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Abstract
Accurate segmentation of cardiac anatomy is a prerequisite for the diagnosis of cardiovascular disease. However, due to

differences in imaging modalities and imaging devices, known as domain shift, the segmentation performance of deep

learning models lacks reliability. In this paper, we propose a two-stage progressive unsupervised domain adaptation

network (TSP-UDANet) to reduce domain shift when segmenting cardiac images from various sources. We alleviate the

domain shift between the feature distribution of the source and target domains by introducing an intermediate domain as a

bridge. The TSP-UDANet consists of three sub-networks: a style transfer sub-network, a segmentation sub-network, and a

self-training sub-network. We conduct cooperative alignment of different domains at image level, feature level, and output

level. Specifically, we transform the appearance of images across domains and enhance domain invariance by adversarial

learning in multiple aspects to achieve unsupervised segmentation of the target modality. We validate the TSP-UDANet on

the MMWHS (unpaired MRI and CT images), MS-CMRSeg (cross-modality MRI images), and M&Ms (cross-vendor MRI

images) datasets. The experimental results demonstrate excellent segmentation performance and generalizability for

unlabeled target modality images.
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1 Introduction

Cardiovascular disease (CVD) is a major and ever-in-

creasing global problem. According to the World Health

Organization, CVD causes about 17.9 million deaths

worldwide every year [1]. Morbidity due to CVD is an

equally severe challenge, with the total number of dis-

ability life years due to ischemic heart disease and stroke

having reached 182 million (95% UI: 170 to 194 million)

by 2019 [2]. Therefore, the prevention and diagnosis of

CVD are essential to reduce social and economic burdens.

In diagnosing CVD, medical image segmentation can

reveal cardiac substructures, which is the premise of

quantifying human cardiac anatomy and locating lesions

[3]. Thus, medical image segmentation occupies an

essential position in clinical practice. In recent years, sig-

nificant progress has been made due to the development of

deep convolutional neural networks. Traditionally and

ideally, the training and testing images for a deep learning

network contain the same pixel intensity distribution. A

large number of accurately annotated training images

ensures that the model learns sufficiently to achieve

promising segmentation results for diagnostic purposes

when using images from the same modality. However, in

actual clinical practice, the testing images are often of

different modalities, or of the same modality but from

different vendors, thus giving rise to large differences

between the intensity distributions of the training and

testing images. Unfortunately, these differences (known as

domain shift) can often lead to a significant degradation in

the model performance.

In clinical practice, magnetic resonance imaging (MRI)

and computed tomography (CT) images are often used to

diagnose CVD. Common cardiac magnetic resonance

(CMR) imaging modalities include late gadolinium

enhancement (LGE), balanced steady-state free precession

(bSSFP), T1 and T2 images. LGE images are commonly

used for diagnosing myocardial disease, while bSSFP

images show clear borders between the myocardium and

the ventricles. T1 images are used to show anatomical

structures, while T2 images are used to display patholog-

ical information [4]. Figure 1 demonstrates the consider-

able discrepancy in intensity distribution and appearance

between MRI and CT cardiac images.

However, since the annotation of medical images is

extremely tedious, time-consuming, and costly, it is diffi-

cult to build a multimodal medical image segmentation

dataset with many pixel-level labels. To reduce the anno-

tation burden and prevent degradation of model perfor-

mance, new studies on the unsupervised domain adaptation

(UDA) segmentation method are emerging [5]. The UDA

method uses the richly labeled images of one modality (the

source domain) to train deep convolutional neural networks

for segmenting poorly labeled images of another modality

(the target domain).

The critical issue in the UDA method for cross-modality

cardiac image segmentation is to extract useful features

from the source and target domains and reduce their

intensity distribution discrepancy, whereas the domain-in-

variant features extracted by the deep learning network are

implicit. To overcome the above limitation, we propose a

UDA framework for cross-modality cardiac image seg-

mentation with cooperative alignment from multiple levels.

Individual alignment of feature distribution at image level,

feature level, or output level is likely to lead to the loss of

semantic information from the images, between the source

and target domains, ultimately affecting the segmentation

performance of the target domain images. The cooperative

training process ensures that the network extracts more

useful semantic information from multi-level feature

spaces. As well as considering the significant variations

between the source and target domains, we introduce an

intermediate domain to gradually manage the domain shift.

Thus, we employ the style transfer sub-network (Cycle-

GAN) to effectively capture the pixel-level information of

the source domain and target domain to generate fake

target domain images which retain the original contents

with their structural semantics unaffected. The fake target

domain images act as the intermediate domain, and then we

can design the following domain adaptation-based seg-

mentation process, which contains two sub-networks to

Fig. 1 Illustration of the domain shift existing between various image

types. A Comparison of MRI and CT coronal plane cardiac images,

and their pixel intensity distribution. The main cardiac substructures

include the ascending aorta (AA), left ventricle (LV), and left

ventricular myocardium (LV_myo). B Comparison of short-axis LGE

and bSSFP CMR images, and their pixel intensity distribution. The

main cardiac substructures include the right ventricle (RV), LV, and

LV_myo
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transfer the source domain label information to the target

domain. The first is the segmentation sub-network (SSN) to

transfer the source domain label information to the inter-

mediate domain and generate the corresponding pseudo-

labels. The second is the self-training sub-network (StSN)

to transfer intermediate domain pseudo-label information

to the target domain using a self-training strategy.

In summary, the main contributions of this paper are as

follows:

1. We propose a two-stage progressive UDA network

(TSP-UDANet) for cross-modality cardiac image seg-

mentation based on generative adversarial learning.

The TSP-UDANet includes a style transfer sub-

network, a segmentation sub-network, and a self-

training sub-network, that aligns the source and target

domains at image level, feature level, and output level,

respectively.

2. We introduce an intermediate domain as a bridge

between the source and target domains. The interme-

diate domain is trained in an adversarial manner in the

segmentation sub-network and the self-training sub-

network with the source and target domains, respec-

tively, to progressively reduce the discrepancy in

feature distribution between the source and target

domains.

3. In the self-training sub-network (StSN), we introduce a

self-training strategy into the self-training sub-network.

This strategy combines the labeled and unlabeled data

to expand the total amount of data available for

network training, hence improving the performance of

the UDA segmentation.

To validate the generalization performance of the TSP-

UDANet, we have conducted extensive experiments on

three different cross-modality multi-objective medical

image segmentation tasks, including the MMWHS, MS-

CMRSeg, and M&Ms datasets. The results of the experi-

ments on the three datasets demonstrate the effectiveness

of the TSP-UDANet and its further application potential in

various tasks, e.g., the detection and segmentation of

tumors in medical images.

The remainder of this paper is organized as follows:

Section 2 presents related works from the literature. Sec-

tion 3 gives the details of the TSP-UDANet, including a

method overview, the style transfer sub-network, segmen-

tation sub-network, self-training sub-network, network

configurations, and implementation details. Section 4

describes the design of the experiments. Section 5 presents

the experimental results. Section 6 introduces the ablation

analysis and Section 7 discusses the performance of the

TSP-UDANet. Finally, our conclusions and suggestions for

future work are offered in Section 8.

2 Related work

When analyzing images from one modality, exploiting

labeled images from another is challenging due to the

significant domain shift caused by the obvious differences

in image properties between them. Specifically, in an

unsupervised cross-modality cardiac segmentation task, the

main idea is to extract domain-invariant features from the

source and target domains, and to transfer label information

from the source domain to the target domain. To better

transfer knowledge learned from a source domain with rich

labels to a target domain without labels, the UDA seg-

mentation method has attracted recent attention [6, 7]. This

approach uses images from the source domain with labels

to train a model and applies it to the segmentation of target

domain images, which are generally of another modality or

images of the same modality but derived from machines

made by different vendors. Current cross-modality UDA

segmentation methods typically include two strategies. The

first is to train the segmentation network with the labeled

source domain images and then to use some of the target

domain images for fine-tuning [8] or directly, for seg-

menting the target domain images. The second is to min-

imize the discrepancies in feature distribution between the

source and target domains and to align latent features from

the image level, the feature level, and the output level.

2.1 Image-level alignment

The goal of image-level alignment is to minimize the dif-

ferences in the distribution of pixel intensities between the

source and target domains. This ensures that the knowledge

gained from the source domain can be effectively trans-

ferred to the target domain, thus improving the segmenta-

tion performance of the target domain. Image-level

alignment is usually achieved in one of two ways. One is to

extract domain-invariant features at the input level of the

segmentation network [9, 10]. Here, the source domain and

target domain images can share the feature extraction part

of the segmentation network to learn image-level features,

such as grayscale distribution and texture information. The

other is the style transfer method for cross-modality ima-

ges. In this case, the mapping relationship between the

source domain and target domain is learned, and the gen-

erated cross-modality images are sent to the segmentation

network for segmentation [11, 12]. Traditional cross-do-

main image segmentation methods require a large number

of paired training images. However, such paired images are

usually difficult or even impossible to obtain. Zhu et al.

[13] proposed a cycle generative adversarial network

(CycleGAN) to generate fake target domain and fake

source domain images without the need for paired training
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images. Following the success of CycleGAN in the image-

to-image translation task, researchers have converted the

appearance of images from different modalities by trans-

lating the image style from the source (target) domain to

the target (source) domain. Jiang et al. [11] proposed an

unsupervised cross-modality domain adaptation network

for lung cancer region segmentation by transforming the

CT image style into that of MRI images. Chen et al. [12]

proposed a semantics-aware generative adversarial network

(SeUDA) to align the image-level features of different

X-ray datasets for left/right lung segmentation.

2.2 Feature-level alignment

Feature-level alignment aims to adjust the features of the

source and target domain data so that they have a consistent

representation in feature space. Feature-level alignment is

primarily used to reduce domain shift in higher dimen-

sional feature spaces by minimizing the distribution dis-

crepancy of feature maps extracted from the source and

target domains. This process includes minimizing the

maximum mean discrepancy (MMD) [14, 15], the loss of

Wasserstein generative adversarial network (WGAN) [16],

and the distribution distance in unique feature spaces [17].

Some studies have introduced the GAN into feature-level

alignment, where adversarial training of generators and

discriminators makes the generators focus on the common

features of the target and source domains [18–21]. Kam-

nitsas et al. [22] proposed learning domain-invariant fea-

tures for brain lesion segmentation with an adversarial

network, and designed a multi-connected domain dis-

criminator that predicts the input image domain. Jain et al.

[23] employed an adversarial learning scheme to adapt

knowledge from PV phase images to ART phase images

for detecting liver tumors.

2.3 Output-level alignment

Output-level alignment is primarily used to extract the

domain-invariant features in semantic prediction space.

The output-level alignment can make the segmentation

results of the source and target domains semantically

consistent, so as to improve the segmentation performance

in the target domain. For output-level alignment, most

methods are based on the GAN [24–26], where the output-

level features obtained from the generator are fed to the

discriminator for generative adversarial training. Panfilov

et al. [24] proposed a two-stage network for unsupervised

domain adaptation by generative adversarial learning in

multi-level feature spaces. Their methods achieved unsu-

pervised segmentation of MRI images from different

scanners. Yang et al. [25] proposed a self-attentive GAN

that forces the feature maps generated by the generator

between the source and target domains to be indistin-

guishable at the output level.

When facing the challenges of severe domain shift in

cross-modality medical image segmentation, the approa-

ches which use image-level, feature-level, or output-level

alignment alone are often not sufficient. Thus, multi-level

alignment methods should be beneficial for extracting

domain-invariant features.

3 Methods

3.1 Overview

This work aims to train a UDA segmentation network for

segmenting target domain images where pixel-level anno-

tations are unavailable. We achieve UDA segmentation of

unlabeled target domain images by introducing an adver-

sarial training strategy to the segmentation network. Due to

different imaging techniques or imaging parameters, there

are significant style discrepancies in the appearance of the

source and target domain images, thus we introduce an

intermediate domain as a bridge to transfer the label

information from the source domain to the target domain.

Figure 2 shows the framework of the TSP-UDANet, which

consists of three sub-networks: the style transfer sub-net-

work (CycleGAN), the segmentation sub-network (SSN),

and the self-training sub-network (StSN). Table 1 sum-

marizes the symbols used in the following sections.

3.2 Style transfer sub-network

To reduce the visual difference and the effect of domain

shift between the source and target domains, we use image-

level alignment to transform the style of the source domain

images to the style of the target domain images. The style

transfer sub-network for image-level alignment in our

framework borrows ideas from the CycleGAN [13], which

consists of a source domain generator (Gt!s), target

domain generator (Gs!t), source domain discriminator

(D0), and target domain discriminator (D1). The generators

are used for image reconstruction and generating fake

images. The target domain generator (Gs!t) is used to

transfer the source domain (Xs) style to that of the target

domain (Xt), while the source domain generator (Gt!s) is

used to transfer the target domain (Xt) style to that of the

source domain (Xs).

During the training of the CycleGAN, the source domain

images (xs) are fed into Gs!t to generate the fake target

domain images (xs!t), then these fake target domain ima-

ges ðxs!tÞ are put into Gt!s to generate the reconstructed

source domain images ðxs!t!s ¼ Gt!s Gs!t x
sð Þð Þ.
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Fig. 2 The framework of the TSP-UDANet for cross-modality

cardiac segmentation, including the style transfer sub-network

(CycleGAN), the segmentation sub-network (SSN), and the self-

training sub-network (StSN). D0 and D1 are used for image-level

adversarial training, D2 and eD2 are used for feature-level adversarial

training, D3 and eD3 are used for output-level adversarial training.

Upsample scales the predicted images to the raw image size using

bilinear interpolation

Table 1 Summary of symbols
Symbol Notation

Xs, Xs!t,Xt Image sets of source, intermediate and target domains

xs,xt Image samples of source and target domains

xs!t, xt!s Image samples of fake target and fake source domains

xs!t!s, xt!s!t Cycle reconstructed image samples

Ys, ys Source domain annotation sets and label samples

Yt, yt Target domain annotation sets and label samples

f s, f s!t Feature maps of the source and intermediate domains in SSN

ef
s!t

, f t Feature maps of the intermediate and target domains in StSN

ps, ps!t Prediction of the source and intermediate domains in SSN

eps!t
, pt Prediction of the intermediate and target domains in StSN

Gs!t, Gt!s Generators of style transfer sub-network

Gseg, eGseg Generator, Gseg used in SSN, eGseg used in StSN

Di, eDi
Discriminator, including image level, feature level, and output level. i 2 0; 1f g in

the style transfer sub-network, while i 2 2; 3f g in the segmentation sub-network

and self-training sub-network

F, eF Feature extractor, F used in SSN, eF used in StSN

P, eP Predictor, P used in SSN, eP used in StSN

e� Represents the module and feature maps used in StSN
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Similarly, the target domain images (xt) pass through the

generators Gt!s and Gs!t in turn, to generate the recon-

structed target domain images (xt!s!t ¼ Gs!t Gt!s x
tð Þð Þ).

The source and target domain images share source and

target domain generators. In the CycleGAN, the cyclic

structure enables bidirectional style transfer between the

source and target domain images. The loss function used

for the cycle reconstruction is:

Lcyc Gs!t;Gt!sð Þ ¼ Ext �Xt Gs!t Gt!s x
tð Þð Þ � xtj j½ �

þ Exs �Xs Gt!s Gs!t x
sð Þð Þ � xsj j½ �

ð1Þ

where the cycle consistency loss Lcyc ensures that the

reconstructed images preserve the contents of the real

images.

In contrast to the GAN, the CycleGAN performs bidi-

rectional generation for the source and target domains. The

target domain generator (Gs!t) generates fake target

domain images (xs!tÞ and the source domain generator

(Gt!s) generates fake source images (xt!s). Optimization

of Gs!t and Gt!s relies on the generator loss:

LGadv Gs!t;Gt!sð Þ ¼ Exs �Xs ðD1ðGs!t x
sð ÞÞ � 1Þ2

h i

þ Ext �Xt ðD0ðGt!s x
tð ÞÞ � 1Þ2

h i

þ k � Lcyc Gs!t;Gt!sð Þ

ð2Þ

where k is the weighting of the cycle consistency loss

(Lcyc) in the generator loss (LGadv).

The discriminator D0 is used to determine whether the

image input to D0 is a fake source image (xt!s) or a real

source image (xs). D1 is used to determine whether the

image fed to D1 is the fake target domain image (xs!t) or

the real target image (xt). Optimization of D0 and D1 relies

on the discriminator loss:

LDadv D0;D1ð Þ

¼ Ext �Xt ðD1 xtð Þ � 1Þ2 þ ðD0 Gt!sðxtð ÞÞ � 0Þ2
h i

þ Exs �Xs ðD1 Gs!tðxsð ÞÞ � 0Þ2 þ ðD0 xsð Þ � 1Þ2
h i

ð3Þ

where 1 2 RH=8�W=8�1 represents the real images, while

0 2 RH=8�W=8�1 represents the fake images. The genera-

tors and discriminators are alternately optimized to gen-

erate fake images that can confuse the discriminators. The

fake target domain images are used in the intermediate

domain for the SSN and StSN. The training process of

CycleGAN is summarized in Algorithm 1.

3.3 Segmentation sub-network (SSN)

Due to the different principles and parameter values of

image acquisition by differing modalities, there are dis-

parities in the feature distribution between the source and

target domains. To better extract the domain-invariant

features of the source and target domains, we use SSN to

transfer the label information of the source domain to the

intermediate domain. The SSN is a two-level generative

adversarial network that includes feature-level and output-

level alignment of the source and intermediate domains.

Due to the large discrepancies in the distribution of features

between the source and target domain images, we introduce

an intermediate domain, which consists of the generated

fake target domain images with the source domain style, so

the SSN can better learn the label information from the

source domain. The SSN transfers the source domain label

information to the intermediate domain and generates the

segmentation results of the intermediate domain images as

the pseudo-labels in the StSN training process. The SSN is

a generative adversarial network consisting of a generator

ðGsegÞ, a feature-level discriminator ðD2Þ and an output-

level discriminator (D3), where Gseg is composed of the

feature extractor ðFÞ and the class predictor ðPÞ. F uses the

modified Resnet101 [27]. P is the Atrous Spatial Pyramid

Pooling (ASPP) module [28] which uses multi-scale con-

volution to extract multi-level semantic features for pixel

classification. Generative adversarial learning aligns the

feature distribution either at the feature level or output
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level to reduce the domain shift between the source and

intermediate domains.

During the training of the SSN, F extracts the source

domain feature maps (f s) from the source domain images

(xs), where f s ¼ FðxsÞ. P takes f s as input and upsamples to

produce the source domain pixel-level prediction output

(psi;c), where p
s
i;c ¼ UpðPðf sÞÞ. The operator Up is a bilinear

interpolation algorithm that upsamples the output feature

maps to the size of the raw image. We use psi;c and one-hot

source domain ground truths (ysi;c) to compute Lsseg and

optimize Gseg. During the training of the SSN, the source

domain image segmentation is supervised, and Gseg applies

the source domain pixel-level label information to the

intermediate domain. Source domain supervised image

segmentation loss LssegðGsegÞ is:

Lsseg Gseg

� �

¼ � 1

N

X

N

i¼1

X

C

c¼1

ysi;c � logðp
s
i;cÞ ð4Þ

where c is the class index, C is the total number of classes

(determined by the number of segmented objects in the

different datasets), and N is the number of samples in a

batch.

We feed the fake target domain images (xs!t) as an

intermediate domain into F and output the intermediate

domain feature maps (f s!t), where f s!t ¼ Fðxs!tÞ. P takes

f s!t as an input feature map which is then upsampled to

form the intermediate domain pixel-level prediction results

(ps!t
i;c ), where ps!t

i;c ¼ UpðPðf s!tÞÞ. ps!t
i;c are used as the

pseudo-labels for the intermediate domain images in StSN.

The unsupervised domain adaptation is conducted by

alternately optimizing the generator (Gseg) and discrimi-

nators ðD2 and D3Þ. The adversarial loss L
Gseg

adv is used to

confuse D2 and D3 to align the feature distribution of f s!t

and f s at feature level, and the output distribution of ps!t
i;c

and psi;c at output level. The adversarial loss L
Gseg

adv ðGsegÞ is:

L
Gseg

adv Gseg

� �

¼ Exs!t �Xs!t ðD2ðF xs!tð ÞÞ � 0Þ2
h

þðD3ðGseg xs!tð ÞÞ � 0Þ2
i ð5Þ

where Gseg extracts the domain-invariant features of the

source and intermediate domains. Finally, D2 and D3 are

used to distinguish the features of the source and inter-

mediate domains. The adversarial loss LDadv D2;D3ð Þ is:

LDadv D2;D3ð Þ

¼ Exs �Xs ðD2 F xsð Þð Þ � 0Þ2 þ ðD3 Gseg xsð Þ
� �

� 0Þ2
h i

þ Exs!t �Xs!t D2 F xs!tð Þð Þ � 1ð Þ2þ D3 Gseg xs!tð Þ
� �

� 1
� �2

h i

ð6Þ

where 1 2 RH=8�W=8�1 and 0 2 RH=8�W=8�1 represent the

intermediate and source domains, respectively. The train-

ing process of the SSN is summarized in Algorithm 2.

3.4 Self-training sub-network (StSN)

With the abovementioned adversarial training of the source

and intermediate domains in SSN, we have obtained good

segmentation performance using the fake target domain

images (xs!t) as the intermediate domain. Unfortunately,

this is still insufficient to achieve the desired performance

when domain shift is severe. Therefore, we introduce a

self-training strategy and use the intermediate domain and

target domain to train the StSN to transfer the label

information of the intermediate domain to the target

domain for further improving the image segmentation

results of the target domain. It is worth noting that the

network structure of the StSN is identical to that of the

SSN, the only difference being the images fed into the
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network during the training process. In the SSN, we use the

source and intermediate domains for generative adversarial

training, while in the StSN, we use the intermediate and

target domains. The prediction results of the intermediate

domain images (xs!t) in the SSN act as pseudo-labels

(ps!t
i;c ) in the StSN.

Firstly, the outputs (eps!t
i;c ) of the generator ( eGseg) are

used to compute the segmentation loss (Ls!t
seg ) under the

supervision of the one-hot pseudo-labels (ps!t
i;c ). The

intermediate domain segmentation loss (Ls!t
seg ð eGsegÞ) is:

Ls!t
seg ð eGsegÞ ¼ � 1

N

X

N

i¼1

X

C

c¼1

ps!t
i;c � logðeps!t

i;c Þ ð7Þ

where c is the class index, C is the total number of classes

(determined by the number of segmented objects in dif-

ferent datasets), and N is the number of samples in a batch

in the training process.

Secondly, the introduction of the intermediate domain

progressively transfers the label information of the inter-

mediate domain to the target domain. The adversarial loss

(L
eGseg

adv
eGseg

� �

) is:

L
eGseg

adv
eGseg

� �

¼ Ext �Xt ð eD2
eF xtð Þ

� �

� 0Þ2
h

þ eD3
eGseg xtð Þ

� �

� 0
� �2

� ð8Þ

Finally, the feature-level discriminator ( eD2) and the

output-level discriminator ( eD3) are optimized by L
eD
adv.

eD2

and eD3 are used to distinguish features from different

domains and train them adversarially with the generator

( eGseg). The adversarial loss L
eD
adv

eD2; eD3

� �

is:

L
~D
adv

~D2; ~D3

� �

¼ Ext �Xt ~D2
~F xtð Þ

� �

� 1
� �2þ ~D3

~Gseg xtð Þ
� �

� 1
� �2

h i

þ Exs!t �Xs!t ~D2
~F xs!tð Þ

� �

� 0
� �2þ ~D3

~Gseg xs!tð Þ
� �

� 0
� �2

h i

ð9Þ

where 1 2 RH=8�W=8�1 and 0 2 RH=8�W=8�1 represent the

target and intermediate domains. The potential feature

distributions between the intermediate and the target

domains are aligned by optimizing the adversarial loss

(L
eGseg

adv ) and discriminator loss (L
eD
adv). The training process

of the StSN is summarized in Algorithm 3.

3.5 Network configurations

In the style transfer sub-network, the generators (Gs!t and

Gt!s) have the same structure (Fig. 3A), and the discrim-

inators ðD0 and D1Þ also have the same structure (Fig. 3B).

Fig. 3 Details of the generators (Gs!t and Gt!s) and the discrimi-

nators (D0 and D1) in the style transfer sub-network. A Structure of

generators (Gs!t and Gt!s), B Structure of discriminators (D0 and

D1), and C Residual block used in the generators (Gs!t and Gt!s). W
and H are the width and height of the raw image
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The SSN and StSN have the same structure, which

includes a feature extractor, class predictor, feature-level

discriminator, and output-level discriminator. The feature

extractors (F and eF) are based on the basic ResNet101

[27], without the redundant fully connected layer. Intro-

ducing the residual structure of ResNet101 into the feature

extractors (F and eF) can alleviate the problem of gradient

disappearance. The feature extractors ðF and eFÞ generate

feature maps of size H=8�W=8� 2048, which are fed

into the class predictors (P and eP), respectively. The class

predictors (P and eP) adopt the classical ASPP [28]. The

ASPP uses convolutional kernels with different dilation

rates sampled in parallel to extract multi-scale cardiac

context information, as shown in Fig. 4. The size of the

feature maps generated by P and eP is H=8�W=8� C,

where C is the number of classes, including the number of

foreground and background classes. The feature maps

generated by P and eP are scaled to the raw image size of

H �W � C by a bilinear interpolation algorithm.

Figure 5 shows the structure of the feature-level dis-

criminators (D2 and eD2) and output-level discriminators

(D3 and eD3).

3.6 Training strategy

The training of the TSP-UDANet is divided into two

stages: Stage 1 (CycleGAN ? SSN) and Stage 2 (Cycle-

GAN ? SSN ? StSN). In Stage 1, we implement the

image-level alignment by using the CycleGAN, which

generates fake target domain images to serve as interme-

diate domain images. Then we train the SSN using the

intermediate and source domain images, and the source

domain label information is transferred to the intermediate

domain. The trained SSN can segment the intermediate

domain images, and the segmentation results can be used

as pseudo-labels. In Stage 2, we train the StSN using the

intermediate domain and the target domain images to

transfer the intermediate domain pseudo-label information

to the target domain. The trained StSN can then segment

the target domain testing images. In the two stages, the

source domain label information is progressively trans-

ferred to the target domain by using the multi-level

adversarial training of the SSN and StSN. Thus, the

intermediate domain acts as a bridge between the source

and target domains to transfer domain-invariant features

between them. In the testing process, the StSN trained in

Stage 2 is used as the final segmentation network.

3.7 Implementation details

We implemented our framework in Pytorch (Version1.7.0).

Each sub-network was trained on a computer fitted with an

NVIDIA Quadro RTX 5000 and Intel� Xeon� W-2133

CPU. For the CycleGAN, the batch size was 4, and the

generators (Gs!t and Gt!s) and discriminators (D0 and D1)

all used the Adam optimizer [29] with a learning rate of

2:0� 10�4. The weight k of cycle consistency loss (Lcyc) in

the generative adversarial loss (LGadv) was set to 0.8 for the

MMWHS dataset and 1.0 for the MS-CMRSeg and the

M&Ms datasets. The CycleGAN was trained to generate

fake target domain images as the intermediate domain in

the TSP-UDANet. Algorithm 1 outlines the CycleGAN

training process.

The SSN uses a labeled source domain and an inter-

mediate domain for adversarial training. After training, the

SSN implements the initial segmentation of the interme-

diate domain images, the results of which are used as the

pseudo-labels of the intermediate domain images. The

StSN uses the pseudo-labeled intermediate domain and the

target domain to carry out adversarial training, and the

trained StSN achieves an accurate segmentation of the
Fig. 4 The class predictor is the ASPP. The dilation rates of the

convolution kernels are 6, 12, 18, and 24 in order. W and H are the

width and height of the raw image. C is the number of classes

Fig. 5 Details of D2, eD2, D3, and eD3 in the SSN and StSN. A

Structure of the feature-level discriminators (D2 and eD2), B Structure

of output-level discriminators (D3 and eD3). W and H are the width

and height of the raw image. C is the number of classes
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target domain images. The SSN and the StSN undergo the

same training process. The generators (Gseg, and eGseg) use

the stochastic gradient descent (SGD) optimizer [30] with a

learning rate of 2:0� 10�4, the momentum is set to 0.9,

and the decay rate, to 5:0� 10�4. The discriminators (D2,

and D3) use the Adam optimizer with a learning rate of

1:0� 10�4. The discriminators ( eD2, and eD3) also use the

Adam optimizer with the same learning rate. Algorithms 2

and 3 outline the training processes of the SSN and the

StSN, respectively.

4 Experiments

In this section, we describe the assessment of the effec-

tiveness of our method under various conditions. These

include MRI and CT cardiac images, bSSFP and LGE MRI

images, and multi-disease MRI images from different

centers and device manufacturers.

4.1 Datasets

To validate the segmentation performance of the TSP-

UDANet for the segmentation of cardiac substructures

from multimodal medical images, we performed experi-

ments on three datasets: the cross-modality Multi-Modality

Whole Heart Segmentation Challenge (MMWHS) dataset

[31], the Multi-sequence Cardiac MR Segmentation Chal-

lenge (MS-CMRSeg) dataset [32], and the Multi-Center,

Multi-Vendor & Multi-Disease Cardiac Image Segmenta-

tion Challenge (M&Ms) dataset [33]. We normalized the

image slices of the three cardiac datasets and performed

data augmentation by rotation, mirroring, and affine

transformations to reduce overfitting.

The MMWHS dataset contains unpaired MRI images of

20 subjects and CT images of 20 subjects. The labels

include four cardiac substructures: left ventricular myo-

cardium (LV_myo), left atrium (LA), left ventricle (LV),

and ascending aorta (AA). In the MRI ! CT adaptation,

the source domain is MRI, and the target domain is CT;

whereas in the CT!MRI adaptation, the source and target

domains are reversed. For the MRI and CT images, we

randomly selected 80% of the subjects as the training set

and the remaining 20% as the testing set. We resampled the

raw images to the same in-plane resolution of 1:0� 1:0

mm. We used 2D slices to train our framework and cropped

all images at an ROI of 256� 256 pixels, centered on the

cardiac area. The size of the ROI was sufficient to contain

the entirety of the cardiac substructures to be segmented.

There were 70 to 100 slices per subject in the MRI image

stacks, with 200 to 250 slices per subject for the CT

images.

The MS-CMRSeg dataset consists of CMR images in

three modalities: LGE, bSSFP, and T2. In the cross-

modality UDA experiments, since the number of T2 ima-

ges was relatively small, we chose to use only the bSSFP

images as the source domain and the LGE images as the

target domain. There were bSSFP images of 35 subjects

and LGE images of 40 subjects. Segmentation objectives

included the LV, LV_myo, and right ventricle (RV). There

were 8 to 12 slices per subject in the bSSFP images, with

10 to 18 slices per subject for the LGE images. All images

were resampled to the same in-plane resolution of 1:25�
1:25 mm and cropped at an ROI of 224� 224 pixels,

centered on the cardiac area. We used the labeled bSSFP

image as the source domain to segment the LGE images.

The M&Ms dataset consists of patients with hyper-

trophic cardiomyopathy, dilated cardiomyopathy, and

healthy subjects. All subjects were scanned at clinical

centers in three countries (Spain, Germany, and Canada)

using a MR scanner from one of 4 vendors (Siemens,

General Electric, Philips, and Canon). The training dataset

contains labeled images of 150 subjects from two different

MRI vendors (Siemens and Philips). The labeled areas

included the LV, LV_myo, and RV. The testing set images

were from one of four MR scanner vendors (Siemens,

General Electric, Philips, and Canon), including 160 sub-

jects with 10 to 20 slices per subject. Since a significant

cross-scanner performance drop was observed on the

M&Ms dataset [33], in this study, the M&Ms challenge

was chosen as a cross-modality cardiac segmentation task.

We chose the training set of the M&Ms dataset as the

source domain and the testing set of the M&Ms dataset as

the target domain to further validate the generalizability of

the TSP-UDANet. All images were aligned and resampled

to 1:25� 1:25 mm and cropped at an ROI of 224� 224

pixels, centered on the cardiac area.

4.2 Evaluation metrics

We used three evaluation metrics: the dice similarity

coefficient (Dice) [34], the average surface distance (ASD)

[34], and the Hausdorff distance (HD) [35]. The Dice is

used mainly to calculate the similarity between a 3D pre-

diction and the ground truth. The higher the Dice score, the

better the segmentation performance. The ASD is used to

calculate the average distance between the surface of the

3D prediction and the ground truth, and the HD is the

maximum distance from one group to the nearest point in

another group, the groups being the 3D prediction and

ground truth. In image segmentation, lower ASDs and HDs

indicate better segmentation performance. To allow com-

parison with other studies using the same datasets, we

selected Dice and ASD as the evaluation metrics for the
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MMWHS dataset and the Dice and HD for the MS-

CMRSeg and M&Ms datasets.

5 Results

This section shows the results of applying the TSP-UDA-

Net for cardiac segmentation to the three cardiac datasets.

We compared our approach with several recently devel-

oped methods to explore the segmentation performance of

the two-stage multi-level generative adversarial network.

5.1 MMWHS dataset

We evaluated the MRI and CT image cross-modality

unsupervised cardiac segmentation in two directions using

the MMWHS dataset, namely from MRI to CT images

(MRI ! CT) and CT to MRI images (CT ! MRI). In the

MRI! CT adaptation, we used labeled MRI and unlabeled

CT images to train our TSP-UDANet, and in the CT !
MRI adaptation, we used labeled CT and unlabeled MRI

images.

Table 2 shows the performance of our TSP-UDANet on

the MMWHS dataset. In the MRI ! CT adaptation, we

achieved a mean Dice score of 77.1% and a mean ASD of

7.9 mm for the four cardiac substructures. In the CT !
MRI adaptation, we achieved a mean Dice score of 69.0%

and a mean ASD of 7.2 mm. The segmentation perfor-

mance of CT ! MRI was worse than that of MRI ! CT

because of the few MRI training images or inherent MRI

image characteristics (i.e. their limited contrast) [34].

Figure 6 is a visualization of the segmentation results from

the MMWHS dataset. It shows that our method can accu-

rately segment the four cardiac substructures when com-

pared to the ground truth.

5.2 MS-CMRSeg dataset

We used the MS-CMRSeg dataset to validate the gener-

alizability of our TSP-UDANet and found that it achieved

precise segmentation of the cardiac substructures, includ-

ing the LV, LV_myo, and RV. The task of the MS-

CMRSeg challenge was to train the segmentation network

using labeled bSSFP images for the segmentation of LGE

images. Thus, we validated the TSP-UDANet using bSSFP

images with labels and LGE images without labels, as

required by the MS-CMRSeg segmentation challenge.

As shown in Table 3, we achieved a mean Dice score of

87.5% and a mean HD of 8.2 mm on unsupervised seg-

mentation of LGE images. Figure 7 is a visualization of the

segmentation results on the MS-CMRSeg dataset. We can

clearly see the changes in the cardiac slices and the seg-

mentation results of the TSP-UDANet from the base to the

apex.

Table 2 Results of MMWHS

(MRI ! CT) adaptation

segmentation

DICE (%) ASD (mm)

AA LA LV LV_myo Mean AA LA LV LV_myo Mean

AdaOutput [26]* 65.2 76.6 54.4 43.6 59.9 17.9 5.5 5.9 8.9 9.6

CycleGAN [13]* 73.8 75.7 52.3 28.7 57.6 11.5 13.6 9.2 8.8 10.8

PnP-AdaNet [16]* 74.0 68.9 61.9 50.8 63.9 12.8 6.3 17.4 14.7 12.8

CyCADA [36]* 72.9 77.0 62.4 45.3 64.4 9.6 8.0 9.6 10.5 9.4

SIFA [34] 81.3 79.5 73.8 61.6 74.1 7.9 6.2 5.5 8.5 7.0

ARL-GAN [37] 71.3 80.6 69.5 81.6 75.7 6.3 5.9 6.7 6.5 6.4

TSP-UDANet (Ours) 82.4 73.7 87.4 65.0 77.1 11.9 10.1 4.9 4.7 7.9

Results of MMWHS (CT ! MRI) adaptation segmentation

DICE (%) ASD (mm)

AA LA LV LV_myo mean AA LA LV LV_myo mean

AdaOutput [26]* 60.8 39.8 71.5 35.5 51.9 5.7 8.0 4.6 4.6 5.7

CycleGAN [13]* 64.3 30.7 65.0 43.0 50.7 5.8 9.8 6.0 5.0 6.6

PnP-AdaNet [16]* 43.7 47.0 77.7 48.6 54.3 11.4 14.5 4.5 5.3 8.9

CyCADA [36]* 60.5 44.0 77.6 47.9 57.5 7.7 13.9 4.8 5.2 7.9

SIFA [34] 65.3 62.3 78.9 47.3 63.4 7.3 7.4 3.8 4.4 5.7

TSP-UDANet (Ours) 70.3 78.3 70.4 57.0 69.0 9.5 6.5 7.1 5.7 7.2

Bold indicates the best scores, and bolditalic, the second-best scores

*Denotes the results reported by SIFA [34]
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5.3 M&Ms dataset

On the M&Ms dataset, the cardiac images were acquired

from 4 different MR scanners, where the training images in

the source domain were from Siemens and Philips, and the

testing images in the target domain were from Siemens,

Philips, General Electric, and Canon. In this experiment,

the target domain labels were used for evaluation only,

without being used in the training process.

As shown in Table 4, the TSP-UDANet achieved a mean

Dice score of 85.2% and a mean HD of 13.2 mm. The Dice

scores of TSP-UDANet were 90.1% (LV), 79.5% (LV-

myo), and 85.2% (RV), respectively. The HD values are

respectively 11.8 mm (LV), 8.7 mm (LV_myo), and 19.1

mm (RV). Figure 8 shows the segmentation results on the

M&Ms dataset. The sizes of the three target structures

(including LV, LV_myo, and RV) vary greatly from the

base to the apex of the heart, but TSP-UDANet can locate

and segment the target structures well.

5.4 Comparison with other methods

To demonstrate the effectiveness of our proposed UDA

method on multi-modality data, we compared our TSP-

UDANet with other state-of-the-art (SOTA) unsupervised

learning methods. For a fair comparison, we selected the

methods developed on each of the three datasets (including

Fig. 6 Visualization of the results of our method from a representative

subject in the MMWHS testing set. The uppermost row is the raw

images, the middle row is the ground truth (GT), and the bottom row

shows the predicted result (Pred). The images in the left panel were

taken from MRI ? CT, and those on the right from CT ? MRI. The

cardiac substructures AA, LA, LV, and LV_myo are shaded in pink,

pale grey, light purple, and pale blue, respectively

Table 3 MS-CMRSeg

segmentation results (Cardiac

bSSFP ! Cardiac LGE)

DICE (%) HD (mm)

LV LV_myo RV Mean LV LV_myo RV Mean

Tao et al. [38] 84.7 68.6 77.6 77.0 17.9 21.9 17.4 19.1

Vesal et al. [35] 91.2 78.8 83.2 84.4 10.8 12.5 17.1 13.4

Wang et al. [21] 89.3 80.1 87.1 85.5 15.7 13.5 15.2 14.8

Vesal et al. [20] 90.9 79.4 87.8 86.0 7.6 9.3 8.4 8.4

Chen et al. [39] 91.9 82.6 87.5 87.3 12.4 10.2 15.3 12.7

TSP-UDANet (Ours) 90.8 81.0 90.6 87.5 8.2 8.4 8.1 8.2

Bold indicates the best scores, and bolditalic, the second-best scores

Fig. 7 Visualization results of our method from a representative

subject (Pat_40) with median Dice score in the MS-CMRSeg testing

dataset. The leftmost images in each row are from the base of the

heart, moving to the right are slices progressing towards the apex. The

uppermost row is the raw LGE images, the middle row is the ground

truth (GT) images, and the bottom row shows the predicted result

(Pred). The LV, RV, and LV_myo are shown in pink, cyan and gray,

respectively. Note that the sub-figures of the second and third rows

are zoomed and cropped for improved clarity
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the MMWHS dataset, MS-CMRSeg dataset, and M&Ms

dataset) for comparison and have cited the results from the

original papers.

5.4.1 MMWHS dataset

In Table 2, we compare the performance of our method and

other SOTA methods on the MMWHS dataset, including

AdaOutput [26], CycleGAN [13], PnP-AdaNet [16],

CyCADA [36], and SIFA [34]. In both the MRI ! CT and

the CT ! MRI adaptations, our method performed well as

measured by the Dice and ASD. In more detail, the mean

Dice score of our method was higher than that of CyCADA

[36] by 12.7% (MRI ! CT) and 11.5% (CT ! MRI), and

the mean ASD of our method was lower than that of

CyCADA [36] by 1.5mm (MRI ! CT) and 0.7mm (CT !
MRI). When compared with SIFA [34], our method

improved the mean Dice score by 3.0% (MRI ! CT) and

5.6% (CT ! MRI). Our method also showed the best

performance in the ASD on LV and LV_myo (MRI !
CT), and on LA (CT ! MRI). These results demonstrate

the effectiveness of the TSP-UDANet for cross-modality

cardiac image segmentation. Table 2 also shows that the

mean Dice score was not consistent with the mean ASD in

the MRI ! CT and CT ! MRI adaptation tasks, because

of the unsuccessful segmentation results in the slices at the

base and apex of the heart [40]. Furthermore, the Dice

score was sensitive to internal filling of the mask, while the

ASD was sensitive to segmented edges [41].

In this study, the TSP-UDANet combines image-level,

feature-level, and output-level alignments to segment

cross-modality cardiac images and achieved the best mean

Dice score in the MRI ! CT and CT ! MRI adaptation.

Among the other approaches we tested, PnP-AdaNet [16],

an extended network only aligns the feature distribution

between the source and target domains in the output-level

feature space. AdaOutput [26] conducts adversarial train-

ing only at the output level in the source and target

domains, so the segmentation performance was poor. SIFA

[34] introduced feature-level and image-level alignments,

and achieved the second-best segmentation result for LA in

both directions in bidirectional domain adaptation.

ARL_GAN [37] employs image-level alignment and then

uses the generated images to train a single-level generative

Table 4 M&Ms segmentation

results
DICE (%) HD (mm)

LV LV_myo RV Mean LV LV_myo RV Mean

Li et al. [43] 76.7 71.6 63.6 70.6 20.1 33.0 50.7 34.6

Carscadden et al. [44] 88.2 79.3 76.2 81.2 13.7 16.2 31.9 20.6

Scannell et al. [45] 88.0 80.0 84.0 84.0 14.5 17.3 17.5 16.4

Full et al. [46] 91.2 85.3 88.5 88.3 9.1 11.7 12.3 11.0

TSP-UDANet (Ours) 90.1 79.5 86.0 85.2 11.8 8.7 19.1 13.2

Bold indicate the best scores, and bolditalic, the second-best score

Fig. 8 Visualization of the results of our method from a representative

subject (Pat_E5J6L2) with median Dice in the M&Ms testing set. The

uppermost row is the raw images, the middle row is the ground truth

(GT), and the bottom row shows the predicted result (Pred). The

images in the left panel were taken at end diastole (ED) and those on

the right, at end systole (ES). In both panels, the images in each

column are, from the left to right, the base, middle, and apex slice

samples, respectively. The LV, RV, and LV_myo are shown in pink,

cyan and gray, respectively. Note that the sub-figures of the second

and third rows are zoomed and cropped for improved clarity
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adversarial segmentation network. In the MRI ! CT

adaptation, the Dice scores of AA and LV obtained by

ARL_GAN were 11.1% and 17.9% lower than that of the

TSP-UDANet. Furthermore, ARL_GAN [37] only oper-

ated in one direction (MRI ! CT).

5.4.2 MS-CMRSeg dataset

In Table 3, we compare the performance of our method and

other SOTA methods on the MS-CMRSeg dataset,

including Tao et al. [38], Vesal et al. [35], Wang et al. [21],

Vesal et al. [20], and Chen et al. [39]. We achieved the best

mean Dice score compared with other methods. Our mean

Dice score was 0.2% higher than that of Chen et al. [39],

who achieved a value of 87.3%. Furthermore, we obtained

the best Dice score for the RV with a value of 90.6%,

which was 3.1% higher than that of Chen et al. [39] and

2.8% higher than that of Vesal et al. [20]. The HD scores of

our method for the LV_myo and RV were 8.4 mm and 8.1

mm, both of which are better than the other methods.

In our model, we use CycleGAN to generate pseudo-

LGE images as intermediate domain images and use a self-

training strategy to bridge the SSN and StSN. Furthermore,

our proposed backbone combines basic Resnet101 and

ASPP, and works well on the image segmentation tasks.

Vesal et al. [20] achieved the second-best segmentation

results for the RV. They used entropy minimization and

point-cloud shape adaptation to extract domain-invariant

features from cross-modality cardiac images. Vesal et al.

[35] and Wang et al. [21] achieved poor segmentation

results for LV, LV_myo, and RV. Vesal et al. [35] trained a

U-net [42] using labeled bSSFP images, and fine-tuned the

trained network using LGE images. Wang et al. [21] used a

two-channel U-net [42], which only used feature-level

alignment to extract image features separately from the

source and target domains. Compared with our method,

Chen et al. [39] achieved a lower mean Dice score.

5.4.3 M&Ms dataset

In Table 4, we compare the performance of our method and

other SOTA methods on the M&Ms dataset, including Li

et al. [43], Carscadden et al. [44], Scannell et al. [45], and

Full et al. [46]. We achieved the best HD for LV_myo in

all methods, namely 8.7 mm. Full et al. [46] used a

supervised learning method based on nnU-Net [47] and

achieved a mean Dice score of 88.3% and a mean HD of

11.0 mm. Our method achieved Dice scores for LV and

RV, which were 2.1% and 2.0% higher than those of

Scannell et al. [45]. In the TSP-UDANet, the ASPP acted

as a class predictor after the Resnet101 to fuse the multi-

scale cardiac features. The mean Dice score of our result

was 4.0% higher than that obtained by Carscadden et al.

[44], who only used Resnet101 as the segmentation net-

work, whereas our segmentation sub-network (SSN) can be

used as a general backbone for image segmentation. Li

et al. [43] proposed a cascaded encoding–decoding net-

work as the backbone and achieved a mean Dice score of

70.6%, showing that it is not a good strategy to use a single

network for both segmentation and style transfer tasks. Our

mean Dice score was 14.6% higher than that of Li et al.

[43]. Scannell et al. [45] used a traditional GAN as the

backbone, and the generator used the U-net. Compared

with the traditional GAN of [45], we added a feature-level

discriminator to learn more useful features. When com-

pared with the results of [45], our method improved the

Dice score by 2.1% and 2.0% for the LV and RV,

respectively. As a supervised training approach, Full et al.

[46] used an ensemble of five 2D and five 3D nnU-Net and

achieved better segmentation performance on the M&Ms

cardiac dataset, using a variety of intensity-based data

augmentation methods (i.e., noise addition, brightness

modification and contrast modification). These data aug-

mentation techniques are specifically designed for the

M&Ms dataset due to the variety of imaging protocols and

MRI vendors [33]; whereas our method employed a

domain adaptation strategy to achieve good cardiac seg-

mentation, which is less dependent on the specific vendors.

6 Ablation analysis

We performed an ablation analysis to demonstrate the

effect of introducing the intermediate domain and the

multi-level generative adversarial approach for UDA cross-

modality cardiac segmentation. In the MMWHS dataset,

the discrepancy in appearance between the CT and MRI

cardiac images is evident, which further illustrates the

superiority of TSP-UDANet.

In the ablation analysis, we compared the segmentation

results of SSN (w/o CycleGAN), Stage 1 (CycleGAN ?

SSN), and Stage 2 (CycleGAN ? SSN ? StSN) in the

MMWHS dataset to verify the impact of the key compo-

nents, as shown in Table 5. In SSN (w/o CycleGAN), we

used the source and target domains to train the SSN for

feature-level and output-level alignment. The trained SSN

segmented the testing target domain images in the testing

process. In Stage 1, we introduced image-level alignment

using CycleGAN, where the generated fake target domain

images acted as intermediate domain images.

We used the source and intermediate domains to train

the SSN. During the testing process, the testing target

domain images were segmented by the trained SSN. In

Stage 2, the fake target domain images were used as the

intermediate domain to connect the source and target

domains. We used the intermediate and target domains to
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train the StSN, where the intermediate domain images were

matched with pseudo-labels generated by the SSN. During

the testing process, the testing images of the target domain

were segmented with the trained StSN.

In Stage 1, we introduced the CycleGAN for image-

level alignment and the SSN for aligning the feature dis-

tribution between the source and intermediate domains at

the feature level and the output level. In the MRI ! CT

adaptation, Stage 1 outperformed the SSN (w/o Cycle-

GAN), where the mean Dice score was 2.3% higher than

that of the SSN (w/o CycleGAN), and the mean ASD was

1.8 mm lower. In the CT ! MRI adaptation, the seg-

mentation results of Stage 1 outperformed the SSN (w/o

CycleGAN) for all cardiac substructures assessed. The

mean Dice score of Stage 1 was 19.3% higher than that of

the SSN (w/o CycleGAN), and a mean ASD was 11.8 mm

lower. The increase in segmentation accuracy demon-

strated that image-level feature alignment is effective for

target domain image segmentation.

Unlike the SSN (w/o CycleGAN), Stage 2 used fake

target domain images as an intermediate domain to bridge

the source and target domains. We took the result of the

StSN as the final segmentation result wherein the mean

Dice score was 3.3% higher, and the mean ASD was 4.3

mm lower than those of the SSN (w/o CycleGAN) in the

MRI ! CT adaptation. In the CT ! MRI adaptation, the

mean Dice score of the StSN was 20.3% higher, and the

mean ASD was 12.0 mm lower than those of the SSN (w/o

CycleGAN). In Stage 2, the source domain label infor-

mation was progressively transferred to the target domain

through the intermediate domain, which reduced the

domain shift and improved the segmentation performance

of the target domain images. As shown in Fig. 9, the

segmentation results produced by Stage 2 were closer to

the ground truth than that of Stage 1.

7 Discussion

In this paper, we focus on the UDA problem for cross-

modality cardiac segmentation. We present a novel

framework, TSP-UDANet, which can effectively extract

and align the cardiac domain-invariant features from

multiple levels in cardiac domain adaptation segmentation

tasks. We conduct generative adversarial training at three

levels, namely image level, feature level, and output level,

to achieve cross-modality cardiac segmentation on the

MMWHS dataset. The results of TSP-UDANet are com-

pared with other methods in Table 2, in which it can be

seen that the results of the cooperative adversarial learning

at the three levels are better than the results of individual

image-level or feature-level alignment. The network can

extract more semantic features in cooperative adversarial

learning and achieve better alignment of image features

from different modalities. For example, PnP-AdaNet [16],

CycleGAN [13], and ARL_GAN [37] do not incorporate

cooperative adversarial learning methods with feature-level

and image-level alignment. AdaOutput [26] uses output-

level semantic space alignment, which is less effective than

CyCADA [36]. CyCADA [36] and SIFA [34] only use

image-level and feature-level alignments. Our method

outperforms CyCADA [36] and SIFA [34], demonstrating

the effectiveness of generative adversarial training through

image-level, feature-level, and output-level alignments.

We introduce the intermediate domain to bridge the

source and target domains and reduce the domain shift

between them for two reasons: one is the failure of

Table 5 Results of the MMWHS (MRI ! CT) segmentation in the ablation experiment

DICE (%) ASD (mm)

AA LA LV LV_myo Mean AA LA LV LV_myo Mean

SSN (w/o CycleGAN) 79.0 78.3 84.6 53.4 73.8 19.2 19.7 5.1 4.6 12.2

Stage 1 (CycleGAN ? SSN) 82.7 72.2 87.0 62.5 76.1 17.0 13.6 5.1 5.9 10.4

Stage 2 (CycleGAN ? SSN ? StSN) 82.4 73.7 87.4 65.0 77.1 11.9 10.1 4.9 4.7 7.9

Results of the MMWHS (CT ! MRI) segmentation in the ablation experiment

DICE (%) ASD (mm)

AA LA LV LV_myo Mean AA LA LV LV_myo Mean

SSN (w/o CycleGAN) 47.2 68.3 56.4 22.9 48.7 27.4 9.1 19.8 20.6 19.2

Stage 1 (CycleGAN ? SSN) 70.2 78.0 69.9 54.1 68.0 9.4 6.4 7.6 6.3 7.4

Stage 2 (CycleGAN ? SSN ? StSN) 70.3 78.3 70.4 57.0 69.0 9.5 6.5 7.1 5.7 7.2

Bold indicates the best score, and bolditalic is the second-best score
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adversarial training in the SSN (w/o CycleGAN), and the

other is the discrepancy in image appearance between the

source and target domains. Obviously, as shown by the

ablation experiment, the discrepancies in the appearance of

images obtained by different modalities substantially

impact cardiac segmentation results. We attempted to use

source and target domain adversarial training of the SSN

(w/o CycleGAN), but the segmentation results were

unsuccessful, as shown in Table 5. The main reason is the

large discrepancy in image intensity distribution between

the source and target domain images. Images with a similar

style are more likely to perform better in UDA segmenta-

tion, so we used CycleGAN to generate fake target domain

images as the intermediate domain. The intermediate

domain divides the label information transfer process

between the source and target domains into two parts: SSN

and StSN. The SSN segments the intermediate domain

images, and then the segmentation results, as the pseudo-

labels, are used for the training of the StSN. The trained

StSN segments the target domain images. This achieves a

two-stage progressive UDA cross-modality cardiac seg-

mentation. Figure 10 shows the mean Dice statistics on the

MMWHS dataset in the form of box plots, where Fig. 10A

is the MRI ! CT adaptation, and Fig. 10B is the CT !

MRI adaptation. It can be seen that the mean Dice score

increases after introducing the intermediate domain.

To verify the generalizability of the TSP-UDANet, we

conducted experiments on the MMWHS, MS-CMRSeg,

and M&Ms datasets. In the MMWHS dataset, the mean

Dice scores obtained by the TSP-UDANet were 3% and

5.6% higher than those of SIFA [34] in both MRI ! CT

and CT ! MRI adaptations. In the MS-CMRSeg dataset,

TSP-UDANet achieved the best mean Dice score, being

0.2% higher than the result of Chen et al. [39], and TSP-

UDANet achieved the best HDs in the LV_myo and RV. In

the M&Ms dataset, TSP-UDANet achieved the best HD for

LV_myo. Taken together, these results show that the TSP-

UDANet is a generalizable method for UDA cross-

modality segmentation. This is mainly because the TSP-

UDANet can effectively reduce the domain shift using

style-transferred images as the intermediate domain.

Moreover, the segmentation networks employ multiple

discriminators for adversarial training to extract domain-

invariant features, which enables the generator to better

align the feature distribution between different domains at

multiple levels. The TSP-UDANet uses the classical Res-

net101 and ASPP for the segmentation backbone, which

can serve as a general network configuration in the task of

Fig. 9 Visual comparison of the 2D slice results of the proposed

method from a representative case with the median Dice for the

MMWHS testing set in the ablation experiments. From left to right

are the target domain image (column 1), the intermediate domain

image generated by CycleGAN (column 2), the target domain ground

truth (column 3), the segmentation results of SSN (w/o CycleGAN)

and Stage 1 (columns 4–5), and the final segmentation results of Stage

2 (column 6). The cardiac substructures AA, LA, LV, and LV_myo

are shaded in pink, pale grey, light purple, and pale blue, respectively.

The first and second rows are MRI ! CT adaptation examples, with

only AA, LV, and LV_myo in the first row, and LA, LV, and

LV_myo in the second row. The third and fourth rows are CT!MRI

adaptation examples, with only AA, LV, and LV_myo in the third

row, and LA, LV, and LV_myo in the fourth row
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image segmentation. The Resnet101 can provide enough

depth for feature extraction, and its residual structure can

effectively prevent gradient disappearance. The ASPP can

adapt to multi-scale contextual features because it has

multi-scale receptive fields.

Our TSP-UDANet achieves good performance on three

cross-modality cardiac datasets, but there are still some

limitations. Figure 11 shows the visualization results of the

TSP-UDANet on the MS-CMRSeg and M&Ms datasets.

The segmentation results for LV_myo and LV in the apical

region are weaker than those in the basal region. Some

substructures in the region of the cardiac apex are very

small and occupy fewer pixels in each image slice, which

makes the extraction of meaningful 2D anatomical features

very challenging. In future, we will explore the possibility

of introducing 3D anatomical information to tackle the

difficulties in segmenting small objects.

8 Conclusion

In this paper, we have proposed a two-stage progressive

UDA network for segmenting multi-modality cardiac

images. The network is trained from multi-level feature

spaces at the image level, feature level, and output level.

We introduce an intermediate domain linking the source

and target domains. An improved self-training process is

used in Stage 2 to progressively reduce the domain shift

between the different domains and to extract domain-in-

variant features. We have validated the method using

Fig. 10 Segmentation results of each ablation experiment using the

proposed method, showing the change in Dice score at each stage of

the progressive unsupervised cross-modality adaptation segmentation

process. The vertical coordinate represents the mean Dice score of all

segmented objects from the MMWHS testing set. A MRI ! CT

adaptation segmentation, B CT ! MRI adaptation segmentation. The

green triangles represent the mean values for each stage. Upper and

lower rectangle boundaries indicate the interquartile range; middle

horizontal lines are median values and whiskers indicate the full range

of the data

Fig. 11 Visualization of two successful subjects (Pat_6 and

Pat_A2H5K9, upper and lower left-hand panels) and two unsuccess-

ful subjects (Pat_8 and Pat_ A8C5E9, right-hand panels) (n.b,

successful and unsuccessful refers to the subjects with the highest and

the lowest Dice score in the MS-CMRSeg and M&Ms testing set).

The upper three rows show the segmentation results from the MS-

CMRSeg dataset, and lower three rows show the segmentation results

from the M&Ms dataset. The left three columns show successful

segmentation results, and the right three columns show unsuccessful

segmentation results. LV, RV, and LV_myo are shown in pink, cyan

and gray. Note that the sub-figures of the second, third, fifth, and sixth

rows are zoomed and cropped for improved clarity
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unpaired cardiac MRI and CT images, LGE and bSSFP

images, and CMR images acquired with devices manu-

factured by multiple vendors. Compared with existing

methods, our approach achieves good segmentation per-

formance for a variety of source images and has good

generalizability making it possible to apply the UDA net-

work to the segmentation of other medical images. In

future, to demonstrate the generalizability and robustness

of our method, we will explore its application in other areas

beyond cardiac segmentation in multimodal images, for

instance the segmentation of solid tumors.
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