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Abstract
Crop population and inter-plant spacing in corn farms can provide useful insight into plant phenotypic analysis and

informed establishment decisions, improving crop productivity. Traditionally, farmers have relied on manual inspection to

assess crop consistency, such as counting plant stands and manually estimating plant spacing. This assessment is carried

out in small predefined areas, leading to insufficient crop consistency analysis on the entire field. Moreover, alternative

computer vision techniques computing only one or two key parameters also prove insufficient for accurate crop consistency

assessment. This research presents a framework called QuanCro that utilizes red–green–blue images from field machinery

to analyze crop parameters such as plant stands counting, plant emergence rate, and plant spacing. It utilizes the state-of-

the-art object detection network—You Only Look Once version 7 (YOLOv7), to locate and count corn plants combined

with our proposed semantic segmentation model, Small Pyramid-UNet (SP-UNet) architecture, to determine leaf area

index. This architecture is designed to be memory efficient and computationally less expensive than similar networks, such

as HRNet_Mscale (72.1M) and SegNet (34.65M), as it has approximately 21M parameters. The SP-UNet is further

integrated with the Zhang–Suen thinning technique and progressive probabilistic Hough transform for crop row detection

and plant spacing information. QuanCro accurately estimates crop densities and identifies inconsistent crop areas. The

method is tested using 8000 images and shows a mean average precision of 0.976 for identifying plant stands. The SP-UNet

achieves intersection over union scores of 0.973, 0.924, and 0.926 for crops, rows, and backgrounds, respectively.

Keywords Plant spacing statistics � Crop row detection � Progressive probabilistic Hough transform � Perspective
transformation

1 Introduction

Corn is a vital crop in North America that requires constant

monitoring to ensure good production. Analyzing plant

density is crucial in assessing crop consistency and pro-

viding valuable information for forecasting crop

productivity [1]. However, to fully understand the consis-

tency of crops across large fields, it is important to consider

other parameters, such as inter-plant distances, percentage

of crop coverage, and population of plants per row. This

comprehensive analysis offers valuable insights for farmers

and agronomists to implement variable rate technologies,

enabling efficient management and control of crop growth

[2].

The traditional method of assessing crop consistency

involves manually counting crops and finding inter-plant

distance on predefined sample areas in the field. This limits

the view of the crops’ status and becomes laborious and

expensive when applied on a large scale. Developing

automated techniques for crop consistency analysis can

overcome these problems and enable farmers to make

informed decisions about crop establishment and early

intervention, leading to optimized crop production and

reduced wastage. These techniques can continuously
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monitor crops and analyze various characteristics, such as

size, shape, and color. Several agricultural applications use

computer vision (CV) techniques, such as convolutional

neural networks (CNNs), which can count corn plants [3],

classify leaf diseases [4, 5], segment leaves [6], and esti-

mate weed density [7]. Deeper convolutional feature rep-

resentations enhance the capability of these models to

extract semantic information, resulting in better general-

ization in diverse crop and weed conditions [8, 9]. Various

architectures have been proposed to obtain plant densities

and estimate their distribution across a corn field [10–12].

Kitano et al. use the deep CNN architecture UNet to

segment corn from the background and a blob detection

methodology (based on CV) to quantify the number of

plants in the image [10]. However, this method lacks to

provide precise locations for the detection. For on-ear corn

kernel counting, Khaki et al. utilize truncated VGG-16 for

feature extraction in their proposed DeepCorn framework,

reporting a mean absolute error (MAE) and root mean

squared error (RMSE) of 41.36 and 60.27, respectively

[13]. However, this method performs poorly on images

from different fields and uses more trainable parameters

(26.61M), making it inadequate for large-scale data han-

dling. Mota et al. use CNNs for detecting and counting

corn plants in the presence of weeds [14]. They base their

research on YOLOv4 [15] and YOLOv5 [16] architectures.

Similarly, Guo et al. introduce a two-step machine learn-

ing-based image processing technique to detect and count

sorghum heads using high-resolution images from

unmanned aerial vehicles (UAVs) [17]. However, the

robustness of these methods in different field conditions is

undetermined, and assessing only plant stands counting is

not sufficient to accurately evaluate the consistency of

crops on large fields. Therefore, there is a need to develop

an algorithm that considers multiple parameters to analyze

crop consistency efficiently and can adapt to natural field

conditions.

The identification of crop rows is a crucial factor in the

analysis of crop consistency as it provides valuable data on

crop emergence and inter-plant spacing. This information

is used to monitor crop growth per row, which plays a

significant role in identifying potential issues in crop

development. Several CV techniques are developed to

detect straight crop rows in an image, including the con-

ventional Hough transform, linear regression, and green

pixel accumulation [18–20]. The Hough transform is a

popular technique that transforms the image into Hough

space, detecting lines and geometric shapes in the original

image. Linear regression fits a straight line to a set of points

in the image, while green pixel accumulation counts the

number of green pixels in a region of the image to infer the

presence of straight crop lines. However, these techniques

can misclassify weeds as crops, leading to false row

detection [21]. They rely on certain assumptions about the

characteristics of crops, such as their shape, size, and color,

and are sensitive to variations in lighting and other envi-

ronmental conditions. To overcome these limitations, fully

convolutional networks (FCNs)-based semantic segmenta-

tion architectures have been introduced for row detection

and crop coverage estimation tasks [22, 23]. These models

can identify the pixels in an image corresponding to crops

and weeds and assign each pixel to the appropriate class

[23, 24].

Silva et al. introduce a method for crop row extraction

using a UNet-based CNN model that performs semantic

segmentation prior to post-processing steps [25]. They

report an accuracy of 89.36%, which is lowered by 4.93%

under difficult field conditions, such as high weed pressure

and sparse crop content in misaligned crop rows. On the

other hand, Tang et al. develop a sequence of image pro-

cessing procedures to identify and estimate the distance

between corn plants in crop row images [26]. Their algo-

rithm utilizes various crop information, such as plant color,

morphological features, and the center line of the crop

rows. They report a spacing RMSE error of 1.7 cm and a

coefficient of determination (R2) of 0.96 cm. This method

provides better results in estimating the spacing between

crops during the initial growth stages, but the error

increases in later stages and when the crops are damaged.

To date, no studies have been found that employ FCN

architectures to evaluate consistency based on plant spac-

ing estimation, crop coverage area, and density per row.

We propose a Small Pyramid-UNet (SP-UNet) network

that uses FCN to segment crop leaves and rows. Like UNet

[27], our network has an encoder–decoder structure, with

ResNet34 [28] as the backbone. In the decoder section, we

have incorporated the feature pyramid network (FPN)

architecture to extract rich, multi-scale features. By adding

more context and detail, this feature extraction helps to

improve the model’s performance. Additionally, our

architecture aims to reduce the number of parameters,

which helps to prevent overfitting and results in a more

lightweight network. Despite having only 21.85M trainable

parameters, our model has comparable prediction perfor-

mance to more complex segmentation models like

HRNet_Mscale (72.1M) and SegNet (34.65M). We

observe that RNet_Mscale and SegNet exhibit poor per-

formance in row extraction, especially in scenarios where

plants within a row are sparsely distributed, which is fre-

quently seen in corn crops. We utilize the Zhang–Suen

thinning algorithm [29] to reduce the segmented row to a

single-pixel structure and integrate it with the progressive

probabilistic Hough transform (PPHT) [30], which assigns

a line to the center of each row.
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After the crop segmentation task, we estimate crop

coverage through leaf area index (LAI) calculation. This

task identifies extracted pixels in the image corresponding

to leaves and measures the total leaf area. While many

studies support semantic segmentation models for esti-

mating LAI, they do not establish a correlation with other

key elements that contribute to the analysis of crop con-

sistency [31]. For example, in [32], the authors use the

UNet architecture to estimate LAI but do not present other

consistency parameters such as crop row detection, plant

stand count per row, and inter-row and inter-plant

distances.

We use the latest object detector, YOLOv7 [33], to

accurately determine corn stand count. To avoid redundant

results, we apply the Distance-IOU Non-Maximum Sup-

pression (DIoU-NMS) technique [34]. This method con-

siders both the detection boxes’ overlapping areas and

center points, enabling better detection of target plants that

may be obstructed. Our algorithm evaluates the number of

plants per row, their spacing, and LAI to quantify consis-

tency, as shown in Fig. 1. Our framework is effective for

crops under biotic stress and at progressive growth stages.

We believe that no other existing framework in the liter-

ature can accurately assess multiple crop parameters to

quantify crop consistency.

This research paper presents three main contributions as

follows:

• A novel architecture called SP-UNet is proposed for

segmenting crops and crop rows in the RGB images

captured by field machinery-mounted cameras.

• Implementation of the novel method for quantifying

corn crop consistency under natural field conditions.

• Establishing a correlation between inter-plant distance,

plant stand count per row, and crop coverage percent-

age for crop consistency analysis.

The notations utilized in this work are summarized in

Table 1.

2 Materials and methods

In this section, we present detailed information on the

dataset and the QuanCro framework, which is utilized to

evaluate the consistency of corn crops.

2.1 Data collection and its challenges

A dataset of 8000 images of corn fields at various growth

stages is being utilized for this study. These images are

taken using SWATCAM, a system based on an Android

phone, mounted on field machinery as depicted in Fig. 2.

The images measure 1440� 1080 pixels and are taken at

intervals of 15.24–21.33m with a count of 17–20 images

per acre. The dataset presents a range of difficulties,

Fig. 1 Workflow of the proposed algorithm
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including low light or nighttime shots, motion blur, tilted

angles, and varying boom heights. Additionally, there are

instances of mid-stage corn plants and weeds overlapping,

which can create further complications. It is crucial to

carefully select the data used to train the model to ensure

accurate detection of corn plants in diverse conditions.

Some examples from the dataset are depicted in Fig. 3. The

images in Fig. 3a show early-stage crops surrounded by

weeds. Figure 3b exhibits shots of crops under different

lighting conditions, with the crops overshadowed by field

machinery in the left image. In contrast, the right image is

captured under an auxiliary lighting source. Figure 3c

displays images with mid-stage crop in an overlapping

state.

2.1.1 Data augmentation

Data augmentation increases the data by generating new

data points from the existing data. This is achieved by

implementing reasonable modifications to the original

images, which are then added to the training dataset as new

augmented copies of the images. The semantic segmenta-

tion dataset is modified through various geometric and

photometric augmentations, such as adjusting the satura-

tion and hue of the image’s color channels and applying

random scaling, translation, rotation, and cropping. In

addition, for plant stands detection, the dataset is aug-

mented by applying CutOut [35], CutMix [36], MixUp

[37], and Mosaic [15] augmentation techniques. These

augmentation techniques involve applying modifications to

multiple images at once. In the MixUp technique, a pair of

images are superimposed onto each other through a

weighting operation to create a new sample for which a

new corresponding label is also generated. The CutOut

method slices away a part of images that the model may

rely heavily on during training. This gives the model a

platform to learn all the elements in the images thoroughly.

CutMix substitutes a slice of another image onto the small

patch of zero-pixel areas generated by CutOut. CutOut and

CutMix are both predecessors to the Mosaic augmentation

method. This method combines images of different sizes

into mosaic patterns and corresponding annotations. Sub-

sequently, a random portion of this entire grid is selected

and cropped to create a new augmented image, which is

then utilized for training the network.

2.1.2 Data annotation

This experiment uses two different labeling tools to prepare

the dataset. Bounding boxes for each corn plant are gen-

erated using the LabelImg labeling tool, and the rows and

plants are segmented using the Segments.ai platform

(https://segments.ai). An example image for labeling corn

plants using bounding boxes is shown in Fig. 4a. Only

pixels belonging to the plants are annotated for semantic

segmentation, while the crop rows are segmented using a

polygon tool, as illustrated in Fig. 4b. The row extraction

takes account of the plants and the sparse spacing between

each plant.

Table 1 Summary of notations

Symbols Definition

x Width coordinate of bounding box

y Height coordinate of bounding box

D Highest score of detection box

si Classification score

e NMS threshold

RDIoU Distance-IoU penalty term

Pi Lower score of detection box

Pn Number of pyramids

h Angle between the optical projection axis

u Angle between the horizon and optical axis

l Camera’s angular aperture

k � g Image resolution

# Projection weighting factors

q Projection weighting factors

D Shortest distance in pixels

m Gradient

Mcrop Pixels corresponding to crops

Nall Pixels corresponding to crops/background/weeds

Pr Predicted segmentation mask

Gr Ground-truth segmentation mask

cL Object class

R2 Coefficient of determination

Fig. 2 SWATCAM cameras mounted on each sprayer boom of the

field machinery (https://swatmaps.com)
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2.2 Methodology

In this research paper, a novel approach called QuanCro is

presented, which leverages a semantic segmentation model

to identify crop rows and estimate the percentage of crop

leaves. Additionally, an object detection algorithm is

employed to locate and count individual plant stands. The

segmentation model is further integrated with the Zhang–

Suen thinning algorithm and the PPHT to identify crop

rows accurately. Using these parameters, the plant density

Fig. 3 Illustration of various types of challenges in the dataset
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per row and inter-plant spacing are estimated, and further

calculations are performed to quantify the consistency of

crops in a corn field.

2.2.1 Plant stand count using YOLOv7

The YOLOv7 is the latest addition to the YOLO series.

This network is a single-stage detector that predicts all

bounding boxes and class probabilities with just one pass

through a CNN without requiring pre-generated region

proposals. The YOLOv7 architecture consists of three main

modules: a backbone, a neck, and a head. The backbone

uses extended efficient layer aggregation networks (E-

ELANs) to extract key features from input images. The

E-ELAN uses shuffle and merge cardinality in the final

layer aggregation to improve the feature learning capabil-

ities of the network across layers, resulting in increased

accuracy. The neck module collects feature maps from

different stages and utilizes FPN for enhancement. The

head module makes the final detection, and a modified

Fig. 4 Demonstration of different labeling techniques

Fig. 5 Building block of residual unit

24882 Neural Computing and Applications (2023) 35:24877–24896

123



post-processing non-maximum suppression (NMS) sup-

presses multiple detection boxes of the same plant,

resulting in a reduced number of false positives.

To improve the inference speed, the architecture incor-

porates a new model re-parameterization technique that

combines multiple computational elements into a single

module. This technique is separated into two groups:

model-level and module-level ensemble. The YOLOv7

uses a concatenation-based method for scaling the model,

generating models of varying sizes, and ensuring the

structure remains optimal during the execution stage. The

YOLOv7 is trained on a corn crops dataset for plant stand

counting. The trained model is used to locate corn plants by

predicting bounding boxes, which are utilized to count the

number of plants in the images.

The classical NMS technique is the last post-processing

step in the detection algorithms [38]. It uses a probability-

bound criterion system to filter out single detection boxes

out of many overlapping boxes. These overlapping boxes

have false-positive predictions that need to be suppressed.

Another alternative is soft NMS which applies a continuous

function based on IoU to reduce the detection score of

neighboring bounding boxes. This results in a gentler and

more resilient suppression than the classical NMS approach

[39]. However, both of these techniques have shortcomings

in occlusion scenarios. They encounter challenges in

detecting objects from the same class in proximity and tend

to delete the true predictions. This problem is addressed by

adopting the DIoU-NMS method [34], which performs well

in clustered scenes and effectively handles highly over-

lapping target objects. This method suppresses boxes by

Fig. 6 SP-UNet network architecture. The number of channels is represented by the vertical numbers on the left side, while the numbers below

each map represent the size of the feature map
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considering the distance between the center point of the

corresponding detection boxes and the overlapping area.

The distance-IoU penalty term denoted as RDIoU equipped

with an adaptive threshold facilitates score penalization of

the false neighboring boxes to achieve a refined detection

box.

si ¼
si; IoU �RDIoU D;Pið Þ\e

0; IoU�RDIoU D;Pið Þ� e

�
ð1Þ

where D represents the highest score of the detection box,

while si and e are denoted as the classification score and

NMS threshold, respectively. Based on a predefined

threshold value obtained using the suppression criterion,

the lower score of the Pi box is eliminated.

2.2.2 Proposed semantic segmentation network: SP-UNet

The proposed SP-UNet follows a U-shaped encoder–de-

coder structure, similar to the original UNet [40]. The

encoder contains convolutional and max pooling layers,

while the decoder has upsampling and convolutional lay-

ers. The U-shape of the network facilitates feature local-

ization in the input image and preserves spatial resolution

in the segmentation output. The encoder produces feature

maps of various scales by convolving and down-sampling

the input, which is then concatenated with the corre-

sponding upsampling layers of the decoder using skip

connections. The skip connections enable the decoder to

access and combine high-level global and low-level local

features, which is crucial for accurate image segmentation,

particularly for enhancing edge features.

To increase the effectiveness of feature extraction dur-

ing the down-sampling process, the ResNet34 [28] module

is added to the UNet encoder. The ResNet34 architecture

comprises multiple residual blocks, each containing several

convolutional and batch normalization layers, and has

shortcut connections between each block’s input and out-

put. The residual connections allow the gradients to flow

more easily through the network, making it possible to

train much deeper networks without the vanishing gradient

problem. Integrating the ResNet34 architecture within the

UNet encoder enhances the feature extraction capability of

the model by utilizing the shortcut connections present in

the ResNet34. This is particularly beneficial for image

segmentation tasks as it allows for extracting high-level

semantic information and fine-grained details from the

input image, which is crucial for precise object recognition

and classification [41]. To balance the number of trainable

parameters and the model’s ability to extract features, only

the first five blocks of the ResNet34 are used.

The decoder is made up of five upsampling blocks. Each

block contains transpose convolutions followed by two

convolutions, batch normalization, and ReLU activation.

This increases the resolution of feature maps while

reducing their depth. Using FPN improves the network’s

performance by enabling it to incorporate multi-scale

contextual information from different network levels. This

is particularly useful in tasks like image segmentation,

where the spatial layout of objects is important. For effi-

cient crop row segmentation, the network needs to detect

large row segments rather than specific vegetation regions

in images. Utilizing an FPN in the decoder part of the

network allows the network to consider global context and

local details in the image. This leads to increased model

performance with fewer parameters and reduced compu-

tation time (Fig. 5).

The output features of the first four decoder blocks are

up-sampled to a fixed size of 384� 384 and a depth of 64

(channels), creating four pyramids of the feature maps:

P1;P2;P3, and P4. These pyramids with 64 channels are

combined, resulting in a feature map with 256 channels.

This is then concatenated with the output of the fourth

upsampling layer and fed to the last fifth upsampling layer.

This increases its resolution and matches the input size

before being processed by the final block of the network.

The final block consisting of three 3� 3 convolutions is

applied to the output of the fifth upsampling layer, resulting

in a 768� 768 feature map with 32 channels. The final step

applies a 1� 1 convolution filter to the feature map,

reducing the number of channels to match the number of

classes (crop leaves and rows). This final feature map is

then used to predict the class for each pixel in the image. A

Fig. 7 Illustration of the detected and extended line
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graphical representation of the model’s structure is shown

in Fig. 6.

2.2.3 Crop row detection algorithm

The SP-UNet is used to segment the corn crop rows from

the background, which includes the soil and weeds. The

Zhang–Suen thinning method [42] is then applied to the

segmented rows to obtain a minimal/pixel-wide represen-

tation, skeleton, of the crop rows [29]. This thinning

method is an iterative process consisting of two passes.

During each iteration, it examines whether it satisfies the

following conditions before eliminating pixels from the

outer sets of pixel regions that do not belong to the

skeleton.

• First pass

1. The chosen pixel f is black and is surrounded by

eight neighboring pixels.

2. It has a minimum of two and a maximum of six

black neighboring pixels.

3. The connectivity value of this pixel is one.

4. At least one pixel should be white in either east,

north, or south position from pixel f.

5. At least one pixel should be white in either west,

east, or south position from pixel f.

Fig. 8 Proposed crop row extraction workflow

Fig. 9 Demonstration of perspective view image and Bird’s-eye view image
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• Second pass

1. The chosen pixel f is black and is surrounded by

eight neighboring pixels.

2. It has a minimum of two and a maximum of six

black neighboring pixels.

3. The connectivity value of this pixel is one.

4. At least one pixel should be white in either east,

north, or west position from pixel f.

5. At least one pixel should be white in either west,

north, or south position from pixel f.

This process uses a 3� 3 window to make calculations

across the entire image in a clockwise direction. Through

each pass, the pixel that satisfies the conditions will be

eliminated and will continue until no more pixels are

removed, and a more definitive structure is obtained. There

are other alternatives for thinning algorithms, such as the

Guo–Hall [43]. Guo–Hall deletes redundant pixels and

produces thinner skeletons compared to the Zhang–Suen

algorithm but does not at times retain the structure of the

component accurately [44].

Following the implementation of the thinning algorithm,

a Gaussian filter with a small standard deviation (SD) is

employed to minimize noise. A CV technique called PPHT

is adopted at the final stage to obtain a precise center line of

each crop row. This adaptation of the probabilistic Hough

transform (PHT) [45] performs the standard Hough trans-

form [46] on only a pre-selected fraction of the points. The

PPHT exploits the difference in the distribution of the votes

required to accurately perform line detection with the help

of the different number of supporting points. This results in

a significant reduction in the computation required for

PPHT in contrast to PHT, where prior knowledge and the

information on the fraction of points utilized for voting are

needed and hence is time-consuming.

Because of the sparse inter-plant spacing at the edges of

the images, an incomplete row length is obtained, leading

to incorrect plants per unit calculations (plants/length of

row). The detected lines are further extended to the edges

to address this problem, as shown in Fig. 7. In addition to

line detection, contour lines are incorporated around the

row’s center line. This allows the plant detection and

numerical calculations to be restricted within the contour

lines margin to avoid detecting and counting voluntary

plants that grow outside the row. The row detection process

is depicted in Fig. 8.

2.2.4 Inverse perspective transformation

The images are fundamentally two-dimensional (2D) pro-

jections of three-dimensional (3D) objects. This perspec-

tive projection leads to distortion and fails to capture

information on an object’s precise spacing and location

from an RGB image [47]. The projection of parallel lines

seems to converge and intersect at a point (vanishing point)

when represented in a linear perspective. Some of the

images in our dataset have crop rows converging at the

vanishing point, which contrasts with the field plane, where

the rows are parallel. This makes the field-scale calculation

for estimating the distance between rows incorrect. The

number of pixels at the image’s upper edge (near the

vanishing point) corresponding to a certain physical

Fig. 10 Distance estimation between each crop in their respective row shown for both mid- and early-stage crops images

Table 2 Comparing the accuracy and efficiency of various YOLO

object detection architectures

Model Precision Recall mAP

YOLOv3 0.948 0.902 0.867

YOLOv4 0.943 0.869 0.894

YOLOv5 0.963 0.901 0.929

YOLOX 0.916 0.878 0.903

YOLOv7 0.981 0.888 0.976

Bold values in the table indicate statistically significant results
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distance differs from those at the lower edge. To eliminate

these non-linear perspective effects, it is important to apply

inverse perspective mapping. This technique takes every

pixel from a 2D projection of 3D objects and remaps it to a

new position, subsequently generating a new image rep-

resentation on an inverse 2D plane [47]. The equations to

support this mapping are formulated as follows:

F ¼ fðx; y; zÞg 2 Es3 ð2Þ

I ¼ fðu; vÞg 2 Es2 ð3Þ

uðx; 0; zÞ ¼ qðx; 0; zÞ � ðh� lÞ
2l
k�1

ð4Þ

vðx; 0; zÞ ¼ #ðx; 0; zÞ � ðu� lÞ
2l
g�1

ð5Þ

q ¼ tan�1 Z

x

� �
ð6Þ

# ¼ tan�1 hffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
� �

ð7Þ

Table 3 Comparing various methods for detecting and classifying corn crops: an in-depth performance analysis

Research focus Data

acquisition

Method platform Method evaluation Reference

Screening corn ear RGB VGG-16 and ResNet50 Classification accuracy = 97.23% [50]

Corn kernel counting RGB Semi-supervised deep learning RMSE = 60.27 MAE = 41.36 [13]

Early-stage corn detection UAS/RGB Supervised learning Classification accuracy = 96% [2]

Corn crop stand UAV EXG method Mean accuracy = 0.46 [48]

Corn crop stand UAV k-means clustering—

segmentation

Mean accuracy = 0.91 [48]

Maize seedlings stand RGB Faster R-CNN with VGG19 Precision[ 97.71% [49]

Corn plant identification RGB Image processing algorithms Mean misidentification

ratio = 3.7%

[26]

Corn crops within the rows RGB YOLOv7 mAP 5 0.976 Our
implementation

Bold values in the table indicate statistically significant results

Fig. 11 Comparison of counts

from NMS and DIoU-NMS with

manual counts

Table 4 Comparison of existing row detection models with our pro-

posed SP-UNet on corn field

Architecture Method performance Reference

Adaptive Multi-ROI Accuracy = 95.3% [53]

Mask Scoring R-CNN mAP = 82.8% [52]

Improved Hough Transform 98% correct detection [51]

SP-UNet mIoU 5 0.924 Ours

Bold values in the table indicate statistically significant results
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The coordinates of the field plane are translated onto the

image plane using (4) and (5) where h indicates the angle

between the optical projection axis on the horizontal plane

and / denotes the angle between the horizon and optical

axis. The l and k � g represent the camera’s angular

aperture and the image resolution, respectively. Lastly, the

angles q and # can be termed projection weighting factors

for the pixels that change horizontally and vertically during

the remapping process. In Fig. 9, the left image demon-

strates the original field image where the crop rows’

dimensions are non-parallel, and its vertices are repre-

sented in a trapezoid shape. The right image is the bird’s-

eye view resulting from the inverse perspective

transformation.

2.2.5 Plant spacing calculations

Once the plant detection model detects individual plant

stands and determines the plant population across each

row, the spacing between the adjacent plant stands is cal-

culated. This numerical estimation is based on the distance

calculation between the plants’ centroids (x,y). The

Euclidean distance method is the most appropriate distance

metric to determine the spacing within the neighboring

plants in the rows [48]. Before this calculation, a distance

matrix ensures no multiple distance estimation from each

plant to the rest of the row. Similarly, another triangular

matrix is generated to discard the repeated values that only

initiate the distance calculation when the neighboring plant

is closest to the next corresponding plant. The equation for

the distance (in pixels) estimation is given by (8):

Distance ðF;GÞ2 ¼ Fx � Gxð Þ2þ Fy � Gy

� �2 ð8Þ

The subscripts x and y represent the centroid of the

bounding box corresponding to plants F and G. The dis-

tance estimated in (8) is then translated onto field-scale

(actual) values using inter-row distance obtained by (9):

D ¼ kC2 � C1kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p ð9Þ

Y1 ¼ mxþ c1 ð10Þ

Y2 ¼ mxþ c2 ð11Þ

The line equations associated with each crop row are (10)

and (11). D represents the shortest distance in pixels

between them. As the crop rows are generally 0.3048m

apart in the corn field, (12) calculates the scale for the

actual distance corresponding to each pixel. This scale is

then multiplied with each inter-plant distance, Distance (F,

G) in (8), to obtain the distance in inches.

scale ¼ 0:3048=D ð12Þ

The calculation based on the precise distance estimation

between each plant provides a relative analysis of the

consistency of the crops. The projected distance estimation

on both mid- and early-stage crop images is demonstrated

in Fig. 10. The blue fonts are used to denote the distance in

pixels. Following the distance calculation, the coefficient

of variation (CoV) is obtained, providing insight into

determining the consistency of the crops.

2.2.6 LAI estimation from crop segmentation

LAI characterizes the structural attributes of a crop quan-

titatively to analyze the crop emergence at a particular

stage. The SP-UNet model is trained to segment images

into different classes, such as crops and rows. The seg-

mented crop content calculates the total leaf area over a

large field. The formulation of calculating the percentage

of LAI is given as follows:

Percentage of crop LAI ¼
P

McropP
Nall

ð13Þ

Mcrop represents all the pixels allocated in crop content

while
P

Nall indicates the summation of all the pixels of

the image, including crops/background/weeds.

The CoV value, along with the LAI estimate, is used as

the deciding factor for assessing the consistency of the

crops at a particular growth stage. These details are elab-

orately discussed in the next section.

Table 5 Comparison of

segmentation models with our

proposed model on corn field

Model Parameters Evaluation metrics

mIoU IoUBackground IoUCrop IoURow AccuracyVal

HRNet_Mscale 72.10M 0.915 0.975 0.850 0.920 98.3%

Simple UNet 31.04M 0.867 0.986 0.748 0.885 98.1%

DeepLabV3? with ResNet50 24.81M 0.892 0.967 0.865 0.882 98.5%

SegNet50 with ResNet50 34.65M 0.878 0.978 0.778 0.739 95.3%

SP-UNet (ours) 21.85M 0.913 0.950 0.867 0.924 96.5%

Bold values in the table indicate statistically significant results
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3 Results

We conduct experiments to test the effectiveness of our

proposed QuanCro method. We evaluate the accuracy of

our plant counting model by comparing it to manual counts

on a separate test dataset. We also compare the perfor-

mance of different detection networks, including YOLOv3,

YOLOv5, and YOLO7, based on their mAP and F1 scores.

We visually assess the detection results to determine which

model performs the best. Additionally, we analyze several

segmentation architectures, such as SegNet, UNet,

HRNet_Mscale, and DeepLabV3?, with different back-

bones like ResNet and VGG and compare them to our

proposed SP-UNet model. Finally, we calculate numerical

estimations to determine the consistency of corn crops and

establish their correlation with the LAI from the SP-UNet.

3.1 Evaluation metrics

Several metrics can be used when evaluating a segmenta-

tion model’s performance. One of the most commonly used

and effective methods is IoU, the Jaccard index. This

metric is calculated by determining the ratio of the inter-

section of the predicted segmentation mask (Pr) and the

ground-truth segmentation mask (Gr) to their union. It

ranges from 0 to 1, with a value of 1 indicating a perfect

segmentation, given as:

IoU ¼ Pr \ Gr

Pr [ Gr
ð14Þ

Mean IoU (mIoU) is the average of the IoU scores across

all classes and provides an overall measure of the model’s

performance. The formula for mIoU is as follows:

mIoU ¼ 1

c
�
X

IoUi ð15Þ

where c is the number of classes and IoUi is the IoU score

of the ith class, calculated using the formula in (14).

Another popular metric is the Dice coefficient (DC), which

is calculated as the ratio of the intersection of the predicted

and ground-truth segmentation masks to the sum of the

sizes of the masks. It also ranges from 0 to 1, with a value

of 1 indicating perfect segmentation.

DC ¼ 2� overlapping pixels

total pixels in both Pr and Gr
ð16Þ

Furthermore, accuracy is used as an additional metric to

evaluate and compare our model with the baseline/refer-

ence models.

Mean average precision (mAP) is commonly used in

object detection and measures the average precision (AP)

across different object classes, providing an overall mea-

sure of the model’s performance. To determine the mAP,

the AP for each class is computed and then the APs are

averaged across all classes. The AP score for a specific

class evaluates the model’s P and recall (R) when detecting

instances of that class. It is determined by creating a P–R

curve and taking the average of the P values at various R

levels.

AP ¼
Z 1

0

PðRÞdR ð17Þ

mAP ¼ 1

cL

XcL
i¼0

A Pi ð18Þ

By employing these evaluation criteria, we ensure a com-

prehensive and rigorous assessment of our frameworks’

performance in semantic segmentation and object detection

Fig. 12 Demonstration of different labeling techniques
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tasks. These metrics allow for fair comparisons with other

state-of-the-art networks.

3.2 Evaluation of plant detection model

In this study, we evaluate the performance of different

object detection models in the YOLO pipeline by com-

paring their results on our dataset of corn crops. To ensure

a fair analysis, we use consistent hyperparameter settings,

including a learning rate of 1� 10�2, a batch size of 16,

and 120 training epochs for all models. During training, we

utilize the Adam optimizer and binary cross-entropy loss

function for all models. According to Table 2, YOLOv7

outperforms all other models with the highest precision and

mAP values, which are 5.06% and 1.87% higher than

YOLOv5. While YOLOv3 has the highest recall value of

0.902, its mAP value is lower than YOLOv5 and YOLOv7.

Fig. 13 Demonstration of different CNN models for segmenting crops and rows in corn crop images, and the final center-line association to the

rows
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Among all the models evaluated in this study, YOLOX has

the worst performance.

Table 3 compares networks used to identify and count

corn stands in both RGB and UAV imagery. While semi-

supervised and supervised DL methods have been suc-

cessful in detecting and counting early-stage corn crops,

their effectiveness on mid-stage crops has not been repor-

ted yet [2, 13]. The table highlights that the faster R-CNN

method integrated with VGG19 achieves an impressive

97.71% precision rate for detecting corn crops. However,

its performance decreases as the crops grow and in varying

lighting conditions [49]. On the other hand, our YOLOv7-

based corn plant stand counting approach achieves high

precision, outperforming other networks used for the same

task.

In Fig. 11, we compare the actual manual crop count in

test Fields A and B at different growth stages with the

predicted count obtained from YOLOv7. We use two NMS

post-processing techniques: NMS and DIoU-NMS. We

evaluate 38 examples randomly selected from each field.

Field A primarily consists of mid-stage crops, while Field

B represents early-stage crops. The number of crop stands

in Field A is higher than in Field B.

The results demonstrate that the correlation between the

manual and predicted count using the DIoU-NMS is

stronger than the NMS. We observe similar trends in Field

B, but with slightly higher variations between the actual

and predicted count using both techniques. This is due to

the higher crop emergence at later growth stages with

overlapping crops and the resemblance of weeds to the

Fig. 14 Heatmaps of average plant spacing, variance, and crop segmentation overlaid on top of an RGB satellite image background

Table 6 Establishment of the

correlation between the crop

variables with a consistency

determinant to evaluate crop

consistency

Ex. images Total count Variance spacing Mean spacing SD CoV LAI CD

Image 1 18 2.835 0.726 0.852 0.301 0.802 Good

Image 2 16 3.476 1.940 1.393 0.401 0.626 Moderate

Image 3 17 3.706 2.623 1.620 0.437 0.597 Moderate

Image 4 15 3.334 2.145 1.465 0.439 0.623 Moderate

Image 5 15 2.330 1.550 1.245 0.535 0.553 Bad

Image 6 14 2.041 1.229 1.109 0.543 0.515 Bad

Image 7 12 2.949 2.300 1.717 0.747 0.274 Bad

Image 8 11 2.655 2.513 1.630 0.648 0.222 Bad
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narrow structure of the leaves. Despite this, the correlation

between the actual and predicted counts using DIoU-NMS

post-processing is superior. It achieves a score of 1.400 for

RMSE, which is 2.3% better than the RMSE achieved by

the model when utilizing the NMS technique. The R2 value

using the DIoU-NMS is 0.985.

3.3 Crop row extraction networks

Based on corn fields in Table 4, the effectiveness of the

proposed SP-UNet for extracting crop rows is evaluated

using existing methods. However, a modified technique

using the Hough transform yields only a 98% correct

detection rate on a limited dataset of 100 images, which is

insufficient for determining overall performance in differ-

ent scenarios [51]. Furthermore, this technique is sensitive

to noise and low contrast in the data. Another method,

mask scoring R-CNN, has a high mAP of 82.8%, but its

accuracy decreases with lower spatial resolution [52].

Although the Adaptive Multi-ROI method [53] has a high

accuracy of around 95%, it is computationally more

expensive than the proposed SP-UNet.

3.4 Evaluation of segmentation models
and their comparison with SP-UNet

The performance of various models is compared in Table 5

using several evaluation metrics, including mIoU, valida-

tion accuracy, and the number of trainable parameters for

each model. Among all the models, DeepLabV3? with

ResNet50 has the lowest number of trainable parameters

and is computationally faster than the others. However, it

has a lower mIoU score of 2.6% and 2.4% compared to

HRNet_Mscale and SP-UNet, respectively. SegNet50,

which is SegNet with a ResNet50 backbone, has the lowest

IoU score of 0.739 for crop rows and requires 58.6% more

Fig. 15 Representation of the consistency of crop images, showing examples of both well-consistent and poorly consistent crops
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parameters than SP-UNet. Although HRNet_Mscale has

the best mIoU score, it is computationally complex and

requires many parameters. Additionally, its high validation

accuracy is not a reliable metric for evaluating segmenta-

tion models due to imbalanced class data. In contrast, the

SP-UNet model has better crop and row IoU scores than

HRNet_Mscale and uses 239% fewer parameters. Its faster

processing speed and minimal impact on IoU scores make

it a more suitable choice for various applications. Fur-

thermore, The SP-UNet obtains the second-best mIoU

score, employing only 21.85M parameters.

The SP-UNet is trained using the Adam optimizer and a

learning rate of 1� 10�2. The accuracy and loss graphs for

the train and validation sets are shown in Fig. 12. In

Fig. 12a, it is evident that the accuracy fluctuates fre-

quently throughout the training epochs. The accuracy for

both sets reaches a cut-off point at approximately the 40th

epoch where it reaches 95%. After this point, the validation

accuracy follows a steady trend, while the training accu-

racy shows sporadic fluctuations. As the training continues,

the model’s performance on the validation dataset

improves, reaching an accuracy of 96.5%. At the same

time, the training accuracy reaches 98.6%. The loss graphs

in Fig. 12b show that the model generalizes well on unseen

data. This is supported by the rapid convergence of the

training and validation loss, which eventually reaches

values of 0.04 and 0.02, respectively, at the 72nd epoch.

The picture shown in Fig. 13 compares various seg-

mentation models for crop row extraction and crop seg-

mentation used for LAI estimation. This analysis is being

conducted during the early and mid-stages of crop growth,

and the results are being demonstrated using two randomly

selected images from each stage. The first column displays

the test images, the second and third columns show the

output of crop and row segmentation, respectively, and the

final column shows the center-line association with the

crop rows. Among the segmentation models being tested,

the SegNet50-based model performs the worst, with

incorrect row segmentation leading to false positives dur-

ing early-stage crop growth and misaligned rows during

mid-stage growth. Additionally, it is missing some crop

pixels, leading to incorrect LAI calculations. The UNet

architecture performs better in segmenting rows but mis-

classifies some background/weed pixels as crops, leading

to incorrect row alignment. It also has small misses in crop

segmentation, especially in poor field conditions. Our

proposed SP-UNet model effectively overcomes these

challenges and accurately segments both rows and crops,

which is beneficial for LAI and determining the distance

between crops within the predicted rows.

3.5 Quantification of crops’ consistency

Extensive analysis is carried out on corn cropland spanning

a thousand acres to determine the correlation between crop

emergence percentage, average inter-plant spacing, and

variance. The field area has been presented in a heatmap

format using the ArcGIS platform [54], as shown in

Fig. 14. This online mapping application utilizes KMZ

(Keyhole Markup Language Zipped) files to analyze geo-

graphical data. KMZ files are compressed folders con-

taining all the necessary files and KML (Keyhole Markup

Language) format files representing the location coordi-

nates. These location coordinates are represented in XML

notation. The left-most map demonstrates the average plant

spacing obtained through distance estimation between

consecutive plant stands. The middle map showcases the

proposed SP-UNet model’s crop segmentation, while the

right-most image displays the variance obtained from the

plant spacing. The field heatmaps exhibit a significant

degree of dispersion, indicating a considerable variation in

crop spacing. A correlation between mean plant spacing

and variance can be observed in the left and right maps,

pinpointing key locations with high or low spacing. Further

examination of these patterns can be conducted through

crop segmentation techniques. Regions with high crop

density display a lower variance, whereas areas with low

crop density exhibit a higher variance. At an intermediate

level of crop density, the dispersion appears to be

moderate.

The LAI value provides information about the percent-

age of crops in an image, while the CoV is derived from the

SD and mean spacing. These variables have a strong cor-

relation that can give insight into the consistency of crops.

The correlation between them is established numerically in

Table 6, and a consistency determinant is assigned based

on these quantifications. To assess consistency, eight

images are randomly selected from the test data. The

table shows that as the spacing variance increases with the

CoV value, the LAI decreases due to missed crops. This

suggests an inversely proportional relationship. When CoV

is around 30%, and LAI is around 80%, the crop is uniform

across the area with minimal sparsity in the rows. When

CoV is around 70%, and LAI is around 25%, the crop is

either in a stressed condition or the field has very low-

density areas. The expression ‘‘moderate’’ indicates the

acceptable range of variations in crop consistency. As CoV

increases, the estimation of crop LAI tends to decrease, as

observed in Fig. 15. Comparing Image 1, which shows

good consistency in crop spacing and an LAI of 0.802, to

Image 8, which exhibits poor consistency and a 261.3%

lower LAI value. While the plant stand count is a valuable

metric, it is insufficient to evaluate crop consistency fully.
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This becomes apparent when observing Images 6 and 8,

where one section of a row contains multiple crops close

together, while the other crops in the next row are widely

scattered. The CoV value is helpful in these circumstances.

Utilizing the CoV with LAI can provide a more compre-

hensive understanding of crop health. A lower LAI value

can indicate stress in the crops.

4 Conclusion

This research presents a novel vision-based framework—

QuanCro to assess crops’ consistency by estimating four

crop parameters; plant stands count, inter-plant distance,

coefficient of variation, and crop coverage in corn fields.

Accurate estimation of these parameters is crucial for

operational decisions, such as replanting and post-emerge

herbicide applications, and assessing spatial production

variability. QuanCro utilizes RGB imagery captured using

a top-mounted camera on the field machinery. It uses the

state-of-the-art object detector YOLOv7 to determine the

number and location of plant stands. Additionally, this

framework uses our proposed semantic segmentation net-

work, SP-UNet encoder–decoder architecture, for seg-

menting crops and crop rows. The SP-UNet has fewer

parameters (21.85M) than other semantic segmentation

models such as SegNet (34.65M), HRNet_Mscale

(72.10M), and Simple UNet (31.04M). Despite having

fewer parameters, the SP-UNet achieves a higher seg-

mentation of mIoU 0.913 with IoU scores of 0.94 and

0.924 for crop and crop rows segmentation, respectively.

The segmented rows are further processed using the

Zhang–Suen thinning and progressive probabilistic Hough

transform to assign a line to each row’s center. The seg-

mented crop provides leaf area index estimation.

This whole framework is promising, and it holds sig-

nificant potential for future research applications in

assessing the consistency of various crop types and

adapting it to diverse agricultural settings. One area of

interest for upcoming studies is exploring the integration of

alternative sensor modalities, such as multispectral or

hyperspectral imaging, to enhance QuanCro’s adaptability

and robustness in different field conditions. It is also crucial

to acknowledge the limitation of this proposed framework,

particularly when dealing with late growth stages of crops.

At this stage, individual plants tend to cluster closely

together, posing a challenge for the framework’s object

detector to detect and distinguish individual plants accu-

rately. The overlapping nature of these clusters can lead to

erroneous inter-plant spacing calculations, ultimately

affecting the overall assessment of crops’ consistency.
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