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Abstract
Diabetic retinopathy (DR) is a common retinal complication led by diabetes over the years, considered a cause of vision

loss. Its timely identification is crucial to prevent blindness, requiring expert humans to analyze digital color fundus

images. Hence, it is a time-consuming and expensive process. In this study, we propose a model named Attention-

DenseNet for detecting and severity grading of DR. We apply a pre-trained convolutional neural network to extract features

and get a hierarchical representation of color fundus images. What is essential for the correct diagnosis of DR is to

recognize all the retinal lesions and discriminative regions. However, convolutional neural networks may overlook some

tiny lesions of color fundus images. So, we use an attention model to solve this issue, which helps the model focus more on

distinctive areas than others. We use APTOS 2019 dataset and fivefold cross-validation to assess the model’s performance.

The method achieves an overall accuracy of 98.44%, an area under receiver operating characteristic curve of 99.55%, and

quadratic weighted kappa of 96.88% for the detection task, and an overall accuracy of 83.69%, an area under receiver

operating characteristic curve of 97%, and quadratic weighted kappa of 89.26% for grading task. Our experimental results

indicate that the model is superior to recent studies and can be suitable for DR classification in real life, especially for DR

detection.
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1 Introduction

Diabetic retinopathy (DR) is among the most common

retinal diseases, led by diabetes. It is one of the most sig-

nificant causes of partial or complete blindness in 20–35

years. Approximately 33% of people with diabetes have

DR symptoms, of which 10% will suffer from a vision-

threatening stage of DR.

Increased blood glucose levels in people who have

diabetes can cause serious damage to the retinal blood

capillaries, causing them to leak fluid or blood. Such fluid

leaks are likely to form various lesions in the retina, like

microaneurysms, hard exudates, soft exudates, and hem-

orrhages. Specialists generally classify DR disease into the

Non-Proliferative DR (NPDR) and Proliferative DR (PDR)

stages. The NPDR stage can have various severities heavily

dependent upon retinal lesions and damages, including

mild, moderate, and severe. The mild severity is only

characterized by the presence of microaneurysms [1]. In

the moderate stage, extensive microaneurysms and hem-

orrhages are present. It may be seen in some cotton wool

spots [2]. In the severe stage, venous beading and at least

20 hemorrhages could occur in at least two and every four

quadrants. In this stage, intra-retinal microvascular abnor-

mality (IRMA) is present in at least one quadrant [3].

Moreover, some new abnormal blood vessels grow around

the optic disk and other regions in the PDR stage, which

have thin and fragile walls that could lead them to leak

blood. This leaked blood is dangerous and threatens to

harm individuals’ vision [1, 2].

By early diagnosis of DR, visual impairment or blind-

ness can be delayed or prevented. Clinical and conven-

tional DR diagnosing approaches are usually manually

dependent on expert ophthalmologists who analyze digital

color fundus images. However, these methods are time-
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consuming and most likely prone to error. Based on recent

studies, automatic systems are claimed to solve such

problems.

In recent few years, different models founded on con-

ventional machine learning and deep learning have been

proposed to detect and grade DR. Machine learning algo-

rithms learn from their experiences and enhance their

knowledge. Such algorithms make a machine capable of

analyzing, understanding, recognizing, and classifying raw

data. However, conventional machine learning approaches

are not resistant to changes in data, so they have a weak

generalization level. In other words, they cannot accurately

analyze big data, especially images, due to their low

computational complexity.

Convolutional neural networks (CNNs) have been

among the most successful deep artificial neural networks

in different fields, particularly computer vision tasks. This

structure has a high-level computational complexity,

requiring sufficient annotated data to avoid serious issues

like overfitting, weak generalization power, and diver-

gence. CNNs are considered one of the best proposed

powerful tools in computer vision due to the accessibility

of extensively annotated databases and graphics processing

units (GPUs) [4].

The application of CNN in the medical field is a big

challenge because the available annotated data in this field

are usually inadequate. In addition, if a CNN is trained

from scratch, it is time-consuming since its initial param-

eters are random. The transfer learning technique is a

practical approach to such problems. In CNNs, transfer

learning is a method for transferring knowledge from a

CNN that has already been trained on a source dataset for a

task to another CNN trained using the target dataset for the

desired task. Since the knowledge of pre-trained CNN is

used as the starting point in the new CNN, the initial

parameters are not random. As a result, the generalization

power increases, and the training process is not time-con-

suming. Moreover, it is not essential to access many

annotated data to train the model.

In CNNs, transfer learning can be used by two methods.

Firstly, transferred weights from the pre-trained CNN to

the new one are frozen and used to extract features of the

new dataset. Secondly, the new CNN is initialized using

the weights of a specific pre-trained CNN. Based on the

correlation between source and target datasets, several or

all-new network layers’ parameters are refined in a super-

vised manner. However, if the correlation between these

two datasets is low, all layers’ parameters should be fine-

tuned, called full fine-tuning. But, if the correlation is high,

only several last layers’ parameters require fine-tuning,

called layer-wise fine-tuning. In addition, the lower layers

of a CNN extract low-level features related to many vision

tasks, and the deeper layers extract high-level and more

complex features related to specific vision tasks. So, full

fine-tuning is not always necessary for many tasks.

Besides, it is also time-consuming, which could be

addressed by layer-wise fine-tuning [4].

All images have some key regions on which the clas-

sifier must focus more than others because they play a

vitally important role in classifying different images and

distinguishing them from each other. However, CNNs

hierarchically extract features belonging to all spatial

regions and aggregate them using pooling layers to repre-

sent an image accurately. So, CNN treats all features from

different image areas the same and cannot discriminate

between informative and non-informative regions in an

image. As a result, the application of CNN for fine-grained

tasks could be challenging. One of the most practical and

best-proposed approaches to such challenges is the com-

putational attention model inspired by a biological mech-

anism. It can be said that humans usually tend to pay more

attention to more critical regions or content of a scene, such

as familiar faces and different textures. In recent years,

many researchers in the artificial intelligence field have

proposed various computational attention models based on

human brain mechanisms, helping deep learning networks,

like CNNs, capture discriminative regions of an image or

video.

This paper proposed a model named Attention-Dense-

Net for DR screening and severity grading inspired by the

methods presented in [5, 6]. Diabetic retinopathy datasets

are usually limited and have hundreds or thousands of

digital color fundus retinal images, making deep learning

models face overfitting and divergence. To tackle this

problem and boost the generalization power, we prefer to

use a pre-trained CNN dubbed DenseNet121 to extract

features and get a hierarchical representation of color

fundus images. In the next step, as it is necessary to rec-

ognize key regions and small lesions in the image to

diagnose DR far more accurately, we applied the attention

block proposed in [5], which is founded on a recurrent

neural network (RNN) and a soft attention mechanism. We

made some modifications to make it appropriate for the DR

classification task. It is worth mentioning that, in this

paper, the applied RNN does not generate any sequences or

outputs, unlike the RNNs of the presented models in [5, 6].

In other words, in our model, the RNN aims to help the

attention mechanism recompute the positive attention

weights and refine the context vector expressing all

important and unimportant features of the fundus image.

The attention block of the Attention-DenseNet model

receives the extracted features generated by the pre-trained

DenseNet121 and determines the importance of all features

of an image for DR classification. In addition, the model

considers tiny lesions for DR diagnosis, which traditional

CNNs probably overlook.
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This attention block can be trained end-to-end, so we

train the Attention-DenseNet model end-to-end. We eval-

uate the proposed model’s effectiveness for binary (No DR

and DR) and multi-class (NoDR, mild NPDR, moderate

NPDR, severe NPDR, and PDR) classifications to have a

more reasonable and acceptable comparison with other

models. Our investigation of the APTOS 2019 dataset

proves the effectiveness of the applied method and its

superiority compared with other DR screening and grading

models.

The chief contributions of the present article are as

follows:

• We present an attention model and apply it to a CNN. It

is based on an RNN which is used to improve the

positive attention weights and the context vector (the

attention-wise weighted sum of features) for a precise

DR diagnosis. To this purpose, we make some modi-

fications to the models proposed in [5, 6] to have an

appropriate decoder (RNN) for attention weights

refinement and image classification. To the best of our

knowledge, this is the first work in which the RNN’s

role is to recompute and refine the attention weights, not

generate a sequence in the output.

• Experiments on the publicly available Kaggle APTOS

2019 blindness detection dataset [7] indicate that the

performance of the Attention-DenseNet model is supe-

rior to that of the alternative models for DR grading and

screening, particularly it obtains the best results on the

APTOS 2019 dataset for DR detection with an area

under receiver operating characteristic curve (AUC-

ROC) score of 99.55%.

2 Related works

Machine learning approaches have developed considerably

in the last decades and have been deployed in various

areas, ranging from NLP to image processing. It has been

widely applied in medical image processing and diagnoses,

particularly automatic diagnosis of diabetic retinopathy.

These approaches are much less time-consuming and more

accurate than manual and clinical methods. This section

reviews some studies in which researchers presented vari-

ous models based on machine learning techniques,

including conventional methods and deep learning archi-

tectures for DR diagnosis.

2.1 Studies based on conventional machine
learning methods for DR diagnosis

A wide range of research has focused on designing models

that rely on traditional machine learning approaches to

grade DR severity or detect retinal lesions. Rayudu et al.

[8] introduced models using different machine learning

algorithms like SVM, KNN, and LDA to classify the non-

proliferative diabetic retinopathy severity. Their investi-

gation of the Drive database proved that the model,

including the SVM classifier, obtained 88.8% accuracy.

Satyananda et al. [9] applied SVM, PNN, Bayesian clas-

sification, and K-Means Clustering to classify diabetic

retinopathy into non-proliferative (NPDR) and proliferative

DR (PDR) stages. They used 300 color fundus images to

train and evaluate the proposed models and deployed some

image processing techniques to extract features of fundus

images. The authors observed that the SVM model with

97% accuracy is the best among the designed models.

Kanimozhi et al. [10] proposed a novel model to detect

retinal lesions. The model consists of four essential steps:

enhancing contrast and luminosity, removing extracted

optic disk and blood vessels, detecting lesions, and clas-

sifying dark and bright lesions. Their investigation showed

that the model attained overall accuracies of 97.43%,

98.06%, and 96.98% for microaneurysms, hemorrhages,

and exudates detection, respectively. Huda et al. [11]

designed a model based on machine learning approaches to

detect different retinal lesions of diabetic retinopathy. They

applied a tree-based classifier to select the 30 critical fea-

tures to decrease training time and avoid overfitting. After

extracting the 30 most important features, they built clas-

sifiers based on SVM, KNN, Logistic Regression, and

decision tree methods. They trained and evaluated models

on the DIARETDB1 dataset and concluded that the per-

formances of SVM-based and Logistic Regression-based

models are better than other approaches. Chetoui et al. [12]

designed a new model by extracting different texture fea-

tures and using SVM with Radial Basis Function Kernel

classifier to divide color fundus images into two categories

(No DR and DR). The proposed model was trained on the

MESSIDOR dataset and obtained an AUC-ROC score of

93.1%.

As conventional machine learning approaches have a

low level of complexity, they cannot analyze and under-

stand color retinal fundus images accurately. Moreover,

these methods require accurate engineering to extract and

select features. So, the models discussed in this section

may have an inappropriate performance in DR detection

and classification.

2.2 Studies based on deep learning and transfer
learning methods for DR diagnosis

Nowadays, many researchers have designed different

models using various deep learning algorithms to extract

features automatically. These models are appropriate for

interpreting and analyzing big data due to their
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computational complexity, especially for medical image

processing and various diagnostic tasks, including detect-

ing lesions and abnormalities [13], classification of lesions

and abnormalities, grading the severity of a disease, and

segmentation of images of humans’ organs [13]. So, many

deep learning-based models have been designed for these

medical tasks, particularly for detecting and grading dia-

betic retinopathy, for which its timely identification is a big

challenge. Doshi et al. [14] developed three different deep

CNNs and an ensembled model made of them to diagnose

DR severity automatically. Examining them on a dataset

containing 35,126 color fundus images proved that the

ensembled network achieved a 39.96% quadratic weighted

kappa (QWK) metric and performed better than single

proposed models. Ghosh et al. [15] proposed a model based

on a six-layer CNN to screen DR and classify its severity

levels. They trained and evaluated the presented model on

over 30,000 color fundus images and observed that it

attained 95% accuracy for the DR detection task and 85%

for the DR severity grading task. Saranya et al. [16] pro-

posed a CNN-based classifier for DR detection. They

removed the optic disk and pre-processed color fundus

images which are fed into the designed convolutional

neural network. This CNN is made of three convolutional

layers, three max-pooling layers, two dropout layers, fully

connected, and classification layers. Finally, their analysis

of the Messidor and IDRiD datasets revealed that the

model achieved accuracies of 90.89% and 90.29%,

respectively.

The unavailability of sufficient annotated color fundus

images decreases the generalization power of deep learn-

ing-based models. However, applying transfer learning can

solve this issue and improve the generalization power of

such models. Hagos et al. [17] implemented a CNN model

based on the pre-trained Inception-V3 structure for DR

screening. The authors used the convolutional part of the

pre-trained Inception-V3 as a feature extractor. They added

a fully connected layer with the Relu activation function,

followed by a softmax classifier to classify DR. The model

was then trained and evaluated on the randomly selected

color fundus images from EyePACS, obtaining a 90.9%

accuracy. They concluded that the transfer learning

approach is appropriate and helpful for detecting diseases

with insufficient available annotated data, especially dia-

betic retinopathy. Gangwar et al. [18] deployed the pre-

trained Inception-Resnet-V2. They removed the last layers

of the pre-trained network- fully connected layers- to use it

as a feature extractor and added a custom CNN block to

hybridize it on top of the convolutional part of the pre-

trained network. They also added a fully connected layer

and a softmax classifier on top of the custom CNN to grade

the DR severity. Finally, the proposed model obtained

72.33% and 82.18% test accuracy on the Messidor-1 and

APTOS 2019 dataset, respectively.

It is important to note that although these studies show

deep learning networks’ great ability to grade and screen

DR, they cannot emphasize discriminative regions and may

overlook some small lesions playing important roles in DR

diagnosis.

2.3 Attention mechanism

The attention mechanism is a highly effective method to

capture fine-grained features. It has an extensive applica-

tion in different tasks of computer vision, like image

classification [19], semantic segmentation [20, 21], and

object localization [21]. Regarding the attention mecha-

nism transformers and the recurrent attention model are

considered promising and successful models. Vaswani A

[22] proposed an architecture founded on an attention (self-

attention) mechanism, dubbed transformer, which nowa-

days has become one of the most standard and promising

attention models. The transformer computes the represen-

tation of the input data without applying convolutions or

RNNs. In fact, in this model, the multi-headed self-atten-

tion mechanism is used instead of the recurrent layers in

encoder–decoder architecture and maps a sequence

(x1; x2; x3; . . .; xn) to another sequence (z1; z2; z3; . . .; zn) of

the same length with xi; zi 2 Rd, like a hidden layer in an

encoder or decoder. The experimental results on two

machine translation tasks indicated that this model is more

parallelizable and less time-consuming compared with

recurrent or convolutional layers. Mnih et al. [23] pre-

sented a novel attention architecture based on recurrent

neural network, called recurrent attention model (RAM).

The model pays attention to different parts of the image

selectively at every step and finally combines these

extracted features to calculate a dynamic representation of

the input (image or video). This model decides to attend to

which part of the input image at the next step based on the

previous extracted information. By virtue of RAM the

entire image is not required to be processed, making the

amount of computation independent to the size of input

image. So, RAM is less computationally expensive com-

pared to CNNs. Besides, they evaluated the model on

several image classification tasks and concluded that this

model is superior to the CNN.

2.3.1 Studies based on attention mechanism for DR
classification

Generally, the attention mechanism is widely deployed in

the medical image-based diagnosis area because all medi-

cal images have some key and informative regions
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necessary to be recognized for early and accurate identifi-

cation, especially DR diagnosis. Zhao et al. [24] designed

an architecture based on a CNN to simultaneously diagnose

DR and localize suspicious areas of color fundus images

using several high-resolution patches. The model is weakly

supervised with the image-level label. It consists of three

main networks: The main network, the Attention network,

and the Crop network. Their investigation of EyePACS and

Messidor showed their model superiority to other proposed

models. Lin et al. [25] presented a novel framework based

on the center-sample detector and Attention Fusion Net-

work (AFN) to predict the probabilities of the lesions on

the retina using bounding boxes of lesions and grade DR,

respectively. The AFN consists of two CNNs extracting the

feature maps of the original images and the lesion maps. In

the next step, the weights between these feature maps are

calculated, helping reduce the effect of unnecessary lesions

for DR grading. The experimental results on the private

dataset, Messidor, and EyePACS indicate that this model

outperforms many other state-of-the-art models. Li et al.

[26] developed an attention model called a cross-disease

attention network (CANet) to grade DR and DME simul-

taneously. It consists of two modules: a disease-specific

attention module, which learns features relevant to each

disease, and a disease-dependent attention block learning

the internal relationship between the diseases. They applied

the pre-trained ResNet50 to extract features of both dis-

eases simultaneously and then passed the encoded vectors

through the attention block. Their experimental results on

Messidor and IDRiD proved that the presented model

outperforms other related models. He et al. [27] proposed a

novel attention model dubbed Category Attention Block

Network (CABNet), which helps CNN to learn discrimi-

native features of digital fundus images for DR detection

and grading tasks. They passed the encoded vector of pre-

trained DenseNet121 through this block and evaluated the

model on three different datasets, including DDR, Messi-

dor, and EyePACS. This model obtained promising results.

These studies demonstrate that the attention mechanism

improves models’ performance in DR classification tasks.

It allows conventional deep learning networks to concen-

trate more on informative regions and capture tiny lesions

of color fundus images, like microaneurysms. So, in this

paper, to detect these small lesions in the digital fundus

images we propose an attention mechanism, inspired by

[5, 6], and integrate it into a pre-trained CNN, which will

be discussed in the following section.

3 Method and materials

This section highlights and explains all methods and

materials we applied for the study, including the dataset,

data pre-processing, proposed model, training process, and

evaluation metrics.

4 Dataset

We used the Kaggle APTOS 2019 blindness detection

dataset containing 3662 color retinal fundus images taken

by fundus cameras in various imaging conditions [7].

An expert clinician categorized the images of the dataset

into five following stages: No DR (stage 0), Mild DR (stage

1), Moderate DR (stage 2), Severe DR (stage 3), and

Proliferative DR (stage 4). Figure 1 shows different cate-

gories of fundus images from the APTOS 2019 dataset.

From Fig. 2, we notice that the class distribution is

highly imbalanced, and the most and least fundus images

belong to the No DR and severe DR classes, respectively.

However, we do not balance the class distribution by

undersampling or oversampling. Instead, we use more

reliable evaluation metrics besides accuracy, like QWK, to

evaluate the model, which will be discussed in the next

sections.

The dataset is classified into five levels of DR severity,

which is appropriate for the DR severity grading task in the

current paper. Moreover, we categorized the dataset into

two NoDR and DR categories by unifying the mild, mod-

erate, severe, and proliferative stages to generate the DR

class and relabeling them with the same label.

4.1 Data pre-processing

We performed simple pre-processing techniques. The

fundus images of the ATOS2019 dataset have different

heights and widths in the range of [358,2848] and

[474,4288], respectively. Since we used the pre-trained

DenseNet121 as a backbone network to extract features, we

resized all dataset images to 224*224 pixels to make their

dimensions suitable for the input of this pre-trained

Fig. 1 Digital color fundus images belonging to APTOS 2019 dataset,

showing various severities of diabetic retinopathy disease. a No DR

bMild DR c Moderate DR d Severe DR e Proliferative DR

Neural Computing and Applications (2023) 35:23959–23971 23963

123



network. Moreover, we standardized APTOS 2019 dataset

by subtracting the pre-computed mean of ImageNet from

the channels of all images (centering) and then dividing it

by the standard deviation (scaling). We do these operations

using the pre-process_input() function related to the Den-

seNet121 network in the Keras library.

The APTOS 2019 has insufficient color fundus images,

leading to overfitting and divergence problems in deep

learning. To address the issue and make the model robust,

we augmented data by randomly rotating, zooming, and

shearing images in the range of 0–360, 0–0.2, and 0–0.2,

respectively, and applying the horizontal and vertical flip-

ping augmentation techniques.

4.2 Proposed model

This section explains the Attention-DenseNet framework,

inspired by the proposed models in Bahdanau et al. [5] and

Xu et al. [6], which aim to improve the performance of the

traditional encoder–decoder model for translation and

caption generation for the input image, respectively, using

an attention mechanism. Moreover, the modifications we

have made to these models for classification tasks will be

discussed.

We deployed a pre-trained CNN named DenseNet121 to

extract the hierarchical features of the color fundus images.

We extract the feature maps of the CNN’s middle layers

since they could correspond with different parts of the two-

dimensional images [6]. It permits the attention mechanism

to concentrate on an image’s particular features or regions

[6].

Generally, a CNN produces the output of size W*H*L

in which the L is the number of feature maps, and W and H

are the width and height, respectively. Our experiment

considers the 310th middle layer of the pre-trained Den-

seNet121, generating 1024 feature maps of size 14*14,

which has been selected after evaluating several low,

middle, and deep layers of the network. We converted the

extracted feature maps into 196 vectors expressed by

F ¼ F1;F2;F3; . . .;F196f g, in which Fj 2 R1024; j 2
1; 2; 3; . . .; 196f g consists of all jth features throughout all

feature maps to prepare them as an appropriate input for the

attention blocks- which calculate positive attention weights

for each feature vector.

We also apply a gated recurrent unit (GRU) that con-

tributes to refining calculated attention weights and the

generated context vector in each attention block, which we

will explain later. The equations of GRU are as follows:

ri ¼ r Urhi�1 þ CrX̂i þWrX̂i�1

� �

zi ¼ r Uzhi�1 þ CzX̂i þWzX̂i�1

� �

~si ¼ tanh Up ri � hi�1½ � þ CpX̂i þWpX̂i�1

� �

hi ¼ 1� zið Þ � ~si þ zi � hi�1

In these equations zi, ri, ~si and hi are the update gate, reset

gate, proposal hidden state, and the hidden state of the

GRU, respectively. They are all computed based on the

current context vector, previously calculated context vec-

tors, and the previous hidden state. In addition, Ur, Uz, Up,

Cr, Cz, Cp, Wr, Wz and Wp matrices include trainable

weights learned during the training process. The context

vector X̂i represents the relevant and irrelevant regions or

features of a retinal image, which will be discussed later.

The attention block helps us recognize more critical and

relevant features or regions of the retinal images to grade

and detect DR better and more accurately. Based on Fig. 3,

the first step in the applied attention mechanism is to cal-

culate the similarity between the hidden state of the pre-

vious step of the GRU (hi�1) and each of the feature vectors

Fj. Therefore, other inputs, like lesion maps, are not con-

sidered for calculating the similarity and the attention

weights. It is unlike the presented model in [25], in which

the attention weights are computed using the original

image and lesion maps of DR.

ei:j ¼ Alignment Fj; hi�1

� �

We applied the alignment model e using a single-layer

feedforward neural network presented in [5] to calculate

this similarity, which is defined by Eq. (1).

Alignment ¼ Va � tanh Wahi�1 þ UaFj

� �
ð1Þ

Here Va, Wa and Ua are the matrices, including train-

able weights.

Figure 3 shows that in the next step, the alignment

scores e ¼ fe1; e2; e3; . . .; e196g are normalized using a

softmax function, and then the positive attention weights

a ¼ fa1; a2; a3; . . .; a196g are generated, the sum of which

Fig. 2 Classes distribution of APTOS2019 dataset
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is equal to 1. This softmax function is formulated as

follows:

aij ¼
exp eij

� �

P196
k¼1 exp eikð Þ

The positive attention weight aij is between 0 and 1,

calculated for each feature vector j in step i. In fact, every

attention weight aj; j 2 1; 2; 3; . . .; 196f g expresses the

relative importance of the jth feature vector by considering

all 196 feature vectors. Then, the context vector is achieved

by taking a weighted sum of all feature vectors as proposed

in [5].

X̂i ¼
X196

j¼1

aijFj

As mentioned above, the context vector represents the

weighted regions. In other words, it expresses the important

and unimportant features and shows which parts of retinal

images should be paid either more or less attention to for

grading and detecting DR in a promising way.

What is important to note is that there are two main

differences between our model (Attention-DenseNet) and

those presented in [5, 6], which are as follows:

• In the Attention-DenseNet model, GRU does not

produce any output or sequence. Indeed, it is used for

attention weights refinement. However, in [5, 6], the

RNN is applied to produce an output at each step for

translation and caption generation tasks, respectively.

• Furthermore, from Eq. (2), it is clear that in the models

proposed in [5, 6] the hidden states of the RNNs are not

based on the previously computed context vector but on

the output of the previous step (yi�1). This is in contrast

to the Attention-DenseNet model in which the hidden

Fig. 3 The overall structure of the Attention-DenseNet network. It

consists of three major parts, including the backbone, attention, and

classifier. Notice that here GRU is used as a refiner and does not

produce any sequence. The final hidden state is used for grading DR

and sent to a classifier. It is important to note that we have two

independent and distinct classifiers for grading and detecting DR and

train them separately
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state is dependent upon the previously computed

context vector.

hi ¼ f hi�1; yi�1; X̂i

� �
ð2Þ

Thus, in our paper, the GRU’s role is to refine the level

of attention paid to each feature vector. In fact, in each step

i, the importance of all regions is recomputed and

improved. As a result, the context vector is dynamic and

changes in each step i. The improved context vector is fed

into GRU as an input, and the hidden state is updated,

helping to refine the context vector in the next step. This

mechanism continues to the last step and causes the model

to be more able to concentrate on the key regions of retinal

images compared with a traditional CNN.

This study aims to classify retinal images into five

classes (multi-class classification) and two general cate-

gories (binary classification). To do this, we apply the

attention mechanism separately for each task.

• We feed the last hidden state to a single-layer

feedforward neural network consisting of five neurons

that have a softmax activation function to grade DR to

(1) No DR, (2) Mild DR, (3) Moderate DR, (4) Severe

DR, and (5) Proliferative DR.

• We feed the last hidden state to a single-layer

feedforward neural network consisting of two neurons,

which have a sigmoid function to detect DR. (1) No

DR, (2) DR

It should be noted that our preliminary results show that

the model performs the same by using either the context

vector or the last hidden state as the input to the classifier.

So, the last hidden state of the GRU in the Attention-

DenseNet framework can be as appropriate as the context

vector for the input to the classifier. That is why we con-

sider the last hidden state for the classification task.

The initial hidden state of GRU is calculated as that in

[5]:

h0 ¼ tanhðF1:WiÞ

which Wi is a matrix including trainable weights learned in

the training process.

4.3 Training process

We divided the APTOS 2019 dataset into five groups uti-

lizing the fivefold cross-validation method to use all dataset

images in the training and testing processes and have less

biased results. In the training process, we fine-tuned the

pre-trained DenseNet121. In other words, we retrained all

its pre-trained parameters of all layers (from the 1st to the

310th layers) to adapt them to our data. We used the Adam

algorithm [28] for optimization, Categorical_crossentropy

(for severity grading task), and Binary_crossentropy (for

screening task) loss functions for training the model. For

the training phase of both binary and multi-class tasks, the

batch size of 32, the learning rate of 6 � 10�5, and the

epoch number of 40 were considered in all folds.

The model was trained on a Tesla P100-PCIE GPU with

16 GB memory, and the applied programming language is

Python 3.7.12. Moreover, we used some modules of Python

for implementing the model, including Keras 2.3.1, Ten-

sorflow 2.2.0, Sklearn, SciPy, Imblearn, and Seaborn. For

implementing the attention block, we were inspired by

[29].

4.4 Evaluation metrics

This section describes the evaluation metrics by which we

evaluate the model’s performance in DR classification. As

the APTOS 2019 dataset is highly imbalanced, accuracy is

unreliable in assessing the model’s performance, so we

consider other evaluation metrics like sensitivity, speci-

ficity, precision, recall, and F1-score. The sensitivity and

specificity metrics assess how well the classifier can esti-

mate the positive and negative classes. The definition of

recall is the same as sensitivity. Still, precision is the

proportion of correctly predicted positives and total pre-

dicted positives, and the F1-score is the harmonic mean of

precision and recall. These metrics are mathematically

defined as follows:

accuracy ¼ TPþ TN

TPþ FNþ TNþ FP

recall ¼ sensitivity ¼ TP

TPþ FN

specificity ¼ TN

TNþ FP

precision ¼ TP

TPþ FP

F1Score ¼
2 � precision � recallð Þ
precisionþ recall

Here, TP, TN, FP, and FN are the numbers of true

positives, true negatives, false positives, and false nega-

tives, respectively.

Furthermore, we consider QWK, receiver operating

characteristic (ROC), and precision–recall curve (PRC) to

evaluate the model’s performance. QWK measures the

agreement or disagreement between predicted and actual

labels [30]. The score can be in the range of [- 1, 1], in

which the values of - 1, 1, and 0 mean the total dis-

agreement, total agreement, and chance-based agreement,

respectively [30]. QWK can be computed as Eq. (3):
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K ¼ 1�
PN

i¼0

PN
j¼0 w i; jð Þc i; jð Þ

PN
i¼0

PN
j¼0 w i; jð Þe i; jð Þ

ð3Þ

In this formula, N is the number of classes and w i; jð Þ is
the element of the weighted matrix, which can be calcu-

lated as the following expression:

w i; jð Þ ¼ i� jð Þ2

N � 1ð Þ2

c i; jð Þ is also the element of the normalized confusion

matrix, e i; jð Þ is the element of the normalized expected

matrix, which is the outer product of actual and predicted

labels vectors.

Moreover, we plot ROC to evaluate the model’s per-

formance and determine its ability to differentiate between

all stages of the disease. It is generated based on calcu-

lating the true positive rate versus the false positive rate for

the proposed classifier at diverse thresholds. ROC sum-

marizes the classifier’s performance and provides a score

assessing the model’s power of differentiation. The AUC-

ROC score can be in the range of 0 to 1, which a score of 1

shows that the model can distinguish diabetic retinopathy

grades perfectly and possesses outstanding performance.

As APTOS 2019 dataset is highly imbalanced, we also

plot PRC for a better evaluation of the predictive model.

This curve shows the trade-off between precision and recall

at various thresholds. Like ROC, we can summarize the

information of PRC by calculating the area under preci-

sion–recall curve, (AUPRC), which is sensitive to the

minority class. In this paper, all curves are plotted by

averaging over fivefold with a total of hundred epochs.

Besides, we apply a confusion matrix that gives precise

information about the type of errors in predicting sample

categories. The numbers of correct and incorrect predicted

samples in each category help us comprehend and analyze

metrics more easily.

5 Experimental results

In this study, we implemented a fivefold cross-validation

with stratified sampling, permitting us to average out

metrics over fivefold.

5.1 Performance of the proposed attention
model for DR severity grading

Table 1 compares the overall performance of the Attention-

DenseNet model for the DR severity grading task with

some other studies carried out for this task. From the table,

our model obtained a sensitivity of 83.69%, a precision of

83.32%, and an F1-score of 83.04%, which are

significantly greater than the same calculated metrics in

other models, in particular the proposed model in [31]. In

this system, t-SNE is used to reduce the dimension of the

feature maps to improve the DR prediction accuracy.

Besides, in terms of sensitivity and specificity, the Atten-

tion-DenseNet model outperforms the modified Xception

architecture [32], founded on a combination of multilevel

features in different layers of Xception architecture.

Moreover, in terms of QWK, our model is superior to

MobileNetV2 [33] which is a pre-trained network. It is

important to notice that there is no attention mechanism in

these mentioned architectures [31–33]. Therefore, we can

conclude that an attention mechanism could be appropriate

for an accurate DR severity recognition task.

The calculated AUC-ROC score of 97% in our model

also indicates its more powerful differentiation ability than

[34], which was designed using a gated attention mecha-

nism to concentrate more on lesions in fundus images and

less on the rest of the images.

Figure 4 presents the confusion matrix of the proposed

classifier for DR grading, which is the average of matrices

calculated in all fivefold. The confusion matrix shows that

the misclassified retinal images of classes 0 and 2 are

negligible. In addition, the misclassification of class 4 is

much better than anticipated, although its available images

are limited. We can also notice that almost 30% of retinal

images of class 1 are predicted as class 2, and 24% of

images from class 3 are predicted as class 2, owing to

insufficient retinal images in these classes. Consequently,

the attention model performs the best in classes 0, 2, and 4

and the worst in classes 1 and 3.

Figure 5 shows the averaged ROC of the attention

model for DR severity grading over fivefold. From the

figure, we notice that at the false positive rate of 0.1, the

true positive rate is approximately 91%. In addition, we

achieved an overall AUC-ROC of 97%, which indicates the

outstanding model’s power to distinguish various grades of

the disease.

Figure 6 indicates the overall PRC of the Attention-

DenseNet model for the DR severity grading task over

fivefold. This figure highlights that the classifier has both

high precision and recall, leading to a good AUPRC of

91.29%. This score means that the model is skillful and has

a good performance for the DR grading task.

5.2 Performance of the proposed attention
model for DR detection

Table 2 shows the overall performance of the Attention-

DenseNet model for DR identification and some other

research carried out for this task. Based on the table, the

proposed model achieves an overall validation accuracy of

98.44%, which is significantly greater than other
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architectures in the table, whether they have been designed

using an attention mechanism or not.

Figure 7 shows the averaged ROC curve of the proposed

attention model for DR detection over fivefold. Based on

the figure, we notice that at the false positive rate of 0.05,

the true positive rate is nearly 99%. Furthermore, we

achieved an overall AUC-ROC of 99.55%, which shows

the model’s promising power of differentiating data

belonging to healthy (No DR) and unhealthy (DR) classes.

Figure 8 presents the confusion matrix of the proposed

model for DR detection, which is the average of calculated

matrices in all fivefold. It clearly shows that the model can

perfectly identify DR disease with insignificant

misclassification.

Figure 9 shows the overall PRC of the proposed model

for the DR screening task over fivefold. Based on this

curve, it is clear that the classifier has high precision and

recall scores across the graph. In fact, these high scores of

precision and recall express that the model has a low false

positive rate and a low false negative rate, respectively.

Table 1 performance comparison of the Attention-DenseNet structure with other existing models designed for DR severity grading and trained

on different DR datasets

Model Dataset Accuracy

(%)

QWK Sensitivity

(recall)

Specificity Precision F1-

score

AUC-

ROC

Gated attention DNN [34] APTOS

2019

82.54 – 83% - 82% 82% 79%

Xception [32] APTOS

2019

79.59 – 82.35% 86.32% – – –

InceptionV3 [32] APTOS

2019

78.72 – 63.64% 85.37% – – –

MobileNet [32] APTOS

2019

79.01 – 76.47% 84.62% – – –

NASNet ? t-SNE ? SVM [31] APTOS

2019

77.90 77% – 76% 75% –

MobileNetV2 [33] APTOS

2019

78.47 81.23% – – – – –

Hybrid Inception-ResNet-V2

[18]

APTOS

2019

82.18 – – – – – –

Attention-DenseNet APTOS

2019

83.69 89.26% 83.69% 94.72% 83.32% 83.04% 97%

‘‘–’’ indicates no reported result

Fig. 4 Averaged confusion matrix over fivefold for DR severity

grading using Attention-DenseNet structure

Fig. 5 Overall ROC curve over fivefold for DR severity grading using

Attention-DenseNet structure
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Moreover, an AUPRC score of 99.49% is obtained,

showing the model is perfect for the DR detection task.

6 Discussion

This paper demonstrated the presented Attention-DenseNet

architecture’s ability for DR grading and detecting tasks.

The experimental results prove that the presented model

for detecting and grading tasks outperforms other recent

models mentioned in Tables 1 and 2 regarding the accu-

racy, sensitivity, specificity, QWK, precision, AUC, and

F1-score. Figures 4 and 8 show that the misclassification of

the model is negligible, especially for the screening task. It

is important to note that the usage of the attention mech-

anism in the proposed model plays a vitally important role

in such enhancement. It contributes to the model distin-

guishing between key and unimportant regions of color

fundus images, which are necessary to diagnose diabetic

retinopathy accurately. Regarding the applied attention

mechanism in our model (Attention-DenseNet), what

should be highlighted is that the attention weights are

recomputed in every step of the RNN to refine the context

vector and stress the relevant features of the digital fundus

images more than in the previous steps. This is unlike the

models proposed in [5, 6], in which the calculated attention

weights are not refined.

Fig. 6 Overall PR curve over fivefold for DR severity grading using

Attention-DenseNet structure

Table 2 Performance comparison of the Attention-DenseNet structure with other existing models designed for DR detection and trained on

different datasets

Model Dataset Accuracy (%) QWK Sensitivity (Recall) Specificity Precision F1-score AUC-ROC

ResNEt34 [35] APTOS 2019 96.35 – – – – – –

DenseNet121 [35] APTOS 2019 84.05 – – – – – –

DetNet [35] APTOS 2019 93.99 – – – – – –

Gated attention DNN [34] APTOS 2019 97.82 – – – 98% 98% 98%

Attention-DenseNet APTOS 2019 98.44 96.88% 98.44% 98.45% 98.45% 98.44% 99.55%

‘‘–’’ indicates no reported result

Fig. 7 Overall ROC curve over fivefold for DR detection using

Attention-DenseNet structure

Fig. 8 Averaged confusion matrix over fivefold for DR detection

using Attention-DenseNet structure
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In addition, the proposed model’s applied pre-process-

ing techniques are simple, making the model less time-

consuming compared with various clinical ophthalmology

methods.

Consequently, the Attention-DenseNet model can be

considered a robust, accurate, and time-saving method to

diagnose diabetic retinopathy disease in real life, particu-

larly for its identification.

7 Conclusions and future direction

The main aim of this study was to develop a robust deep

learning model to detect and grade diabetic retinopathy

disease. Since almost all available DR datasets do not have

enough color fundus images, we utilized a pre-trained CNN

dubbed DenseNet121 to get a hierarchical representation of

the images to avoid overfitting and weak generalization

power. However, traditional CNNs may overlook some key

and small lesions, like microaneurysms of a color fundus

image, and cannot focus more on informative regions than

others. To solve such issues, we applied an attention block

founded on GRU and soft attention mechanism, through

which we passed the encoded vector (output of Dense-

Net121). The attention block allows the model to learn

distinctive features. The Attention-DenseNet architecture

can be trained in an end-to-end manner. The experimental

results on the APTOS 2019 dataset reveal the effectiveness

of the applied attention mechanism in DR detecting and

grading tasks and the model’s superiority compared with

the other existing studies.

The limitation of the model is its poor performance in

diagnosing mild and severe grades, which may be due to

insufficient available data in these classes. In fact, a limited

dataset is likely to make the model overfitted, so the

model’s weak generalization power in these two categories

could be hard to avoid. For the future direction, we would

like to utilize some highly effective augmentation methods

or additional data courses to expand the dataset to boost the

model’s performance for grading various levels of DR

disease more accurately. In addition, we will apply other

pre-trained CNN as the backbone network of the proposed

architecture, including ResNet, MobileNet, GoogleNet, and

VGG16, instead of DenseNet121, for the desired tasks.
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