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Abstract
Recently, diffusion models have been proven to perform remarkably well in text-to-image synthesis tasks in a number of

studies, immediately presenting new study opportunities for image generation. Google’s Imagen follows this research trend

and outperforms DALLE2 as the best model for text-to-image generation. However, Imagen merely uses a T5 language

model for text processing, which cannot ensure learning the semantic information of the text. Furthermore, the Efficient

UNet leveraged by Imagen is not the best choice in image processing. To address these issues, we propose the Swinv2-

Imagen, a novel text-to-image diffusion model based on a Hierarchical Visual Transformer and a Scene Graph incorpo-

rating a semantic layout. In the proposed model, the feature vectors of entities and relationships are extracted and involved

in the diffusion model, effectively improving the quality of generated images. On top of that, we also introduce a Swin-

Transformer-based UNet architecture, called Swinv2-Unet, which can address the problems stemming from the CNN

convolution operations. Extensive experiments are conducted to evaluate the performance of the proposed model by using

three real-world datasets, i.e. MSCOCO, CUB and MM-CelebA-HQ. The experimental results show that the proposed

Swinv2-Imagen model outperforms several popular state-of-the-art methods.

Keywords Text-to-image synthesis � Diffusion models � Scene graph � Graph neural network � UNet

1 Introduction

People tend to describe rich and detailed pictures of scenes

through language, and the ability to generate images from

these descriptions can facilitate creative applications in

various life contexts, including art design and multimedia

content creation [1, 2]. This fact has inspired researchers to

design models of text-to-image comparative learning to

assist people with making decisions quickly in specific

scenarios, such as presentation and advertising design

[3, 4]. In recent years, diffusion models have attracted the

attention of many scholars due to their promising perfor-

mance in image generation. Within this framework,

DALL-E 2 [5] and Imagen [6] have become successful

generative models for image generation.

Imagen is currently one of the greatest image generation

models. Its most significant distinguishing feature is its

immensity, which is reflected, in particular, by its utilisa-

tion of a large text encoder, i.e. T5 [7]. T5 is pre-trained on

a sizable plain text corpus. It turns out that T5 is very

effective for enhancing image fidelity and image-text

alignment [6]. However, using T5 alone to obtain text
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embeddings cannot guarantee that the model learns

important text features, such as semantic layout. Besides

visual elements, the semantic layout is recognised as an

important factor in guiding text-to-image synthesis [8]. Our

experimental results provide evidence for this claim.

Furthermore, very few research works are dedicated to

addressing the UNet issue of Imagen. The diffusion model

of Imagen relies on the Efficient-UNet, which suffers from

the limitations of CNN convolution operations. CNN are

good at extracting the low-level features and elements of

visual structure, such as colour, contour, texture and shape

[9]. However, CNN focuses on the consistency of these

low-level features under transformations, such as transla-

tion [10] and rotation [11]. This is also the main reason

why CNNs are widely used in object detection [12]. In

other words, while the convolutional filters are good at

detecting key points, object boundaries and other basic

units that constitute the visual elements, it fails to extract

features efficiently in terms of global and layout. For text-

to-image synthesis tasks, it is significant to consider how to

accurately extract the complex relationships between

objects from the limited text. The Transformer is more

natural and efficient than CNN in processing this demand.

This is mainly because the attention in the Transformer can

effectively mine the relationships between text features,

allowing the model not only focuses on local information

but also has a diffusion mechanism to find expressions

from the local to global layout [13, 14].

To solve the aforementioned drawbacks of Imagen, in

this paper, we propose a diffusion text-to-image generation

model called Swinv2-Imagen. The proposed model is

based on a Hierarchical Visual Transformer and Scene

Graph incorporating layout information. Specifically, the

semantic layout is generated via semantic scene graphs,

enabling Swinv2-Imagen to parse the layout information in

the text description effectively. In this paper, we adopt

Stanford Scene Graph Parser [15] to obtain the Scene

Graph from the text. Subsequently, the entity and rela-

tionship embeddings are extracted using a frozen Graph

Convolution Network (GCN) [15]. The image generation

process appears conditional on text, object and relationship

embeddings. The layout representation with global

semantic information ensures the realism of the generated

images. In addition, the diffusion models are developed

based on Swinv2-Unet, a variant of Swin Transformer v2

[16], which allows the model to learn features from local to

global. Finally, we evaluate our model on the MSCOCO,

CUB and MM-CelebA-HQ datasets. The results show that

the proposed model outperforms the current best generative

model, Imagen, on MSCOCO. The ablation experiments

reveal that the addition of semantic layouts is effective in

improving the semantic understanding of the model.

The key contributions of this paper are summarised

below.

1. We leverage scene graphs to extract entity and

relational embeddings to improve local and layout

information representation of text for a more accurate

understanding of the text and realistic image

generation;

2. We propose Swinv2-UNet as a novel diffusion model

architecture. The model leverages attention to explore

the relationship between features, allowing the diffu-

sion model to focus on different granularities of

features at different moments, from local to global;

3. We fuse the scene graph with the diffusion model, and

the experimental results demonstrate that the resulting

images not only generate the objects specified in the

text, but also additional objects based on specific words

(e.g. kitchen);

4. We achieve a new state-of-the-art FID result

(FID=7.21) on the MSCOCO dataset compared to the

latest generative models. Better results are also

obtained on both the CUB (FID=9.78) and MM

CelebA-HQ (FID=10.31).

The rest of the paper is organised as follows. In Sect. 2,

related works are reviewed. In Sect. 3, we elaborate on the

proposed Swinv2-Imagen model. In Sect. 4, we conduct

extensive experiments to evaluate the performance of the

proposed model and perform an ablation study to evaluate

the contributions of each key component of our model.

Finally, we conclude this paper in Sect. 5, and discuss

future research directions.

2 Related work

2.1 Diffusion models

Text-to-Image synthesis is a typical application of multi-

modal and cross-modal comparative learning. In the field

of image generation, most models mainly fall into two

categories, i.e. the GAN-based generation models [17–22]

and the diffusion-based models [23–27]. The former has

been developed over the last few years and widely used in

many scenarios, such as medical and image restoration.

The latter has demonstrated outstanding performance over

the GAN models, acknowledged as state-of-the-art deep

generative models [6, 28, 29].

Diffusion models and GAN generative models are

essentially comparable, both being a process of gradually

removing noise. However, in contrast to GAN, the diffu-

sion models do not suffer from training instability and

model collapse. The diffusion model transforms the data

distribution into random noise and reconstructs data
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samples with the same distribution [6, 30]. The diffusion

model demonstrates outstanding performance for a number

of tasks, such as multimodal modelling. Many contempo-

rary text-to-image synthesis models, e.g. DALL-E 2 [5],

Imagen [6] and GLID [25], are constructed based on the

diffusion model. They cascade multiple diffusion models to

improve the image generation quality step by step. DALL-

E 2 uses a priori diffusion model and CLIP Latents to

process the text. In contrast, Imagen discards the priori

model and replaces it with a large pre-trained text encoder,

i.e. T5. Although the T5 model leveraged in the Imagen

model improves the understanding of the text, it does not

ensure that the model understands the semantic layout of

the text, especially in complex sentences containing mul-

tiple objects and relationships. As a result, the model will

not be able to reproduce some entities or will lose some

entity relationships. Therefore, we attempt to model the

global semantic layout by adding a scene graph in the text

processing. Furthermore, Imagen builds its diffusion model

based on Efficient-Unet. Efficient Unet is not the best

choice in image generation tasks, because it contains

multiple CNN blocks and leads to a limited view within the

CNN kernel window.

2.2 Scene graph and graph representation
learning

A sentence’s nature is a linear data structure, where one

word follows another [15]. Usually, when a sentence is

complex with multiple objects, it is time-consuming to

analyse the sentence directly, and the accuracy of the text-

image alignment is not guaranteed. Complex sentences

often incorporate rich scene information. Mapping this

information into a scene graph can provide an intuitive

understanding of the relationships between objects in a

sentence [31]. Previous studies reveal that the performance

of multimodal models, such as text-to-image synthesis, is

significantly dependent on mining visual relationships [32].

Scene graphs can provide a high level of understanding

regarding scene information [15]. Therefore, the scene

graph is recognised as a useful representation of images

and text. Specifically, each node in a scene graph repre-

sents an object, such as a person or an event, and each

object has multiple attributes, such as shape. The rela-

tionships between objects are denoted by the edges

between nodes, which can be an action or a position [33].

Recently, the scene graphs have been used extensively for

tasks such as text-based image retrieval [34, 35], semantic

segmentation [36, 37], visual question answering [38],

image captioning [39–42] and image generation

[15, 31, 43, 44]. The recently proposed dynamic scene

graph generation also demonstrates the prospects of scene

graphs in video monitoring, autonomous driving, and other

fields related to video processing and generation [45].

In addition, there is no way for an image generation

model to manipulate graph-like data such as scene graphs

directly, so scene graphs are usually used in conjunction

with graph representation learning [46]. The main objective

of graph representation learning is to extract node and edge

contexts from the scene graph and map them to a set of

embeddings. Graph representation learning methods can

currently be classified into two types, i.e. machine learning

based on Random-Walk and deep learning Graph Convo-

lution-based methods [46]. Node2vec [47] is a typical

representative model of the former. It is based on Skip-

Gram [48] theory to learn the embedding of nodes on a

graph and optimises the sampling method. It is proposed in

related studies [49] that two sampling methods, Breadth-

First Search (BFS) and Depth First Search (DFS), are

mainly included when sampling neighbouring nodes in a

graph. BFS requires that each sampled node is a direct

neighbour of that node. This sampling method results in a

graph representation that is more concerned with local

information. In contrast, DFS, where each node is sampled

to increase the distance to the initial node as much as

possible, produces a graph representation that focuses more

on global information. Random-Walk-based representation

learning [50] comprises multiple stages, each with different

optimisation goals, which is a typical non-end-to-end

model. Graph convolution-based methods, e.g. Graph

convolution neural networks [15], are able to learn both

node feature information and structural information via an

end-to-end way. It focuses on both local information and

global structural features. Graph Convolutional Neural

Networks (GCNs) have gained significant attention in

recent studies as powerful tools for analysing graph-

structured data, such as social networks and database

tables [51]. For the text-to-image synthesis task, generation

models leverage GCNs to capture semantic relationships

between textual descriptions and visual features, enabling

more accurate image generation. Recently, many studies

have been conducted to enhance graph-based neural net-

works. Specifically, a novel augmentation method called

GraphENS has been proposed to address the issue of

overfitting to neighbour sets of minor class nodes [52, 53].

They proposed a saliency-based node mixing method to

leverage the abundant class-generic attributes of other

nodes while preventing the injection of class-specific fea-

tures. To mitigate the negative impact of oversampling on

message passing, they restricted the message passing only

to the incoming edges of the oversampled nodes.
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2.3 UNet

UNet is an encoder–decoder architecture, which is scalable

in structure [54]. The encoding stage of the UNet consists

of four downsamples. Symmetrically, its decoding stage is

also upsampled four times, restoring the result of the

encoder to the resolution of the original image. In contrast

to Fully Convolutional Networks (FCN) [55], UNet

upsamples four times and uses a jump connection in the

encoder and decoder of the corresponding convolution

blocks. The jump connection ensures that the final recov-

ered feature map incorporates more low-level semantic

features and features at different scales are well fused,

allowing for multi-scale prediction. In addition, the four

times upsampling also allows the segmentation map to

recover information such as edges more finely. However,

UNet also has some shortcomings. For example, UNet??

[56, 57] argues that it is inappropriate to directly combine

the shallow features from the encoder with the deeper

features from the decoder in UNet. Direct fusion would

potentially lead to semantic gaps. Furthermore, UNet 3?

[58] maximises the scope of model information fusion and

circulation. Each decoder layer in the UNet 3? fuses

small-scale and same-scale feature maps from the encoder

with larger-scale feature maps from the decoder, which

capture both fine-grained and coarse-grained semantics at

full scale.

Many researchers develop a set of UNet variants by

improving and optimising the original UNet. For example,

ResUNet [59] and DenseUNet [60] are inspired by Resid-

ual and Dense connections, respectively; each sub-module

of the UNet is replaced with a form having a Residual

connection and a Dense connection. There are variants, e.g.

MultiResU-Net [61] and R2 UNet [62]. All of these models

are constructed using multiple convolutional blocks. With

the advent of the Transformer, researchers begin to develop

the UNet base on the Transformer, such as Swin-UNet

[63]. While Swin-UNet mitigates the limitations of CNN

convolutional operations, it is likely to suffer from training

instability due to the use of the Swin-Transformer block.

Swin-Transformer v2 [16] is an improvement on Swin-

Transformer, which is effective in avoiding training

instability and is easier to scale.

Inspired by these research works, we propose a Swinv2-

Imagen model that leverages scene graphs as auxiliary

modules to help the model understand the text semantics

more comprehensively. In addition, Swinv2-Unet is

applied to build the diffusion models so that our model is

based on the full Transformer implementation. As a result,

it effectively addresses the limitations of CNN convolution

operations, theoretically enabling the synthesis of images

better than baselines.

3 Swinv2-Imagen

The overall architecture of the proposed Swinv2-Imagen

model is shown in Fig. 1. It takes text descriptions as input and

uses scene graphs to guide downstream image generation

more accurately and efficiently. The upstream comprises two

sub-modules: the text encoder, which maps the text input to a

text embedding sequence and the scene graph generator sub-

module. The scene graph generator includes a Scene Graph

parser and a frozen Graph Neural Network, which aims to

represent objects and relationships in a text with a graph

structure. The downstream consists of a set of conditional

diffusion models, integrating the intermediate embeddings in

the upstream and generating high-fidelity images step by step.

The input of the model is a text-picture pair. Firstly, the

text is encoded by T5 tokenizers and input to the embedding

layer to get the initial text embedding. Next, it goes through

the T5 encoder (n-layer T5 Block) to obtain Text

Embeddings.

Meanwhile, the scene graph parser extracts the scene

graph from the text, and the frozen GCN (m-layer Graph

Triple Convolution) obtains the corresponding Object and

Relation embeddings. Finally, the Conditional embeddings

are obtained by concatenating the Text embeddings, Object

embeddings and Relation embeddings in this order. The

Conditional embeddings are used as conditional input for

subsequent super-resolution image generation. In the fol-

lowing subsections, we describe the main components of

Swinv2-Imagen in detail.

3.1 Pre-trained frozen text encoders

It is widely acknowledged that a robust semantic text enco-

der is essential for text-to-image synthesis models and plays

a crucial role in analysing the complexity and composition of

textual input [6]. Previously, language models were mainly

built on RNN architectures. However, since the emergence

of the Transformer, a number of transformer-based pre-

trained language models have been developed, such as GPT

[64–66], BERT [67] and T5 [7]. The traditional Imagen

model is compared against popular text encoders, BERT,

CLIP and T5-XXX, by freezing parameters. The existing

research results prove the promising performance of T5-

XXX in terms of both image-text alignment and image

fidelity [6]. Therefore, we adopt the T5 large language model

for text encoding in the proposed model.
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Fig. 1 Overall architecture of

Swinv2-Imagen. The text is

passed through both a frozen T5

Encoder and a scene graph. The

scene graph mines complex

entity relationships explicitly,

ensuring that the model

understands the text semantics

accurately
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3.2 Scene graph and frozen graph convolutional
neural network

This sub-module aims to extract entity and relationship

features from the text to enhance the text understanding of

the model. We adopt a Scene Graph parser to represent text

as a scene graph, followed by a frozen GCN to extract the

entity and relational embeddings for the image generation

with diffusion models. Scene graphs with graph neural

networks [15] have been proven to be highly effective in

extracting object relationships from the text. As shown in

Fig. 2, Swinv2-Imagen constructs a scene graph for the text

and is followed by a graph neural network to extract the

entities and relationships from the scene graph. For any

given text description, the corresponding scene graph is

represented as follows: (O, E), where O ¼
ðo1; o2; o3; � � � ; onÞ denotes each object in the sentence, i.e.

subject and object, and E is a collection of edges of the

form ðoi; r; ojÞ, where r 2 R, R refers to a collection of

relationships. In the end, object and relation embeddings

are constructed, which are used to assist the T5 model in

analysing and understanding the text more

comprehensively.

The input to the graph convolution is a scene graph,

having each node and edge represented as a vector with

dimension Din, i.e. vi; vr 2 RDin . In the graph convolution

sub-module, these vectors are adopted to compute output

vectors with dimension Dout for each node and edge, i.e.

v0i; v
0
r 2 RDout . Three functions, gs, go and gp are used to

calculate the object features vectors and relation vectors of

output. They take a triplet as input, i.e. vi; vr; vj
� �

. In the

scene graph, given an edge vr, the two associated objects,

vi and vj, are determined. Thus, the output relationship

vector v0r can be simply expressed as:

v0r ¼ gp vi; vr; vj
� �

ð1Þ

In contrast, the calculation of output object vectors v0i, is

more complicated. Generally, an object is associated with

two or more relations. Therefore, the output vector of an

entity oi is calculated by considering all the vectors directly

connected to the object, i.e. vj, and the corresponding

relationship vectors, vr. The function gs in Eq. (2) is used

to compute all vectors starting at node oi and function go in

Eq. (3) is used to compute all vectors ending at node oi.

Afterwards, these vectors are collected into lists Vs
i and Vo

i .

Vs
i ¼ fgs vi; vr; vj

� �
: oi; r; oj
� �

2 Eg ð2Þ

Vo
i ¼ fgo vj; vr; vi

� �
: oj; r; oi
� �

2 Eg ð3Þ

Then, the output vector v
0

i for the entity oi is expressed as

follows:

v0i ¼ h Vs
i [ Vo

i

� �
; ð4Þ

where h denotes a function that pools all vectors in lists Vs
i

and Vo
i to a single output vector [15].

3.3 Image generator

The image generator is composed of three diffusion models

located downstream. In the diffusion model, a hidden

variable z is obtained by adding noise to the image for

T times. After forward and backward diffusion, a basic 64 *

64 image can be learned. The basic image is input to the

first Swinv2-Unet to generate a 256 * 256 image. Finally,

the image goes to the second Swinv2-Unet super-resolution

generation, producing a 1024 * 1024 high-definition image.

The diffusion model can be described as an Encoder–

Decoder architecture. It first adds Gaussian noise ð�Þ to the

original image ðx0 � qðx0ÞÞ in an iterative manner, the

number of iterations being T (T is timestep, usually

T ¼ 1000). When T tends to infinity, i.e. ðT ! 1Þ, the

image is nearly a random Gaussian noise distribution xT .

Fig. 2 Process of Object and Relation embeddings extraction. The

input to the model is a sentence, which is first parsed by the scene

graph parser into a graph structure (scene graph). Each node

represents an object in the text and each edge represents a relationship

between objects. Finally, all the nodes and edges are parsed by the

graph neural network into an object embedding and a relation

embedding, respectively
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This process is called forward diffusion and can be thought

of as an encoder. The model then learns how to recover the

noise distribution ðxTÞ to the original image ðx0 � qðx0ÞÞ by

gradually removing the noise from xT . The process is called

reverse diffusion and can be thought of as a decoder

[28, 29].

In the forward diffusion, the result at timestep t is

mainly related to the outcome at moment t � 1 and the

added noise �t, i.e.

xt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � bt

p
xt�1 þ

ffiffiffiffi
bt

p
�t qðxtjxt�1Þ�N ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � bt

p
; btÞ;

ð5Þ

qðx1:T jx0Þ ¼
YT

i¼1

qðxtjxt�1Þ ð6Þ

where bt I prefer to understand as a linear weight value. At

different timestep, xt�1 and �t have different effects on the

result. When T is small, e.g. t ¼ 1, xt�1 has a greater impact

on the result and adds little noise. Conversely, when t is

large, e.g. t ¼ 900, more noise is added and the contribu-

tion to the result is larger than xt�1.

The distribution of the noise added at each timestep in

the forward process is identical, i.e. �1; �2; ::::::�N ð0; IÞ.
Thus, we can compute the result at any timestep xt directly

from x0, i.e.

xt ¼
ffiffiffiffi
�at

p
xo þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � �at

p
�t ð7Þ

where a ¼ 1 � b, �at ¼
Qt

i¼1 ai.
Reverse diffusion is an image generation process. The

Gaussian noise xT �N ð0; IÞ will be taken as input to infer

and reconstruct the true sample by sampling from distri-

bution qðxt�1jxtÞ, i.e.

xt�1 ¼ 1
ffiffiffiffi
at

p xt �
1 � atffiffiffiffiffiffiffiffiffiffiffiffi
1 � �at

p
� �

fhðxt; tÞ ð8Þ

where fhðxt; tÞ is a function used to predict the noise �

added in the forward diffusion. This is mainly because it is

difficult to infer the true distribution of the image directly

from the random noise xT . In other words, the objective of

the diffusion generation model is to evaluate the difference

between the predicted noise data and the true added noise

data, i.e.

pðxt�1jxtÞ ¼ jj�� fhðxt; tÞjj: ð9Þ

In contrast to Imagen, we focus on improving super-reso-

lution diffusion models. We introduce a new UNet variant

to our super-resolution diffusion model, called Swinv2-

UNet. The Swin Transformer Block is replaced with the

Swin Transformer v2 Block based on the original Swin-

Unet [63], the complete structure of which is shown in

Fig. 3.

A distinctive feature of Swinv2-Unet compared to Swin-

Unet is the replacement of the dotðK;QÞ operation with

cosine normalisation [68] in the attention part, which

makes the attention output more stable. Given two vectors,

Q and K, the cosine normalisation could be expressed as

follows:

CosineðQ;KÞ ¼
P

iðqikiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðqiÞ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðkiÞ
2

q : ð10Þ

The DBlock and UBlock of Swinv2-UNet consist of the

Swin Transformer v2 block, which comprises LayerNorm

(LN) layers, multi-headed self-attention modules, Residual

connections and a 2-layer MLP with GELU nonlinearity.

The Swin Transformer v2 block could be represented as

follows:

ẑlþ1 ¼ LNðAttnðzlÞÞ þ zl ð11Þ

zlþ1 ¼ MLPðLNðẑlþ1ÞÞ þ ẑlþ1; ð12Þ

where zl and zlþ1 denote the input and output of the

Transformer v2 block, respectively. ẑlþ1 is an intermediate

variable. ? denotes the residual connection or skip

connection.

Fig. 3 UNet architecture of the super-resolution sub-module. The

architecture includes an encoder(downsampling), bottleneck, and

decoder(upsampling). Skip connections are used between the encoder

and decoder. All components are built based on the Swin Transformer

v2 block
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The attention of Swinv2 is expressed as follows:

AttnðQ;K;VÞ ¼ SoftMax
CosineðQ;KÞ

s
þ B

� �
; ð13Þ

where Q, K, and V denote the matrix of query, key and

value, respectively. Cosine() refers to a function that cal-

culates the scaled cosine similarity of Q and K. s denotes a

learnable scalar, usually greater than 0.01. B is a matrix of

relative position bias.

Figure 4 illustrates the network structure of the Swinv2-

Unet DBlock, which is the basic component of the down-

sampling path under the encoding–decoding structure of

UNet. Firstly, the DBlock combines the pooled text

embeddings, object embeddings and relation embeddings

into a conditional embedding input to the cross-attention

layer. Next, it is followed by the Swinv2-Transformer v2

blocks for (num_block-1) times feature extraction.

Figure 5 shows the network structure of the Swinv2-

Unet UBlock, which is the basic component of the

upsampling path on the UNet encoder–decoder. The

inputs to the UBlock include the output of the previous

UBlock layer and the corresponding DBlock. The

DBlock and UBlock are connected using skip connec-

tions [57]. Subsequently, the conditional embedding

inputs are also introduced to the cross-attention layer.

Similar to the DBlock, this layer is followed by the

Swinv2-Transformer v2 blocks for (num_block-1) times

feature extraction.

The encoder is presented as a stacking of DBlocks and

Patch Merging. In the encoder, images are fed into five

consecutive DBlocks for learning, where the feature

dimension and resolution are maintained. Meanwhile,

Patch Merging performs Token Merging and increases the

feature dimension to four times the original dimension.

Next, we apply a linear layer to standardise the feature

dimension to twice the original dimension. The process is

repeated four times in the encoder.

Similar to UNet, skip connections are used to integrate

the multi-scale features of the encoder with the upsampled

features. We connect shallow and deep features to min-

imise the loss of spatial information due to downsampling.

The next layer is a linear layer where the dimensionality of

the connected features is kept the same dimensionality as

that of the upsampled features.

The decoder is a symmetric decoder corresponding to

the encoder. For this reason, unlike the Patch Merging used

in the encoder, we use Patch Expanding in the decoder to

upsample the extracted features. The Patch Expanding

reshapes the feature maps of adjacent dimensions into a

higher resolution feature map (2� upsampling) and

accordingly reduces the number of feature dimensions to

half the original dimensionality.

4 Experiments

In this section, we perform extensive experiments to

evaluate the proposed Swinv2-Imagen model by using the

MSCOCO, CUB and Multi-modalCelebA-HQ (MM Cel-

ebA-HQ) datasets. Firstly, a brief description of the data-

sets is given. Secondly, we compare the performance of the

Swinv2-Imagen model with state-of-the-art generative

models. Finally, we conduct ablation experiments to

compare the contributions of each module.

4.1 Setup

4.1.1 Datasets

The Microsoft Common Objects in Context 2014 (MS

COCO-2014) [69], the Caltech-UCSD Birds-200-2011

(CUB-200-2011) [70] and MM CelebA-HQ [20] datasets

are utilised in this research. Three datasets cover both

simple (CUB) and complex (MSCOCO) datasets. The use

of the MM CelebA-HQ dataset is mainly because most

Fig. 4 Swinv2-Unet DBlock
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generative models such as CogView and Craiyon, produce

distorted and less realistic faces.

• MSCOCO1 was released in 2014. It is a collection of

164K images, which have been partitioned into the

training set (82K), validation set (41K) and testing set

(41K). The dataset is complex because most of the

images possess at least two objects.

• CUB2 contains 12K bird images of 200 subcategories,

6K for training and 6K for testing. It is a simple dataset,

having only one object per image.

• MM CelebA-HQ3 is a large-scale face image dataset. It

is a collection of 30K high-resolution face images. The

dataset is used widely to train and evaluate algorithms

for text-image generation and text-guided image

manipulation.

4.1.2 Evaluation metrics

We adopt Fréchet Inception Distance (FID) [71] and

Inception Score (IS) [8] as evaluation metrics. Both are

acknowledged as standard metrics for evaluating the image

generation model. Specifically, IS examines both the clar-

ity and diversity of the resulting images. The higher the IS,

the better the quality of the generated images. FID calcu-

lates the difference between the generated image and the

original image. The smaller the difference, the better the

generated image is.

4.1.3 Baselines

• PCCM-GAN [72] (Photographic Text-to-Image Gen-

eration with Pyramid Contrastive Consistency Model)

is a typical multi-stage generative model. Its main

innovations include the introduction of stack attention

and the lateral connection of the PCCM. The two

modules enhance the generative model to simultane-

ously extract semantic information from both global

and local aspects, ensuring that the generated images

are semantically consistent.

• DM-GAN [17] (Dynamic Memory Generative Adver-

sarial Networks for Text-to-Image Synthesis) is also a

multi-stage generative model. It uses a memory module

and a gate mechanism in the image refinement process.

The aim is to re-extract important information from the

image as an aid when the generated image is not as

good as expected.

• SDGAN [73] (Semantics Disentangling for Text-to-

Image Generation) consists of two modules, i.e.

Siamese and semantic conditioned batch normalisation,

to extract high-level and low-level semantic features

respectively.

• CogView [74] is based on the Transformer architecture.

Its input is a text-image pair. The text and image

features are combined and passed to the GPT language

model for autoregressive training.

• GLIDE [25] is a large-scale image generation model

based on diffusion models with 3.5 billion model

parameters.

• DALL-E 2 [5] is also based on diffusion models. One of

its highlights is the use of a priori model built on the

diffusion models. Its inputs are also text and corre-

sponding images. The text is first passed through the

priori model and a corresponding image vector is

generated. The image is passed through the CLIP

module which also generates an image vector to

supervise the result of the priori model.

• LAFITE [75] is a variant of generative adversarial

networks. It leverages the CLIP model to extract

features from images and text, ensuring text-image

consistency.

• Imagen [6] is a text-to-image synthesising model based

on the diffusion model. It passes text through a large

pre-trained T5 language model and generates high-

fidelity images through cascading diffusion model

blocks.

4.1.4 Training parameters

We apply an Imagen-like training strategy, i.e. training the

base model and then the super-resolution model twice. The

Adam optimiser is adopted, having a learning rate of 1e-4.

We give 10,000 linear warm-up steps with a batch size of 8

and training epochs of 1000. The loss function is Mean

Squared Error (MSE), formulated as follows.

Fig. 5 Swinv2-Unet UBlcok

1 https://cocodataset.org/.
2 https://deepai.org/dataset/cub-200-2011.
3 https://github.com/weihaox/Multi-Modal-CelebA-HQ-Dataset.
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MSEðI;KÞ ¼ 1

M � N

XM�1

i¼0

XN�1

j¼0

½Iði; jÞ � Kði; jÞ�2; ð14Þ

where M and N denote the total number of pixels in the real

image I and the generated image K, respectively. A smaller

MSE implies that the generated image is closer to the real

image.

4.2 Experimental results

In this subsection, we evaluate the proposed model by

comparing it against a few state-of-the-art generative

models.

4.2.1 Performance evaluation

Table 1 demonstrates the results of the quantitative com-

parison. The proposed model is compared against 10

popular generative models, including GAN and diffusion

models. It is evident that the proposed Swinv2-Imagen

model outperforms the baselines on all three datasets.

Particularly, on the MSCOCO dataset, Swinv2-Imagen

significantly outperforms the GAN-based generative model

and slightly surpasses the Imagen, achieving an FID of

7.21. It can be seen from Fig. 6 that our model has

achieved the best result in terms of FID. However, our

model, in IS metric, is lower than SDGAN and LAFITE.

One possible reason for this result is that IS is not very

robust in evaluating classes that differ significantly from

the ImageNet [78] and is more sensitive to data perturba-

tions. This is also the main reason why this metric is not

widely used in most diffusion-based generation methods,

such as DALLE2 and Imagen.

4.2.2 Qualitative analysis

Figure 7 shows examples of images generated by our

proposed model on MSCOCO, CUB and MM CelebA-HQ.

It can be seen that our model understands the text very

well. For example, given the text input, ‘Food cooks in a

pot on a stove in a kitchen’, the resulting picture not only

contains the food, the stove and the pot, but also places

these objects to the exact location. More importantly, based

on the word ‘kitchen’, the model also generates other

common kitchen objects, such as spoons and storage

shelves. This shows that our model understands the text

accurately and comprehensively.

Figure 8 illustrates the qualitative comparison of the

proposed model and the GAN-based, diffusion-based

generative models, i.e. DM-GAN [17], DF-GAN [79], VQ-

Diffusion [80]. Compared to diffusion-based models, the

GAN-based models lose many detailed features in the

generated results. For example, the bird’s eyes are very

blurred in the third image in the first row and the second

image in the second row. One possible reason for this result

is that the diffusion model improves the generalisation

ability of the model by iterating over the image several

times, with each iteration perturbing the image slightly (by

adding randomly noisy data to the image). GANs, on the

other hand, usually rely on continuous optimisation over

large amounts of data in order to generate high-quality

images. Compared to VQ-Diffusion, which is a diffusion-

based model, our results are more realistic and contain

more fine-grained features. Particularly, the blue birds in

the third column generated by our method are better than

that generated by VQ-Diffusion. One possible reason for

this result is that VQ-diffusion is a typical two-stage gen-

erative model [80]. First is the vector quantisation stage,

Table 1 Experimental results of

varied models for Text-To-

Image synthesis

Model MSCOCO CUB MM CelebA-HQ

FID # IS " FID # IS " FID #

PCCM-GAN [72] 33.59 26.52 22.15 4.65 14.52

DM-GAN [17] 32.64 30.49 16.09 4.75 131.05

SDGAN [73] 29.35 35.69 29.3 4.64 15.1

DALL-E [76] 27.5 17.9 56.1 2.65 12.54

CogView [74] 27.1 18.2 N/A N/A N/A

GLIDE [25] 12.24 30.47 N/A N/A 9.69

DALL-E 2 [5] 10.39 N/A N/A N/A N/A

LAFITE [75] 8.12 32.34 10.48 5.97 12.54

Make-A-Scene [77] 7.55 N/A 22.5 N/A N/A

Imagen [6] 7.27 N/A N/A N/A N/A

Swinv2-Imagen 7.21 31.46 9.78 8.44 10.31

The bold values indicate the best results

Symbols " and # indicate the higher the best and the lower the best, respectively. N/A means that the

indicator is not used in the article
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where the original image is represented as a set of high-

dimensional vectors and mapped into a discretised space

using a vector quantisation model. Second is the diffusion

computation stage, where a discretised sequence of vectors

is used as the initial state, which is iterated over several

times using a diffusion model. Finally, the resulting dis-

cretised vector sequence is transformed into an image. The

vectorisation results of the first stage will directly affect the

quality of the generation results. By comparison, our pro-

posed model is designed as an end-to-end architecture that

optimises the entire generation process holistically. Our

model eliminates the need for intermediate stages, facili-

tating better optimisation and faster convergence. In addi-

tion, our model also outperforms other generation models

in terms of text-image alignment. The text description of

the first column requires the bird’s breast to be white, but

this feature seems to be grey in the results of other models,

especially DM-GAN. In summary, by comparing with

other GAN-based and diffusion-based generation models,

it can be seen that our model synthesises fine-grained and

detailed images on CUB.

Figure 9 presents the qualitative comparison between

our model and LAFITE [75] on MSCOCO. Intuitively, our

results are more colourful and saturated. For example, in

the first and fourth columns, our bus and city street include

more colours and the images are brighter. Furthermore, our

model is also better for text understanding. In the third

column, the room should include two colours, white and

beige, however, in the LAFITE result, there are just white

walls and a white cupboard. There is not any trace of the

beige features. In contrast, our generated room contains the

two colours required by the text, and the overall layout is

more realistic. Finally, our model is also better regarding

image quality. The tops of the bus and room generated by

LAFITE are distorted and the results are generally blurred.

Our model has a significant advantage over LAFITE in

generating objects such as buildings, buses, trees, etc.

Although the two models are very close in terms of FID

and IS in the quantitative analysis in Table 1, our model is

superior in terms of the quality of the generated images.

4.3 Ablation study

In order to improve the performance of the generation

models, we introduce two new modules to Imagen, i.e.

scene graph and Swinv2-Unet. These are the main inno-

vations of the article. In this subsection, two ablation

experiments are conducted on MSCOCO to investigate the

contributions of the scene graph module and Swinv2-Unet,

respectively. The choice to experiment on MSCOCO is

based on two considerations. Firstly, each image in

MSCOCO contains multiple objects, which is more com-

plex than CUB dataset. Theoretically, it allows a better

evaluation on the effect of each module. Secondly, the

main baseline we referenced, Imagen, is only experimented

on MSCOCO. The aim of Experiment 1 is to evaluate the

contribution of the scene graph module. We add only the

scene graph, and the diffusion model is still built using

Efficient-Unet, which is called Imagen_sg. Experiment 2 is

designed to evaluate the performance of the Swinv2-Unet.

We constructed a new diffusion model using our improved

Swinv2-Unet and replace Imagen’s super-resolution dif-

fusion models with it, which is called Swinv2-Imagen_su.

The result of Experiment 1 supports our conjecture that

merely using a T5 encoder does not sufficiently learn the

semantic information of the text, as mentioned in the

introduction. Experiment 2 shows that the diffusion model

constructed with the Transformer outperforms the CNN-

Fig. 6 FID and IS on

MSCOCO. Smaller FID is

better, larger IS is better. 0

means that the model does not

use this evaluation metric
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constructed diffusion model in the image generation task. It

also can be seen from Table 2 that the FIDs of the Ima-

gen_sg and Swinv2-Image_su are very close. This intu-

itively reveals that the two submodules almost contribute

equally to the FID.

5 Conclusion and future work

In this paper, we propose a novel text-to-image synthesis

model based on Imagen, called the Swinv2-Imagen, which

integrates the Transformer and Scene Graph. The improved

sliding window-based hierarchical visual Transformer

Fig. 7 Generated examples by proposed model on COCO, CUB and

MM CelebA-HQ. The resulting images generate not only the objects

requested in the sentence but also additional objects based on special

words(e.g. kitchen). For example, in the first image, the resulting

image includes food, a pot, and a stove (required in the text) and some

spoons and rice cookers (common kitchen items)
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(Swin Transformer v2) avoids the local view of CNN

convolution operations. It improves the efficiency and

effectiveness of the Transformer applied to image genera-

tion. In addition, we introduce a Scene Graph in the text

processing stage. Feature vectors of entities and relation-

ships are extracted from the Scene Graph and incorporated

into the diffusion model. These additional feature vectors

improve the quality of generated images. Swinv2-Imagen

produces 1024 � 1024 samples with unprecedented fidelity

with these novel components.

Furthermore, it has also recently been noted that

autoregressive models can produce diverse and high-qual-

ity images from text. Thus, we plan to consider combining

autoregressive and diffusion models for image generation

and determine the best opportunities to combine their

strengths.

Fig. 8 Comparison with GAN-based and diffusion models on CUB-200 dataset. For each method, we present three captions and the

corresponding generated images. Our resulting images are more detailed in colour and higher in quality than the popular GAN models
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