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Abstract
This paper concludes a robust optimal tracking control law for a class of nonlinear systems. A characteristic of this paper is

that the designed controller can guarantee both robustness and optimality under nonlinearity and mismatched disturbances.

Optimal controllers for nonlinear systems are difficult to obtain, hence a reinforcement learning method is adopted with

two neural networks (NNs) approximating the cost function and optimal controller, respectively. We designed weight

update laws for critic NN and actor NN based on gradient descent and stability, respectively. In addition, matched and

mismatched disturbances are estimated by fixed-time disturbance observers and an artful transformation based on back-

stepping method is employed to convert the system into a filtered error nonlinear system. Through a rigorous analysis using

the Lyapunov method, we demonstrate states and estimation errors remain uniformly ultimately bounded. Finally, the

effectiveness of the proposed method is verified through two illustrative examples.

Keywords Reinforcement learning � Actor-critic neural network � Fixed-time disturbance observer � Robust optimal control

1 Introduction

The objective of optimal tracking control is to develop a

controller that ensures the system’s output tracks a speci-

fied reference signal, while minimizing a specific perfor-

mance index. This field has earned significant attention and

research, finding applications in practical domains such as

chaotic systems, helicopters, permanent magnet

synchronous motors, dispatch and electric vehicles [1–5].

Optimal control techniques rely on the principles of Pon-

tryagin’s minimum principle. In the case of linear systems,

the optimal control involves solving the algebraic Riccati

equation, as suggested in the work by [6]. For the nonlinear

systems, the optimal control necessitates the solution of the

nonlinear Hamilton-Jacobi-Bellman (HJB) equation.

Despite the practical utility of optimal control, the con-

ventional methodology encounters a significant challenge,

namely, the difficulty of solving the nonlinear HJB equa-

tion for higher-order systems [7–10].

In recent years, numerous efforts have been made to

obtain the optimal controller, including inverse optimal

control, h-D techniques, numerical approximation meth-

ods, and others [11, 13, 14]. The inverse optimal control

method, presented in [11, 12], offers a solution that avoids

the need to solve the HJB equations. For nonlinear systems,

a suboptimal control approach was proposed in [13].

Another approach, described in [14], employed a h-D
approximation method to solve the HJB equation by

transforming it into state-dependent Lyapunov equations. It

is important to note that these methods, although effective,

are typically performed offline. Consequently, when there

are changes in the system parameters, there may be
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fluctuations in the control effectiveness. To address this

issue, researchers have explored the integration of rein-

forcement learning and adaptive control with optimal

control [7, 15–21].

Approximate dynamic programming (ADP), proposed

by [7] in 1992, utilizes function approximation structures to

approximate the cost function and control strategy in the

dynamic programming equation. ADP has been developed

in subsequent works [15–17] using neural networks (NNs)

to achieve optimal tracking control. These methods have

been thoroughly studied and widely adopted [18, 24].

Furthermore, advancements in hardware have paved the

way for data-driven approaches in optimal control. For

example, [22] introduced a computational adaptive optimal

controller for linear systems with completely unknown

dynamics. Nonlinear adaptive optimal control was

achieved through value iteration and ADP, as described in

[23].

Inspired by this, we have incorporated the principles of

adaptive and reinforcement learning to develop efficient

tracking controllers using an actor-critic approach. Never-

theless, previous studies such as [25, 26] have highlighted a

limitation of optimal tracking control, which involves the

introduction of a discount factor into the performance

index. This factor is intended to prevent the index from

growing indefinitely, but it can hinder the convergence of

the system state to zero. To address this issue, our paper

proposes a reinforcement learning-based tracking control

technique that utilizes a filtered error system, thereby

eliminating the need for a discount factor.

In practical systems, the presence of disturbances is an

inevitable issue [27, 28, 35]. These disturbances encompass

both internal environmental factors, such as unmodeled

dynamics, perturbed model parameters, and structural

perturbations, as well as external environmental distur-

bances [37]. To achieve desired control outcomes, includ-

ing improved disturbance rejection, fast dynamic response,

and minimal steady-state error, it is crucial to explore high

reliability controllers. Extensive research has been con-

ducted on various anti-disturbance control methods, such

as robust control [29], sliding mode control [30, 31], and

output regulation theory [32]. Among these methods, two

approaches have gained attention for their ability to

achieve fast disturbance suppression based on system

dynamics: disturbance observer-based control and active

disturbance rejection control [33–35]. By employing dis-

turbance observers or extended state observers to estimate

and actively compensate for disturbances, their influence

can be effectively mitigated [35].

However, mismatched disturbances are difficult to

handle, as highlighted in [36, 37]. In [37], the authors

proposed a composite control strategy based on the back-

stepping method for higher-order nonlinear systems with

non-vanishing disturbances. By incorporating estimation

information of the disturbance at each step of the virtual

control, output is regulated to 0. While this method effec-

tively handles mismatched disturbances, it is not optimal

due to two reasons. Firstly, nonlinearity is subtracted at

each step of the virtual control process. Secondly, the gain

of the virtual control is artificially assigned and only sat-

isfies the condition for making the derivative of the Lya-

punov function negative definite. Therefore, we employ the

concept of backstepping to construct a filtered error system

that retains the nonlinear terms, ensuring optimality in

dealing with mismatched disturbances.

Furthermore, the majority of existing studies focus on

achieving asymptotic estimates of disturbances, implying

that estimation errors persist even as the system converges.

To mitigate the impact of disturbances, researchers have

proposed fixed-time observers [38–40]. This approach

involves estimating unknown disturbances within a pre-

determined time period, thereby minimizing their subse-

quent effects. In our study, we also employ a fixed-time

disturbance observer (FTDOB) to estimate disturbances

and reduce their influence on the neural network training

process.

Therefore, this paper aims to address the limitations of

existing optimal control methods and anti-disturbance

methods in order to tackle more complex scenarios. The

primary contributions of this paper are as follows:

• Two neural networks are utilized to implement an

actor-critic network, enabling the approximation of

both the optimal control and cost function.

• The fixed-time algorithm is employed in the design of

the observer, allowing for the estimation of distur-

bances over a predetermined time interval, thereby

enhancing the reliability of the control strategy.

• Filtered error systems are constructed to attain an

optimal controller for high-order nonlinear systems

affected by mismatched disturbances.

The rest of the paper are organized as follows. In Sect. 2,

system description and some necessary definitions are

given. Section 3 concludes the main results about distur-

bance observer design and controller design. Simulation

examples are given in Sect. 4 and conclusion is given in

Sect. 5.

2 System descriptions and some
preliminaries

Consider the following disturbed nonlinear system,

_xi ¼ xiþ1 þ fi þ di; i ¼ 1; 2; . . .; n� 1;

_xn ¼ fn þ uþ dn;

(
ð1Þ
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where xi, di, fi, i ¼ 1; 2; . . .; n denote system states, dis-

turbances and nonlinear functions, u is the control input.

Assuming complete state information is available.

Assumption 1 Assuming there exists a small enough

constant n such that k _dk\n.

Here, we recall the optimal control theory [6]. For the

nominal system, i. e., we do not consider the disturbance

here, a cost function is given as

J ¼
Z 1

0

½QðxÞ þ uTRu�dt; ð2Þ

where Q(x) is positive definite function and R is symmetric

positive definite constant matrix. Define oJ
ox ¼ rJ and

choose the Hamilton function as H ¼ rJT _xþ Qþ uTRu.

Then, optimal value function J� meets

0 ¼ minu½Hðx; u;rJ�Þ�. With optimal control policy u�,
the HJB equation becomes

0 ¼ Qþ u�TRu� þ rJ�Tðf þ gu�Þ: ð3Þ

Then, we have the optimal control input u� as

u� ¼ argmin
u
½Hðx; u;rJ�Þ� ¼ � 1

2
R�1gTrJ�: ð4Þ

The existing optimal control methods faces two challenges:

(1) robustness in the presence of disturbances, especially in

the presence of mismatched disturbances; (2) complex

nonlinear HJB equation, given that the solution is very

resource-intensive. Hence, we proposed a robust optimal

control strategy based on NNs and disturbance observers,

which will be detailed given in Sect. 3. Next, we provide

one definition for the latter process.

Definition 1 The equilibrium xe of system (1) is uniformly

ultimately bounded (UUB) if there is a compact set S � Rn,

and for any initial value x0 that belongs to that compact set,

initial time t0, there is an upper bound B and a time

TðB; x0Þ such that kxðtÞ � xek�B for all t[ t0 þ T .

3 Main results

The classic control method usually adopts the idea of

feedback control plus feedforward control [35], but it has

the following two shortcomings: (1) The asymptomatically

convergent observer will cause the estimation error to

persist. (2) Feedback control can only stabilize the system

with not optimality. This paper avoids these shortcomings

by fusing fixed-time estimation with reinforcement learn-

ing. The accompanying Fig. 1 visually represents the core

concepts discussed in this paper. The output of the system

is directly used as the input of the disturbance observer. By

choosing the observer gain reasonably, the complete

tracking of the disturbance can be realized in any fixed

time. Then, the original with disturbance estimation is

transformed into a filter error system, which enables us to

deal with mismatched disturbance well. Under the frame-

work of optimal control, reinforcement learning methods

relying on actor and critic NNs are proposed. By training

the NN, the optimal controller of the error system is

obtained.

Firstly, we design the fixed-time disturbance observers.

With the disturbance estimation in hand, a filtered error

system is then transformed.

3.1 Fixed-time disturbance observer design

The fixed-time disturbance observer is designed for each

channel as

_zi1 ¼ zi2 � k1ðzi1 � xiÞa1 � k2ðzi1 � xiÞb1 þ xiþ1 þ fi;

_zi2 ¼ �k3ðzi1 � xiÞa2 � k4ðzi1 � xiÞb2;

8<
:

ð5Þ

where i ¼ 1; 2; . . .; n. zi1, zi2 are estimations of xi and di, k1,
k2, k3, k4 are observer gains to be designed, a1, a2, b1, b2
are observer internal parameters.

Theorem 1 Given system (1) if the observer gain is chosen

properly, the disturbance can be estimated in a fixed time

Td, which is independent of the initial values.

Proof Define the estimation error as ei1 ¼ x1 � zi1,

ei2 ¼ di � zi2. Derivation of ei1 and ei2 along time gives

_ei1 ¼ ei2 � k1ðe1Þa1 � k2ðe1Þb1;

_ei2 ¼ �k3ðe1Þa2 � k4ðe1Þb2 þ _di:

8<
: ð6Þ

As long as the observer gain is chosen carefully, then the

estimation error is fixed-time convergent, and can be

written as _e ¼ KðeÞ þ D, D ¼ ½0; _di�T . The rest proof is

similar to [31] and is omitted here. h

Under the designed observer, the mismatched distur-

bance can be handled. With the help of backstepping

method, the filtered error is obtained as

_z1 ¼ x2 þ f1 þ d1 � _r, where r is reference signal. Here, we

denote z2 ¼ x2 � x�2, choose x�2 ¼ �k1z1 � d̂1 þ _r, then

_z1 ¼ _x1 � _r ¼ z2 � k1z1 þ f1 þ e1. Likewise, we have

_zi ¼ ziþ1 � kizi þ fi þ ei; i ¼ 1; . . .; n� 1;

_zn ¼ uo þ fn þ en:

(
ð7Þ

Then (7) is rewritten as

_Z ¼ FðZÞ þ Guo; ð8Þ
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where Z ¼ ½z1; z2; . . .; zn�T, FðZÞ ¼ ½z2 þ f1 � k1z1; � � � ;
fn � knzn�T, G ¼ ½0; 0; . . .; 1�T .

Remark 1 Subtracting the nonlinear in backstepping

method will lead to a nonoptimal controller as the non-

linearity may be actually beneficial in meeting the stabi-

lization and/or performance objectives [11].

Remark 2 During the actual production process, the con-

trolled system often encounters abrupt disturbances that

can be characterized as lumped disturbance [35]. These

types of disturbances do not satisfy the assumption we

initially made (referred to as Assumption 1). Nevertheless,

the proposed control strategy exhibits the capability to

stabilize the system and demonstrates a certain level of

robustness. This is attributed to the fact that even in the

presence of sudden disturbance changes, the designed

observer is able to estimate the disturbance at a fixed time.

It is worth noting that the nonlinear function employed in

the controller design is represented as f þ e. However,

since the term e exists only momentarily and eventually

diminishes to zero, the overall effect on the controller’s

performance is minimal.

According to the former section, we define oJ
oZ ¼ rJ and

the Hamilton function is chosen as

H ¼ rJT _Z þ ZTQZ þ uToRuo. Then, we have the optimal

control as u� ¼ argmin
uo

½HðZ; uo;rJ�Þ� ¼ � 1
2
R�1gTrJ�,

satisfying 0 ¼ Qþ u�To Ru�o þrJ�TðF þ Gu�oÞ.

3.2 Critic NN design

The cost function is approximated by a critic neural

network,

J ¼ WT/ðZÞ þ �ðZÞ; ð9Þ

where W denotes the ideal neuron weights, /ðZÞ : Rn !
RN is the NN activation function vector, N stands for the

number of neurons in the hidden layer, �ðZÞ is the

approximation error. As N ! 1, it has �ðZÞ ! 0. As a

result of the unknown nature of neural network weight W,

the output of the neural network can be expressed as

Ĵ ¼ Ŵ
T

c/ðZÞ; ð10Þ

where Ŵc is the estimation of W.

Considering (9) and (10), the corresponding Hamilton

functions are rewritten as

HðZ; uo;WÞ ¼ WTr/ðF þ GuoÞ þ Qþ uToRuo þ tH

ð11Þ

and

HðZ; uo; ŴcÞ ¼ Ŵ
T

cr/ðF þ GuoÞ þ Qþ uToRuo; ð12Þ

where tH ¼ r�ðF þ GuoÞ.
Define critic NN approximation error ~Wc ¼ W � Ŵc,

then we have

eH ¼ HðZ; uo;WÞ � HðZ; uo; ŴcÞ ¼ ~W
T

cr/1ðF þ GuoÞ þ tH :

ð13Þ

Given any admissible control policy, it is desired to select

Ŵc to minimize the quadratic error

E ¼ 1

2
eTHeH : ð14Þ

The normalized gradient algorithm is adopted to tune the

critic weights

Fig. 1 Reinforcement learning

based robust optimal control

strategy. The fixed-time

observer provides an accurate

estimate of the disturbance. By

compensating it back to the

original system, filtered error

systems are constructed. Actor

and critic NN is used to achieve

reinforcement learning optimal

control
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_̂Wc ¼ �a1
oE

oŴc

¼ �a1
r1

ðrT1r1 þ 1Þ2
½rT1 Ŵc þ Qþ uToRuo�;

ð15Þ

where r1 ¼ r/ðF þ GuoÞ, ðrT1r1 þ 1Þ2 is used for nor-

malization, a1 is scalar to be designed.

As mentioned in [2, 18], the identification of the critic

parameter needs to fulfill the persistent excitation (PE)

condition. In order to satisfy this condition, there are

numerous options available for the signal selection, as long

as the PE condition outlined in [18] is met.

3.3 Actor NN design

According to (3), we know the optimal control could be

� 1
2
R�1GTðr/TW þr�Þ. Due the parameter W is

unknown, here we utilize an actor NN to approximate the

control input. Then, the controller is represented as

ûo ¼ � 1

2
R�1GTr/TŴa; ð16Þ

where Ŵa denotes the estimated value of W.

Similarly, Ŵa should be designed to approach W as

closely as possible. Here, the tuning law of the actor NN is

_̂Wa ¼ �a2fF2Ŵa � F2Ŵc �
1

4
�D1Ŵam

TŴcg; ð17Þ

where �D1 ¼ r/GR�1GTr/T, m ¼ r2
ðrT

2
r2þ1Þ2,

r2 ¼ r/ðF þ GûoÞ, a2 is scalar to be designed.

The following is the online algorithm that facilitates the

simultaneous tuning of the actor NN and the critic NN.

3.4 Stability analysis

The following assumption is necessary for stability analysis

in Theorem 2.

Assumption 2 [18] In equation (9), the NN approximate

error, NN activation functions and their gradient are

bounded on a compact set, i.e., k�k\b�, k/k\b/,

kr�k\b�x , kr/k\b/x
.

Theorem 2 Given system (8), critic NN updating law (15),

actor NN updating law (17), controller u=uo, there exist a

positive integer N0 such that the number of the hidden layer

units N[N0, the closed-loop system states, the critic NN

approximate error, and the actor NN approximate error

are UUB.

Proof Choose the Lyapunov function as

V ¼ J þ 1

2
a�1
1

~W
T

c
~Wc þ

1

2
a�1
2

~W
T

a
~Wa þ

1

2
eTe; ð18Þ

where e ¼ ½ei1; ei2�T . Taking the derivative, it has
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_V ¼ _J þ a�1
1

~W
T

c
_~Wc þ a�1

2
~W
T

a
_~Wa þ eT _e: ð19Þ

Firstly, we have

_J ¼ WT
c r/ _xþr�T _x

¼ WT
c r/ðF � 1

2
GR�1GTr/TŴaÞ

þ r�TðF � 1

2
GR�1GTr/TŴaÞ:

ð20Þ

Here we define r/GR�1GTr/T as �D1, r�TðF �
1
2
GR�1GTr/TŴaÞ as l1 and we have

_J ¼ WT
c r1 þ 1

2
WT

c
�D1

~Wa þ l1. From the HJB Eq. (11), we

have WTr1 ¼ �Q� 1
4
WT �D1W þ tH . Then, it has

_J ¼ �Q� 1

4
WT

c
�D1Wc þ

1

2
WT

c
�D1

~Wa þ tH þ l1: ð21Þ

In addition, we have

a�1
1

~W
T

c
_~Wc ¼ ~W

T

c

r2
ðrT2r2 þ 1Þ2

½rT2 Ŵc þ Qþ ûToRûo�Þ

¼ ~W
T

c

r2
ðrT2r2 þ 1Þ2

½�rT2 ~Wc

þ 1

4
~W
T

a
�D1

~Wa þ tH �:

ð22Þ

Based on the FTDOB, the error becomes 0 after Td sec-

onds. As
_̂Wa is given in Theorem 2, we have

Fig. 2 a Trajectories of system states under (16) with reference signal

r ¼ 0. Before 80 s, states constantly fluctuates due to the presence of

the excitation signal. After the excitation signal is removed, system

states reach a bound near the equilibrium point ð0; 0ÞT . b CNN

weights. Driven by update law (15), the weights of the CNN

eventually converge to within a bounded range of ideal weights.

c ANN weights. Driven by update law (17), the weights of the ANN

eventually converge to within a bounded range of ideal weights
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~W
T

aF2Ŵa � ~W
T

aF2Ŵc

¼ ~W
T

aF2W � ~W
T

aF2
~Wa � ~W

T

aF2W þ ~W
T

aF2
~Wc:

ð23Þ

Then _V can be obtained as below by adding (6), (15), (17)

and (21)

_V ¼ �Q� 1

4
WT

c
�D1Wc

þ ~W
T

c

r2
ðrT2r2 þ 1Þ2

½�rT2 ~Wc þ tH � þ tH þ l1

þ 1

4
~W
T

a
�D1Ŵa

�rT

ms

~Wc þ
1

2
WT �D1

~Wa þ
1

4
~W
T

a
�D1W

�rT2
ms

~Wa

� 1

4
~W
T

a
�D1W

�rT2
ms

W þ ~W
T

aF2W

� ~W
T

aF2
~Wa � ~W

T

aF2W þ ~W
T

aF2
~Wc;

ð24Þ

where �r ¼ r2
rT
2
r2þ1

, ms ¼ rT2r2 þ 1.

It is obvious that under Assumption 2,

Fig. 3 a Trajectories of system states under (16) with reference signal

r ¼ 0. Before 80 s, states constantly fluctuates due to the presence of

the excitation signal. b CNN weights. Driven by update law (15), the

weights of the CNN eventually converge to within a bounded range of

ideal weights. c ANN weights. Driven by update law (17), the weights

of the ANN eventually converge to within a bounded range of ideal

weights
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l1\b�xkbf kkxkþ
b�xb/x

b2grminðRÞðkWkþk ~WakÞ
2

: ð25Þ

As given in [18], tH converges to 0 as the neurons increase.

Hence, N0 can be selected such that supx2X ktHk\t.
Assuming N[N0, if we define

~Z ¼ ½Z; ~Wc; ~Wa; e�T, then we have

_V\� k ~Zk2rminðMÞ þ kpkk~zk þ cþ t; ð26Þ

where c ¼ 1
4
kWk2k �D1k þ tþ 1

2
kWkb�xb/x

b2grminðRÞ,

M ¼

qI 0 0 0

0 I ð�F2

2
�

�D1W

8ms
ÞT 0

0 ð�F2

2
�

�D1W

8ms
Þ F2 �

�D1WmT þ mWT �D1

8
0

0 0 0
1

2

2
66666666664

3
77777777775
;

p ¼

b.xbf

t
ms

ð
�D1 �

�D1WmT

4
2

ÞWþ
b�xb/x

b2grminðRÞ
2

� 1

2
eþ f ðeÞ þ D

2
666666666664

3
777777777775
:

ð27Þ

Fig. 4 a Trajectories of system states under (16) with reference signal

r ¼ 5. Before 80 s, states constantly fluctuates due to the presence of

the excitation signal. After the excitation signal is removed, state x1
converges to 5 and x2 reaches the equilibrium point. b CNN weights.

Driven by update law (15), the weights of the CNN eventually

converge to within a bounded range of ideal weights. c ANN weights.

Driven by update law (17), the weights of the ANN eventually

converge to within a bounded range of ideal weights
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Let the parameters be chosen such that M[ 0. If

k ~Zk[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2

4rminðMÞ þ cþt
rminðMÞ

q
þ kpk

2rminðMÞ, then, _V is negative.

Thence, the state and the weight error are UUB. h

4 Examples

In this section, a linear system is presented firstly to show

that the designed update law guarantees the convergence of

the weights to their ideal values. Secondly, a nonlinear

system example is employed to highlight the effectiveness

of the proposed method.

4.1 Linear system example

Consider a linear system, _x1 ¼ �x1 � 2x2 þ u,

_x2 ¼ x1 � 4x2 � 3u, where x1 and x2 are system states and

u is control input. Choose the cost function as

J ¼
R1
0
ðxTQxþ uTRuÞdt, where Q ¼ diagð1 1Þ and

R ¼ 1.

Clearly, the optimal controller based on linear quadratic

regulate theory can be easily found.Hence, the idealNNwights

can be also deduced as W ¼ 0:3199 �0:1162 0:1292½ �.
For this system, the NN-based optimal control is implemented

as (16) and the NN tuning law are selected as (15) and (17). In

theprocess ofNNconvergence, in order to ensurePEcondition,

weaddnoise signal 0:5ðsinðtÞ2 � cosðtÞ þ sinð2tÞ2 � cosð0:1tÞ
þsinð�1:2tÞ2 � cosð0:5tÞ þ sinðtÞ5Þ to the control input here.
The reference signal is set as r ¼ 0. The simulation results are

shown inFig. 2.Thevalues converge to theoptimal values after

50 s, i. e., Ŵc ¼ 0:3199 �0:1162 0:1292½ �. Also,

Ŵa ¼ 0:3199 �0:1162 0:1292½ � after 50 s. The optimal

controller approximated by NNs is given as

û ¼ �R�1

2

1

�3

" #T 2x1 0

x2 x1

0 2x2

2
664

3
775
T

0:3199

�0:1162

0:1292

2
664

3
775: ð28Þ

The excitation signal is introduced to satisfy the PE

condition, with the result that sufficiently rich data is

generated to train the neural network and ensure its con-

vergence. After 80 s, the neural network has converged.

After convergence, the exploration signal is removed, and

the value of the state of the system remains near 0 after

removal.

4.2 Nonlinear system example

Firstly, we consider a reference signal r ¼ 0. In this case,

the tracking problem is actually a stabilization problem.

The exploration signal is chosen as 200eð�0:23tÞ � ðsinðtÞ2�

cosðtÞ þ sinð2tÞ2 � cosð0:1tÞ þ sinð�1:2tÞ2 � cosð0:5tÞ þ
sinðtÞ5þ sinð1:12tÞ2 þ cosð2:4tÞ � sinð2:4tÞ3Þ and the cor-

responding results are depicted in Fig. 3.

Then, we set r ¼ 5 and exploration signal as expð�0:35tÞ
�200 � ðsinðtÞ2 � cosðtÞþsinð2tÞ2 � cosð0:1tÞþ sinð�1:2tÞ2�
cosð0:5tÞ þ sinðtÞ5 þ sinð1:12tÞ2 þ cosð2:4tÞ � sinð2:4tÞ3Þ.
The results are depicted in Fig. 4.

In our simulation, the sampling time is relatively small

at 0.001 s. Therefore, it is reasonable to increase the

exponential term in the excitation signal. This approach

offers several advantages, including reducing the overall

training time and minimizing computational resource

wastage. However, in practical systems, hardware limita-

tions often prevent maintaining a very small sampling time.

In such cases, as highlighted in [2, 3], it becomes crucial to

ensure that the excitation signal does not decay too rapidly.

This ensures an ample amount of data is available for

training the neural network.

5 Conclusion

This paper focused on the design of robust optimal con-

trollers for high-order nonlinear systems in the presence of

mismatched disturbances. The proposed approach involves

the design of disturbance observers that ensure fixed-time

convergence. Subsequently, the original system is trans-

formed into a filtered error nonlinear system. To address

the challenges associated with solving Hamilton–Jacobi–

Bellman (HJB) equations, the reinforcement learning

method has been introduced. Two neural networks have

been designed to approximate the cost function and the

optimal control, respectively. By integrating these com-

ponents, a robust optimal controller is finally obtained. The

effectiveness of the proposed method has been validated

through two illustrative examples.
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