition, the compressor shell temperature measurement,

done with an infrared meter in the PRT, was done in the

LPRR with a Pt100, which has lower measurement

uncertainty.

Since the motor winding temperature measurement in

hermetic compressors is difficult, its temperature was not

measured directly, but using the resistance value, which

changes with temperature and impacts the electrical

quantities directly. By measuring the motor winding

resistance both before and after the test, it is possible to

account for the heating that occurs during the PRT due to

the starting current and other losses observed during reg-

ular operation. Since the pressure rise phase is still quite

short, the compressor shell does not reflect noticeable

changes in the temperature. Tests using instrumented

compressors on the PRT show that the winding temperature

rises more than 2 �C during the test, while the increase in

the temperature on the compressor shell is practically

imperceptible. For the resistance measurement, the LPRR

makes use of the winding resistance measurement device

(WRMD) proposed in Vitor et al. [18]. This device consists

of a combination of relays and electronic circuits that

makes it possible to switch between powering the com-

pressor under test or measuring the main winding resis-

tance using the 4-wire method, thus achieving low

measurement uncertainty. The uncertainties for the vari-

ables measured in the LPRR are shown in Table 1 for a

coverage probability of 95%.

The LPRR has an electromechanical system to control

the suction and discharge pressures of the compressor

under test. The pneumatic circuit is designed to maintain

constant pressures during the consumption measurement.

After that, it keeps the suction pressure constant while the

compressor raises the discharge pressure. The new test

routine is presented in Fig. 6. The main difference com-

pared to the regular test used in the production line is that

LPRR does not have an external pressurization line, as the

proposed test is not required to fit into production cycle

time. Another aspect is that in the line test, a time interval

is defined a priori for the compressor to raise the internal

pressure of the vessel, which for low capacity compressors

occasionally does not allow the discharge pressure to reach

sufficient values to properly characterize the behavior of

the compressor. In the proposed test, the value for t4 is not

defined a priori and the compressor is kept on until the

pressure P2 is reached.

Before the compressor is turned on, the initial winding

resistance is measured between t0 and t1 using the WRMD.

After the compressor starts, at t1, the pressure rises and

then reaches a steady-state value of P1 (200 kPa), at t2,

which is controlled using an automatic valve. During the

time interval from t2 to t3, the pressure is in steady state, so

the measurement of the compressor consumption takes

place. At t3, the vessel is sealed, and the compressor begins

to rise the discharge pressure, up to a new level P2 (around

1600 kPa), which is reached at t4. The PRR is measured

from t3 to t4. After the PRR measurement is finished, the

compressor is switched off at t4 and the final winding

resistance measurement using the WRMD takes place. As

this happens, the pressure in the vessel is released. The

time required between t0 and t4 is about 60 s.

With the tests carried out on the proposed rig, it was

possible to analyze the improvement of the correlation

between PRR and CC when compared with the results of

the production line rig. Figure 7 illustrates the improve-

ment in the correlation for a single compressor model,
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measured using Pearson’s linear correlation coefficient,

which increased from 0.240 [11] to 0.750. The result

indicates that it was possible to improve the correlation by

using the proposed test rig, as discussed in the beginning of

Sect. 3.

3.2 Artificial neural network

With the data obtained from LPRR and calorimeter tests, it

is possible to develop a regression tool for CC inference.

Given the complexity on the mathematical modeling of the

physical phenomenon, a supervised training using ANNs

was chosen motivated by the results in Coral et al. [4] and

Pacheco et al. [11]. The data obtained in both tests are

given by:

Fig. 5 LPRR piping and

instrumentation diagram

Table 1 Uncertainties of the LPRR measured variables

Variable Uncertainty

PRR �0:3%

Suction temperature �0:26 �C

Average compressor shell temperature �0:26 �C

Initial compressor shell temperature �0:26 �C

Initial motor winding ohmic resistance �6m X

Final motor winding ohmic resistance �6m X

Average electric power �0:9%

Electric consumption rate �0:2W/s Fig. 6 Typical discharge pressure profile for proposed test rig cycles
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F ¼ ðxj; yjÞ
� �n

j¼1
, ð3Þ

where xj 2 Rr contains the r variables measured in the

LPRR, yj is the CC value obtained in a calorimeter for the

same compressor used to obtain xj, and n is the sample

size. The complete data set F was divided into a training

set S, with nS elements, and a test set T, with nT elements.

The desired modeling must consider a nonlinear input–

output mapping, when finding a function f that satisfies the

inequality:

1

nS

XnS
j¼1

ðfðxjÞ � yjÞ2 � e; ð4Þ

where fðxjÞ is the CC inference based on LPRR results in xj
and e is a small positive number, serving as the upper

bound for the squared error between the measured CC

value and the inference. If the training sample size nS is

sufficiently large and the ANN has a suitable number of

free parameters, it is possible to reduce the approximation

error to a small enough value for the problem [9]. In this

problem, the multilayer perceptron (MLP) topology was

used to represent the nonlinear input–output mapping.

In the training process of the MLP, different initial

conditions can lead to different results for the same training

set [11]. The effects of the random components in the result

can be reduced by combining different MLPs with the

same goal in an ensemble. In this case, the results can be

expressed as the arithmetic mean of the outputs, as:

ŷj ¼
Xnu
i¼1

fiðxjÞ
 !

=nu, ð5Þ

where ŷj is the arithmetic mean of the ensemble outputs, nx
is the number of trained networks in the ensemble, and

fiðxjÞ is the ith ANN output for input xj. This method was

combined in Pacheco et al. [11] with bootstrap aggregating

to randomly select data to build a different training set

based on S for each ANN, considering the measurement

uncertainty values, aiming to increase the diversity of

networks in the ensemble.

Along with the CC inference, the uncertainty associated

with the output of the ANN is important to ensure the

metrological reliability, particularly when the ANNs are

considered as part of the measurement system. For this

purpose, Pacheco et al. [11] proposed the use of bootstrap

techniques with Monte Carlo simulations (MCS)—con-

sidering only the input uncertainties—during the training

phase, to assess the inference uncertainty. The process is

repeated nu times, with nu being the number of ANNs in

the ensemble used for assessing the uncertainty. The MCS

is applied m times on the input data, with each of the results

being used as input for the nu ANNs. This results in m

vectors ŷi 2 Rnu , for i ¼ 1; . . .;m, concatenated as

Y ¼ ½ŷ1T; ŷ2T; :::; ŷmT�T, where Y 2 Rnum. As stated in

Coral et al. [4], the frequency distribution of the ensemble

outputs is a good approximation of the probability density

function (PDF) for nu around 103 and the product num

around 106. Considering a normal distribution, as the PDF

is centered on the inference value, the standard uncertainty

for the ensemble (uE) is the same as the standard deviation

of the num values, as:

uE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnum
i¼1

ðYi � �YÞ2
 !

=ðnum� 1Þ

vuut , ð6Þ

where �Y is the arithmetic mean of the output values in Y

and Yi is the ith element of Y. In this approach, the mea-

surement uncertainty of the target variable is not used

during the training phase. This uncertainty contribution is

added later, throughout:

ucI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uE2 þ uM2

p
; ð7Þ

where ucI is the combined standard uncertainty of the

inference and uM is the standard uncertainty of the target

variable, which is the CC in our case. The expanded

uncertainty of the inference can be obtained by calculating

the shortest interval for the stipulated coverage probability.

The activation functions used were all of the type

hyperbolic tangent as it was used in the ANNs in Coral

et al. [4] and Pacheco et al. [11]. The training algorithm

was Levenberg–Marquardt, considered one of the most

efficient algorithms for this kind of problem [14] and the

one which achieved the lowest RMSE values for training.

The number of neurons in the single hidden layer—the

same topology defined in Pacheco et al. [11]—was defined

by a grid search method. The results committees of nS ¼ 30

MLPs with hidden layer sizes between 1 and 50 neurons

were tested. The ANNs were trained with a subset of the

training set and evaluated with 8 examples that are in the

training set but were not used as inputs for training. The

Fig. 7 Correlation between PRR and CC with the proposed rig
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different configurations are compared using the root mean

squared error (RMSE), described as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnx
j¼1

ðyj � ŷjÞ2

nx

vuut , ð8Þ

being nx the number of examples used for evaluation, with

nx assuming values of nu, nS, or nT, depending upon the

application. The result of this evaluation can be seen in

Fig. 8, which shows that hidden layers of sizes close to five

neurons have the best results when compared with

calorimeter tests. Larger numbers of neurons in the hidden

layer tend to cause overfitting, given the small number of

samples available for training. As a consequence, it was

chosen to work with five neurons in the hidden layer.

As proposed in Pacheco et al. [11], an ensemble with

nS ¼ 30 ANNs was trained to infer the CC of the test set

samples and an ensemble with nu ¼ 103 ANNs was trained

to estimate the CI by using a combination of the bootstrap

technique with the MCS method. For obtaining the CI, the

training set S has the uncertainties added to the input values

through MCS, generating a new set S�. From this set S�, a
bootstrap replica Si is generated with the same number of

examples nS, this process is repeated 103 times creating

nu ¼ 103 bootstrap replicas (S1 to S103 ), with the same

number of examples, nS, in each one. A MLP network was

trained with each of these bootstrap replicas and stored to

build a committee, used just for obtaining the CI of the

estimates. A pseudocode of the training method is shown in

Algorithm 1. With the network committee already trained,

each of the examples in the test set T has the uncertainties

U added to its input variables via the MCS method, with

m ¼ 103 trials. Each of these sets of the combination of the

test set with a realization of the uncertainty is used as input

to all the nu ¼ 103 ANNs in the previously trained com-

mittee, thus resulting in 106 predictions for each example

in the test set. With the results, it is possible to create a

histogram and obtain the CI for a coverage probability of

95%. Finally, to take into account the measurement

uncertainty of the targets, it is necessary to combine the

calorimeter uncertainties with those obtained using the

committee, which is done using (8). A pseudocode of the

method used to obtain the CI of the inferences for new data

is shown in Algorithm 2.

The inputs used to train the model were: the suction inlet

temperature; the motor main winding resistance before and

after the test; the initial shell temperature and its mean

value; the mean electric consumption; the electric con-

sumption rate; and the PRR. The target for the supervised

training was the CC from the calorimetry method. The

angular speed and pressure vessel temperature, which are

measured quantities added in the proposed test rig, did not

provide significant difference in the quality of the CC

inferences, so they were not considered by the ANNs.

Along with the input uncertainties presented previously in

Table 1, which were assumed to have rectangular distri-

butions for a more conservative evaluation, the target CC

uncertainty considered was �3%.

Fig. 8 RMSE of network committee inference compared to calorime-

ter measurements for different numbers of neurons in the hidden layer

Fig. 9 Frequency distribution of CC for a sample in the test set with

95% confidence interval

Fig. 10 Error between ANN committee inferences and calorimeter

measurements
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4 Experimental evaluation

The tests for this case study were carried out in a laboratory

environment, in order to be independent of production time

and to reduce some random effects, such as the shell

temperature variability due to drying of the shell paint in a

stove at the end of the line. Following the same protocol for

testing in a calorimeter after the production line, the

compressors were allocated in a place with monitored

temperature, and there they remained for a few hours to

ensure temperature homogeneity, so that the resistance

variation observed is only the one imposed by the test.

After this time, the compressors were tested on the LPRR,

and then on a calorimeter, generating data from both

methods for the supervised training carried out in this

work.

In total, 70 tests were carried out with compressors from

6 different models, all of which use R134a as the working

fluid. Of this amount, 50 samples were used for the training

set, 12 for the validation set, and 8 for the test set. The

training and validation sets were randomly selected and

varied for each new network trained in the committee.

Only the compressors present in the test set were selected,

ensuring that different models and different CC ranges are

represented in the test set.

The inference value of the samples was inferred with a

30 MLPs committee using (5). The CI was estimate with a

committee of 103 networks created with bootstrap replicas

was trained, each sample of the test set had its input

variables simulated 103 times, and applied to each of the

networks, thus forming 106 results. With this mass of data,

a histogram was created, where it is possible to visualize

the distribution of results and find the shortest 95% cov-

erage interval. The histogram obtained for one of the

samples in the test set is shown in Fig. 9.

Using the proposed method, the errors of the CC

inference result became much smaller than the confidence

intervals of the traditional method used to measure it. It is

possible to see in Fig. 10 that all inferences are within the

confidence interval of the measurement made in

calorimeters, for a confidence level of 95%. The average

relative error found was 0.3%, and the maximum value

observed was 0.7%. For the confidence interval, mean

values of 4.3% were observed, and the worst case was

4.8%. The mean uncertainty value has already shown

improvements when compared to previous works that used

the PRR test, but evaluating only the highest capacity

compressors, as in [11], and Coral et al. [4], the average

confidence interval for the uncertainty became 4.0%,
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showing even better results. All the results of the com-

pressors present in the test set are arranged in Table 2.

An F-test was performed to prove that the values of the

measurement uncertainties provided by the proposed

method are less than that reported in Pacheco et al. [11].

The p-value obtained was 2:43	 10�4, which indicates

that the probability of this result occurring by chance is less

than 0.03%. As a consequence, even for very small sig-

nificance levels, it is possible to guarantee that the uncer-

tainty value obtained using the proposed approach is less

than that of the most recent method reported in the litera-

ture [11].

5 Conclusion

This work proposed the adaptation of a PRR test rig, where

it was possible to control and measure more quantities, and

improve the measurement of other quantities that were

already measured in the original test. Regarding the test

time, the proposed test takes about 1 min, including the

setup time. Given this time, multiple rigs would be required

for 100% inspection of the production, but the proposed

alternative has 0.8% of the test time of a regular

calorimeter with an uncertainty value which is consider-

ably smaller than the one observed in typical quality

assurance tests made in the production line. In this way,

this method is a good choice for production quality

assurance, since many more samples from a batch can be

tested than what is observed in the current situation. In

addition, the cost of the proposed rig is around US$10,000,

a very low value when compared with the calorimeter rig.

This difference also enables to improve the overall batch

coverage in performance tests by using more rigs in par-

allel with the same cost as a single calorimeter. Since the

LPRR is about 20 times cheaper than the calorimeter and

its test time is about 100 times faster, it is possible to test

approximately 2000 compressors in the LPRR with the

same resources to test one compressor in a calorimeter.

All samples from the test set had their inference results

with errors smaller than 1% when compared with the

results from the reference calorimeter used in this study.

The analysis of uncertainties was done based on the

method proposed in Pacheco et al. [11], which takes into

account uncertainties arising from the training process, the

incompleteness of the data set, and the uncertainties of

measurements of the variables. The resulting uncertainty of

the inferences was kept below 5% in all cases.

The case study considered in this work has a broader

domain of compressor parameters than previous works that

used the PRR for CC inference. In Pacheco et al. [11] and

Coral et al. [4], all compressors analyzed had large CC

values (greater than 170 W). In this work, CC values were

inferred for compressors in the range of 80 W to 200 W.

Even so, the tool achieved better CI values, as a result of

the combination of more constant test conditions, a dif-

ferent test procedure, measurement of more quantities,

improvement of the ANN inference tool, and improvement

of the uncertainties of the input variables.

Since each test in a regular calorimeter rig is very

expensive and those tests are required for training the

proposed ANNs, the number of samples considered in the

case study was limited to less than 100 compressors. This

small number of evaluated compressors limited the size of

the neural tool, since ANNs with a larger number of neu-

rons did not improve the prediction quality due to over-

fitting. In future work, the number of calorimeter tests will

be increased to better evaluate the trade-off between the

number of samples in the training set and the uncertainty of

the estimates provided by the proposed method.
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Table 2 Results obtained for the

test set samples. Confidence

intervals are presented with a

95% confidence level

Compressor CC measured (W) CC inferred (W) Error (%) U (%)

1 89.8 ± 2.7 89.3 ± 4.1 �0.6 4.6

2 91.3 ± 2.7 91.3 ± 4.3 0.1 4.7

3 104.4 ± 3.1 105.1 ± 5.0 0.6 4.8

4 142.7 ± 4.3 142.6 ± 6.1 �0.1 4.3

5 171.3 ± 5.1 172.5 ± 7.1 0.7 4.1

6 177.2 ± 5.3 176.9 ± 6.9 �0.2 3.9

7 180.8 ± 5.4 181.7 ± 7.1 0.5 3.9

8 182.2 ± 5.5 181.5 ± 7.3 �0.4 4.0
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