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Abstract
In this article, an adaptive neural network (NN) control problem is studied for nonstrict-feedback multi-input multi-output

(MIMO) nonlinear systems with unmeasurable states and unknown hysteresis. Firstly, to estimate the unmeasurable states,

a NN state observer is constructed. Additionally, the unknown nonlinear terms are online approximated by using radial

basis function-neural networks (RBF-NNs). And then, the complexity problem is addressed by using the dynamic surface

control (DSC), which is easy to overcome the problem of repeated differentiations for virtual control signals. Furthermore,

a nonlinear gain feedback function is introduced into the backstepping design procedure to improve the dynamic per-

formance of the closed-loop system. Meanwhile, to satisfy the practical engineering application, a prescribed performance

control (PPC) technique is implemented to guarantee the tracking error can converge to a preassigned area. By using the

proposed control scheme, all closed-loop signals are semi-global uniformly ultimately bounded (SGUUB). At last, the

preponderance and usefulness of the proposed controller are indicated by simulation results.

Keywords Neural network � Nonstrict-feedback structure � State observer � Adaptive control � Prescribed performance

1 Introduction

In recent years, the control problem for nonlinear systems

has received much research attention in the past few years,

and numerous control strategies have been developed, such

as adaptive control [1]; sliding-mode control [2]; robust

control [3]; etc. Since the backstepping control strategy is

proposed [4], it has become a preeminent tool for stability

analysis and control design of uncertain nonlinear systems.

It is worth noting that the backstepping control strategy

was first proposed to solve the problem of nonlinear sys-

tems subject to unmatched conditions, where the system

nonlinearities are assumed to be known in advance. At the

same time, the development of intelligent control theory,

such as fuzzy logic systems (FLSs) and neural networks

(NNs), becomes a useful tool to deal with the problem of

control containing unknown nonlinear functions. There-

fore, lots of adaptive backstepping-based NNs (and fuzzy)

control strategies are developed for uncertain nonlinear

systems [5–8]. Zuo [5] studied an adaptive backstepping

control method for nonlinear multiagent systems by using

the approximation ability of FLSs. Xu et al. [6] presented a

fuzzy adaptive controller for SISO strict-feedback nonlin-

ear systems with actuator quantization and mismatched

external disturbances. Soon afterwards, the results in [6]

were extended to solve the control problem of MIMO

nonlinear systems in [7]. However, the complexity of

computational, caused by repeated differentiation for
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virtual control laws, is unavoidable, which deteriorates

obviously with the enlargement of the order for the back-

stepping-based nonlinear systems. Therefore, an advanced

method called dynamic surface control (DSC) was reported

to avoid such an issue by passing the intermediate control

signals through the first-order filter, and in this way, the

differentiations of intermediate control signals are not

required in the process of the backstepping framework.

Meanwhile, it should be noticed that the DSC technique

relaxes the demands of the reference trajectories and the

smoothness of nonlinear functions. Motivated by the DSC

approach, on the basis of theoretical investigations and

practical implementations, some original DSC-based

results have been developed in [9–11].

Not all system states for actual engineering systems are

easily quantifiable. Even if these states can be measured,

more sensors are still needed, which raises the complexity

of the control system. Therefore, it is necessary to explore

deeply adaptive control strategies for nonlinear systems

subject to unmeasurable states. In order to save the cost of

control system, a series of observer-based adaptive output-

feedback control methods have been published [12–20].

For example, the issue of adaptive output-feedback neural

control for nonlinear systems in strict-feedback structure

subject to input dead-zone constraints has been considered

by [13]. By developing an extend state observer, a novel

backstepping-based adaptive prescribed control approach

has been proposed for the hydraulic systems under full-

state constraints [14]. Zhang et al. [15] explained an

adaptive formation containment control algorithm for lin-

ear multiagent systems with unmeasurable states and

bounded unknown input. To estimate the unmeasured

states in uncertain singular systems with unknown time-

varying delay and nonlinear input, Tang et al. [16] pro-

posed a simplified observer to give an adaptive sliding

mode control method. A fuzzy observer-based adaptive

control problem has been reported in [17] for nonstrict

feedback systems under function constraints. Li et al. [18]

investigated a learning-observer neural adaptive tracking

problem of multiagent systems with quantized input. Wu et

al. [19] focused on an adaptive quantized tracking control

problem for nonlinear systems in nonstrict-feedback

structure with sensor fault. In addition, based on a neural

state observer and the command filter backstepping

method, an adaptive control issue of pneumatic active

suspension subject to sensor fault and vertical constraint

has been studied in [20].

On the other hand, reducing tracking error for tracking

control is a long-lasting yet challenging problem [21]. For

the purpose of restricting system output within desired

boundaries, Bechlioulis and Rovithakis originally proposed

the prescribed control (PPC) technique in [22], which is a

powerful tool to satisfy the high accuracy control require-

ments for different control systems. The work in [23] has

studied an adaptive control problem for constrained non-

linear systems by using the barrier Lyapunov function

method. Wang et al. [24] developed a finite-time adaptive

PPC strategy for strict-feedback nonlinear systems with

dynamic disturbances, actuator faults and time-varying

parameters. By utilizing FLSs and PPC, an adaptive pre-

scribe control strategy has been designed for nonlinear

multiagent systems in [25]. Considering quantized input

and tracking accuracy, a self-scrambling gain feedback

controller has been proposed for MIMO nonlinear systems

[26]. In [27], an adaptive control technique is developed for

SISO nonlinear systems with hysteresis input, which

guarantees the tracking error converges to the preassigned

area by using PPC. The authors in [28] proposed a rein-

forcement learning-based control algorithm for an

unmanned surface vehicle with prescribed performance.

Motivated by the above observations, this paper con-

tinues to focus on an adaptive PPC for a class of MIMO

nonlinear systems with hysteresis input and unmeasurable

states. Compared with the existing related results, the main

advantages of this article are as follows.

(1) It is a nontrivial work to investigate the adaptive

control algorithm for MIMO nonstrict-feedback

nonlinear systems with unmeasurable states and

unknown hysteresis by using nonlinear error feed-

back. Moreover, compared with the MIMO strict (or

pure)-feedback nonlinear systems [29, 30] and SISO

nonlinear systems [31], the developed control

approach in this paper can be used in more general

situations.

(2) Different from the case considered in [32–34], this

article further studies the hysteresis input and the

unmeasurable states that exist in actual engineering

systems. Besides, the unmeasurable states of the

system can be obtained by designing a NN state

observer and the effect of the unknown hysteresis

can be removed by constructing an adaptive update

function.

(3) In comparison to the traditional linear feedback

control methods in [35–37], this study utilizes a

novel nonlinear gain function in the backstepping

design, which improves the dynamic performance of

closed-loop system and also facilitates the closed-

loop system stability analysis using its properties.

Meanwhile, the computational explosion is
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addressed by applying DSC and the prescribed

tracking error can be guaranteed.

2 Problem formulation and preliminaries

2.1 Plant description

The plant can be considered as the following nonstrict-

feedback form

_xm;jðtÞ ¼ xm;jþ1ðtÞ þ fm;jðxmÞ þ dm;jðtÞ;

n ¼ 1; 2; . . .;N; j ¼ 1; . . .; nm � 1

_xm;nmðtÞ ¼ umðvmÞ þ fm;nmðXÞ þ dm;nmðtÞ;

ymðtÞ ¼ xm;1ðtÞ;

8
>>>>><

>>>>>:

ð1Þ

where nm;m 2 Nþ, nm [ 1, m[ 1, X ¼ ½xT1 ; xT2 ; . . .; xTm�
T

with xm ¼ ½xm;1; xm;2; . . .; xm;nm �
T
is the state variable, ym 2

R indicates the system output, fm;jð�Þ denotes the unknown

smooth nonlinear function, dm;jðtÞ is the continuous time-

varying disturbance, which is subject to dm;jðtÞ� d�m;j with

d�m;j being an unknown constant. umðvmÞ represents the

system input and the output of the backlash-like hysteresis

with vm 2 R is the input of the backlash-like hysteresis.

Remark 1 It should be noticed that the nonlinear system

(2) can be employed to represent many practical systems,

such as unmanned surface vehicles [28], and connected

inverted pendulums systems [10]. Thus, it is necessary to

investigate the adaptive control problem for such MIMO

nonlinear systems.

From [38], the hysteresis input vm and the system input

umðvmÞ can be expressed as

dum
dt

¼ .mj
dvm
dt

jðcmvm � umÞ þ Dm
dvm
dt

; ð2Þ

where .m, cm, and Dm denote the unknown parameters and

.m [ 0, cm [Dm.

Furthermore, the solution of (2) can be solved as

umðvmÞ ¼ cmvmðtÞ þ hmðvmÞ;

hmðvmÞ ¼ ½um;0 � cmvm;0�e�.mðvm�vmð0ÞÞsgnð_vmÞ

þ e�.mvmsgnð_vmÞ
Z vm

vm;0

½Dm � cm�e�.mjmsgnð_vmÞdjm;

ð3Þ

where vm;0 and um;0 are the initial conditions of vm and um,

respectively. hmðvmÞ is bounded, which satisfies

jhmðvmÞj � h�m and h�m is the unknown bound.

From (3), it is easy to rewrite system (1) as the following

matrix form

_xmðtÞ ¼AmxmðtÞ þ Lmym þ
Xnm

j¼1

Bm;jfm;jðXÞ

þ dm þ Bm;nmvm;

ymðtÞ ¼GmxmðtÞ;

8
>>>>><

>>>>>:

ð4Þ

where

A ¼

�lm;1 1 � � � 0

..

. ..
. . .

. ..
.

�lm;nm�1 0 � � � 1

�lm;nm 0 . . . 0

2

6
6
6
6
4

3

7
7
7
7
5

nm�nm

Lm ¼ ½lm;1; . . .; lm;nm �
T
nm�1, Bm;j ¼ ½0; . . .; 1

|fflfflffl{zfflfflffl}
j

; . . .; 0�Tnm�1, dm ¼
½dm;1ðtÞ; . . .; dm;nm�1ðtÞ; dm;nmðtÞ þ hmðvmÞ�Tnm�1,

Gm ¼ ½1; . . .; 0�1�nm
.

Some assumptions are made throughout this paper.

Assumption 1 For 8ı1; ı2, there exists a positive constant

km;j such that the nonlinear function fm;jð�Þ satisfies the

following inequality

jfm;jðı1Þ � fm;jðı2Þj � km;jjı1 � ı2j: ð5Þ

Assumption 2 The reference tracking signal ym;dðtÞ,
_ym;dðtÞ and €ym;dðtÞ are bounded and continuous.

Lemma 1 [39] For 8ð‘1; ‘2Þ 2 R2, the following inequality

can be obtained

‘1‘2 �
�hp

p
j‘1jp þ

1

q�hq
j‘2jq;

where �h[ 0 and 1=pþ 1=q ¼ 1 with q[ 1 and p[ 1.

2.2 Neural network

Due to the universal approximation property of RBF-NNs,

it can be utilized to approximate the unknown nonlineari-

ties [33]. As a consequence, for a continuous function

Fnnð}Þ over a compact set X} � Rq, the NNsW�Tuð}Þ can
approximate it to a desired accuracy n� [ 0, which is

expressed as

Fnnð}Þ ¼ W�Tuð}Þ þ nð}Þ; jnð}Þj � n�

where W� denotes the ideal constant weight vector and it is

defined as

W� ¼ argminW2Ri ½sup}2X}
jFnnð}Þ �WTuð}Þj�, } 2 X} is

the input vector, W ¼ ½W1; . . .;Wi�T 2 Ri represents the

ideal weight vector with the number of neural nodes i[ 1,

and uð}Þ ¼ ½u1ð}Þ; . . .;uið}Þ�T denotes the basis function
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vector with uqð}Þ being chosen as the Gaussian function,

which has the following form

uqð}Þ ¼ exp½
k }� l

q
k2

�r2q
�; q ¼ 1; . . .; i

where l
q
¼ ½l

q1
; l

i2
; � � � ; l

il
�T and �rq represent the center

of the receptive field and the width of Gaussian function,

respectively. Furthermore, it is worth noting that the

Gaussian function satisfies uT
m;jð�Þum;jð�Þ � fm with a posi-

tive constant fm.

3 Neural network observer

Due to the fact that only the system output is directly

obtained, it is necessary to design an observer to estimate

the unmeasurable state xm;j; i ¼ 1; . . .;m; j ¼ 2; . . .; nm.

By utilizing the RBF-NNs, the following approximation

result can be obtained

f̂m;jðX̂jWm;jÞ ¼ WT
m;jum;jðX̂Þ; ð6Þ

where X̂ and Wm;j are the estimations of X and W�
m;j. And

W�
m;j is expressed as

W�
m;j ¼ arg min

Wm;j2Xm;j

½ sup
X̂2Ûm;j

jf̂m;jðX̂jWm;jÞ � fm;jðX̂Þj�;

where Xm;j and Ûm;j represent compact regions of Wm;j, X

and X̂.

Similar to [17], we can design the following NN state

observer

_̂xmðtÞ ¼Amx̂mðtÞ þ Lmym þ Bm;nm ĉmvm

þ
Xnm

j¼1

Bm;j f̂m;jðX̂jWm;jÞ;

ŷmðtÞ ¼Gmx̂mðtÞ;

8
>>>>><

>>>>>:

ð7Þ

where cm is estimated by ĉm.
The coefficient vector Lm is selected, such that Am is

Hurwitz. And then, for a given Qm with Qm ¼ QT
m [ 0,

there exists a positive definite matrix P[ 0 satisfying

AT
mPm þ PmAm ¼ �Qm.

The observation error is defined as

~xm ¼ xm � x̂m ð8Þ

satisfies

_~xmðtÞ ¼Am ~xm þ
Xnm

j¼1

Bm;j
~WT
m;jum;jðX̂Þ

þ Bm;nm ~cvm þ nm þ dm þ MFm;

ð9Þ

where ~Wm;j ¼ W�
m;j �Wm;j, nm ¼ ½nm;1; . . .; nm;nm �

T
,

MFm ¼ ½Mfm;1; . . .;Mfm;nm �
T
, Mfm;j ¼ fm;jðXÞ � fm;jðX̂Þ and

~c ¼ cm � ĉm.

Consider the Lyapunov candidate as

Vm;0 ¼ ~xTmPm ~xm: ð10Þ

Taking the time derivative of Vm;0 yields

_Vm;0 ¼ � ~xTmQm ~xm þ 2~xTmPm

Xnm

j¼1

Bm;j
~Wm;jum;jðX̂Þ

þ 2~xTmPmðnm þ MFm þ dm þ Bm;nm ~cvmÞ:

ð11Þ

From Lemma 1, Assumption 2 and uT
m;jðX̂Þum;jðX̂Þ� fm,

one gets

2~xTmPm

Xnm

j¼1

Bm;j
~WT
m;jum;jðX̂Þ

� fmkPmk2
Xnm

j¼1

~WT
m;j

~Wm;j þ k~xmk2;
ð12Þ

2~xTmPmðnm þ dm þ MFmÞ

� kPmk2ðkn�mk
2 þ kd�mk

2Þ þ
Xnm

j¼1

k2m;j þ 3

 !

k~xmk2
ð13Þ

where n�m ¼ ½n�m;1; . . .; n�m;nm �
T
, d�m ¼ ½d�m;1; . . .; d�m;nm �

T
.

Substituting (12) and (13) into (11), it produces

_Vm;0 � � ~xTmQ~xm þ ðkPmk2
Xnm

j¼1

k2m;j þ 4Þk~xmk2

þ kPmk2ðkn�mk
2 þ kd�mk

2Þ þ 2~xTmPm

� Bm;nm ~cmvm þ fmkPmk2
Xnm

j¼1

~WT
m;j

~Wm;j

� � qm;0k~xmk2 þ 2~xTmPmBm;nm ~cmvm

þ fmkPmk2
Xnm

j¼1

~WT
m;j

~Wm;j þMm;0;

ð14Þ

where q0 ¼ kminðQÞ � 4� kPmk2
Pnm

j¼1 k
2
m;j,

Mm;0 ¼ kPmk2kd�mk
2 þ kPmk2kn�i k

2
.

4 Main results

In this section, the design procedure of backstepping con-

troller will be presented, which contains the developed

control strategy in four parts: the prescribed performance

function and the nonlinear gain function with their prop-

erties are given, and the nonlinear gain-based adaptive NN

controller is proposed by using the backstepping technique.

And then, the design is augmented with a first-order filter
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and an adaptive function to solve the complexity explosion

and the hysteresis input.

4.1 Prescribed performance

Define the following smooth monotone decreasing function

lm;1ðtÞ ¼ ðl0;m;1 � l1;m;1Þe�am;1t þ l1;m;1; ð15Þ

where l0;m;1 is the initial condition of lm;1ðtÞ, l1;m;1 is the

ultimate value of lm;1ðtÞ and am;1 is a positive constant.

Furthermore, it is simple to obtain that

limt!1 lm;1ðtÞ ! l1;m;1. The prescribed steady-state and

transient bounds can be defined by utilizing the following

constraint conditions

�km;1lm;1ðtÞ\ei\lm;1ðtÞ; if emð0Þ	 0 ð16Þ

or

�lm;1ðtÞ\ei\km;1lm;1ðtÞ; if emð0Þ\0 ð17Þ

where 0\km;1 � 1 and emðtÞ means the tacking error.

Furthermore, the error transformation function is selec-

ted as

Fm;1ðtÞ ¼ em
/m;1ðtÞ

;

/m;1ðtÞ ¼ i �/m;1ðtÞ þ ð1� iÞ/
m;1

ðtÞ;
ð18Þ

where i ¼ 1, if ei 	 0 and 0 otherwise. �/m;1ðtÞ and /
m;1

ðtÞ
are chosen as: if emð0Þ	 0, �/m;1ðtÞ ¼ lm;1ðtÞ,
/
m;1

ðtÞ ¼ �km;1lm;1ðtÞ, or else �/m;1ðtÞ ¼ km;1lm;1ðtÞ,
/
m;1

ðtÞ ¼ �lm;1ðtÞ.

Lemma 2 [40] The introduced Fm;j satisfies 0\Fm;jðtÞ\1

is true if only if l0;m;j, l1;m;j, am;j and km;j satisfying (16)

and (17).

4.2 Nonlinear gain function

Design a smooth nonlinear gain function, which can be

described as

CðıÞ ¼
ı; jıj � m

½logoð1� ln o � mþ ln o � jıjÞ þ m�signðıÞ; jıj[ m

(

ð19Þ

where m[ 0 and o[ 1. m means the joint point between the

linear and nonlinear gain term in (19). If the variable ı is

small ðjıj\mÞ, CðıÞ utilizes the linear part to realize the

stable regulation. If the variable ı is large ðjıj[ mÞ, CðıÞ
takes nonlinear gain part to reject aggressive input.

Moreover, o represents the damped coefficient. It is note-

worthy that the slope can be changed by tuning o.

The properties of the nonlinear gain function (19) can be

listed as follows

Property 1 The nonlinear gain function CðıÞ is continu-

ously differentiable monotonically increasing and its

derivative along with ı satisfies

CdðıÞ ¼
1; jıj � m

½ð1� ln o � mþ ln o � jıjÞ�1�; jıj\m

(

ð20Þ

Property 2 Let Cf ðıÞ ¼ CdðıÞ � ıþ CðıÞ, then Cf ðıÞ is a

monotone increasing function. Furthermore, Cf ðıÞ �
ı	CðıÞ � ı can be guaranteed.

Property 3 Define ChðıÞ ¼ Cf ðıÞ
ı , it is known that ChðıÞ[ 0

is true for any ı 6¼ 0. Let Cþ
h as

Cþ
h ðıÞ ¼

CdðıÞ
ı

; ı 6¼ 0

2; ı ¼ 0

8
><

>:
ð21Þ

As a result, if ı 6¼ 0, Cf ðıÞ=Cþ
h ðıÞ ¼ ı, and if ı ¼ 0,

Cf ðıÞ=Cþ
h ðıÞ ¼ Cf ðıÞ=2 ¼ ı.

To demonstrate the properties and the advantages of

nonlinear function Cf ðıÞ, the difference between linear

feedback and nonlinear feedback has been given in Fig. 1.

It is shown that when the error variable ı is small, Cf ðıÞ
gives a big control gain, which ensures the closed-loop

system has a faster transient response; when the error

variable ı is large, Cf ðıÞ gives a small control gain and the

nonlinear system can avoid the neglected effects of system

disturbances. Nevertheless, the linear feedback only gives a

linear control gain, which will generate the closed-loop

system does not have a good dynamic performance.

Fig. 1 Trajectories of linear feedback and nonlinear gain feedback
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Remark 2 By using the characteristic of small tracking

error versus large control gain and large tracking error

versus small control gain, the controller proposed in this

article is more suitable for actual engineering applications.

However, although nonlinear gain feedback has better

dynamic performance than linear feedback, nonlinear gain

feedback will produce composite functions, which will

further create difficulties in the stability analysis compared

with the stability analysis using general quadratic Lya-

punov function.

Remark 3 If traditional Lyapunov function in quadratic

form is utilized, the system stability can not be obtained.

Thus, by employing the Property 1 and Property 2, a new

Lyapunov function is proposed in the backstepping design

procedure, in which CðıÞı is contained in the designed

Lyapunov function. In addition, it should be noticed that

CðıÞı derivatives with respect to time t yields its derivative

Cf ðıÞ _ı. It will further facilitate the stability analysis.

4.3 Controller design

Define the change of coordinates as follows

em ¼ xm;1 � ym;d; Fm;1 ¼
e1
/m;1

;

sm;1 ¼ Fm;1

1� Fm;1
; sm;j ¼ x̂m;j � cm;j;

1m;j ¼ cm;j � am;j�1;

ð22Þ

where am;j�1 represents the virtual controller, cm;j is the

filter signal and 1m;j means the output error surface with

j ¼ 2; . . .; nm.
Step m, 1: According to (22), it yields

_sm;1 ¼
_xm;1 � _ym;d � Fm;1

_/m;1

ð1� Fm;1Þ2/m;1

¼ 1

ð1� Fm;1Þ2/m;1

ðxm;2 þ fm;1ðxmÞ

� _ym;d þ dm;1 � Fm;1
_/m;1Þ

¼ 1

ð1� Fm;1Þ2/m;1

ðsm;2 þ 1m;2 þ am;1

þWT
m;1uðx̂m;1Þ þW�T

m;1um;1ðx̂mÞÞ

�W�T
m;1um;1ðx̂m;1Þ þ ~WT

m;1um;1ðx̂m;1Þ

þ ~xm;2 � _ym;d þ nm;1 þ dm;1 � Fm;1
_/m;1Þ:

ð23Þ

Consider a Lyapunov function as

Vm;1 ¼ Vm;0 þ Cðsm;1Þsm;1 þ
1

2dm;1
~WT
m;1

~Wm;1; ð24Þ

where dm;1 [ 0 is the designed parameter.

The derivative of Vm;1 along with (24) yields

_Vm;1 ¼ _Vm;0 þ Cf ðsm;1Þ _sm;1 �
1

dm;1
~WT
m;1

_Wm;1

¼ _Vm;0 þ
Cf ðsm;1Þ

ð1� Fm;1Þ2/m;1

ðsm;2 þ 1m;2

þ am;1 þWT
m;1uðx̂m;1Þ þW�T

m;1um;1ðx̂mÞ

þ ~WT
m;1um;1ðx̂m;1Þ �W�T

m;1um;1ðx̂m;1Þ

� _ym;d þ ~xm;2 þ nm;1 þ dm;1 � Fm;1
_/m;1Þ

� 1

dm;1
~WT
m;1

_Wm;1:

ð25Þ

Based on Lemma 1, one gets

Cf ðsm;1Þ
ð1� Fm;1Þ2/m;1

ð~xm;2 þ nm;1 þ dm;1Þ

�
3C2

f ðsm;1Þ
2ð1� Fm;1Þ4/2

m;1

þ 1

2
k~xmk2 þ

1

2
kn�mk

2 þ 1

2
kd�mk

2;

ð26Þ

Cf ðsm;1Þ
ð1� Fm;1Þ2/m;1

1m;2 �
C2
f ðsm;1Þ

2ð1� Fm;1Þ4/2
m;1

þ 1

2
12m;2; ð27Þ

Cf ðsm;1Þ
ð1� Fm;1Þ2/m;1

ðW�T
m;1um;1ðx̂mÞ �W�T

m;1um;1ðx̂m;1ÞÞ

�
sC2

f ðsm;1Þ
2ð1� Fm;1Þ4/2

m;1

þ 2fm
s

kW�
m;1k

2;

ð28Þ

where s[ 0 is a constant.

Select the intermediate controller am;1, and adaptive

updating law _Wm;1 as

am;1 ¼ � �m;1 Cf ðsm;1Þ/m;1 þ
ð1� Fm;1Þ2/m;1sm;1

mm;1

 !

þ Fm;1
_/m;1 � ð2þ s

2
Þ Cf ðsm;1Þ
ð1� Fm;1Þ4/2

m;1

�WT
m;1uðx̂m;1Þ þ _ym;d;

ð29Þ

_Wm;1 ¼ dm;1
Cf ðsm;1Þum;1ðx̂m;1Þ
ð1� Fm;1Þ2/m;1

� rm;1Wm;1; ð30Þ

where mm;1, �m;1 and rm;10 are positive design parameters.

Invoking (29), (30), we can deduce
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_Vm;1 � � qm;1k~xmk2 þ fmkPmk2
Xnm

j¼1

~WT
m;j

~Wm;j

� �m;1ð
C2
f ðsm;1Þ

ð1� Fm;1Þ2
þ sm;1
mm;1

Cf ðsm;1ÞÞ

þMm;1 þ
1

2
12m;2 þ

Cf ðsm;1Þsm;2
ð1� Fm;1Þ2/m;1

þ rm;1
dm;1

~WT
m;1Wm;1;

ð31Þ

where qm;1 ¼ qm;0 � 1
2
,

Mm;1 ¼ Mm;0 þ 1
2
kn�mk

2 þ 1
2
kd�mk

2 þ 2fm
s kW�

m;1k
2
.

The following filter is constructed

-m;2 _cm;2 þ cm;2 ¼ am;1; cm;2ð0Þ ¼ am;1ð0Þ: ð32Þ

According to (32), it is easy to know _cm;2 ¼ � 1m;2
-m;2

, which

implies

_1m;2 ¼ _cm;2 � _am;1 ¼
1m;2
-m;2

þ Ym;2ð�Þ:

where

Ym;2ð�Þ ¼
dðcm;1ðCf ðsm;1Þ þ

ð1�nm;1Þ2/m;1sm;1
mm;1

Þ
dt

þ
dð Cf ðsm;1Þ

ð1�nm;1Þ4/2
m;1

Þ

dt
�
dðnm;1 _/m;1Þ

dt

þ _WT
m;1um;1ðx̂m;1Þ þWT

m;1 _um;1ðx̂m;1Þ � €ym;d

is continuous function with a maximum value.

Remark 4 The first-order filter is proposed in (32) to

address the repetitive derivation problem of the virtual

control signal, which can alleviate the additional compu-

tation burden. However, it should be noticed that the

developed first-order linear filter inevitably generates the

filtering error.

Step m, 2: According to (1) and (22), _sm;2 can be cal-

culated as

_sm;2 ¼ _̂xm;2 � _cm;2

¼ sm;3 þ 1m;3 þ am;2 þ lm;2 ~xm;1

þWT
m;2um;2ð �̂xmÞ þW�T

m;2um;2ðx̂mÞ

�W�T
m;2um;2ð �̂xm;2Þ � ~WT

m;2um;2ðx̂mÞ

þ ~WT
m;2um;2ð �̂xm;2Þ � _cm;2:

ð33Þ

Chose a Lyapunov function as

Vm;2 ¼Vm;1 þ Cðsm;2Þsm;2

þ 1

2
12m;2 þ

1

2dm;2
~WT
m;2

~Wm;2;
ð34Þ

where dm;2 [ 0 is the designed parameters.

By Lemma 2, (33) and (34), the time differentiation of

Vm;2 can deduced as

_Vm;2 ¼ _Vm;1 þ Cf ðsm;2Þ _sm;2 þ 1m;2 _1m;2

� 1

dm;2
~WT
m;2

_Wm;2

� � qm;1k~xmk2 þ fmkPmk2
Xnm

j¼1

~WT
m;j

~Wm;j

� �m;1ðC2
f ðsm;1Þ þ

sm;1
mm;1

Cf ðsm;1ÞÞ

þ 1

2
12m;2 þMm;1 þ

Cf ðsm;1Þsm;2
ð1� Fm;1Þ2/m;1

þ rm;1
dm;1

~WT
m;1Wm;1 þ Cf ðsm;2Þðsm;3 þ 1m;3

þ am;2 þ lm;2 ~xm;1 þWT
m;2um;2ð �̂xmÞ

þW�T
m;2um;2ðx̂mÞ �W�T

m;2um;2ð �̂xm;2Þ

� ~WT
m;2um;2ðx̂mÞ þ ~WT

m;2um;2ð �̂xm;2Þ

� _cm;2Þ þ 1m;2 _1m;2 �
1

dm;2
~WT
m;2

_Wm;2:

ð35Þ

According to Lemma 1, Assumptions 2 and 1, one has

Cf ðsm;2Þ1m;3 �
1

2
C2
f ðsm;2Þ þ

1

2
12m;3; ð36Þ

� Cf ðsm;2ÞWT
m;2um;2ðx̂mÞ

� 1

2
C2
f ðsm;2Þ þ

fm
2

~WT
m;2

~Wm;2;
ð37Þ

Cf ðsm;2ÞðW�T
m;2um;2ðx̂mÞ �W�T

m;2um;2ð �̂xm;2ÞÞ

� s
2
C2
f ðsm;2Þ þ

2fm
s

kW�
m;2k

2:
ð38Þ

The intermediate control signal am;2 and the adaptive

updating function _Wm;2 are designed as

am;2 ¼ � �m;2 Cf ðsm;2Þ þ
sm;2
mm;2

� �

� ð1þ s
2
ÞCf ðsm;2Þ þ _cm;2

� lm;2 ~xm;1 �WT
m;2um;2ð �̂xm;2Þ

� Cf ðsm;1Þ
ð1� Fm;1Þ2/m;1C

þ
h ðsm;2Þ

;

ð39Þ

_Wm;2 ¼ dm;2Cf ðsm;2Þum;2ð �̂xm;2Þ � rm;2Wm;2; ð40Þ
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where mm;2, �m;2 and rm;2 are positive design parameters.

It follows from (34)–(40), one has

_Vm;2 � � qm;1k~xmk2 þ fmkPmk2
Xnm

j¼1

~WT
m;j

~Wm;j

�
X2

k¼1

cm;kðC2
f ðsm;kÞ þ

sm;k
mm;k

Cf ðsm;kÞÞ

þ
X2

k¼1

rm;k
dm;k

~WT
m;kWm;k þ

fm
2

~WT
m;2

~Wm;2

þ
X2

k¼1

1

2
12m;kþ1 þ Cf ðsm;2Þsm;3 þMm;2

þ 1m;2ð�
1m;2
-m;2

þ Ym;2ð�ÞÞ;

ð41Þ

where Mm;2 ¼ Mm;1 þ 2fm
s kW�

m;2k
2

Define the following filter

-m;3 _cm;3 þ cm;3 ¼ am;2; cm;3ð0Þ ¼ am;2ð0Þ ð42Þ

Defining 1m;3 ¼ _cm;3 � am;2, we can obtain _cm;3 ¼ � 1m;3
-m;3

.

Then, one has

_1m;3 ¼ _cm;3 � _am;2 ¼ �
1m;3
-m;3

þ Ym;3ð�Þ;

where

Ym;3ð�Þ ¼
dðcm;2ðCf ðsm;2Þ þ sm;2

mm;2
ÞÞ

dt

þ
dðð1þ s

2
ÞCf ðsm;2ÞÞ
dt

þ lm;2 _~xm;1

þ _WT
m;2um;2ð �̂xm;2Þ þWT

m;2 _um;2ð �̂xm;2Þ

�
_1m;3
-m;3

þ
dCf ðsm;1Þ
dsm;1

_sm;1Cþ
h ðsm;2Þ

Cþ2
h ðsm;2Þ

�
Cf ðsm;1Þ

dCþ
h
ðsm;2Þ

dsm;2
_sm;2

Cþ2
h ðsm;2Þ

ð43Þ

is a continuous function with a maximum value.

Step m, j (3� j� nm � 1): By (1) and (22), _sm;j is cal-

culated as

_sm;j ¼ _̂xm;j � _cm;j

¼ sm;jþ1 þ 1m;jþ1 þ lm;j ~xm;1 þ am;j

�W�T
m;jum;jð �̂xm;jÞ þW�T

m;jum;jðx̂mÞ

� ~WT
m;jum;jðx̂mÞ þWT

m;jum;jð �̂xm;jÞ

þ ~WT
m;jum;jð �̂xm;jÞ � _cm;j;

ð44Þ

where �̂xm;j ¼ ½x̂m;1; . . .; x̂m;j�T.

Consider the Lyapunov function candidate as

Vm;j ¼Vm;j�1 þ Cðsm;jÞsm;j

þ 1

2
12m;j þ

1

2dm;j
~WT
m;j

~Wm;j;
ð45Þ

where dm;j [ 0 is the designed parameters.

In the same case of step m, 2, the following inequalities

hold

Cf ðsm;jÞ1m;jþ1 �
1

2
C2
f ðsm;jÞ þ

1

2
12m;jþ1; ð46Þ

� Cf ðsm;jÞWT
m;jum;jðx̂mÞ

� 1

2
C2
f ðsm;jÞ þ

fm
2

~WT
m;j

~Wm;j;
ð47Þ

Cf ðsm;jÞðW�T
m;jum;jðx̂mÞ �W�T

m;jum;jð �̂xm;jÞÞ

� s
2
C2
f ðsm;jÞ þ

2fm
s

kW�
m;jk

2:
ð48Þ

Select the intermediate controller am;j, and adaptive

updating law _Wm;j as

am;j ¼ � �m;jðCf ðsm;jÞ þ
sm;j
mm;j

Þ � lm;j ~xm;1

� ð1þ s
2
ÞCf ðsm;jÞ �WT

m;jum;jð �̂xm;jÞ

þ _cm;j �
Cf ðsm;j�1Þ
Cþ
h ðsm;jÞ

;

ð49Þ

_Wm;j ¼ dm;jCf ðsm;jÞum;jð �̂xm;jÞ � rm;jWm;j; ð50Þ

where mm;j, �m;j and rm;j are positive design parameters.

According to (46)–(50), it procedures

_Vm;j � � qm;1k~xmk2 þ fmkPmk2
Xnm

j¼1

~WT
m;j

~Wm;j

�
Xj

k¼1

cm;kðC2
f ðsm;kÞ þ

sm;k
mm;k

Cf ðsm;kÞÞ

þ Cf ðsm;jÞsm;jþ1 þ
Xj

k¼1

rm;k
dm;k

~WT
m;kWm;k

þ fm
2

Xj

k¼2

~WT
m;k

~Wm;k þ
Xj

k¼1

1

2
12m;kþ1

þMm;j þ
Xj

k¼2

1m;kð�
1m;k
-m;k

þ Ym;kð�ÞÞ;

ð51Þ

where Mm;j ¼ Mm;j1�1 þ fm
2
kW�

m;jk
2
.

Define the following filter
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-m;jþ1 _cm;jþ1 þ cm;jþ1 ¼ am;j; cm;jþ1ð0Þ ¼ am;jð0Þ ð52Þ

Defining 1m;jþ1 ¼ _cm;jþ1 � am;j, _cm;jþ1 ¼ � 1m;jþ1

-m;jþ1
can be

obtained. Then, it easily procedures

_1m;jþ1 ¼ �
1m;jþ1

-m;jþ1

þ Ym;jþ1ð�Þ;

where

Ym;jþ1ð�Þ ¼
dðcm;jðCf ðsm;jÞ þ sm;j

mm;j
ÞÞ

dt

þ
dðð1þ s

2
ÞCf ðsm;jÞÞ
dt

þ lm;j _~xm;1 þ _WT
m;jum;jð �̂xm;jÞ

þWT
m;j _um;jð �̂xm;jÞ �

_1m;jþ1

-m;jþ1

þ
dCf ðsm;j�1Þ
dsm;j�1

_sm;j�1C
þ
h ðsm;jÞ

Cþ2
h ðsm;jÞ

�
Cf ðsm;j�1Þ dC

þ
h
ðsm;jÞ

dsm;j
_sm;j

Cþ2
h ðsm;jÞ

is a continuous function with a maximum value.

Step m; nm: According to (22), we can obtain

_sm;nm ¼ _̂xm;nm � _cm;nm

¼ lm;nm ~xm;1 þWT
m;nm

um;nmðx̂mÞ

þ ~Wm;nmum;nmðx̂mÞ þ um

� ~WT
m;nm

um;nmðx̂mÞ � _cm;nm :

ð53Þ

Define the Lyapunov function as

Vm;nm ¼Vm;nm�1 þ Cðsm;nmÞsm;nm þ
1

2
12m;nm

þ 1

2em
~c2m þ 1

2dm;nm
~WT
m;nm

~Wm;nm ;

ð54Þ

where dm;nm and em are positive design parameters.

By using Lemma 1, one has

2~xTmPmBm;nm ~cmvm

� 1

qm
k~xmk2 þ qm ~cmðcm � ĉmÞkPmk2v2m

� 1

qm
k~xmk2 þ

qm
2

~c2mkPmk2v2m

þ qm
2
c2mkPmk2v2m � qm ~cmĉmkPmk2v2m;

ð55Þ

� Cf ðsm;nmÞWT
m;nm

um;nmðx̂mÞ

� 1

2
C2
f ðsm;nmÞ þ

fm
2

~WT
m;nm

~Wm;nm ;
ð56Þ

where qm is a positive constant.

Select the following control law and the adaptive laws

as

vm ¼ � 1

ĉm
ð�m;nmðCf ðsm;nmÞ þ

sm;nm
mm;nm

Þ

� 1

2
Cf ðsm;nmÞ � lm;nm ~xm;1 þ _cm;nm

�WT
m;nm

um;nmð �̂xm;nmÞ �
Cf ðsm;nm�1Þ
Cþ
h ðsm;nmÞ

Þ;

ð57Þ

_Wm;nm ¼ dm;nmCf ðsm;nmÞum;nmðx̂mÞ
� rm;nmWm;nm ;

ð58Þ

_̂ci ¼ � emqmĉmkPmk2v2m � amĉm; ð59Þ

where mm;nm , cm;nm , am and dm;nm are positive designed

parameters.

By using (55)–(59), one can obtain

Fig. 2 Control diagram
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_Vm;nm � � qm;1k~xmk2 þ fmkPmk2
Xnm

j¼1

~WT
m;j

~Wm;j

�
Xnm

k¼1

cm;kðC2
f ðsm;kÞ þ

sm;k
mm;k

Cf ðsm;kÞÞ

þ fm
2

Xnm

k¼2

~WT
m;k

~Wm;k þ
Xnm

k¼2

1

2
12m;k

þ
Xnm

k¼1

rm;k
dm;k

~WT
m;kWm;k þ

�m
em

~cmĉm

þMm;nm þ
Xnm

k¼2

1m;kð�
1m;k
-m;k

þ Ym;kð�ÞÞ;

ð60Þ

where Mm;nm ¼ Mm;nm�1.

According to the relationship ~Wm;j ¼ W�
m;j �Wm;j and

~cm ¼ cm � ĉm, the following inequality holds

Xnm

k¼1

rm;k
dm;k

~WT
m;kWm;k � �

Xnm

k¼1

rm;k
2dm;k

~WT
m;k

~Wm;k

þ
Xnm

k¼1

rm;k
2dm;k

WT
m;kWm;k;

ð61Þ

�m
em

~cmĉm � � �m
em

~c2m þ �m
em

c2m; ð62Þ

For any constants <[ 0 and @[ 0, the set Xym;d ¼
fðym;d; _ym;d; €ym;dÞT : y2m;d þ _y2m;d þ €ym;d �<g and Xm;j :¼
f~xTP~xþ

P j
k¼1 Cðsm;jÞsm;j þ

P j
k¼1ð1=dm;jÞ ~WT

m;j
~Wm;j þ

P j
k¼2 1

2
m;j � 2@g are compact in R3 and R3j, respectively.

Thus, Xym;d � Xm;j is also compact in R3�3j. Therefore,

Ym;jð�Þ has a maximum �Ym;j [ 0. such that jYm;jð�Þj � �Ym;j,

and the following inequality holds

Xnm

k¼2

1m;kjYm;kð�Þj �
Xnm

k¼2

�Y2
m;k

2s
12m;k þ 2s: ð63Þ

Submitting (61)–(63) into (60), one can obtain

_Vm;nm � �
Xnm

k¼1

cm;kðC2
f ðsm;kÞ þ

sm;k
mm;k

Cf ðsm;kÞÞ

�
Xnm

k¼2

1

2
ð 2

-m;k
� 1�

�Ym;k
s

Þ12m;k

� 1

2
ðrm;1
dm;1

� 2kPmk2Þ ~WT
m;1

~Wm;1 þMi

� 1

2

Xnm

k¼2

ðrm;k
cm;k

� 2kPmk2 � 1Þ ~WT
m;k

~Wm;k

� ð�m
em

� qm
2
kPmk2v2mÞ~c2m � qm;1k~xmk2;

ð64Þ

where Mm ¼ Mm;nm þ 2sþ �m
em
c2m.

4.4 Stability analysis

Theorem 1 Consider the nonstrict-feedback MIMO sys-

tems (1). The actual control input (57) is designed with the

NN observer (7) and the adaptive functions (30), (40), (50),

(58) and (59), described in ?tic=?>Fig. 2 and Algorithm 1.

Furthermore, all the closed-loop variables can be adjusted

to be bounded and the output of each subsystem can track

the reference signals.

Proof: Choose a Lyapunov function V ¼
Pm

i¼1 Vm and

calculate its time differentiation, one gets

_V �
Xm

i¼1

�Cm

Xnm

k¼1

Cf ðsm;kÞsm;k � Cm

Xnm

k¼2

1

2
12m;k

(

�Cm

Xnm

k¼1

1

2
~WT
m;k

~Wm;k � Cm
1

ei
~c2m þMi

)

;

ð65Þ

where

Cm ¼ min
qm;1

kmaxðPmÞ
;

2

-m;k
� 1�

�Ym;k
s

;

�

rm;1
dm;1

� 2fmP
2
m;
rm;k
cm;k

� 2fmP
2
m � 1

)

;
�m;k
mm;k

	Cm [ 0:

ð66Þ

From Property 2, we can obtain the following inequality

Xnm

k¼1

Cðsm;kÞsm;k �
Xnm

k¼1

Cf ðsm;kÞsm;k; ð67Þ

it gives
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_V �
Xm

i¼1

�Cm

Xnm

k¼1

Cðsm;kÞsm;k � Cm

Xnm

k¼2

1

2
12m;k

(

�Cm

Xnm

k¼1

1

2
~WT
m;k

~Wm;k � Cm
1

ei
~c2m þMi

)

� � CV þM;

ð68Þ

where C ¼ min C1;C2; . . .;Cnmf g,
M ¼ min M1;M2; . . .;Mnmf g.

Multiplying (68) by eCt and integrating it over [0, t], one

obtains

0�V �ðVð0Þ �M

C
Þe�Ct þM

C
: ð69Þ

According to (69), we can learn that the output ym can track

the reference trajectory ym;d with a minimal error. Mean-

while, if sm;1 � m, Cðsm;1Þsm;1 ¼ s2m;1, if not Cðsm;1Þsm;1 ¼
½logoð1�ln o�mþln o�jsm;1jÞ

ln o þ m�jsm;1j 	 mjsm;1j. Form the definition

Fig. 3 Trajectories of ymðtÞ and ym;dðtÞ ðm ¼ 1; 2Þ

Fig. 4 Tracking error e1ðtÞ

Fig. 5 Tracking error e2ðtÞ

Fig. 6 Trajectories of x1;jðtÞ and x̂1;jðtÞ ðj ¼ 1; 2Þ
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Fig. 7 Trajectories of x2;jðtÞ and x̂2;jðtÞ ðj ¼ 1; 2Þ

Fig. 8 Trajectories of kW1;1k2, kW1;2k2, kW2;1k2 and W2;2

�
�

�
�2

Fig. 9 Trajectories of hysteresis input v1ðtÞ, v2(t) and system input

u1ðtÞ, u2(t)

Fig. 10 The helicopter (CE-150) system

Table 1 Parameters of helicopter (CE-150)

Symbol Physical meaning

h The elevation angle

u The azimuth angle

u1 The main rotor

u2 The secondary rotor

R1 The main propeller radius

R2 The secondary propeller radius

Tfi The LuGre friction model

Fig. 11 Trajectories of ymðtÞ and ym;dðtÞ ðm ¼ 1; 2Þ
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V, one has Cðsm;1Þsm;1 �V , then, jsm;1j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð0Þe�Ct þ M

C

q
;

if jsm;1j � m, otherwise, jsm;1ðtÞj � Vð0Þe�Ct

m þ M
Cm. Finally, sm;1

satisfies

jsm;1j � max
Vð0Þe�Ct

m þ M
Cm ;min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð0Þe�Ct þ M

C

qn on o
. Since

limt!1 e�Ct ! 0, the ultimate bound of tracking error em is

limt!1 jemj � max
Vð0Þe�Ct

m þ M
Cm

n o
. Thus, we can easily

conclude that the error em can be adjusted to arbitrarily

small by choosing the appropriate parameters C, M and m.

Remark 5 For the tracking error, it should be noticed that

if the performance function lm;1 is a continuous function

with 0\lm;1ð0Þ\1, 8t[ 0, lm;1 satisfies 0\lm;1ðtÞ\1

from Lemma 2. According to lm;1ðtÞ ¼ e1
/m;1ðtÞ

, we can

conclude that jemðtÞj� j/m;1ðtÞj holds. This further means

that the steady-state and transient output tracking error

emðtÞ will not violate the predefined range by performance

function.

Remark 6 Due to the fact that each subsystem nonlinear

function fm;jðxmÞ contains the whole states xm, the nonlinear
system (1) is said to be in nonstrict-feedback structure,

which will increase the difficulty for controller design. In

this paper, the approximation ability of RBF-NNs is uti-

lized to estimate the nonlinear function fm;jðxmÞ. It should
be noticed that the whole states xm appear in the j-th step

backstepping design to further generate the algebraic loop

problem. To deal with this obstacle, WT
m;jum;jðx̂mÞ ¼

W�T
m;jum;jðx̂mÞ � W�T

m;jum;jð �̂xm;jÞ þ WT
m;jum;jð �̂xm;jÞ þ ~WT

m;jum;j

ð �̂xm;jÞ is transformed in (33). According to this variable

Fig. 12 Tracking error e1ðtÞ

Fig. 13 Tracking error e2ðtÞ
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separation technique, the algebraic loop problem can be

solved.

Remark 7 It is noteworthy that some control approaches

have been reported in [6, 29, 41] for nonlinear systems. The

primary discrepancies between the results in [6, 29, 41] and

our result are summarized as follows: (1) The reported

control algorithms in [6, 29, 41] are in the sense of strict-

feedback SISO systems. In contrast, we extend the strict-

feedback SISO systems to nonstrict-feedback MIMO sys-

tems. And the nonlinear-gain based controller developed in

our result can be employed to control the SISO systems. (2)

It can be seen that the approximation ability of RBF-NNs is

used to estimate the unknown packaged functions and the

unknown functions in [42], which indicates 2nm adaptive

parameters should be online estimated, which will increase

the computation burden. In order to save computing

resources, we only utilize nm adaptive parameters to realize

the controller design. Therefore, the complexity of com-

puting can be alleviated.

Remark 8 The parameters of the proposed controller are

chosen by the characteristics of the considered systems and

the stability criteria. It is obvious that all designed

parameters should be selected to ensure Theorem 1 holds.

We can obtain the selection principles of these parameters

and their impacts on the system performance. According to

(65), the small error signals em, sm;j and ~Wm;j may be

obtained by choosing the larger �m;j, s and rm;j. Never-
theless, the larger �m;j, s and rm;j may lead to the poor

transient performance and the high control input. Hence,

Fig. 14 Trajectories of x1;jðtÞ and x̂1;jðtÞ ðj ¼ 1; 2Þ

Fig. 15 Trajectories of x2;jðtÞ and x̂2;jðtÞ ðj ¼ 1; 2Þ

Fig. 16 Trajectories of kW1;1k2, kW1;2k2, kW2;1k2 and kW2;2k2

Fig. 17 Trajectories of hysteresis input v1(t), v2(t) and system input

u2(t)
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the trial-and-error method, a widely employed approach,

can be utilized for parameter selection.

5 Simulation results

In order to demonstrate the effectiveness and application of

the proposed control algorithm, this section provides two

simulation examples.

Example 1 Consider the MIMO nonstrict-feedback non-

linear systems

_x1;1 ¼x1;2 þ f1;1ðXÞ þ d1;1ðtÞ;
_x1;2 ¼u1ðv1Þ þ f1;2ðXÞ þ d1;2ðtÞ;

y1 ¼x1;1;

_x2;1 ¼x2;2 þ f2;1ðXÞ þ d2;1ðtÞ;
_x2;2 ¼u2ðv2Þ þ f2;2ðXÞ þ d2;2ðtÞ;

y2 ¼x2;1;

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð70Þ

where f1;1ðXÞ ¼ 1� cosðx1;1x1;2x2;1x2;2Þ þ x1;1, f1;2ðXÞ ¼
2x1;1 cosðx1;1x1;2Þ þ x1;1x1;2x2;1x2;2e

x1;2 , f2;1ðXÞ ¼ 2�
cosðx1;1x1;2x2;1x2;2Þ þ 3x1;1x1;2x2;1x2;2, f2;2 ¼ x2;1x2;2e

x2;2þ
x1;1x1;2x2;2. The tracking signals are selected as

y1;dðtÞ ¼ 1
2
sinðtÞ þ 1

2
sinð t

2
Þ, y2;dðtÞ ¼ 1

2
sinðtÞ � 1

4
cosð2tÞ.

According to [38], the parameters of the hysteresis input

are selected as .m ¼ 1, cm ¼ 5 and Dm ¼ 0:5.

The basis vector function um;j is constructed by

choosing the width of Gaussian functions and the centers

of the receptive field as �rm ¼ 2 and

l ¼ ½�1:5;�1;�0:5; 0; 0:5; 1; 1:5�T. Prescribed perfor-

mance function is l1;1 ¼ l2;1 ¼ ð0:5� 0:015Þe�2t þ
0:015 and it is easy to know l0;m;1 ¼ 0:5, l1;m;1 ¼ 0:05,

am;1 ¼ 2, l1;m;1 ¼ 0:005. The parameters of nonlinear gain

function are selected as o ¼ 10 and m ¼ 0:005. Further-

more, all designed parameters are chosen as

l1;1 ¼ l1;2 ¼ 25, l2;1 ¼ l2;2 ¼ 20, �1;1 ¼ �1;2 ¼ 1:5, �2;1 ¼
�2;2 ¼ 2:5 r1;1 ¼ r1;2 ¼ 1:2, r2;1 ¼ r2;2 ¼ 1:5,

d1;1 ¼ d1;2 ¼ 1:5; d2;1 ¼ d2;2 ¼ 1:8, s ¼ 1. The initial val-

ues are given as x1ð0Þ ¼ ½0:2; 0:01�T, x2ð0Þ ¼ ½�0:23; 0�T,
x̂1ð0Þ ¼ ½0:35; 0:35�T, x̂2ð0Þ ¼ ½0:18; 0:18�T, ĉmð0Þ ¼ 0:05,

W1;1ð0Þ ¼ ½0:2; 0:1; 0:1; 0; 0:1; 0; 0�T, W1;2ð0Þ ¼ ½0:2; 0:1;
0; 0:1; 0; 0; 0�T, W2;1ð0Þ ¼ ½0:2; 0:2; 0:2; 0:2; 0:2; 0; 0�T,
W2;2ð0Þ ¼ ½0:15; 0; 0:15; 0:15; 0:15; 0:15; 0�T. Figures 3, 4,
5, 6, 7, 8 and 9 illustrate the simulation results. According

to Fig. 3, it is easy to conclude that the proposed control

strategy can derive the output to track the reference signal.

Figures 4 and Fig. 5 are described to show the tracking

error, it can be seen that the nonlinear feedback control, the

linear feedback (LF)-DSC and the LF-PPC have a similar

control performance with a small tracking error. Compared

with the LF control method, the nonlinear gain feedback

control proposed in the paper can drive the tracking error

retained within the predefined range with better tracking

performance. Figures 6 and 7 are used to show the

trajectories of states xm;1 and xm;2 and the NN observer

values x̂m;1, x̂m;2. x̂m;1 and x̂m;2 are used to obtain the system

states xm;1 and xm;2, respectively. The trajectories of

kWm;jk2 are given in Fig. 8. Figure 9 indicates the control

signals umðvmÞ and vm.

Example 2 Consider the tracking error problem for a

helicopter (CE-150) in [43], see Fig. 10. The helicopter

system can be described as the following MIMO systems

€u cosðuIl2Þ
2 � 2 cosðhÞ sinðhÞ _h _uIl2 ¼ u1ðv1Þ;

Il2
€hþ cosðhÞ sinðhÞ _u2Il2 þ mgIl2 cosðhÞ ¼ u2ðv2Þ:

ð71Þ

where various parameters are shown in Table 1, Il2 and Ic
are defined as

Il2 ¼
mlðL31 þ L32Þ
3ðL1 þ L2Þ

þ m1L
2
1 þ m2L

2
2;

Ic ¼
ðmlðL1 � L2Þ þ m1l1 � m2l2Þ

m
;

ð72Þ

where m ¼ ml þ m1 þ m2.

By defining x1;1 ¼ u, x1;2 ¼ _u, x2;1 ¼ h and x2;2 ¼ _h,
(71) can be rewritten as

_x1;1 ¼ x1;2 þ d1;1ðtÞ;
_x1;2 ¼ #1;2 �0:5Fl cosðx1;1 � hÞ

�

þm1gl sin x1;1 � Tf1
	
þ u1ðv1Þ þ d1;2ðtÞ;

y1 ¼ x1;1;

_x2;1 ¼ x2;2 þ d2;1ðtÞ;
_x2;2 ¼ #2;2 �0:5Fl cosðx2;1 � hÞ

�

þm2gl sin x2;1 � Tf2
	
þ u2ðv2Þ þ d2;2ðtÞ;

y2 ¼ x2;1;

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

where #1;2 ¼ 1
J1
, #2;2 ¼ 1

J2
, d1;1ðtÞ ¼ d2;1ðtÞ ¼ 0, d2;1ðtÞ ¼

0:01 cosðtÞ, d2;2ðtÞ ¼ 0:02 sinðtÞ.
The target signals are chosen as y1;dðtÞ ¼ sinðtÞ,

y2;dðtÞ ¼ sinðtÞ. The prescribe performance function and

the nonlinear gain function are kept same with Example 1.

And all designed parameters are selected as

l1;1 ¼ l1;2 ¼ 15, l2;1 ¼ l2;2 ¼ 10, �1;1 ¼ �1;2 ¼ 1:2, �2;1 ¼
�2;2 ¼ 1:6 r1;1 ¼ r1;2 ¼ 1:8, r2;1 ¼ r2;2 ¼ 2, d1;1 ¼ d1;2 ¼
1:5; d2;1 ¼ d2;2 ¼ 1:8, s ¼ 1, x1ð0Þ ¼ ½0:25; 0�T,
x2ð0Þ ¼ ½0:1; 0�T, x̂1ð0Þ ¼ ½0:35; 0:35�T, x̂2ð0Þ ¼
½0:25; 0:25�T, ĉmð0Þ ¼ 0:1. Figures 11, 12, 13, 11, 11, 11

and 17 show the effectiveness and the practicality of the

proposed controller, which is employed to helicopter
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systems. The tracking results are demonstrated in Fig. 11

and the tracking errors are depicted in Figs 12 and 13. As

shown in Figs. 14 and 15, the constructed observer can

estimate the unmeasurable states to satisfy the controller

design. Fig. 16 gives the curves of kWm;jk2. Finally,

Fig. 17 indicates the control signals umðvmÞ and vm under

the hysteresis nonlinearity.

6 Conclusion

In this paper, a tracking control problem of MIMO non-

linear systems with hysteresis input and unknown states is

investigated and verified. The NN observer has been con-

structed to estimate the unmeasurable states. A nonlinear

gain function is used in the process of backstepping design

procedure, which brings a better dynamic performance for

the closed-loop system. Meanwhile, by designing a novel

Lyapunov function, we can easy to deal with the difficul-

ties caused by the nonlinear gain function for stability

analysis. Furthermore, the algebraic loop problem is

addressed by using the property of the NNs. According to

the benefits of DSC technique, an adaptive tracking control

method is proposed, which guarantees that the closed-loop

system is SGUUB and the tracking error converges to the

prescribed bounds. Further work is considered to deal with

the tracking control problem by using the fractional order

control method the finite-time control method.
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