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Abstract
Recently, U-Net architecture with its strong adaptability has become prevalent in the field of MRI brain tumor segmen-

tation. Meanwhile, researchers have demonstrated that introducing attention mechanisms, especially self-attention, into

U-Net can effectively improve the performance of segmentation models. However, the self-attention has disadvantages of

heavy computational burden, quadratic complexity as well as ignoring the potential correlations between different samples.

Besides, current attention segmentation models seldom focus on adaptively computing the receptive field of tumor images

that may capture discriminant information effectively. To address these issues, we propose a novel 3D U-Net related brain

tumor segmentation model dubbed as self-calibrated attention U-Net (SCAU-Net) in this work, which simultaneously

introduces two lightweight modules, i.e., external attention module and self-calibrated convolution module, into a single

U-Net. More specifically, SCAU-Net embeds the external attention into the skip connection to better utilize encoding

features for semantic up-sampling, and it leverages several 3D self-calibrated convolution modules to replace the original

convolution layers, which adaptively computes the receptive field of tumor images for effective segmentation. SCAU-Net

achieves segmentation results on the BraTS 2020 validation dataset with the dice similarity coefficient of 0.905, 0.821 and

0.781 and the 95% Hausdorff distance (HD95) of 4.0, 9.7 and 29.3 on the whole tumor, tumor core and enhancing tumor,

respectively. Similarly, competitive results are obtained on BraTS 2018 and BraTS 2019 validation datasets. Experimental

results demonstrate that SCAU-Net outperforms its baseline and achieves outstanding performance compared to various

representative brain tumor models.
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1 Introduction

In modern society, brain-related diseases are becoming an

increasingly intractable problem. According to the survey

[1], between 2013 and 2017, the incidence of brain tumors

is 7.1�16.7 per 100,000 people, and the fatality rate is 4.4

per 100,000 people, with a 5-year relative survival rate of

36%. As one of the most harmful diseases in brain diseases,

brain tumor has seriously threatened human health. Brain

tumors are abnormal cells that grow in the brain or skull,

including benign and malignant tumors [2]. The most

common malignant brain tumor is glioma, which can be

further divided into high-grade glioma (HGG) and low-

grade glioma (LGG) according to the degree of infiltration.

Gliomas are often associated with necrotic and non-en-

hancing tumors, enhancing tumors and edema. Moreover,

brain tumors are characterized by blurred margins,
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irregular shape and variable size and location and over-

lapping sections with normal brain tissue. Therefore,

accurately segmenting abnormal tissue and characterizing

these tumors are challenging. Magnetic resonance imaging

(MRI), a non-invasive imaging technique commonly used

for brain tumor detection, can provide valuable information

about the shape, size and location of brain tumors, which is

of great help in improving the diagnosis of brain tumors by

clinicians. Given the advantages of using MRI images, the

computer-aided diagnosis and treatment of brain tumors

based on MRI images has become one of the most popular

research topics in medical imaging [3, 4].

In deep neural networks, the attention mechanism can

pay more attention to pivotal information and eliminate

some redundant ones to highlight helpful information

effectively and reasonably allocate computing resources.

To further develop the performance of the U-Net model,

many researchers focus on the attention mechanism. Liu

et al. [5] introduce squeeze-and-excitation (SE) [6] block

into V-Net and propose a deep supervised 3D squeeze-and-

excitation V-Net (DSSE-V-Net) to segment brain tumors

automatically, which obtains highly competitive perfor-

mance compared with those methods win in the BraTS

2017 Challenge. Furthermore, the self-attention mechanism

has achieved great success in various computer vision tasks

as a branch of attention mechanism. Zhu et al. [7] leverage

a non-local structure to propose an asymmetric non-local

neural network for semantic segmentation, which achieves

the new state-of-the-art performance on some datasets.

Similarly, on brain tumor segmentation tasks, Jia et al. [8]

employ the expectation-maximization attention (EMA)

module, a variant of the non-local self-attention mecha-

nism, embed it into the U-Net and win second place in the

BraTS 2020 Challenge with super competitiveness. Sub-

sequently, the emergence of the transformer [9] signifi-

cantly promotes the development of the self-attention

mechanism, and researchers also focus on how to add it to

medical segmentation modules. Chen et al. [10] embed the

transformer block into the down-sampling position of

U-Net architecture and propose the TransUNet model that

combines the advantages of transformer and U-Net, and

has excellent segmentation performance. Wang et al. [11]

propose the TranBTS model for brain tumor segmentation

and achieve a breakthrough accuracy improvement. Vala-

narasu et al. [12] propose a gated axial-attention module

that improves the existing self-attention mechanism by

introducing an additional control mechanism in the self-

attention module to perform feature learning from both

local and global channels. Final experiments show that

their method outperforms convolutional and other corre-

lation transformer-based architectures. Besides, the trans-

former modle has also achieved excellent performance in

semantic segmentation for scene understanding [13].

Although these works based on self-attention can achieve

excellent segmentation results, they usually need to rely on

large-scale pre-training and have high computational

complexity, making these methods unable to be easily

used. Furthermore, self-attention has quadratic computa-

tional complexity, which slows down the data processing

speed in 3D medical image segmentation. Self-attention

can only model self-affinity within a single sample,

ignoring potential correlations between different samples

in the entire dataset. Last but not least, the current U-Net

models associated with self-attention rarely focus on

adaptively computing the receptive field of tumor images

to capture discriminant information.

Therefore, to address the above-mentioned issue, we

utilize a simpler self-attention-like approach: external

attention [14] that solves the enormous computational

complexity problem well with two linear layers. At the

same time, due to the small number of datasets and the high

similarity of samples in brain tumor segmentation, it is

necessary to pay attention to the potential correlation

between the different samples. The external attention can

handle this problem well and improve the model’s accu-

racy to a certain extent. In addition, the self-calibrated

convolution structure [15] can adaptively build long-range

spatial and inter-channel dependencies around each spatial

location through a novel self-calibration operation, helping

our model to generate more discriminative representations

while easily applied to augment standard convolutional

layers. Therefore, we embed the 3D external attention and

3D self-calibrated convolutions into a single 3D U-Net

structure to reduce the self-attention mechanism’s high

computational complexity and parameters while improving

segmentation accuracy. The main contributions of this

work are summarized as follows: (1) We propose a novel

3D SCAU-Net model for MRI brain tumor segmentation

task. SCAU-Net introduces lightweight modules to reduce

computational complexity and analyzes potential correla-

tions among different samples in the entire dataset while

adaptively computing receptive field to gain effective

segmentation results. (2) SCAU-Net embeds the 3D

external attention into the skip connection to enhance

important encoding features for semantic up-sampling, and

it leverages 3D self-calibrated convolutions to replace

original convolution layers, adaptively capturing long-

range spatial and inter-channel dependencies around each

position to compute more discriminant features. (3)

Extensive experimental results on three brain tumor seg-

mentation benchmarks of BraTS 2018, 2019 and 2020

demonstrate that SCAU-Net outperforms its baseline

model. SCAU-Net also achieves competitive performance

with representative brain tumor segmentation methods.
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2 Method

In this section, we first introduce the structure of SCAU-

Net for brain tumor segmentation. Then, the 3D external

attention module and the 3D self-calibrated convolution

module are described in detail. Finally, we present our loss

function adopted for the SCAU-Net model.

2.1 Overall architecture

In this work, we expand the external attention module and

the self-calibrated convolution module to 3D modules and

propose a single 3D U-Net architecture, namely, SCAU-

Net. SCAU-Net can effectively attain context-related

information, generate more discriminative representations

and reduce the computational complexity. Figure 1

demonstrates the overall architecture of SCAU-Net.

As shown in Fig. 1, the SCAU-Net follows the tradi-

tional U-Net architecture and consists of an encoder part

and a decoder part, which are connected by skip connec-

tions. SCAU-Net model receives input data size of

4 � 128 � 128 � 128, in which the input image size is

128 � 128 � 128, and the channel number is 4. The

SCAU-Net contains four encoding blocks to capture con-

text features and four decoding blocks to recover spatial

information and input image size. In the encoder part, we

perform four down-sampling operations using two 3D

convolution layers with kernels of size 3 and a 3D Max-

pooling with stride 2 to extract features from MRI images,

and after each down-sampling, the size of the image is

halved, and the number of channels is doubled. Further-

more, the size of the image at the bottom of the network

becomes 512 � 8 � 8 � 8. At the same time, we employ

upsample layer with scale_facter of 2 to up-sampling

operations that double the image size and halve the number

of channels to recover the spatial information of the feature

map and the original size of the input. In SCAU-Net, the

external attention (EA) module is embedded into the fourth

skip connection to better utilize the feature information of

low-level CNNs. The EA module is a very lightweight self-

attention module that achieves performance and accuracy

equivalent to self-attention through two simple linear lay-

ers. This not only greatly improves the traditional self-

attention module that is difficult to consider the correla-

tions between all samples but also greatly reduces the

computational complexity. The EA module will be

explained further in Sect. 2.2.

It is worth noting that, different from the traditional 3D

U-Net, we utilize the 3D self-calibrated convolution for

replacing some original 3D convolutions in up-sampling

and down-sampling. The self-calibrated convolution is a

relatively lightweight convolution module that significantly

expands the receptive field of each convolution layer

through internal channels, thereby enriching the output

functions of each encoder. And the self-calibrated convo-

lution will be explained further in Sect. 2.3. The output of

each encoder block is down-sampled to the next encoder

block and put into the horizontal connection of the corre-

sponding layer. Notably, the output of the fourth-level

encoding block is simultaneously input to the EA module

to contextual information among all pixels and mine

potential relationships across the whole datasets. Finally, at

the end of the decoder, we fuse the outputs of the last three

decoder blocks through the 1 � 1 � 1 convolution and up-

sampling operations as the final segmentation result.

2.2 The 3D external attention module

The self-attention with its ability to capture long-range

dependencies can improve the performance of various

computer vision tasks [16–20]. However, self-attention has

disadvantages of computational quadratic complexity and

ignoring potential correlations between different samples.

When the self-attention captures the long-range depen-

dencies within a single sample, it updates features at each

position by computing a weighted sum of features using

pair-wise affinities across all positions, which leads to

quadratic computational complexity and ignores potential

correlations between different samples. Therefore, Guo

et al. [14] propose a novel attention mechanism named

external attention which is based on two external, learn-

able, shared memories to learn the most discriminative

features across the whole dataset. The external attention

can be implemented easily by using only two cascaded

linear layers and two normalization layers, which reduces

the computational complexity of external attention to a

linear level. Therefore, in this work, we embed the external

attention module at the horizontal connection position of

the U-Net network. Besides, since the MRI brain tumor

images are in 3D format, we add the dimension of depth D

to the original 2D external attention module (input image

resolution size is H �W) and extend it to the 3D module

(H �W � D) to fit the input data. The overall architecture

of the 3D external attention module is demonstrated in

Fig. 2.

The external attention module is a modified module

based on the self-attention mechanism. Before showing the

external attention module, let us briefly introduce the self-

attention mechanism. As shown in Fig. 2(a), given an input

feature map F 2 RN�d , where N is the number of elements

(or pixels in images) and d is the number of feature

dimensions, self-attention linearly projects the input to a

query matrix Q 2 RN�d0 , a key matrix K 2 RN�d0 and a

value matrix V 2 RN�d . The self-attention calculation is
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mainly divided into three steps. First, the similarity

between the query and each key is calculated to obtain the

weights. Then, these weights are normalized using the

softmax function. Finally, the weighted sum operation is

performed on the normalized weights and the

corresponding values to obtain the final attention. There-

fore, the self-attention can be formulated as follows:

A ¼ softmax QKT
� �

;Fout ¼ AV ð1Þ

where A 2 RN�N is the attention matrix.

Fig. 1 The overall architecture of SCAU-Net. SCAU-Net is an end-to-end network that integrates the external attention (EA) module and 3D

self-calibrated convolution (SC) modules into a single 3D U-Net model

Fig. 2 a Self-attention structure

and b 3D external attention

structure
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From the formula, we can conclude that the use of self-

attention has a significant drawback of the high computa-

tional complexity of O dN2ð Þ. The quadratic complexity in

the number of input pixels makes it very time-consuming

and memory consumption for complex pixel image calcu-

lations, which leads to previous brain tumor segmentation

work rarely involving self-attention to complete the cor-

responding segmentation task. However, the strong feature

representation ability of self-attention is also worth learn-

ing, and we should probably seek another solution to use

the self-attention mechanism in the brain tumor segmen-

tation task. Then, Guo et al. [14] propose a novel attention

module named external attention that can easily compen-

sate for this shortcoming of self-attention. As shown in

Fig. 2(b), the external attention module computes attention

between the input pixels and an external memory unit

M 2 RS�d, by:

A ¼ Norm FMT
� �

;Fout ¼ AM ð2Þ

where M is a learnable parameter independent of the input,

which acts as a memory of the whole training dataset. A is

the attention map inferred from this learned dataset-level

prior knowledge and updates the input features from M by

the similarities in A. In the specific implementation, we

replace the matrices K and V in the original self-attention

mechanism with two different memory units Mk and Mv

that constantly update themselves based on similarities in

attention. Therefore, the final external attention calculation

formula can be defined as below:

A ¼ Norm FMT
k

� �
Mv ð3Þ

The final external attention calculation is linear in the

number of pixels, and the computational complexity of it is

O dSNð Þ, where d and S are hyper-parameters. From the

visualization of brain tumors, we know that only a few

pixels are meaningful for segmentation in brain tumors.

Thus, we can utilize the two memory units of external

attention to learn the required pixel value features in the

input features to improve the segmentation accuracy. The

3D external attention can significantly reduce the time and

computational complexity and mine the potential connec-

tions between different samples to improve the segmenta-

tion accuracy.

2.3 The 3D self-calibrated convolution

In order to better improve the performance of the model,

we utilize several 3D self-calibrated convolution modules

for replacing the original convolution layers in up-sam-

pling and down-sampling. A traditional convolutional layer

f generally consists of a group of filter sets

K ¼ ½k1; k2; :::; kĈ�, where ki denotes the i-th set of filters

with size C, and it can transform the input X ¼
½x1; x2; :::; xc� 2 RC�H�W�D to the output

Y ¼ ½y1; y2; :::; yĈ� 2 RĈ�Ĥ�Ŵ�D̂. Therefore, the output

feature map at channel i is calculated as follows:

yi ¼ ki � X ¼
XC

j¼1

k j
i � Xj ð4Þ

where ‘‘�’’ denotes convolution and ki ¼ k1
i ; k

2
i ; :::; k

c
i

� �
. In

this way, each output feature map results from summing by

executing Eq. (4) multiple times through all channels.

However, the pattern of such convolutional filter learning is

similar, which causes the network model to generate fea-

ture maps that are less discriminative. Therefore, we

introduce the self-calibrated convolution module to solve

this problem very well. As shown in Fig. 3, we illustrate

the self-calibrated convolution module from the following

steps:

Firstly, the input feature map X 2 RC�H�W�D is split

into two features Xu 2 R
C
2
�H�W�D for the path above and

Xd 2 R
C
2
�H�W�D for the path below. Secondly, given a

group of filter sets K with the shape (C; Ĉ; kh; kw; kd), where

C, Ĉ, kh, kw and kd denote the input channel number, the

output channel number, the spatial height, width and depth,

respectively. Then divide K into four parts: K1, K2, K3 and

K4, each part has shape (C
2
; Ĉ

2
; kh; kw; kd), are responsible for

performing different functions. Without loss of generality,

we assume that the number of input and output channels is

equal, i.e., C = Ĉ and that C is divisible by 2. Furthermore,

to efficiently gather rich informative contextual informa-

tion from each spatial location, the convolutional feature

transformation is performed in two different scale-spaces:

an original scale-space (the feature map shares the same

resolution as the input) and a small latent space after down-

sampling (small resolution latent space for self-correction

operation). The down-sampled features have larger recep-

tive fields, so the transformed embeddings in the smaller

latent space are used as a reference to guide the feature

transformation process in the original feature space.

Then, the operation process in the self-calibrated con-

volution scale-space can be formulated as follows:

T1 ¼ AvgPoolr Xuð Þ ð5Þ

The feature Xu is down-sampled by average pooling 3D

with filter size r � r � r and stride r (r=4 in this work).

Further, T1 performs an up-sampling operation based on K2

to get feature Xu
0
:

Xu
0 ¼ Up f2 T1ð Þð Þ ¼ Up T1 � K2ð Þ ð6Þ

where Up �ð Þ is a trilinear interpolation operator to conduct
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the up-sampling operation. At this time, the middle step of

the self-calibration operation can be written as follows:

Yu
0 ¼ f3 Xuð Þ � r Xu þ Xu

0
� �

ð7Þ

where f3 Xuð Þ ¼ Xu � K3, r means the sigmoid function, and

‘‘�’’ denotes element-wise multiplication. Therefore, the

final output after self-calibration operation can be formu-

lated as follows:

Yu ¼ f4 Y
0

u

� �
¼ Y

0

u � K4 ð8Þ

Moreover, in the original scale feature space, feature Yd is

extracted by K1 convolution on feature Xd. Finally, the two

scale-space output features Yu and Yd are concatenated to

obtain the final output feature Y. Compared with the tra-

ditional convolution operation, the self-calibrated convo-

lution module can generate more discriminative

representations without introducing additional parameters.

Therefore, it is a wise choice to introduce the self-cali-

brated convolution module into the task of brain tumor

segmentation.

2.4 Combined loss function

The problem of data imbalance is a longstanding challenge

in brain tumor segmentation tasks. In brain tumor MRI

images, the average area occupied by healthy tissue is

98.46%, while the area occupied by edema, enhanced

tumor and non-enhanced tumor only are 1.02%, 0.29% and

0.23%, respectively. The considerable difference in the

occupancy rate of different regions in brain tumor MRI

significantly impacts its segmentation accuracy. In order to

address this problem, we adopt a combination of dice loss

and cross-entropy loss as the loss function in SCAU-Net.

The combined loss function LDCE can be defined as

follows:

LDCE ¼ aLDC þ ð1 � aÞLCE ð9Þ

where a is the balance parameter varying from 0 to 1, LDC
is the dice loss and LCE is the cross-entropy loss.

3 Experimental datasets and results

3.1 Datasets

We adopt the BraTS 2018-2020 datasets from the Multi-

modal Brain Tumor Segmentation Challenge (BraTS)

[21–23] to evaluate the effectiveness of SCAU-Net. The

BraTS 2018 dataset consists of a training dataset and a

validation dataset. The training dataset contains 285 glioma

patients, which includes 210 high-grade glioma (HGG)

cases and 75 low-grade glioma (LGG) cases, and the val-

idation dataset includes 66 patient cases of unknown

grades. The BraTS 2019 dataset grows to 259 HGG and 76

LGG cases in its training dataset and 125 patient cases of

unknown grade in the validation dataset. In the BraTS 2020

dataset, some changes have taken place in the form of the

dataset. The training dataset is expanded to 369 cases

without separating HGG and LGG, while the validation

dataset keeps 125 cases of unknown grade. Since the

BraTS 2020 dataset has the largest amount of data and

sufficient pathological information, we pay more attention

to the BraTS 2020 dataset and conduct core experiments on

it. In these three datasets, each patient’s MRI scan consists

of four modalities, i.e., native T1-weighted (T1), post-

contrast T1-weighted (T1CE/T1Gd), T2-weighted (T2) and

T2 fluid-attenuated inversion recovery (T2-FLAIR), and all

of them co-registered to a common anatomical template

Fig. 3 The 3D self-calibrated convolutions. As can be seen, the original filters are separated into four portions, each of which is in charge of a

different functionality

23978 Neural Computing and Applications (2023) 35:23973–23985

123



(SRI [24]) and resampled to 1mm3. The basic labels include

four types, termed healthy parts (label 0), necrotic and non-

enhancing tumors (NCR/NET—label 1), edema around the

tumor (ED—label 2) and GD-enhancing tumors (ET—la-

bel 4). The various sub-regions considered for the seg-

mentation evaluation are the whole tumor (combined area

of labels 1, 2 and 4), the tumor core (combined area of

labels 1 and 4) and the enhancing tumor (label 4). Addi-

tionally, for these datasets, the ground truth of training

datasets is provided by the BraTS organizers. However,

labels of validation datasets are unavailable to the public.

Therefore, the model’s predicted results are evaluated via

submission to the official BraTS website, ensuring the

evaluation result’s fairness and authority. Figure 4 shows

an example of the 2020 training dataset.

3.2 Data preprocessing

In the BraTS dataset, all patient data are collected based on

multiple institutions using different scanners and protocols.

Due to the uncertainty of brain tumor morphology, loca-

tion, blurring of boundaries and manual annotation devia-

tion, the preprocessing of brain tumor images is

particularly important. In this work, we perform the fol-

lowing preprocessing and data enhancement on each

dataset: (i) Due to the severe class imbalance of brain

tumors, we first crop the collected MRI brain tumor data

from 240 � 240 � 155 pixels to 128 � 128 � 128 pixels;

(ii) the z-score normalization applies the average and

standard deviation to process each image; (iii) random

rotation is with the angle between [�10� and þ10�] and

(iv) random intensity shifts between [-0.1, 0.1].

3.3 Evaluation metrics and settings

We employ the dice similarity coefficient (DSC) and 95%

Hausdorff distance (HD95) metrics widely used in the

medical segmentation community to evaluate the given

model, and they are defined as follows:

Dice Score ¼ 2TP

FP þ 2TP þ FN
ð10Þ

where TP, FP, TN and FN denote the number of true-

positive, false-positive, true-negative and false-negative

voxels, respectively. The value range is 0-1, and the value

closer to 1 indicates more similar contours of brain tumors.

HDðT ;PÞ ¼ max supt2T infp2Pd t; pð Þ; supp2Pinft2Td t; pð Þ
� 	

ð11Þ

where t and p refer to the points on the ground truth regions

T and the predicted regions P, respectively. d t; pð Þ denotes

the distance between points t and p.

In this work, we utilize the Adam optimizer with an

initial learning rate of 0.001. Momentum is 0.95, the

weight decay is 1e-5, the batch size is set to 4 and the

epochs are 500 to ensure the best experimental results. Our

model is implemented using the PyTorch deep learning

framework on an NVIDIA GeForce GTX 3090 GPU with

24 GB of memory.

3.4 Experimental results

We extensively evaluate SCAU-Net on three brain tumor

segmentation benchmarks, i.e., BraTS 2018-2020 data-

sets. We first perform ablation experiments on the BraTS

2020 dataset to demonstrate the effects of 3D external

attention and 3D self-calibrated convolution modules.

Then, we show the computational complexity and param-

eters between our proposed network and the self-attention

network. Finally, the experiment results compared with

representative works on BraTS 2018-2020 validation

datasets are reported and analyzed to prove the effective-

ness of SCAU-Net.

3.4.1 Ablation experiments

Firstly, we conduct ablation experiments on the BraTS

2020 training dataset and validation dataset to evaluate the

effectiveness of the 3D external attention module (EA) and

3D self-calibrated convolution module(SC) for brain tumor

Fig. 4 An example of the brain MRI data from the BraTS 2020

training dataset. From left to right: T2-FLAIR, T1, T1Gd, T2 and

ground truth. Each color represents a tumor class (label): red (label

1)—necrosis and non-enhancing, green (label 2)—edema and yellow

(label 4)—enhancing tumor (color figure online)
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segmentation. On the training dataset, we utilize fivefold

cross-validation to test the segmentation performance of

the 3D external attention module and the 3D self-calibrated

convolution module. Moreover, the segmentation results

are listed in Table 1. In our work, the 3D U-Net is taken as

the baseline model, the 3D external attention module is

added to the first skip connection, the second skip con-

nection, the third skip connection and the fourth skip

connection, respectively, and we call them EA1, EA2, EA3

and EA4. In order to capture long-range dependencies and

comprehensively consider related issues such as model

memory consumption, we perform ablation experiments on

the four skip connection parts in turn to determine the

optimal embedding locations.

As shown in Table 1, we clearly see that the model of

baseline þ EA 4 þ SC achieves the optimal segmentation

performance, which obtains dice similarity coefficient

(DSC) of 0.909, 0.845 and 0.817 on the whole tumor (WT),

tumor core (TC) and enhancing tumor (ET) segmentation,

respectively. And it is superior to the baseline with 0.8%,

2.3% and 2.1% on the WT, TC and ET, respectively.

Therefore, in the following experiments, our model utilizes

this method by default. Besides, we embed the SC module

into the baseline, and 0.1%, 1.2% and 1.2% improve its

accuracy in these three regions compared with the baseline,

demonstrating the SC module’s effectiveness in brain

tumor segmentation task. At the same time, we embed self-

attention (SA) into the fourth horizontal connection of the

baseline to form the baseline þ SA4 model, which achieves

DSC of 0.903, 0.835 and 0.797 on the WT, TC and ET

segmentation, respectively. Then, in order to find the

optimal embedding location for the EA module, we per-

form four sets of experiments at the positions of skip

connections. Furthermore, the experimental results show

that no matter EA module is added to which skip con-

nection position of U-Net, its performance is better than the

baseline. In particular, when it is added to the fourth skip

connection, baseline þ EA 4 achieves the optimal seg-

mentation performance, and its DSC values are 0.904,

0.838 and 0.811 on the WT, TC and ET segmentation,

respectively. Compared with the baseline ? SA4 model,

the model formed by embedding the external attention

module on the baseline has achieved comparable or even

superior segmentation performance in the segmentation of

the three tumor sub-regions. Among them, in the fourth

layer embedded in the EA module (baseline þ EA 4), it

surpasses baseline ? SA4 by 1.4% on ET segmentation,

which is enough to show that the EA module has better

performance in brain tumor segmentation. Therefore,

ablation experiment results show that using EA and SC

modules benefits the brain tumor segmentation task. In

addition, Table 1 shows the FLOPs and parameters of the

baseline and its added modules. We can see that SCAU-Net

only increases the FLOPs and parameters a small compared

to baseline but achieves an effective performance boost.

Meanwhile, it can be seen that the EA module added to the

fourth layer of the skip connection has fewer parameters

than the SA module, but it achieves higher performance.

Moreover, we also visualize the brain tumor segmenta-

tion results of the four models as shown in Fig. 5. In this

figure, the five columns from left to right demonstrate MRI

images in ground truth (GT), segmentation results of U-Net

(baseline), ExU-Net (baseline þ EA 4), ScU-Net (baseline

þ SC) and SCAU-Net (baseline þ EA 4 þ SC), respec-

tively. And we apply various colors to represent different

tumor classes for the brain tumor segmented images, the

yellow regions represent enhancing tumor, the green

regions indicate edema and the red regions are necrosis and

non-enhancing. As shown from Fig. 5, the SCAU-Net

model achieves the optimal brain tumor segmentation

results.

Then, to further verify the effectiveness and robustness

of our module, we perform the ablation experiment on the

BraTS 2020 validation dataset. We utilize 369 MRI images

on the BraTS 2020 training dataset to train our models and

then submit 125 predicted results of the validation dataset

to the BraTS online website. In this experiment, we further

Table 1 Ablation DSC results

on the BraTS 2020 training

dataset

Methods WT TC ET FLOPs (GMac) Parameters (M) Time (h)

Baseline 0.901 0.822 0.796 693.19 28.36 13.2

Baseline þ SC 0.902 0.834 0.808 696.01 33.07 19.5

Baseline þ EA 1 0.899 0.825 0.801 706.42 28.37 23.7

Baseline þ EA 2 0.903 0.825 0.802 697.77 28.38 23.2

Baseline þ EA 3 0.902 0.831 0.806 695.08 28.41 22.8

Baseline þ EA 4 0.904 0.838 0.811 694.14 28.53 22.4

Baseline þ SA 4 0.903 0.835 0.797 693.73 29.05 25.3

Baseline þ EA 4 þ SC 0.909 0.845 0.817 696.68 33.24 31.6

Bold font represents the best result on the corresponding accuracy indicator
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delve into the related issues of the external attention

module. The experimental results are shown in Table 2.

It is observed from Table 2 that our proposed model, i.e.,

baseline þ EA 4 þ SC also achieves the best results on this

dataset, which is consistent with our results on the training

dataset. Moreover, our model outperforms baseline by

1.3%, 1.9% and 2.0% on WT, TC and ET, respectively.

Especially, the segmentation of WT has also been signifi-

cantly improved on the BraTS 2020 validation dataset. The

experiment results further show that the attention mecha-

nism can make the model pay more attention to the tumor

area. Simultaneously, the baseline þ SC model exceeds the

baseline with 0.4%, 0.5% and 1.1% on WT, TC and ET,

respectively. The baseline þ EA4 gains 0.4%, 1.4% and

1.2% accuracy over the baseline model on WT, CT and ET,

respectively. These results also demonstrate that both the

EA module and the SC module are helpful for brain tumor

segmentation tasks. At the same time, compared with the

baseline ? SA4 model, the baseline þ EA4 model

improves the segmentation results of the three sub-tumor

regions by a total of 0.6%, which is enough to show that the

EA module is superior to the SA module. Furthermore, we

give the standard deviation of DSC on the corresponding

three segmented regions (WT, TC and ET). It can be seen

that the standard deviation on the DSC is slight, which

shows the stability of the SCAU-Net model segmentation

results.

Finally, we compare the computational complexity and

parameters of SCAU-Net with two other self-attention

networks. As shown in Table 3, the computational com-

plexity and parameters of SCAU-Net are 696.68 GMac and

33.24 M, respectively. Compared with these two self-at-

tentive networks, our method’s computational complexity

and parameters are significantly reduced. In particular,

compared to TransBTS [11], our computation and param-

eters are reduced by approximately 16% and 69%,

respectively.

3.4.2 Comparison results with state-of-the-art methods

To verify the generalization and effectiveness of our pro-

posed SCAU-Net, we also conduct experiments on the

BraTS 2018, 2019 and 2020 validation datasets. The fol-

lowing three tables show our comparative results on these

three datasets.

Compared results on BraTS 2018 validation dataset with

state-of-the-art methods are given in Table 4. We can

obviously find that SCAU-Net achieves DSC values of

90.9%, 85.1% and 80.4% on WT, TC and ET, respectively.

And it is worth noting that our SCAU-Net gets the same

highest value in DSC values on the WT as Isensee et al.

[25], which comes second in BraTS 2018 Challenge.

Compared with works in [26–28], our model’s DSC value

on the WT exceeds 0.3%. On the segmentation results of

TC and ET, Myronenko et al. [29] achieve the optimal

DSC accuracy. Meanwhile, SCAU-Net is slightly lower

than Brügger et al. [27] on DSC values of TC and ET.

Brügger et al. [27] embed the reversible block into the

traditional U-Net structure and propose a partially

Fig. 5 Examples of

segmentation results on the

BraTS 2020 training dataset.

From left to right: MRI images

of a ground truth (GT), and

segmentation results of b U-Net

(Baseline), c ExU-Net (baseline

þ EA 4), d ScU-Net (baseline þ
SC) and e SCAU-Net (baseline

þ EA 4 þ SC). The visualized

color of tumors: enhancing

tumor (yellow), edema (green)

and necrotic and non-enhancing

tumor (red) (color figure online)
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reversible U-Net structure, which significantly reduces

memory consumption and improves the performance of

brain tumor segmentation. Moreover, our model also

achieves comparable performance on the TC and ET

compared with OM-Net [28] which solves class imbalance

better. And compared with [30], our method achieves

perfect surpassing on the WT, TC and ET segmentation. As

for HD95 results, SCAU-Net obtains the HD95 value of

4.04, 5.78 and 2.53 on the WT, TC and ET segmentation,

respectively. It is obvious that our SCAU-Net outperforms

all state-of-the-art methods in terms of HD95 values. In a

word, our SCAU-Net model can achieve superior perfor-

mance compared with state-of-the-art methods on the

BraTS 2018 validation dataset.

Then, we conduct the compared experiments on the

BraTS 2019 validation datasets, and the experimental

results are given in Table 5. In this table, SCAU-Net

obtains DSC values of 90.7%, 82.0% and 78.2% on WT,

TC and ET, respectively. It is clear that SCAU-Net out-

performs other state-of-the-art methods in DSC values of

the ET. Zhao et al. [32] combine the different kinds of

tricks into a single 3D U-Net, such as random patch size

training, warming-up learning, semi-supervised learning

and result fusing, which comes to the second place in the

BraTS 2019 Challenge for the tumor segmentation. Com-

pared with Zhao et al. [32], our model’s result is slightly

lower than theirs on WT segmentation. But, it still achieves

the optimal segmentation performance on WT segmenta-

tion compared to the other seven methods [15, 33–38]. For

the HD95 metrics results, SCAU-Net gains HD95 values of

4.11, 6.11 and 2.96 on the WT, TC and ET segmentation,

respectively. Furthermore, we can see that our SCAU-Net

obtains the best result on the WT and ET segmentation.

Compared with the state-of-the-art methods, SCAU-Net is

only inferior to Zhao et al. [32] on TC, but it exceeds the

other seven methods. Therefore, the results of these com-

parisons again demonstrate that embedding the external

attention module and self-calibrated convolution module

into the U-Net is extremely suitable and effective for brain

tumor segmentation tasks.

Finally, we also perform the experiments on the BraTS

2020 validation dataset to further evaluate the SCAU-Net

model. As shown in Table 6, SCAU-Net achieves DSC

values of 90.5%, 82.1% and 78.1% on WT, TC and ET,

respectively. Moreover, comparing it with other typical

brain tumor segmentation methods, SCAU-Net achieves

the optimal result on WT and TC segmentation. On the

segmentation results of the ET, our result is slightly lower

Table 2 Ablation DSC results

on the BraTS 2020 validation

dataset

Methods DSC

WT TC ET

Baseline 0:892 � 0:108 0:802 � 0:239 0:761 � 0:276

Baseline þ SC 0:896 � 0:098 0:807 � 0:176 0:772 � 0:264

Baseline þ EA1 0:896 � 0:105 0:807 � 0:222 0:767 � 0:289

Baseline þ EA2 0:897 � 0:102 0:805 � 0:215 0:766 � 0:291

Baseline þ EA3 0:896 � 0:101 0:811 � 0:221 0:768 � 0:284

Baseline þ EA4 0:896 � 0:104 0:816 � 0:198 0:773 � 0:265

Baseline þ SA4 0:896 � 0:099 0:814 � 0:204 0:769 � 0:266

Baseline þ EA4 þ SC 0.905 – 0.101 0.821 – 0.177 0.781 – 0.261

Bold font represents the best result on the corresponding accuracy indicator

Table 3 Comparison of FLOPs and parameters of SCAU-Net and

self-attention

Methods FLOPs (GMac) Parameters (M)

U-Net (baseline) 693.19 28.36

Baseline?Non-local [16] 806.25 38.48

TransBTS [11] 823.89 106.77

SCAU-Net (ours) 696.68 33.24

Table 4 Compared results with state-of-the-art methods on BraTS

2018 validation dataset

Methods DSC HD95

WT TC ET WT TC ET

Elhamzi et al. [30] 0.88 0.77 0.65 11.69 13.38 6.89

Kao et al. [31] 0.905 0.803 0.768 4.32 7.56 3.81

Isensee et al. [25] 0.909 0.814 0.788 5.83 7.20 2.74

Myronenko et al. [29] 0.907 0.860 0.817 4.52 6.85 3.82

Chen et al. [26] 0.906 0.845 0.801 4.66 6.44 3.06

Brügger et al. [27] 0.906 0.857 0.806 5.61 7.83 3.35

Zhou et al. [28] 0.906 0.854 0.803 4.62 6.39 3.44

SCAU-Net (ours) 0.909 0.851 0.804 4.04 5.78 2.53

Bold font represents the best result on the corresponding accuracy

indicator

23982 Neural Computing and Applications (2023) 35:23973–23985

123



than Wang et al. [11] who first utilize the transformer in 3D

CNN for global feature modeling. However, it ranks sec-

ond place in all ET segmentation results. Based on the

improvement of the U-Net structure, Tang et al., Cheng

et al. and Sundaresan et al. [39–41] propose variational-

autoencoder regularized 3D MultiResUNet, modified 3D

U-Net and triplanar ensemble network, respectively, and

both achieve excellent segmentation results. Furthermore,

Wang et al., Guan et al., Fang et al. and Huang et al.

[11, 42–44] introduce attention modules such as SE, non-

local, CBAM and self-attention into the brain tumor seg-

mentation model, and the experimental results further

demonstrate the strong effectiveness of the attention

mechanism on the brain tumor task. For the HD95 metrics

result, we obtain as excellent as on the DSC metrics that

achieve the superior result on the WT and TC segmenta-

tion. Moreover, our result ranks third on the ET among

seven typical methods. In general, the compared results on

the BraTS 2020 validation dataset prove again the

competitive performance of our SCAU-Net and the effec-

tiveness for brain tumor segmentation tasks.

4 Discussion

Many researchers have proved that brain tumor segmen-

tation methods based on attention mechanisms can signif-

icantly improve segmentation accuracy. However, few

researchers have considered the computational complexity

and parameters of self-attention mechanisms in high-di-

mensional data such as 3D medical images. For example,

in H2NF-Net [8], training of the ensemble network model

requires more than 11 G of memory and utilizes 4 NVIDIA

Tesla P40 GPUs and 4 NVIDIA Geforce GTX 2080Ti

GPUs to train the cascaded model and single model,

respectively. In our work, we only use one NVIDIA

GeForce GTX 3090 GPU with 24 GB of memory to train

the proposed model and achieve competitive results.

Moreover, the self-attention networks ignore potential

connections between different samples in the dataset and

can not generate more discriminative features due to fixed

receptive fields. Therefore, in this paper, we utilize the 3D

external attention module to solve the enormous compu-

tational complexity problem and neglect of samples’ latent

relations in self-attention embedding medical segmenta-

tion. Meanwhile, the 3D self-calibrated convolution mod-

ule is introduced to adaptively compute the receptive field

of tumor images to capture discriminant information and

further improve the accuracy of segmentation. Finally, the

experimental results show that our method can effectively

reduce the computational complexity and parameters of

self-attention on medical image segmentation tasks while

achieving more competitive results. As shown in Table 3, it

can be clearly seen that our method’s computational

complexity and parameters are significantly reduced com-

pared to adding a self-attentive module at the same position

in the U-Net network.

Overall, for the experimental results on the BraTS

2018–2020 datasets, it can be found that the highest

average DSC value of 0.855 and the best HD95 are

available on the BraTS 2018 dataset, which may be

attributed to the fact that the BraTS 2018 dataset contains

fewer samples compared to the BraTS 2019 and 2020

datasets. As the number of samples increases on the BraTS

2019 and 2020 datasets, the segmentation effect on the WT

and TC regions is still excellent. But, the segmentation

effect in the ET region decreases. In particular, the HD95

value in the ET region is large on the BraTS 2020 dataset,

which reflects that our model’s performance on the ET

region segmentation needs to be improved.

Table 5 Compared results with state-of-the-art methods on BraTS

2019 validation dataset

Methods DSC HD95

WT TC ET WT TC ET

Li et al. [33] 0.886 0.813 0.771 6.23 7.41 6.03

Chen et al. [34] 0.903 0.793 0.756 4.49 8.19 4.77

Zhao et al. [32] 0.910 0.835 0.754 4.57 5.58 3.84

Cheng et al. [35] 0.902 0.824 0.777 5.41 7.26 5.28

Guo et al. [36] 0.903 0.833 0.773 7.10 7.68 4.44

Liu et al. [15] 0.901 0.833 0.775 5.86 6.61 3.70

Zhou et al. [37] 0.871 0.718 0.727 6.7 9.3 6.3

Ahmad et al. [38] 0.903 0.823 0.719 4.69 7.08 3.31

SCAU-Net (ours) 0.907 0.820 0.782 4.11 6.11 2.96

Bold font represents the best result on the corresponding accuracy

indicator

Table 6 Compared results with state-of-the-art methods on BraTS

2020 validation dataset

Methods DSC HD95

WT TC ET WT TC ET

Tang et al. [39] 0.889 0.784 0.698 4.5 10.1 34.3

Cheng et al. [40] 0.894 0.814 0.780 7.1 12.7 24.4

Sundaresan et al. [41] 0.890 0.770 0.770 4.4 15.3 29.4

Wang et al. [11] 0.890 0.814 0.785 6.5 10.5 16.7

Guan et al. [42] 0.850 0.690 0.680 8.4 31.6 47.4

Fang et al. [43] 0.876 0.769 0.670 9.4 12.5 50.8

Huang et al. [44] 0.860 0.772 0.700 6.7 15.1 39.1

SCAU-Net (ours) 0.905 0.821 0.781 4.0 9.7 29.3

Bold font represents the best result on the corresponding accuracy

indicator

Neural Computing and Applications (2023) 35:23973–23985 23983

123



5 Conclusions

In this paper, we mainly explore the effectiveness of

external attention and self-calibrated convolution for brain

tumor segmentation tasks. The proposed SCAU-Net model

integrates the 3D external attention module and the 3D

self-calibrated convolution module with a primeval and

single U-Net architecture. The external attention module is

embedded in the skip connection of the U-Net model to

replace self-attention and achieve high segmentation

accuracy. Meanwhile, we also embed the self-calibrated

convolution module into the up-sampling and down-sam-

pling of the U-Net model to further improve the model

performance. Extensive experiments and compared results

demonstrate that our model can achieve excellent seg-

mentation results and strong competitiveness without

increasing the burden of the machine. In the future, we will

explore more advanced attention/self-attention modules for

constructing more robust brain tumor segmentation net-

works. In addition, we will also attempt to evaluate SCAU-

Net on other typical medical image segmentation

applications.
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