Neural Computing and Applications (2023) 35:20771-20802
https://doi.org/10.1007/500521-023-08850-0

ORIGINAL ARTICLE q

Check for
updates

Guided golden jackal optimization using elite-opposition strategy
for efficient design of multi-objective engineering problems

Vaclav Snasel - Rizk M. Rizk-Allah™?* - Aboul Ella Hassanien®*

Received: 3 January 2023/ Accepted: 30 June 2023/ Published online: 25 July 2023
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract

Multi-objective optimization (MOO) issues that are encountered in the realm of real engineering applications are char-
acterized by the curse of economically or computationally expensive objectives, which can strike insufficient performance
evaluations for optimization methods to converge to Pareto optimal front (POF). To address these concerns, this paper
develops a guided multi-objective golden jackal optimization (MOGJO) to promote the coverage and convergence
capabilities toward the true POF while solving MOO issues. MOGJO embeds four reproduction stages during the seeking
process. Firstly, the population of golden jackals is initialized according to the operational search space and then the
updating process is performed. Secondly, an opposition-based learning scheme is adopted to improve the coverage of the
Pareto optimal solutions. Thirdly, an elite-based guiding strategy is incorporated to guide the leader golden jackal toward
the promising areas within the search space and then promote the convergence propensity. Finally, the crowding distance is
also integrated to provide a better compromise among the diversity and convergence of the searched POF. To evaluate the
MOGIJQ’s performance, it is analyzed against sixteen frequently utilized unconstrained MOO issues, five complex con-
strained problems, four constrained engineering designs, and real dynamic economic-emission power dispatch (DEEPD)
problem. The experimental results are performed using the generational distance (GD), hypervolume (HV), spacing (SP)
metrics to validate the efficacy of the proposed methods, which affirms the progressive and competitive performance
compared to thirteen state-of-the-art methods. Finally, the results of the Wilcoxon rank sum test with reference to GD and
HV exhibited that the proposed algorithm is significantly better than the compared methods, with a 95% significance level.
Furthermore, the results of the nonparametric Friedman test were performed to detect the significant of average ranking
among the compared algorithm, where the results confirmed that the proposed MOGJO outperforms the best algorithm
among thirteen state-of-the-art algorithms by an average rank of Friedman test greater than 41% while outperforming the
worst one, MOALO, by 84% for ZDT and DTLZ1 suits. Additionally, the proposed algorithm saved the overall energy cost
and total emission of the DEEPD problem by 1.89%, and 1.48%, respectively, compared with the best existing results and
thus, it is commended to adopt for new applications.
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1 Introduction
1.1 Overview

Currently, engineering designs have become a global
challenge due to the industrial revolution and population
growth. In fact, the problems encountered in real life are in
the form of multi-benefit and/or multi-cost objectives that
need to be handled simultaneously and this type of problem
is termed as multi-objective optimization (MOQ) problem.
Therefore, optimizing this type of problem has become a
great challenge for practical engineering felids to maintain
reliable design in terms of operationality and accuracy. In
MOO problems, the difficulty level of the problem likewise
rises as the number of conflicts of objective functions
increases [1, 2]. Unlike a single solution to the optimization
of a single objective (SO) problem, the optimal of the
MOO problem is a set of solutions caused by the con-
flicting nature among the targets or objectives, which is
denoted by Pareto optimal set (POS) that is purported in the
decision space while its corresponding set in the objective
space is denoted by Pareto optimal front (POF). Based on
this sense, a solution is termed as POF, if no goal or
objective can be advanced without harming one another
goal at least [3].

To deal with MOO problems, there are three categories-
based approaches on the basis of the perspectives or pref-
erences of decision maker (DM), which are priory, inter-
active, and posteriorly methods [4]. In a priory method,
termed as (decide = search), the DM decide his/her
preferences before the beginning of the searching process.
This type of preference is formulated using the utility
function to aggregate all objective functions into only one
function (i.e., for example, weighted sum approach), and
then MOO problem can be solved by the SO method. The
drawback of this category is the difficulty of articulating
the DM’s preferences. In the interactive method, termed as
decide < search, the DM elicit s the compromise solution
in interactive articulation from the local/partial generated
POF. The STEM and Steuer represent the prominent
methods for this category [5, 6]. These methods are
occupied by shortages such as relying on derivative cal-
culations, initial estimates, and they suffer from local
optima stagnation. In a posteriorly method, termed as
search = decide, the POF is generated tentatively, and then
the DM can select a solution from the POF based on utility
function. However, the production of the entire POF
requires a significant amount of processing time. Conse-
quently, the aforementioned approaches are not appropriate
for handling a wide range of optimization problems [7]. For
the three last decades, several attentions have been paid to
using the meta-heuristics algorithms (MHAS) to overcome
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the shortages of traditional approaches. MHAs have a
capability in providing a good coverage and convergence
search toward the POF due to stochastic rules associated
with their iterative processing. MHAs often imitate effec-
tive traits found in nature, especially in biological and
swarm systems, and they can offer workable solutions to
challenging optimization tasks.

1.2 Literature review

As previously stated, it is desired to meet the two chal-
lenges while dealing with the MOO problem which are that
the attainable solutions should be well converged and well
distributed along the POF. Toward this mission, research-
ers have proposed several multi-objective MHAs to deal
with MOO problem using three groups of methods: (1)
MHAs based on Pareto dominance, (2) MHAs based on
indicator concept, and (3) MHAs based on decomposition.
In the first group, the algorithms employ the Pareto dom-
inance relation (PDR) to guide the search toward the POF.
One the popular MHAs based on PDR is the non-domi-
nated sorting genetic algorithm (NSGA) that selects the
elite solution based on PDR and then preserves the diver-
sity of the selected solutions using the crowding distance
[8]. Also, there are many attentions have been introduced
in the field of multi-objective MHAs based on the concept
of PDR including the multi-objective (MO) particle swarm
optimization (MOPSO) [9], MO ant lion algorithm
(MOALA) [10], MO grey wolf optimizer MOGWO) [11],
MO artificial bee colony (MOABC) [12], and MO water
cycle optimization (MOWCO) [13], MO slime mould
algorithm (MOSMA) [14], and non-sorted moth-flame
optimizer (NSMFO) [15], MO equilibrium optimizer
(MOEO) [16], MO crow search algorithm-based on
orthogonal-opposition strategy (M20-CSA) [17], MO
hurricane optimization (MOHO) [18], and MO ant colony
optimization (MOACO) [19]. Other meta-heuristics present
a modified aspect of PDR via relaxation to attain well
diversity and convergence of solutions. In this context, the
epsilon-dominance relation was proposed to extend the
dominance region of a solution vector through modulating
the related objective values by a small value [20]. This
concept of relaxation is employed in many works of multi-
objective MHAs whether for improving the solutions’
diversity or updating and avoiding the explosion of the
archive [21]. Similar to that, some relaxation concepts have
been proposed including the alpha-dominance [22], grid
dominance [23], cone dominance [24], fuzzy dominance,
(1 — M)-dominance [25], and theta-dominance [26].
However, the majority of the suggested dominance rela-
tions aim to enhance the convergence of MHAs, they may
not provide a reasonable balance among coverage and
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convergence capabilities
problem.

The second group is the multi-objective MHASs based on
indicator concept. In this sense, the performance metrics
have been proposed to reach a good compromise among
the diversity and convergence, where these metrics include
inverted generational distance (IGD) indicator, hypervol-
ume indicator (HV), and S-metric. For example, HV metric
and new HV have been introduced to guide the optimiza-
tion operation toward the Pareto front [27, 28]. Recently,
there are some MHAs that have employed the distance
indicators, IGD metric, and R-metric to guide the searching
toward the POF [29]. The advantage of these indicators is
that can provide a good balance among coverage and
convergence abilities.

The third group is the decomposition-based algorithm in
which the main problem is decomposed into sub-problem:s,
and they are optimized simultaneously through using the
scalarizing functions and weight vectors. The frequently
used scalarizing functions are the weighted sum, Tcheby-
chef method, vector angle distance scaling, and the
boundary intersection. One of the most well-known MO
evolutionary algorithms (MOEAs) algorithms based on
decomposition is MOEA/D [30]. It performs the explo-
ration of the candidate search region using a set of scalar
subproblems. Also, there are some algorithms that are
presented based the decomposition such as NSGA-III [31],
MOEA based on dominance and decomposition (MOEA/
DD) [32], and MOEA/D-DE [33], etc. The MHASs based on
decomposition can provide an effective manner in solving
MOO problem. However, the selection of the scalarizing
function affects each of these strategies differently.

Apart from the previously mentioned approaches, the
scientific literature is highly rich with several applications
of multi-objective MHAs. For example, in [34] the authors
introduced a MO bee swarm optimization (MOBSO) to
deal with the harmonic loss problem that occurs in power
system operation. Study [35] analyzed the performance of
designing a semi-active Fluid Viscous Damper (SAFWD)
system using the NSGA-II on the basis of MOO problem
with the purpose of lowering the seismic reaction of non-
linear frames. Authors applied an improved variant of the
NSGA-II for tractor electromechanical drive system [36].
In [37] a hybrid algorithm based on MO artificial bee
colony and differential evolution (HABC-DE) was applied
to deal with the Next Release Problem (NRP) to identify
the best demand set with the aim to boost the value of
software release. Study [38] applied the teaching learning-
based optimization (TLBO) to solve the MOO of TI-6Al-
4 V micro-EDM with the aim to reach the best combina-
tion of program parameters. In [39] the authors applied an
adaptive MO artificial immune algorithm (MOAIA) to
solve the reactive power model with the aim to improve the
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stability aspect of power grid voltage. In addition, some
practical MOO tasks have been solved, such as power
generation problem based on renewable energy technolo-
gies using MOO methodology [40], designing and
improving the network of maritime protected areas [41],
automobile hood problem [42], volatility index prediction
problem based on deep learning system and MOO [43],
biogas systems [44], biomedical field [45], and computer-
ized tomography diagnosis [46]. Most of the world’s issues
acquire different natures, finite or infinite, continuous,
discrete. Some works show that for more complicated
issues with nonlinear and indiscernible concerns, methods
such as the use of equality constraints to address these
issues is often ineffective [47]. Therefore, the MHAS are
designed and employed as an effective tool because of their
convenience and ability [48].

2 Research gap and contributions

Although the recent advances in the field of MOO, there is
still room for improvement to emphasize the quality of
final results as well as finding well-distributed solutions
regarding the POF. For example, the use of the normal
algorithmic updating steps may lead to poor spread per-
formance on MOO problems associated with irregular and
non-smooth POFs. Moreover, ignoring the experience-
based elite guiding strategy through the iterative process
may degrade the convergence performance of the algo-
rithm toward the POF. Besides, there is always inquiry
““might a novel algorithm provide a better outcome?’” The
answer is ‘yes’ according to perspective of the No-Free-
Lunch (NFL) theorem [49] that says, no optimization
algorithm can address all natures of optimization tasks with
reaching the global optimal solutions. Meanwhile, the main
challenge in the MOO using optimization algorithms is the
coverage and convergence features which are in conflict
nature. In this sense, the coverage will be poor if an
algorithm merely focuses on enhancing the accuracy of
non-dominated solutions. By contrast, the accuracy of the
non-dominated solutions is negatively impacted by the
simple consideration of the coverage. Notwithstanding
numerous alternatives as per the above-mentioned to reach
the POF of the MOO designs with ensuring well-dis-
tributed solutions along the POF, and once again, still
always there are room of improvements to precisely
address two conflicting perspectives in dealing with MOO
designs, convergence (i.e., that refers to the process of
finding approximations very close to the true POF) and
coverage (i.e., that refers to the process of improving the
distribution of the solutions to cover the entire true POF).
Therefore, scientists continue to be motivated to develop
novel methods wishing to address a wider variety of
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difficulties or specific unsolved optimization challenges
while fulfilling the convergence and coverage perspectives.
Thus, this study aims to fill this research gap by proposing
a novel multi-objective algorithm. It involves finding an
accurate and reliable solution for MOO issues. In this
sense, a Golden Jackal Optimization (GJO) [50] based on
multi-objective strategy, opposition-based learning con-
cept, and elite-based guidance strategy, named MOGIJO, is
developed to deal with MOO problems. The incorporation
of these strategies into the single objective GJO aims to
provide better convergence and more uniform coverage
solutions toward the true POF. Hence, the major’s contri-
butions regarding the present work are listed as follows:

e Prospective of the multi-objective GJO A new version
of GJO, named MOGIJO, is developed for the first time.
MOGIJO incorporates the guided archive to store and
retrieve the generated Pareto front so far, and crowding
distance is to manage the archive size while surviving
the best non-dominated solutions during the iterative
process.

e [ntegration of improvement strategy The MOGIO
embeds the concept of opposition and elite learnings
to enhance the diversification and identification
searches, respectively. By this conception, the conver-
gence and coverage processes toward the POF can be
realized.

e Validation and performance analysis The performance
of the MOGIJO is rigorously validated and analyzed on
eleven well-known problems, five constrained prob-
lems, four engineering designs and real dynamic
economic-emission power dispatch (DEEPD). Also,
graphical representation, performance metrics, Wil-
coxon test, and Friedman test are conducted to statis-
tically compare and realize the performance of the
proposed algorithm with other methodologies.

The novelty and effectiveness of the MOGIJO lie behind
the intelligent exploration of golden jackals during the
hunting strategies and management the movement of the
male and female jackals using archive population. Fur-
thermore, opposition and elite strategies can enrich
exploration and exploration toward promising regions,
thereby reaching a good balance among the coverages and
convergence patterns. Besides, the best of our information,
no attempts to suggest the MOGJO version in solving the
MOQO designs and DEEPD problem have been recorded in
the literature.

2.1 Paper organization
Following Sect. 1 that has offered the introduction, the

remainder sections of the paper are outlined as follows.
Section 2 offers the basic concepts of MOO and briefly
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overviews the framework of classical GJO. Section 3
provides the proposed multi-objective variant of GJO. The
experimental simulations and results are addressed in
Sect. 4. Lastly, Sect. 5 offers the conclusion and delivers
some worth directions for future works.

3 Background

This section exhibits background information regarding the
formulation of MOO problem, solution concepts, and a
brief overview regarding the original GJO concept.

3.1 Multi-objective optimization (MOO):
problem statement

In the single objective (SO) task, usually there is only one
alternative or solution that wants to be regarded, due to the
unitary nature of the objective and the existence of a single
global optimal solution. It is relatively simple to compare
alternatives when a target is taken into account, which is
typically done using relational operators. This type of
problem’s characteristics makes it simple to assess poten-
tial solutions and ultimately identify the best one. How-
ever, in real-world engineering problems, it is common for
optimization problems to have multiple objectives that may
conflict with each other. Such optimization problems are
called MOO problems [3, 4]. Generally, a MOO can be
modeled as follows.

Minimize: F(0){f1(0),£2(0), .. .,fu(0)},
0=1{0,,0,...,0,} R
(0)<0 j=1,2,...P (1)
Subject to : ¢ #(0) =0 [=1,2,..,0

0 <0, <0” Vi=1,2,...n

where F(0) contains M conflicting objectives, P defines the
number of inequality constraints, Q denotes the number of
equality constraints, and n stands for number of control
variables. Here, f,,(0), g;(0), and h;(6) define mth objec-
tive function element, the j th inequality constraint, and the

Ith equality constraint, respectively, and 6, 0" define

A )
the lower and upper bounds of ith decision variable (6;).
C =11, [()iLb , Of]b] C R" defines the decision space of n
decision variables. It is clear that relational operators are
ineffective for addressing MOO issues, so multi-objective
Pareto regulations are utilized to resolve such issues, and

the Pareto optimal formulas can be provided as follows [3].

Definition 1 Pareto-dominance regulation: A solution 6; is
said to dominate the solution 6;, (termed as 0;>~0;) if two
rules are hold:



Neural Computing and Applications (2023) 35:20771-20802

20775

f0)<£(0), Yiel,2,...M
50)<f£(0;), Jiel,2,...M
If neither 0; nor 0; dominates each other, then the

solutions 0; and 0; are said to be equivalent or incompa-
rable (termed as 0; ~ 0,).

(2)

Definition 2 Solution feasibility: The presence of con-
straints prospective on C leads to the necessity of defining
the feasibility concept in terms of the overall constraint
violation ¢(0) of a solution @ which is expressed as
follows:

$(0) = > max{g;(0),0} + > _|lu(6) — 7| (3)
J 7

where y defines a tiny real-value threshold (y = 10~ for
the studied problems in this work). When ¢(0) =0, 0 is
defined as a feasible solution, otherwise, it is denoted as an
infeasible solution. The set of all feasible solutions is
expressed by W = {0 € C|¢(0) = 0}.

Definition 3 Pareto optimality regulation. A solution 0; is
termed as Pareto-optimal solution, if and only if:

3 Oj cV¥ ’0j>'0i (4)

Each solution with the set ¥ is compared with everyone
in this set according to Pareto dominance (given in Def. 1).
Then, if there is not a solution @; prevails over solution 0;,
then 0; is a Pareto-optimal solution.

Definition 4 Pareto optimal set (POS). The collection of
all Pareto-optimal solutions is defined as POS and is
expressed as follows:

PSZ{H,‘G‘P{ 7 9j€‘1’/\9j>-(‘)i} (5)

Definition 5 Pareto optimal front (POF): The set of solu-
tions in the objective functions space is defined as POF and
can be expressed as follows:

PF = {F(H,)} : V0; € POS (6)

For every MOO issue, there is a POS, which illustrates
the optimal trade-off among the multiple objectives. The
POS’s projection into the target space is known as POF.
However, because the POF contains several solutions, and
the fronts of various MOO problems have different natures
(convex, concave, separated, discrete, linear), it is very
challenging to reach the POF with uniform distribution for
each nature. If the optimization algorithm is employed to
find a uniformly distributed POF, two prospectives (con-
vergence and coverage) should be realized. The former’s
ultimate goal is to identify an approximation that closely

matches the true POF. In the latter scenario, the algorithm
should attempt to broaden the distribution of non-domi-
nated solutions to fully cover the true POF. This is an
essential factor in the Pareto reaching process due to the
conflict among the convergence and coverage being the
main challenge to MOO issue. In this sense, the coverage
will be decreased if an algorithm concentrates primarily on
enhancing the accuracy of non-dominated solutions. Con-
trarily, focusing only on coverage has a detrimental effect
on the precision of non-dominant solutions. Most of the
present optimization methods can balance convergence and
coverage regularly to discover the POF spread uniformly
along all targets.

4 Multi-objective golden jackal optimization
(MOGJO)

This section addresses the basics of GJO regarding the
updating procedures and then these procedures are adapted
to introduce the multi-objective GJO (MOGJO) variant
through embedding the relevant strategies of multi-objec-
tive nature.

4.1 Single-objective golden jackal optimization

GJO is a recent nature-inspired optimization algorithm, that
describes the jackals’ cooperative foraging and hunting
mechanism [50]. In GJO, jackals run in parallel to their
prey and surpass it. The jackals mainly include three
foremost stages during the hunting process: (1) looking for
and proceeding toward the prey; (2) encircling, and trou-
bling the victim until it stops moving, and pouncing on the
victim. This behavior was modeled mathematically to
design the GJO which was performed on 23 benchmark
functions and seven engineering design problems. The
results and comparisons have been proved the effective
performance of GJO in dealing with the diverse set of
benchmark problems. Generally, the mathematical formu-
lation of the GJO approach is summarized below.

4.1.1 Initialization

Like many other optimization algorithms, GJO starts its
iterative searching by a population of jackals that are
generated using the uniform distribution as follows.

05 = 0% + U0, 1).(0F — "),
i=1,2,..,N, j=1,2...n

(7)

where U(0, 1) denotes a random number ranged from 0 to
1, N number of jackals, and » number of variables. This
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initialization generates initial positions which are consid-
ered as the initial Prey’s matrix as follows.

0 O ... 0n
Prey=| © 1 g (8)
Ot On2 ... Oy

where 0;; denotes the ith jackal in the jth dimension.

Afterward, each position is evaluated using the fitness
function (f;(0;)), where male jackal is referred to be the
fittest, and the female jackal is the second fittest.

4.1.2 Searching the prey: exploration phase

In this phase, the exploration phase is carried out. The
jackal’s nature allows them to observe and pursue the prey,
yet occasionally the prey escapes or cannot be caught
easily. Consequently, the jackals wait and look for new
prey. The hunting process during this phase is driven by
male jackal which is followed by a female jackal.

01(1) = Ou (1) — E - 10y — 1l - Prey (1) )
92(1‘) = HFM(t) —E- |9FM(t) —rl- Prey(t)| (10)

where Prey(¢) denotes the position of prey, ¢ denotes the
current iteration, and Opy, and 0y, define, respectively, the
positions of the male and female jackals. 0, and 0; define,
respectively, the renewed positions of male and female
jackals.

The evading energy (E) regarding the prey defiance is
expressed as:

E=E,-E (11)

Ey defines the initial energy, and E; defines the reducing
energy of the prey when it is exhausted.

Eo=2-r—1 (12)
Ey=15-(1—1/T) (13)

where r denotes an arbitrary value within [0,1], and T
defines the maximum restrict of iterations.

Over the course of iteration, the defense energy E
decreases. So, when |E| > 1, the jackal pairs perform the
searching in different areas for exploring prey, while when
|E| <1, then perform the exploitation phase and then attack
the prey.

Here rl represents a vector of arbitrary numbers gener-
ated based on Levy distribution to simulate the prey’
movement according to Levy search and is expressed as
follows.

rl = 0.05 - LF(6) (14)

LF denotes the levy flight function, that is considered as
follows.

@ Springer

LE(0) = 0.01.(u- o)/ pV/P;
(1 + p) sin(ﬂz_ﬁ) /8 s
where u, v represent random numbers within (0,1) and £ is

default parameter which is set to 1.5. Finally, the jackal
renewed its position in terms of mean positions as follows.

01(2) + 02(2)
2

g =

0t +1) = (16)

4.1.3 Encircling and pouncing the prey: exploitation phase

When jackals harass the prey, the prey loses some of its
ability to flee, and the jackal pairs and then encloses the
prey they had previously detected. After encircling, they
pounce on the victim or prey and eat it. The mathematical
expression for this cooperative hunting behavior regarding
the male and female jackals is as follows:

(1) = O (1) — E - |l aby (1) — Prey () (17)
Hz(t) = QFM(I) —E- |rl : QFM(I) —rl- Prey(t)| (18)

After this update, the jackal positions are again renewed
by Eq. (16). The pseudo-code regarding the GJO is illus-
trated in Fig. 1.

4.2 The proposed multi-objective GJO (MOGJO)

The MOGJO was established based on three features to
deal with MOO natures. (1) An external archive is
embedded with GJO to save and retrieve the Pareto optimal
solutions during the searching process. (2) Crowding dis-
tance is used to manage the archive size during the
exploration phase; (3) Opposition and elite strategies are
integrated to MOGIJO to enrich the convergence and cov-
erage capabilities.

4.2.1 Initialization

Typically, random initialization is used to start the MOGJO
population. To enhance the diversity of the solutions,
logistic map is adopted as the one of the prominent and
simplest chaotic maps [51]. This map offers more diver-
sified solutions than the random aspects, and it has a lower
likelihood of convergence’ stagnation dilemma [51].
Therefore, this map is adopted in this work which is
expressed as follows.

Zk+1:A'Zk(1_Zk), k:O,l,...,N—l (19)

where z; stands for the kth number in the chaotic sequence
and k denotes as the chaotic sequence’ index of z; zxy
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2?01 The working steps of 1: Inputs: invoke size of population (N), Max. iteration number (T)
2: Create intial population of N preys at random
3: while (T not reahed) do
4: Evaluate the fitness of each prey
5: Obtain the male jackal 6, (the position of best prey)
6: Obtain the female jackal 8, (the position of second best prey)
7: Update the evading energy (E) by Eq. (11)
8: Update the levy vector (rl) by Eq. (14)
9: fori =1:N do
10: If |E| =1 then % Exploration phase
11: Update the position of prey by Egs.(9), (10), and (16)
12: If |E| <1 then % Exploitation phase
13: Update the position of prey by Eqs.(17), (18), and (16)
14: end if
15: end for
16: end for
17: t=t+1
18:  end While
19:  Output: return Oy
defines the next chaotic number in the sequence. zy denotes M;
the initial point for the chaotic map, zp € (0, 1), Py = 5 (21)

20 € {0, 0.25, 0.75, 0.5,1}; and A is a control parameter
that is set to 4.0. Then the new population is generated as
follows.

_lb Lb Ub L
91170] +Zk+l~(0j 79] )7 171525"'71\]1 (20)
j=12,..,n

4.2.2 Evaluation and updating the archive

After obtaining the solutions or positions of jackals, the
non-dominated set of solutions are evaluated and stored in
the archive (AR_0) which is updated with growth of iter-
ation until it may become full. In this sense, a solution is
not prevented from storing in the archive, if it is non-
dominated by all stored solutions in the archive. Also, the
solution removes some of stored Pareto solutions in the
archive, if it dominates them, and then it becomes a
member of the archive. If a solution is dominated by at
least one member of the archive, then it is not becoming a
member of the archive. In order to provide some room for
new solutions in the archive when it becomes full, at least
one solution must be deleted from the most occupied
portions. To effectively choose the solution that is leaving
the archive, the worst (most overcrowded) hyper-sphere
should be chosen to prevent the jackals from searching
around unproductive crowded places. The selection of this
solution is performed using the roulette-wheel mechanism
associated with the subsequent probability (Py) as follows.

where 0 defines a non-negative number greater than one
(i.e., 0 is adopted as 10), and M, defines the number of non-
dominated solutions within the archive in the sth segment.

4.2.3 Mechanisms of hunting tactic of jackals

4.2.3.1 Elite jackals This step is vital for selection of
leader of male jackal during the hunting process. The elite
jackals (EJ_0) aim to save the best positions that previ-
ously searched by jackals during each iteration, and this
can facilitate the generation of non-dominated solutions.
The step firstly constitutes an elite population with the
initial population in first iteration. Afterward, during the
growth of iteration, the trial solution 0(r + 1) is assessed
by the comparison with the target solution 0(¢) that is
stored in the current elite population according to the
dominance concept. If the target solution can be dominated
by the trial solution, then it replaces the target solution.
During the growth of iteration, the elite members are pre-
sented to renew the archive members.

4.2.3.2 Leader (male jackal) selection In the construction
of the MOGJO, an archive is embedded into GJO in order
to store and retrieve the closest matches to the true POF
throughout iterative optimization in order to find a widely
distributed Pareto-front, an elite population member must
be located in the area of least populated within the attained
POF. This area is detected by segmenting the search space
through obtaining the ideal and anti-ideal (i.e., best, and
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worst objective values) of the attained POF, defining Ng;iq
cells that include all solutions, as well as splitting the
hyper-spheres in each iteration into equal sub-hyper-
spheres. After generating the segments, the selection is
performed by the roulette-wheel mechanism along with the
subsequent probability (PLy) for each segment as follows.

(22)

Equation (22) increases the likelihood that MOGJO will
select the population’s elite member from less-populated
segments. Therefore, the jackals’ population are encour-
aged to roam through this area, which improves their dis-
tribution throughout the entire POF.

4.2.3.3 Movement of jackals In this step, the exploration
phase is carried out using the concept of archive population
(AR_0) and elite jackals. The population of elite jackals
denoted by EJ_0 and the stored solutions in the archive
denoted by AR_0 are used to perform this tactic of hunting
process for male jackal and female jackal as follows.

01(t) = AR _Oyn(t) — E - |AR_Op (1) — rl - ET_0(1)|

(23)
0>(t) = AR _Opm i (t) — E - |AR_Opp (1) — 1l - ET_0(t)]

(24)
where AR_Oy; , AR_Opp 11 (t) are positions of the male and
female jackals that are chosen from the archive according
to the roulette-wheel mechanism with random indices &
and hl, respectively. EJ_0 defines the elite positions of
jackals; 0, and 0, define, respectively, the renewed posi-
tions of male and female jackals.

Similarly, the encircling, and pouncing on the prey
during hunting process are simulated according to the
concept of archive and elite jackals as follows:

01(t) = AR _Oyn(t) — E - |rl - AR_Op (t) — EJ_0(1)|

(25)
02([) = AR_HFM’h(I) —E- |rl . GFM(I> —rl- EJ_@([)|

(26)

After this update, the jackal positions are again renewed
by Eq. (16).

4.2.4 Improving diversity of population

Learning based on opposition (LBO) strategy is presented
to improve the diversity of solutions due to its effectiveness
as it has been attracted much considerable attentions in the
past decade [52]. In this sense, LBO can enable the pop-
ulation to jump at new enrich search space. It is carried out

@ Springer

herein if rand<7/T, then the corresponding opposition
solution carried out as follows.

0 — U0, 1).(0}1’ _ ej?fb) 0, i=1,2,...N  (27)

where 0 defines the opposite of the i th solution 0;.
4.2.5 Eliciting the compromise solution

For most engineering problems, the designer preferred to
apply its design with a single operating point rather than a
set of solutions. In this sense, the concept of compromise
solution (CS) can be evident. Fuzzy technique (FT) pre-
sents one of most decision-making methods for selecting
the CS [53]. Therefore, FT is presented in this work with a
membership value (y;) and it is modeled for each objective
f; of the ith solution as follows.

1 fz gﬁmin
Y= (fimax _fi)/<fimax _ﬁmin) fimin <f Sfimax (28)
O f; Zf;max

For the stored non-dominated solutions in the archive,
the normalized value of all membership functions is
denoted by y* and it is defined by:

(29)

where Q defines the size of non-dominated solutions in the
archive, and M is the number of objectives. The maximum
of y* is termed as the best compromise point.

All the MOGJO’s parameters are typical of the GJO’s
initial work, though a new parameter for indicating archive
size has been added. Moreover, the framework of the
proposed MOGIJO is illustrated by the flowchart as depic-
ted in Fig. 2.

5 Experimental simulation and discussion

In this section, the performance of the MOGJO is evaluated
and analyzed on sixteen well-known problems, five con-
strained problems, four engineering designs and real
dynamic economic-emission power dispatch (DEEPD)
[17, 53]. In this regard, some successful multi-objective
optimizers, including MOPSO [9], NSMFO [15], MSSA
[54], MOSMA [14], and MO bonobo optimizer (MOBO)
[55], are presented to assess the performance of MOGJO
variant. As these metaheuristic algorithms have stochastic
characteristics and may yield some fluctuation regarding
the optima [17], each algorithm was carried out 20 inde-
pendent runs for each benchmark problem to avoid any
stochastic discrepancy. In regard to the hardware, a laptop
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>

Update the position using the opposition using

Fig. 2 Framework of the proposed MOGJO

with the following specifications, AMD Ryzen 5 5600u
CPU, @ 2.30 GHz, 16 GB RAM, and Windows 10 with
64-bit OS. MATLAB_R2021a is used for the implemen-
tation issue.

In addition, some metric indices are presented to assess
the quality of outcomes obtained by the implemented
algorithms such as generational distance (GD) metric, the
hypervolume (HV), and spacing (SP) metric [4] where the
superiority of results are evaluated with respect to the

Eq. 27)

minimum values of the GD, SP, and the maximum value of
the HV metric.

5.1 Descriptions of the studied benchmark
functions and engineering designs

Some of challenging and well-known benchmark functions

with different landscape shapes regarding the Pareto front
are collected from the literature, where these benchmark
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functions contain two or three objectives, namely ZDT and
DTLZ suits. They also bear up to 30 dimensions (control
variables). These benchmark suits along with related
characteristics of POFs such as nonconvex or convex,
discontinuous or continuous, and non-uniform or uniform
distribution are summarized in Table 1. To confirm appli-
cability of the proposed MOGIJO, its performance is
applied and realized on some engineering designs includ-
ing welded beam design (WBD) problem, speed reduced
design (SRD), disk brake design (DBD), and four bar truss
design (FBTD).

5.2 Parameters settings

In this subsection, the parameter values of the compared
algorithms (MOPSO, NSMFO, MSSA, MOSMA, and
MOBO) are suggested based on the found values in the
original works. To make sure that the algorithms are fairly
compared, the maximum number of iterations and the
population size are adjusted after some trails and they are
set to 1000, and 100, respectively. Each test problem was
performed for 20 independent runs to mitigate the hap-
hazardness situation. For a fair comparison among the
presented algorithms (MOPSO, NSMFO, MSSA,
MOSMA, and MOBO), and proposed MOGIJO, they start
with same population generated randomly per run.

5.3 Performance assessments

As the discovered set of solutions by multi-objective
optimization methods represent an approximated POF,
therefore their convergence and coverage behaviors must
be assessed. In this sense, the popular employed assessment
indices include the following [4]. (1) Convergence: implies
that the best non-dominated solutions are those that most
closely match the true POF. (2) Uniformity: implies that
the good non-dominated alternatives are those evenly dis-
tributed along the true POF. (3) Distribution: implies that
the POF should be fully covered by the searched non-
dominated solutions. In this sense, some performance
metrics can be adopted as follows.

5.3.1 Hypervolume (HV) index

HV index refers to the volume in the objective space that is
occupied by the alternations of the non-dominated set (AR)
[4]. Mathematically, for each member of archive (i € AR),
the hypercube v; is constructed in terms of the reference
point (RP). The RP can be obtained by forming a vector of
the worst values of the objective functions. The HV values
of the discovered hypercubes are produced by Eq. (30).

AR
H = Volume (U v,-> (30)
i=1

i=

Table 1 The characteristic and nature of the studied multi-objective functions

Name M n Nature Characteristics

ZTDI 2 30 ucC CF

ZTD2 2 30 ucC NCF

ZTD3 2 30 ucC DF

ZTD4 2 30 UC MF with 2" local Pareto-optimal fronts

ZTD6 2 30 ucC NU

DTLZ1 3 7 ucC Linear POF

DTLZ2 3 12 ucC Spherical POF

DTLZ4 3 12 ucC POF involves dense set of alternatives to exist near the fy; — fi
DTLZS 3 12 ucC Aims to verify the ability of multi-objective optimizer to converge to a degenerated curve
DTLZ6 3 12 uc Acquires 2M~! disconnected POF

DTLZ7 3 22 ucC POF is a combination of a straight line and a hyper-plane
SRN 2 2 (6(0) CC

BNH 2 2 (6(0) CC

KIT 2 2 (6(0) CC

TNK 2 2 (60) D

CONSTR 2 2 (¢0) CCA

CC continuous concave, CCA continuous concave, D discrete, UC unconstrained, CO constrained, CF convex front, NCF non-convex front, DF
discontinuous front, MF multi-modal front, NU non-uniformity, POF Pareto-optimal front, M No. of objectives, n No. of variables
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HV exhibits information about both the diversity and
convergence of set AR, where larger HV values denote a
superior algorithm.

5.3.2 Generational distance (GD) metric

The GD index was provided by Veldhuizen [17] as a
convergence index to clarify the distance between the
reached POF and the true POF. The GD index is expressed
mathematically as follows [17]:

S 2
GD =1 (31)

npr
where npp denotes the number of reached Pareto optimal
solutions and d; defines the Euclidean distance among a
solution from the reached Pareto front and the corre-
sponding true solution on POF. GD = 0 stands for the
reached solutions are the true solutions.

5.3.3 Spacing (SP) metric
SP represents an index to measure the distribution of

searched solution vectors throughout the whole nondomi-
nated vectors reached so far [17]. It is expressed as follows.

1 1pF

N @d-d)’ (32)
j=1

SP =

l’lpp—l

where d; = SV | |f/ — f¥|, j # k. k € obtained POF, npp
defines the number of obtained solution vectors in the
archive, while d denotes the average of all d;. SP defines
the standard deviation regarding the distance among two
consecutive solutions on the reached POF. A smaller value
of the SP denotes that obtained solutions have better dis-
tribution. Also, a zero value of SP implies that all members
of the reached POF are equidistantly spaced.

5.4 Results on ZDT and DTLZ suits

In this subsection, the performance of the proposed MOGJO
and the compared counterparts (MOPSO, NSMFO, MSSA,
MOSMA, and MOBO) is evaluated on the ZDT and DTLZ
test suits. Each algorithm was carried out 20 times, and the
statistical measures of assessment metrics (HV, and GD) are
reported as in Tables 2 and 3. In Table 2, the GD values for
proposed MOGJO and other counterparts are recorded. Based
on the GD best values, it can be observed that MOGJO is better
than MOPSO, NSMFO, MSSA, MOSMA, and MOBO, in
10/11, 11/11, 11/11, 11/11, 11/11 test functions, respectively,
illustrating that MOGJO provides better approximate solu-
tions compared to other competitors. Moreover, the results of
HV values are reported in Table 3, which exhibits that the

MOGIO is better than MOPSO, NSMFO, MSSA, MOSMA,
and MOBO, in 11/11, 10/11, 11/11, 10/11, 11/11 test func-
tions, respectively, illustrating that MOGIJO achieves higher
diversity and convergence than the other algorithms. Also, in
terms of mean values of HV and GD, the proposed MOGJO
provides superior and affirms the stability of the proposed
algorithm. The best result among the compared algorithms is
highlighted in boldface. Moreover, the searched POFs by the
proposed MOGJO and the other peers on ZDT and DTLZ test
suits are depicted in Figs. 3 and 4, respectively. Inspecting
these figures, it is observed that MSSA offers the poorest
convergence while the proposed MOGJO exhibits good con-
vergence and coverage results with respect to the true POFs.
On the other hand, the NSMFO and MOBO offer provide a
competitive edge with the proposed MOGJO algorithms,
especially for ZDT suit. The most interesting features behind
the superior performance of the proposed MOGJO are con-
tained in chaotic initialization and opposition strategies that
help in preserving the diversity of solutions as well as the
concept of elite strategy that helps in enhancing the conver-
gence behavior during the iteration searching. For clarity, the
overall best values among the compared optimization meth-
ods are highlighted in boldface.

5.5 Pair-wise Wilcoxon rank sum test

In this subsection, the Wilcoxon rank sum test (WRST)
[56] is carried out to further assess the significance of the
searched results of POF. WRST is presented with a sta-
tistical significance value (« = 0.05). Also, WRST aims to
affirm that the obtained results did not occur by chance,
i.e., caused by the stochastic nature of metaheuristic
algorithms. WRST is carried out based on the null
hypothesis H, regarding this test states that no difference
among the medians of two solutions searched by algorithm
A and B. To regulate whether algorithm A achieved sta-
tistically better results than B, or if not, the alternative
hypothesis is valid. Thus, the superiority can be guaranteed
if the p value is below significance value (o = 0.05). In this
context, the results of GD and HV metrics obtained by
compared algorithms are examined using the WRST and
the obtained results of p values are reported in Table 4.
Based on these results, it is obvious that the obtained p
values are below a significance value, and this can validate
the superiority of the proposed MOGJO over the imple-
mented competitors.

5.6 Comparison analysis versus some state-of-
the-art methods

In this section, the suggested MOGIJO is further examined
and evaluated against thirteen well-known state-of-the-art
optimizers: MO jellyfish (MOJF) [53], MOEA/D [53],
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Table 2 Statistical measures for GD metric by the proposed and compared optimizers for ZTD and DTLZ suits

Test function Statistical metric MOPSO NSMFO MSSA MOSMA MOBO MOGJO
ZTD1 Best 1.1733E—02 4.4553E—03 7.6149E—01 9.3454E—03 9.8633E—03 1.7946E—04
Mean 5.5836E—02 4.7936E—03 1.0247E +00 9.9714E—-03 1.0410E—02 2.0200E—04
Median 3.0358E—02 4.7874E—03 9.7718E—01 9.6229E—03 1.0208E—02 2.0584E—04
Worst 1.7062E—01 5.1672E-03 1.2652E +00 1.1527E—-02 1.1348E—02 2.1089E—04
St. Dev 6.6146E—02 2.5280E—04 2.0254E—01 9.0763E—04 5.8000E—04 9.6489E—06
ZTD2 Best 5.6482E—04 1.1742E—04 5.7820E—02 1.1424E—03 1.6586E—04 0.0000E +00
Mean 4.4460E—01 1.2424E—-04 1.0668E—01 1.1944E—03 1.8373E—04 7.5095E—05
Median 4.0021E-01 1.2169E—04 1.2490E—01 1.2054E—03 1.8241E—-04 1.0979E—04
Worst 9.4681E—01 1.3243E—04 1.4322E—01 1.2723E—03 2.0701E—04 1.4785E—04
St. Dev 4.5183E—01 7.5553E—06 3.8262E—02 5.3875E—05 1.7245E—05 6.5596E—05
7ZTD3 Best 1.2945E—03 1.6749E—04 5.3897E—02 7.2066E—04 1.8747E—04 1.2341E—04
Mean 1.2154E—-02 2.1012E—-04 8.1522E—02 1.2502E—03 2.0239E—-04 1.2925E—04
Median 1.0747E—02 1.8569E—04 7.0063E—02 1.0285E—03 2.0343E—-04 1.2895E—04
Worst 2.1300E—02 2.7730E—04 1.1466E—01 2.2758E-03 2.1549E—04 1.3646E—04
St. Dev 8.1149E—-03 4.7763E—05 3.0310E-02 6.1436E—04 1.1347E—05 4.5202E—-06
ZTD4 Best 1.4096E +01 2.4557TE—04 8.6463E—01 1.0445E—-03 5.0252E—02 1.1258E—04
Mean 3.1702E 401 3.6386E—01 2.1500E +00 4.4564E—03 2.3885E—01 1.6517E—04
Median 2.8609E +01 3.1841E—-04 2.4103E +00 2.0990E—03 1.9422E—-01 1.7512E—04
Worst 4.6910E +01 1.5179E +00 2.7477E +00 9.9569E—03 5.6964E—01 1.9333E—-04
St. Dev 1.2895E +01 6.5808E—01 7.6024E—01 4.1608E—03 1.9889E—01 2.3513E-05
ZTD6 Best 1.3848E—02 4.7910E—02 5.5968E—01 2.3629E—02 1.5775E—04 7.2461E—05
Mean 5.6316E—01 5.2906E—02 5.7425E—01 2.7148E—01 2.3101E—-04 1.3077E—02
Median 4.6981E—01 4.9817E—02 5.6460E—01 3.4392E—01 1.6233E—04 1.3838E—02
Worst 1.5019E +00 6.4858E—02 6.0903E—01 3.7166E—-01 5.0661E—04 2.4239E—02
St. Dev 5.6965E—01 7.1153E—03 2.0875E—02 1.4701E—01 1.5412E—04 7.6640E—03
DTLZ1 Best 3.6136E +00 3.4364E +00 2.8820E +00 2.9611E +00 4.2834E—02 8.1797E-03
Mean 3.9936E +00 4.4915E +00 3.3544E 400 3.2466E +00 2.3014E—01 6.6621E—02
Median 4.1551E +00 4.6924E +00 3.1467E 400 3.0966E +00 9.8937E—02 4.7579E—02
Worst 4.2408E +00 5.5271E +00 3.9058E 400 3.9418E 400 6.1949E—01 1.7355E—01
St. Dev 2.9819E—01 8.1160E—01 4.3203E—01 4.0091E—01 2.5052E—01 6.0144E—02
DTLZ2 Best 1.0238E—01 8.6481E—02 4.6614E—01 2.7635E—01 1.1821E—01 1.4205E—-02
Mean 1.0535E—01 9.6692E—02 4.7869E—01 3.5631E—01 1.2410E—01 2.7412E—02
Median 1.0304E—01 9.2101E-02 4.7460E—01 3.6760E—01 1.2362E—01 2.8289E—02
Worst 1.1148E-01 1.0969E—01 4.9803E—01 3.9746E—01 1.2950E—01 4.4075E—02
St. Dev 3.9770E—03 9.4789E—03 1.3546E—02 4.6923E—02 4.9033E—-03 9.3542E—03
DTLZ4 Best 5.3487E—03 1.8607E—02 3.9470E—01 2.4852E—02 6.5841E—03 2.6028E—03
Mean 1.2829E—02 2.5427E-02 7.0995E—01 2.8965E—02 7.2476E—03 1.6691E—02
Median 1.2343E—-02 2.3653E—02 7.7257E—01 2.7504E—02 7.2952E—03 9.2346E—03
Worst 2.0434E—02 3.6018E—02 9.2914E—01 3.4199E—02 7.8067E—03 3.8549E—02
St. Dev 5.6275E—03 6.7884E—03 2.4128E—01 4.2258E—-03 4.5900E—04 1.4862E—02
DTLZ5 Best 2.4060E—02 2.7440E—03 2.7075E—01 1.8401E—01 1.9336E—02 1.5153E—04
Mean 3.2208E—02 2.9411E-03 3.1577E-01 2.0133E-01 2.1872E—02 2.7828E—03
Median 3.0532E—-02 2.9456E—03 3.1434E-01 1.9737E-01 2.2013E—02 3.3810E—04
Worst 4.2943E—02 3.1464E—03 3.8773E—01 2.3231E—-01 24113E—-02 1.5067E—02
St. Dev 7.3735E—03 1.9564E—04 4.6078E—02 2.0066E—02 1.6998E—03 5.3141E-03
DTLZ6 Best 8.1428E—06 1.4235E—05 3.4513E-02 9.3994E—02 1.3867E—05 8.6040E—06
Mean 2.3830E—02 1.6151E—05 8.3602E—02 1.1274E—01 1.5223E—05 9.9809E—06
Median 8.4606E—06 1.5644E—05 7.4867E—02 1.0997E—01 1.5170E—05 9.4282E—06
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Table 2 (continued)

Test function Statistical metric MOPSO NSMFO MSSA MOSMA MOBO MOGIJO
Worst 1.1911E-01 1.8763E—05 1.7375E—01 1.3141E-01 1.7498E—05 1.3268E—05
St. Dev 5.3266E—02 1.6906E—06 5.7537E—02 1.6376E—02 1.4189E—06 1.4770E—06

DTLZ7 Best 2.7433E—02 4.1216E—03 9.6144E—02 3.7764E—03 3.8728E—03 2.3666E—03
Mean 1.4974E—01 1.1224E—-02 4.0404E—01 4.6602E—03 6.3751E—03 3.0511E-03
Median 5.5101E—02 1.1061E—02 4.1759E—01 4.7019E—-03 7.2364E—03 2.9808E—03
Worst 5.6533E—01 1.6301E—02 6.3437E—01 5.3225E-03 8.2814E—03 3.5581E-03
St. Dev 2.3260E—01 4.5980E—03 1.9707E—01 5.9467E—04 2.0111E-03 3.2714E-04

MOPSOL1 [53], NSGA-II [53], MO chaos game optimiza-
tion (MOCGO) [57], MO crystal structure algorithm
(MOCryStAl) [58], efficient MOSMA (EMOSMA) [59],
MO grasshopper optimization algorithm (MOGOA) [60],
MO ant lion optimizer (MOALO) [60], MO lightning
attachment procedure optimizer (MOLAPO) [61],
MOGWO [61], M20O-CSA [17], and MO moth swarm
algorithm (MOMSA) [62]. These algorithms are assessed
according to GD index, where lower GD indicates better
performance. In this context, the statistical results using the
mean (average) and standard deviation (S.D) values of the
compared algorithms are recorded in Table 5. The com-
parisons affirmed that the MOGJO surpasses most of the
state-of-the-art counterparts for most ZDT and DTLZ1
suits, where the best result among the compared algorithms
is highlighted in boldface. Moreover, a statistical conclu-
sion is drawn based on a nonparametric statistical test
named Friedman-test [63] to detect the significant differ-
ences among the proposed algorithm and its competitors. In
this sense, the compared algorithms are divided to four
groups (i.e., G; symbolizes the group index) according to
the availability of reported results. Figure 4 depicts the
average ranking of each method on the candidate test suits
using Friedman’s test. Note that in the Friedman test, the
lower the ranking, the better the performance of the algo-
rithm. It is clear from Fig. 4 that the proposed MOGJO
ranks first regarding the GD metric among the thirteen-
competing methods. The results confirm that the proposed
MOGIJO outperforms the best algorithm, MOIJF, within the
thirteen state-of-the-art algorithms by an average rank of
Friedman test greater than 41% for ZDT and DTLZ1 suits
while outperforming the worst one, MOALO, by 84%.
Therefore, the quantitative results along with nonpara-
metric test demonstrate that the MOGJO exhibits better,
and more competitive performance compared to the other
competitors.

5.7 Results on multi-objective constrained suits

In this section, the effectiveness of the proposed MOGIJO is
further assessed and clarified using some well-known

multi-objective constrained suits with diverse characteris-
tics regarding the Pareto front including discontinuous and
continuous convex natures as illustrated in Table 1 [17].

The results of the proposed MOGJO are compared with
the other optimizers using the GD metric. The statistical
results are reported in Table 6 for the MOGJO and other
counterparts, where the best results are marked with bold
font. Based on the best values of the GD metric, it can be
concluded that the proposed MOGJO suppresses the other
peers. Although it can be noted that the MSSA provides
minimum value for GD index, it is not satisfied with the
coverage feature as it reaches the set of semi-identical
points for POF and can seem to be as single point which
may reduce the GD metric. Moreover, the searched POFs
by the presented algorithms are illustrated in Fig. 5. It
should be observed that the suggested MOGJO offers high
coverage and coverage regarding the true POFs for all
multi-objective constrained test suits.

5.8 Multi-objective engineering designs

In this subsection, the proposed MOGIJO is applied on
some popular real engineering designs which are the wel-
ded beam design (WBD), speed reduced design (SRD),
disk brake design (DBD), and four bar truss design (FBTD)
[17]. Furthermore, these designs include some optimization
natures such as constraints, discrete variables, and non-
convex objectives.

5.8.1 Description of WBD problem

The WBD aims to simultaneously minimize the objectives
of the overall fabrication and the end deflection which are
subjected to some constraints such as bending stress, shear
stress, the buckling load, and weld length. In this sense,
four design parameters are needed to be optimized which
are the height, the welded joint length, thickness, and the
beam width. The mathematical model is presented as
follows.
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Table 3 Statistical measures for HV metric by the proposed and compared optimizers for ZTD and DTLZ suits

Test function Statistical metric MOPSO NSMFO MSSA MOSMA MOBO MOGJO
ZTD1 Best 7.0767E—01 7.1910E—01 3.7849E—02 7.1208E—01 7.1436E—01 7.2104E—-01
Mean 6.5098E—01 7.1886E—01 7.5699E—03 7.1097E—01 7.1381E—01 7.2069E—01
Median 6.8116E—01 7.1881E—01 0.0000E +00 7.1151E-01 7.1402E—01 7.2068E—01
Worst 5.1097E—-01 7.1857E—01 0.0000E +00 7.0846E—01 7.1256E—01 7.2049E—01
St. Dev 8.1532E—02 2.3330E—04 1.6927E—02 1.4616E—03 7.3335E—04 1.4765E—04
ZTD2 Best 4.3690E—01 4.4364E—01 0.0000E +00 4.2649E—01 4.4148E—01 4.4603E—01
Mean 1.6059E—01 4.4341E-01 0.0000E +00 4.2569E—01 4.3998E—01 3.0365E—01
Median 0.0000E +00 4.4339E—-01 0.0000E +00 4.2570E—-01 4.3983E—-01 44511E-01
Worst 0.0000E +00 4.4327E-01 0.0000E +00 4.2486E—01 4.3895E—01 9.0909E—02
St. Dev 2.2132E—01 1.4428E—04 0.0000E +00 5.9678E—04 1.1073E—03 1.8310E—01
ZTD3 Best 5.8414E—01 6.0012E—01 6.3063E—02 6.0776E—01 5.9870E—01 6.0042E—01
Mean 5.3138E—01 5.9875E—01 2.1584E—02 6.0013E—01 5.9614E—01 6.0035E—01
Median 5.2309E—01 5.9928E—01 0.0000E +00 5.9865E—01 5.9559E—01 6.0034E—01
Worst 4.8654E—01 5.9641E—01 0.0000E +00 5.9749E—01 5.9369E—01 6.0032E—01
St. Dev 3.7314E-02 1.5003E—03 3.0248E—02 4.2978E—03 2.2754E—03 3.2921E-05
ZTD4 Best 0.0000E +00 7.1870E—01 0.0000E +00 5.2915E-01 4.4936E—01 7.2201E-01
Mean 0.0000E +00 4.3104E—01 0.0000E +00 3.2566E—01 1.4515E—-01 7.2180E—01
Median 0.0000E +00 7.1823E—01 0.0000E +00 2.8063E—01 9.2068E—02 7.2186E—01
Worst 0.0000E +00 0.0000E +00 0.0000E +00 1.5186E—01 0.0000E +00 7.2157E—01
St. Dev 0.0000E +-00 3.9349E—-01 0.0000E +00 1.4490E—01 1.8644E—01 1.5221E—04
ZTD6 Best 3.8264E—01 3.8727E—01 0.0000E +00 3.6004E—01 3.7468E—01 3.8992E—-01
Mean 7.6528E—02 3.8683E—01 0.0000E +00 1.4474E—01 3.6873E—01 3.8942E—01
Median 0.0000E +00 3.8694E—01 0.0000E +00 9.0909E—02 3.7413E-01 3.8937E—01
Worst 0.0000E +00 3.8607E—01 0.0000E +00 9.0909E—02 3.5349E-01 3.8906E—01
St. Dev 1.7112E—01 4.6175E—04 0.0000E +00 1.2036E—01 9.1023E—-03 2.5563E—04
DTLZ1 Best 0.0000E +00 0.0000E +00 0.0000E +00 3.2437E-01 7.9876E—01 7.8722E—01
Mean 0.0000E +00 0.0000E +00 0.0000E +00 2.5652E—01 4.6717E—01 3.4446E—01
Median 0.0000E +-00 0.0000E +00 0.0000E +00 3.2189E—01 6.6477E—01 2.3345E—01
Worst 0.0000E +00 0.0000E +00 0.0000E +00 0.0000E +00 0.0000E +00 0.0000E +00
St. Dev 0.0000E +00 0.0000E +00 0.0000E +00 1.4347E—01 3.9139E-01 3.1805E—01
DTLZ2 Best 4.6882E—01 4.7562E—01 1.4554E—01 1.9323E—01 4.6356E—01 5.2286E—01
Mean 4.6105E—01 4.3849E—01 1.2959E—01 1.6021E—01 4.4497E—-01 5.0082E—01
Median 4.6274E—01 4.3258E—01 1.2628E—01 1.4863E—01 4.3594E—-01 4.9989E—01
Worst 4.5034E—01 4.1574E—01 1.2038E—01 1.3981E—01 4.3406E—01 4.8975E—01
St. Dev 6.7782E—03 2.2391E—-02 1.0156E—02 2.1951E—-02 1.4100E—02 1.0214E—02
DTLZ4 Best 4.9638E—01 5.2822E—01 2.4893E—01 9.0909E—02 4.5130E—01 5.2882E—01
Mean 4.0388E—01 4.9549E—01 1.2437E—01 9.0879E—02 4.4019E—01 5.1386E—01
Median 3.9918E—01 4.9040E—01 9.6320E—02 9.0909E—02 4.4582E—01 5.1438E—01
Worst 3.5200E—01 4.7320E—01 8.1155E—02 9.0760E—02 4.1903E—-01 5.0228E—01
St. Dev 5.7473E—-02 2.0547E—02 7.0695E—02 6.6534E—05 1.3061E—02 7.6480E—03
DTLZ5 Best 1.8022E—01 2.0093E—-01 6.9229E—02 6.6436E—02 1.8478E—01 1.9866E—01
Mean 1.7355E—01 2.0044E—01 5.7878E—02 6.5387E—02 1.8260E—01 1.9785E—01
Median 1.7477E—-01 2.0057E—01 6.0221E—02 6.4780E—02 1.8294E—01 1.9794E—01
Worst 1.6429E—01 1.9979E—01 3.5861E—02 6.4694E—02 1.8007E—01 1.9690E—01
St. Dev 5.9244E—-03 4.2964E—04 1.3417E—02 9.0710E—04 1.7465E—03 6.2290E—04
DTLZ6 Best 1.9743E—-01 1.9349E—01 1.8501E—01 1.0053E—01 1.9119E—-01 2.0011E-01
Mean 1.6673E—01 1.9269E—01 1.3325E—01 9.9119E-02 1.8844E—01 1.9997E—01
Median 1.9692E—01 1.9257E-01 1.5974E—01 9.8527E—02 1.8838E—01 1.9996E—01
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Table 3 (continued)

Test function Statistical metric MOPSO NSMFO MSSA MOSMA MOBO MOGJO
Worst 4.5177E—-02 1.9226E—01 0.0000E +00 9.8424E—02 1.8661E—01 1.9986E—01
St. Dev 6.7949E—02 4.6835E—04 7.5715E—02 9.4934E—04 1.7618E—03 6.9200E—05

DTLZ7 Best 1.8411E-01 2.4143E—01 9.5453E—03 2.3483E—01 2.5205E—01 2.7062E—-01
Mean 1.1286E—01 2.3140E—01 2.9489E—03 2.3039E—-01 2.4036E—01 2.6786E—01
Median 1.1734E—-01 2.3072E-01 0.0000E +00 2.2900E—01 2.3863E—01 2.6782E—01
Worst 5.2534E-03 2.1627E—01 0.0000E +00 2.2627E—01 2.3378E—01 2.6528E—01
St. Dev 6.6426E—02 1.0422E—02 4.3204E—03 4.1327E-03 6.8946E—03 1.5623E—03

fi(x) = 1.1047 1, + 0.04811x3x4 (14 + x2)

i mwzgg
Subject to:

g1(x) = —(ta — tamax) <0,
82(x) = —(0 = Opar) <0,
83(x) = —(x1 — x4) <0,
ga(x) = —(P — pc) <0,

[h, 1,2, b]) = [x1,x2,x3, X4],

where

pe = (1= ((ra/20)(VE/AG)) )

ta = \/ta% + 2ta, - tay - (x2/2R) + ta3

4.013E/x3x5/36

5.8.2 Description of SRD problem

The SRD aims to simultaneously reduce the gear assembly
weight and the transverse deflection for achieving opti-
mized shaft. This design is optimized under some con-
straints which are the transverse deflections of the shafts,
the surfaces stress, bending stress of the gear teeth, and
stresses in the shafts. In this regard, seven design param-
eters are needed to be optimized, the face width, a module
of teeth, teeth number in the pinion, the first shaft length
between bearings, the second shaft length between bear-
ings, and the first and second shafts’ diameters. This
problem is regarded as mixed-integer design as the teeth
number in the pinion is an integer while the others are
continuous. The mathematical model is expressed as fol-
lows.

f1(x) = 0.7854xx3(3.3333x3 + 14.9334x3 — 43.0934) — 1.508x; (x + x3) + 7.4777 (x; + x3) + 0.7854 (x4x? + x5x3)

Min: Hx) = (\/(7;i§4>2+16.9e6> <\/<

745)64
X2X3

2
) +16.9e6>/110xg

(34)

tay = P/V2x1x3, tay =M,R/J, M, = P (L+x3/2)

Jo2. (\/gm((xg/lz) + ((x1 +x3)/2)2))

R=J(@/4) + (05 +x0)/2)

o = 4PL/x3x,

P = 6000, fame = 13600, L = 14, dmax = 30000,

G = 12¢6, E = 30e6

0.125§x1, )C4§5, 0.1 SXZ, X3§10

Subject to:
gilx) = 27/x1x%x3 —-1<0,

2 (x) =397.5/x133x3 — 1 <0,
g(x) = 1.93x2/xQX3x‘6‘ —-1<0,
ga(x) = 1.93x2 /xo3x5 — 1 <0,
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Fig. 3 The obtained POF for DTLZ suits using the proposed MOGJO and compared ones
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Fig. 3 continued
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Fig. 3 continued

40-1<0
7455, 2 ; g10x) =323/ 7

&slx) = <x2x3 ) 169¢6 016 —1=0, g8(x) = 5x3/x; — 1 <0,
go(x) = x1/12x, — 1 <0,

2
745x:
26(x) = \/(7) #5756 | [0 10 1<q g1o(x) = (1.5x¢ + 1.9)/xs — 1 <0,
(x)=(1.1x74+1.9)/x5s — 1 <0,
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Fig. 4 Friedman test between
MOGIJO with its competing
methods in terms of GD
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Table 4 Results of Wilcoxon test using significance level (p <0.05) for GD and HV metrics

Metric  MOGJO versus MOPSO  MOGIJO versus NSMFO  MOGJO versus MSSA  MOGIJO versus MOSMA  MOGIJO versus MOBO
GD 1.09E—-02 7.69E—03 7.69E—03 7.69E—03 7.69E—03
HV 7.69E—03 3.00E-02 7.69E—03 1.09E—02 2.84E—02
2.6<x;<3.6, 0.7<x,<0.8, 17<x3<28, filx) = L(le + V2% + \/x—3+x4)
73<xs, x5 <83, 29<x5<3.9, 5<x7<5.5. Min: L2 2V2 2v2 2 (36)
hX)=F=|—4+—-—"—""+=
E X2 X2 X3 X4
5.8.3 Description of DBD problem Subject to:
I<xy, x4 <3,
The multi-plate disk brake is used in airplanes that aims to
V2<x, x3<3,

simultaneously minimize the overall mass of the brake as
well as braking time. The design parameters are the inner
and outer radii, the engaging force, and the friction surfaces
(plates). Moreover, this problem is regarded as mixed-in-
teger problems as the friction surfaces takes a discrete
value. Also, this design is subjected to some constraints:
the pressure sustained by the plates, distance among the
radii of the friction plates, brake length, maximum limit of
temperature, and the braking torque. The mathematical
model is formulated as follows.

_ 2 _ 2
Min: {0 2 (0 e (2 )t )
(35)
Subject to:
g1(x) =204x —x <0
g2(x) =25(x +1)—-30<0

(
g3(x) = x3/3.14(x3 —x%)2—0.4§0
ga(x) =2.22¢ — 3x3(x; —x7) /(3 —x%)z—l <0
(

gs(x) =900 — ((2.666‘ — 2x3x4 (xg — x?))/(x% — xf)) <0

55<x; <80,75 <x, < 110,
1000 < x3 < 3000, 2 < x4 < 20

5.8.4 Description of FBTD problem

The simultaneously minimization of the volume and dis-
placement of joints represents the main aim of FBTD,
where the design variables of this design are considered as
the areas of joints. The mathematical model is described as
follows.

F =10, L =200, E = 2e5.

The results of the proposed MOGJO and the compared
algorithms obtained for the engineering design problems
are assessed using the statistical measures of the SP and
HV. The obtained results of these metrics are reported in
Table 7. Based on observation of the SP results obtained in
Table 7, the proposed MOGJO ensures the best statistical
results compared to the other competitors for the engi-
neering designs, WBD, SRD, DBD, and FBTD, where the
best results are marked with bold font. Also, by observing
the HV metric, it can be concluded that the MOGJO pro-
vides the best performance on all engineering designs by
the comparisons with the other presented algorithms.
According to the presented metrics, it can be revealed the
MOGIJO has a good convergence and coverage for the
studied engineering optimization designs. Moreover, the
searched POFs by the proposed MOGJO algorithm for all
considered designs are depicted in Fig. 6.

5.9 Dynamic economic-emission power dispatch
(DEEPD)

The DEEPD problem represents MOO problem that aims
to minimize the objectives of fuel cost and emission levels
in the power system stations. The term dynamic implies
that the operation is performed over a specific time horizon
with taking into account the dynamic changes in load. To
maintain the real power balance in the power system, the
output of the generators must be adjusted in accordance
with changes in load in the power system. Therefore, the
solution the DEEPD problem not only brings economic
advantages but also lowers atmospheric pollutant gas
emissions [64]. Moreover, the fuel cost equation acquires
some ripples in its operation curve caused by opening and
closing the steam values of the turbine. Due to the ripples’
nonlinear effect on the quadratic fuel cost equation, the
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Table 6 Statistical measures for GD metric by the proposed and compared optimizers for constrained suits
Test function Statistical metric MOPSO NSMFO MSSA MOSMA MOBO MOGIO
SRN Best 4.8371E-02 1.1491E—01 9.4999E—04 3.1638E—01 1.3732E-01 1.8990E—02
Mean 7.4294E—-02 1.8969E—01 5.9990E—-03 5.1648E—01 1.7690E—-01 2.1887E—02
Median 7.4450E—02 1.5928E—01 5.5556E—03 5.0107E-01 1.7607E—01 2.0808E—02
Worst 9.0994E—-02 3.0816E—01 1.4117E-02 8.3128E—01 2.1054E—01 2.7240E-02
St. Dev 1.6321E—-02 7.4425E—-02 5.0812E—-03 2.0403E—-01 2.6373E—-02 2.9750E-03
BHN Best 6.1659E—02 6.8026E—02 2.8214E-03 6.7603E—02 6.2490E—02 2.2486E—02
Mean 7.8622E—01 1.0753E—01 2.1760E—02 7.0837E—-02 1.0556E—01 2.3762E—02
Median 2.2043E—-01 8.7162E—02 1.2971E—-02 6.9523E—-02 8.9104E—-02 2.3887E—02
Worst 2.2248E +00 1.6355E—01 4.6683E—02 7.6272E—-02 1.7057E—01 2.4833E—-02
St. Dev 9.7030E—-01 4.5321E-02 2.0937E—-02 3.4070E-03 4.5494E—02 8.2212E—-04
KIT Best 2.6340E +00 3.0036E 400 1.6520E 400 2.5677E 400 3.1672E 400 4.6025E—04
Mean 2.8005E +00 3.0100E 400 1.6550E +00 2.5937E +00 3.2745E 400 3.1838E—03
Median 2.7874E +00 3.0109E 400 1.6550E 400 2.5900E 400 3.2995E 400 1.5423E—-03
Worst 2.9641E 400 3.0148E 400 1.6571E +00 2.6251E +00 3.4340E 400 1.4401E—02
St. Dev 1.1800E—01 4.1659E—-03 2.1525E—-03 2.3022E—-02 1.1037E—01 4.2824E—-03
TNK Best 1.0607E—03 1.9577E—-03 2.9092E—04 1.4475E—02 1.5783E—-03 2.6114E—04
Mean 6.4610E—03 2.5221E-03 6.8262E—04 1.7697E—02 2.1911E-03 3.5615E—04
Median 6.7285E—03 2.1908E—03 6.7617E—04 1.8960E—02 1.8139E—-03 3.6479E—-04
Worst 1.5764E—02 3.5838E—03 1.1470E—-03 1.9836E—02 3.8323E—-03 4.2497E—-04
St. Dev 5.9585E—-03 6.5212E—-04 3.0579E—-04 2.4138E—-03 9.3199E—-04 5.1993E—-05
realistic model of DEEPD formulation must take this into NG NG

account, leading to many local optima. Additionally, con-
sidering the dynamic term as well as power balance con-
straints lead to non-monotonic, non-linear, non-convex,
and non-smooth characteristics into DEEPD formulation
and thus finding a compromise solution under aforemen-
tioned characteristics is a true challenge to the power
system operations. The mathematical formulation is
expressed as follows [64].

H NG
Cost: f1(PG) ¢i + biPG; ), + a;PG;
1 ZZ( 1+ apG) (37)
+ ld (sin(e(PGT" — PG,,))|
H NG

Emission: f>(PG) ZZ(m,—I—lPG,h—I—kPG )
=1 i=1

+ n; (exp®PCin)
(38)
Subject to:
NG
> PGi) = PD, + PL, (39)

i=1

PL, =YY PGiB;PGij + Z BoiPGiy+Boo  (40)
i=1 j=1 i=1
PGM™ < PG;;, <PG™,i=1,2,...,NG & h
1,2,...,24 (41)

where H defines the dispatch period that usually taken as
24 h. PG;; denotes the produced power by the generator i
at time h, a;, b;, c; represent the coefficients of fuel cost,
d;, e; represent the coefficients acquired by valve effect of
the i th. generator. [;, m;, n;, k;, q; denote the coefficients of
emission function of the i th unit. PG™" defines the lower
bound for generation unit PG;.

Equation (39) expresses the power balance constraint
for the generated power at time h, where PD;, defines the
power demand at time 4 and PL; denotes the transmission
loss at time £ that is expressed in Eq. (40). Where By, By;,
and By denote the ij th member of the B-loss matrix, the
ith member of the loss coefficient vector, and a constant,
respectively. Equation (41) defines the boundaries of the
search region, where PG™" and PG™>* denote the lower
and upper bounds, respectively. In this context, the pro-
posed method is applied on the IEEE 30-bus system, where
the single-line diagram is depicted in Fig. 7 [51]. The load
profile for DEEPD was taken from data available in [65].
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Fig. 5 The obtained POF for constrained suits using the proposed MOGJO and compared ones
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Fig. 5 continued

To evaluate the applicability of the proposed MOGIJO, it
is investigated on the DEEPD problem for every hour,
where the POF obtained for each hour along with the
compromise solution is depicted as in Fig. 8. The bar plot
of the obtained real generated power of the compromise
solution is depicted in Fig. 9. Moreover, the reached
compromise solution by the proposed MOGJO is compared
with existing algorithms in terms of dominance relation
and savings regarding the fuel cost and emission levels,
where the fuel cost and emission obtained by the GSOMP
[65] are 25924.4% and 6.0041 ton, and the obtained the fuel
cost and emission by MOMVO [64] are 25831.48% and
5.9666 ton. Based on the recorded results, the proposed
algorithm achieves daily savings in fuel costs and emission
levels over the other competitors by 489.5001$ and 0.0882
ton for MOMVO, and by 582.4201$ and 0.1257 ton for
GSOMP. The compromise solution of the fuel cost and
emission reached by the proposed MOGJO at each hour as

well as the generated power per hour is recorded in
Table 8.

5.10 Further discussion

In this work, the performance of the MOGJO was applied
on some benchmark suits including the ZDT suit with
optimizing bi-objective functions, DTLZ suits with opti-
mizing three-objective functions, constrained test suits and
real engineering applications such as the welded beam
design, speed reduced design, four-bar truss, disk brake
design, and real DEEPD problem. The assessment of the
proposed MOGJO was carried out by the comparisons with
other optimization algorithms, and some performance
metrics such as HV, SP, and GD. The statistical outcomes
of assessment metrics affirmed that the MOGJO algorithm
performs well regarding the converge and coverage fea-
tures toward POF without suffering, while the compared
counterparts may suffer from converge and coverage
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Fig. 6 The obtained POF for the engineering designs by the proposed MOGJO

features toward POF. At the same time, the POF obtained
by the proposed MOGJO, and its competitors are depicted,
where the visualization perspective realized that the pro-
posed MOGIJO algorithm can reach more concise shape
with the true POF for most of the test functions. Moreover,
the proposed MOGJO is further verified by the compar-
isons with some implemented algorithms including
MOPSO, NSMFO, MSSA, MOSMA, MOBO, and some
state-of-the-art methods including MOJF, MOEA/D,
MOPSO1, NSGA-II, MOCGO, MOCryStAl, EMOSMA,
MOGOA, MOALO, MOLAPO, MOGWO, M20-CSA, and
MOMSA. The obtained results using the statistical metrics
along with the nonparametric tests have affirmed the pro-
gressive and competitive performance of the proposed
algorithm compared to its competitors. In this regard, the
Wilcoxon rank sum test affirmed that the MOGJO

Fig. 7 The structure of IEEE 30-bus system using the single-line
diagram [51]

algorithm is significantly better than the compared meth-
ods, with a 95% significance level. On the other hand, the
Friedman test was detected the significancy of average
ranking among the compared algorithm, and it was con-
firmed that the proposed MOGJO outperforms the best and
worst algorithms, MOJF and MOALO, among the state-of-
the-art algorithms by an average rank greater than 41% and
84% on for ZDT and DTLZI, respectively. Finally, the
results of engineering designs and real dynamic economic-
emission power dispatch (DEEPD) problems demonstrated
that the MOGIJO algorithm has good applicability to deal
with challenging tasks with complicated search space
constraints. Furthermore, the proposed algorithm saved the
overall energy cost and total emission of the DEEPD
problem by 1.89%, and 1.48%, respectively, compared
with the best existing results. Therefore, it can be con-
cluded that the presented methodology provides progres-
sive and competitive performance with existing multi-
objective optimization methods in terms of ductility and
coverage. The main reasons behind the superior perfor-
mance of the MOGJO can be interpreted as follows:
Firstly, the incorporation of chaotic logistic and opposition
searching can provide a good exploration aspect, where this
can explore new positions in opposite directions of current
ones which improves the diversity of solutions. Secondly,
the integrating of elite strategy that operates in surviving
the best solutions can improve the intensifying of solutions
and improve the convergence aspect. Finally, the embed-
ding of the relevant tools related to multi-objective strategy
into GJO algorithm can make adaption to deal with the
MOQO issues such as the external archive population to
maintain the best non-dominated solutions during the
iterative process, conception of crowding distance to avoid
the archive size explosion, and the selection of pair golden
jackals from the archive population can guide the whole
population to attain the Pareto front with good balance
among the exploration and the exploitation searching.
Furthermore, we anticipate that the provided methodology
will inspire practitioners and engineers to use it in dealing
with practical applications such as climate changes and

@ Springer



20798

Neural Computing and Applications (2023) 35:20771-20802

hour=1
740
6‘3 730
2 720
= 710
=
= 700
690
0.19 021 0.22 0.23
Emlssmn(ton)
hour=5
760
& 750
‘g 740
<
= 730
=
= 720
710
0.19 0.21 0.22 0.23
Emlssmn(ton)
hour=9
1320
£ 1300
-
w»
S 1280
)
= 12
g 1260 kot
1240
0.26 0.28 0.32
Emlssmn(ton)
hour=13
> 1240
<
2
=3
< 1220
)
£
1200
0.26 0.28
Emlssmn(ton)
hour=17
1220
z
< 1200
=
<
< 1180
=
=
1160
0.24 026 0.28 0.3
Emission(ton)
hour=21

1060

Fuel cost ($)
=
S

—
153
Y
=)

0.22 0.24 0.26
Emission(ton)

hour=2

900
z
— 880
g
S 860
=
840
02 021 022 023 024
Emission(ton)
hour=6
920
z
‘g 900
=
=
= 880
0.2 0.22 0.24
Emission(ton)
hour=10
1240
2
- 1220
=3
]
< 1200
=
1180 X px
0.26 0.28 0.3
Emission(ton)
hour=14
1220

Fuel cost ($)
L I
I %
o® >
< >

Fuel cost ($)

1340

0.26 0.28 0.3
Emission(ton)

hour=18

— -
w w
=) [~
<> =

0.3 0.35 0.4
Emission(ton)
hour=22

N

-]

=]
™

Fuel cost ($)
4
2

o
-
<

0.21

0.22 0.23 0.24 0.25
Emission(ton)

hour=3
790
& 780
g 70
)
Z 760
750
0.19 0.21 022 0.23
Emlssmn(ton)
. hour=7
@ 1100
2
=3
= 1080
L
=
=
K
1060
0.22 0.24 0.26
Emission(ton)
hour=11
1320
2
< 1300
=3
)
= 1280
=
=
1260
0.25 .35
Emlssmn(ton)
hour=15
1120
Pon)
&
-’
< 1100
°
<
< 1080
=
1060 *
0.22 0.24 0.26
Emission(ton)
hour=19
2
o
w
=}
<
o)
=
LL‘ e b
026 028 03
Emission(ton)
. hour=23
980
£
2
S 960
o)
=
= 940

0.21 022 023 024 025
Emission(ton)

Fig. 8 POFs for each hour of the dispatch period (red star) and compromise solution (blue square)

renewable energy sources that aims to simultaneously
optimize large-scale multi- and many-objective optimiza-

tion problems.

@ Springer

hour=4
680
6 670
2 660
=3
<
< 650
=
= 640
630
0.19 0.21 0.22 0.23
Emlsswn(ton)
hour=8
1200
—_
&
< 1180
=3
<
S 1160
=
= o
1140

024 026 028 03
Emission(ton)

Fuel cost ($)
. L . .
w w w -
ES (=) (-] >
=] <> =] Oé

0.3 0.35 0.4

Emission(ton)
hour=16
~ 1260%
2 ;
2 1240
o
S 1220
=
1200
0.26 0.28 0.3
Emission(ton)
hour=20
1260
>
e
< 1240
=
<
< 1220
=
=
1200
0.26 0.28
Emlssnon(ton)
hour=24
920
2
Z 900
<
5}
=
= 880
0.2 0.22
Emission(ton)

5.11 Benefits and limitations of the proposed

algorithm

5.11.1 Benefits of the algorithm

e Enhanced exploration: The algorithm integrates the
chaotic logistic and opposition-based learning concepts
with the MOGJO algorithm to explore more promising
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solution of the DEEPD problem

areas during the search process, leading to improve the
spread performance along the entire Pareto front.
Guided exploitation: The use of the elite-based strategy
in the MOGJO helps to introduce guidance pattern into
the updating process, leading to emphasize the exploita-
tion feature with promoting the convergence perfor-
mance toward the POF.

Robustness: The algorithm can strike a good balance
among the exploitative and explorative features,
demonstrating the robustness performance over the
compared ones for most of the studied problems.
Assistance-based tool: Fuzzy technique is adopted to
assist the DM mission to select the best compromise
solution (CS) from the overall POF.

5.11.2 Limitations of the algorithm

Limited scalability: The algorithm is highly susceptible
to worsening while dealing with many-objective prob-
lems. More specifically, since MOGJO optimizes the
objectives of a MOO problem simultaneously, there is a
chance that the algorithm loses performance when the
MOO problem has more than two objectives. So, the
proposed algorithm can be further integrated with other
searching strategies to create a more effective and
robust algorithm for optimizing many-objective
problems.

Limited applicability: The algorithm’s effectiveness
may depend on the specific features of the problem

Table 8 The best compromise

solution reached by the h PD, PG, PG, PG; PG, PGs PGg Emission (ton) Fuel cost ($)
"Drgﬁ‘;sédp‘;‘l,i‘f;‘ﬁ“ for the 1 32500 0.2880 04228 0.6388 0.7741 0.6399 04863 0.2028 703.6166
2 3.9000 03855 0.5062 07928 0.9037 0.7525 0.5593 0.2117 859.1323
3 35000 03372 04146 0.6980 0.8584 0.6797 05122 0.2067 760.6734
4 3.0000 0.2839 03985 0.5718 07420 05762 04276 0.2016 646.3300
5 33500 03044 04225 06810 0.8270 0.6094 0.5057 0.2048 725.7823
6 40000 03807 05092 0.8026 09321 07863 0.5892 0.2145 883.0348
7 47500 05088 0.5894 09479 1.0783 09379 0.6877 02377 1076.3574
8 50500 05620 0.6181 09976 1.1724 09728 0.7270 0.2523 1156.5174
9 54500 0.6301 0.6636 1.0748 12717 1.0411 0.7688 0.2762 1267.1308
10 52000 05737 0.6461 1.0251 1.1887 09973 0.7691 0.2593 1198.6784
11 55000 05473 07120 1.0790 12994 1.0975 0.7642 0.2840 1277.8676
12 57500 0.6542 06759 1.1200 13881 1.1206 0.7913 0.3033 1349.2569
13 52500 05273 06728 1.0385 12313 1.0271 0.7531 0.2656 1209.4003
14 51500 05243 0.6345 09963 1.1948 1.0705 0.7296 0.2610 1181.2043
15 47500 05031 0.6013 09246 1.0908 09179 07122 0.2373 1077.1114
16 53000 05758 0.6418 1.0712 12240 09964 0.7907 0.2669 1225.2375
17 51500 05236 06282 1.0189 1.1900 1.0314 0.7578 0.2596 1181.9437
18 57500 05654 06638 1.1706 14242 1.1667 0.7593 0.3166 1343.1344
19 52500 05373 0.6457 1.0570 12361 1.0448 0.7291 02675 1207.7034
20 52500 0.5800 0.6557 1.0379 12371 1.0184 0.7208 0.2650 1209.9368
21 45500 04710 05957 0.8900 1.0258 09017 0.6658 0.2291 1024.9511
22 42500 04234 05369 0.8494 09607 0.8780 0.6014 0.2207 946.2351
23 42500 04212 05513 0.8319 09711 0.8401 06345 02199 947.1190
24 40000 03701 05186 0.8125 09033 0.8221 05733 0.2143 883.6251
Total 5.8784 25341.9799

@ Springer



20800

Neural Computing and Applications (2023) 35:20771-20802

being addressed such as multi-modal, non-separable or
deceptive natures, and it maybe could not grantee the
best performance for all optimization tasks.

6 Conclusion and future work

This paper proposes a guided multi-objective golden jackal
optimization (MOGJO) based on opposition mechanism
and elite-based-based learning scheme to deal with MOO
issues. While preserving the searching capability of the
GJO, a dynamic opposition strategy and guidance strategy
based on the elite non-dominated solutions are equipped
into GJO algorithm to reach the promising regions of POF,
and thus, diversity and coverage toward the POF is pre-
served to the greatest extent attainable through the inte-
gration of two mechanisms. Moreover, the crowding
distance conception is also incorporated to emphasize the
survivability of solutions and avoid the premature con-
vergence. The suggested MOGJO algorithm can find the
optimal Pareto frontier in a variety of testing functions and
engineering challenges. The proposed algorithm was tested
on 21 cases, including 11 unconstrained MOO issues with
two objective or three objective, 5 constrained MOO
issues, 4 high-constraint engineering design application,
and one real power system problem. Quantitative results
were performed by using three performance indicators
(GD, HV, and SP) along with comparisons with some well-
known implemented algorithms and other algorithms from
the literature. In this sense, the performance of proposed
MOGIJO is verified with MOPSO, NSMFO, MSSA,
MOSMA, MOBO, MOJF, MOEA/D, MOPSO1, NSGA-II,
MOCGO, MOCryStAl, EMOSMA, MOGOA, MOALO,
MOLAPO, MOGWO, M20-CSA, and MOMSA. The
obtained results show that the proposed MOGJO algorithm
can provide progressive and competitive performance with
the compared algorithms for most of the ZDT, DTLZ
problems. Also, for constrained problems, the results on the
studied problems demonstrated that the MOGJO can
explore the promising regions under the constraints chal-
lenging with providing superior results than the compared
algorithms. At the same time, MOGJO algorithm can attain
the Pareto optimal front of the real shape for most of the
studied problems. Finally, the results of engineering
designs and real dynamic economic-emission power dis-
patch (DEEPD) problems affirmed that the MOGJO algo-
rithm has good applicability to deal with challenging tasks
with complicated search space constraints. Finally, Wil-
coxon rank sum test was performed on GD, and HV indi-
cators, and the results demonstrated that the MOGJO
algorithm is significantly better than the compared meth-
ods, with a 95% significance level. Furthermore, the results

@ Springer

of the nonparametric Friedman test were performed to
detect the significant of average ranking among the com-
pared algorithm, where the results confirmed that the pro-
posed MOGJO outperforms the best algorithm, MOIJF,
among thirteen state-of-the-art algorithms by an average
rank of Friedman test greater than 41% for ZDT and
DTLZ1 suits while outperforming the worst one, MOALO,
by 84%. Furthermore, the proposed algorithm saved the
overall energy cost and total emission of the DEEPD
problem by 1.89%, and 1.48%, respectively, compared to
the best existing results. Therefore, it can be claimed that
the suggested methodology performs outstanding ductility
and coverage among existing multi-objective optimization
methods.

With respect to future work, some considerations can be
explored. Though MOGJO has outstanding performance in
most of the studied cases, it is susceptible to performance
loss for large-scale and multi-modal problems. More
studies can also be conducted on improving the global
searching ability of the proposed algorithm in terms of
convergence and coverage trends using other improvement
strategies to be competitive enough with top performing
methods in the literature. Additionally, future studies could
examine the performance of the proposed algorithm for
large-scale many-objective tasks that have four or more
objectives. Also, adapting the performance of the proposed
algorithm to deal with real-life MOO issues, such as
CEC2020 Real-World Constrained Optimization competi-
tion, wind farm layout optimization problem, DEEPP
problem based on renewable technologies, and deep
learning technique-based prediction of the load dispatch
period for the DEEPP problem, is part of our future
direction. Please note that the MOGJO cannot be viewed as
the optimum methodology for all situations because there
is no such methodology, as it is evident from “no free
lunch” (NFL) theorem. Furthermore, since MOGJO uses
stochastic population-based optimization, it can still
encounter a stagnation challenge, especially while dealing
with some more challenging datasets including huge
dimensions and/or complicated constraints.
Acknowledgements This work has been supported by an internal
grant project of VSB-Technical University of Ostrava (SGS project,
Grant Number SP2023/076).

Funding There is no funding for this study by any company.

Declarations

Conflict of interest No potential conflict of interest has been stated by
the authors.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.



Neural Computing and Applications (2023) 35:20771-20802

20801

References

10.

11.

12.

13.

14.

15.

16.

18.

. Rizk-Allah RM, El-Sehiemy RA, Deb S, Wang GG (2017) A

novel fruit fly framework for multi-objective shape design of
tubular  linear  synchronous motor. J  Supercomput
73(3):1235-1256

. Rizk-Allah RM, El-Sehiemy RA, Wang GG (2018) A novel

parallel hurricane optimization algorithm for secure emission/
economic load dispatch solution. Appl Soft Comput 63:206-222

. Miettinen K (2012) Nonlinear multiobjective optimization.

Springer

. Deb K (2011) Multi-objective optimisation using evolutionary

algorithms: an introduction. Multi-objective evolutionary opti-
misation for product design and manufacturing. Springer, Lon-
don, pp 3-34

. Steuer RE (1986) Multiple criteria optimization: theory, com-

putation and application. Wiley, New York

. Peri¢c T, Babi¢ Z, Matejas J (2018) Comparative analysis of

application efficiency of two iterative multi objective linear
programming methods (MP method and STEM method). CEJOR
26(3):565-583

. Kumar S, Jangir P, Tejani GG, Premkumar M (2022) MOTEO: a

novel physics-based multiobjective thermal exchange optimiza-
tion algorithm to design truss structures. Knowl-Based Syst
242:108422

. Srinivas N, Deb K (1994) Muiltiobjective optimization using

nondominated sorting in genetic algorithms. Evol Comput
2(3):221-248. https://doi.org/10.1162/evco.1994.2.3.221

. Coello CA, Pulido GT, Lechuga MS (2004) Handling multiple

objectives with particle swarm optimization. IEEE Trans Evol
Comput  8(3):256-279.  https://doi.org/10.1109/TEVC.2004.
826067

Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion
optimizer: a multi-objective optimization algorithm for solving
engineering problems. Appl Intell. https://doi.org/10.1007/
$10489-016-0825-8

Mirjalili S, Saremi S, Mirjalili SM, dos Coelho LS (2016) Multi-
objective grey wolf optimizer: a novel algorithm for multi-cri-
terion optimization. Expert Syst Appl 47:106-119. https://doi.
org/10.1016/j.eswa.2015.10.039

Hancer E, Xue B, Zhang M, Karaboga D, Akay B (2015) A multi-
objective artificial bee colony approach to feature selection using
fuzzy mutual information. IEEE Congr Evol Comput
2015:2420-2427. https://doi.org/10.1109/CEC.2015.7257185
Sadollah A, Eskandar H, Kim JH (2015) Water cycle algorithm
for solving constrained multi-objective optimization problems.
Appl Soft Comput 27:279-298. https://doi.org/10.1016/j.asoc.
2014.10.042

Premkumar M, Jangir P, Sowmya R, Alhelou HH, Heidari AA,
Chen H (2020) MOSMA: Multi-objective slime mould algorithm
based on elitist non-dominated sorting. IEEE Access
9:3229-3248

Jangir P, Trivedi IN (2018) Non-dominated sorting moth flame
optimizer: a novel multi-objective optimization algorithm for
solving engineering design problems. Eng Technol Open Access
J2(1):17-31

Rizk-Allah RM, Hassanien AE (2022) A hybrid equilibrium
algorithm and pattern search technique for wind farm layout
optimization problem. ISA Trans 132:402

. Rizk-Allah RM, Hassanien AE, Slowik A (2020) Multi-objective

orthogonal opposition-based crow search algorithm for large-
scale multi-objective optimization. Neural Comput Appl
32(17):13715-13746

El-Sehiemy RA, Rizk-Allah RM, Attia AF (2019) Assessment of
hurricane versus sine-cosine optimization algorithms for

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

economic/ecological emissions load dispatch problem. Int Trans
Electr Energy Syst 29(2):¢2716

Mousa AA, Abd El-Wahed WF, Rizk-Allah RM (2011) A hybrid
ant colony optimization approach based local search scheme for
multiobjective design optimizations. Electr Power Syst Res
81(4):1014-1023

Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining
convergence and diversity in evolutionary multiobjective opti-
mization. Evol Comput 10(3):263-282

Got A, Moussaoui A, Zouache D (2020) A guided population
archive whale optimization algorithm for solving multiobjective
optimization problems. Expert Syst Appl 141:112972

Liu J, Wang Y, Wang X, Sui X, Guo S, Liu L (2017) An alpha-
dominance expandation based algorithm for many-objective
optimization. In: 2017 13th international conference on compu-
tational intelligence and security (cis) (pp. 6—10). IEEE

Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolutionary
algorithm for many-objective optimization. IEEE Trans Evol
Comput 17(5):721-736

Batista LS, Campelo F, Guimaries FG, Ramirez JA (2011) Pareto
cone ge-dominance: improving convergence and diversity in
multiobjective evolutionary algorithms. In: International confer-
ence on evolutionary multi-criterion optimization (pp. 76-90).
Springer

He Z, Yen GG, Zhang J (2013) Fuzzy-based Pareto optimality for
manyobjective evolutionary algorithms. IEEE Trans Evol Com-
put 18(2):269-285

Yuan Y, Xu H, Wang B, Yao X (2015) A new dominance rela-
tion-based evolutionary algorithm for many-objective optimiza-
tion. IEEE Trans Evol Comput 20(1):16-37

Beume N, Naujoks B, Emmerich M (2007) Sms-emoa: multi-
objective selection based on dominated hypervolume. Eur J Oper
Res 181(3):1653-1669

Brockhoff D, Wagner T, Trautmann H (2015) 2 indicator-based
multiobjective search. Evol Comput 23(3):369-395

Sun Y, Yen GG, Yi Z (2018) Igd indicator-based evolutionary
algorithm for many-objective optimization problems. IEEE Trans
Evol Comput 23(2):173-187

Zhang Q, Li H (2007) Moea/D: a multiobjective evolutionary
algorithm based on decomposition. IEEE Trans Evol Comput
11(6):712-731

Deb K, Jain H (2013) An evolutionary many-objective opti-
mization algorithm using reference-point-based nondominated
sorting approach, part I: solving problems with box constraints.
IEEE Trans Evol Comput 18(4):577-601

Li K, Deb K, Zhang Q, Kwong S (2014) An evolutionary many-
objective optimization algorithm based on dominance and
decomposition. IEEE Trans Evol Comput 19(5):694-716

Li H, Zhang Q (2008) Multiobjective optimization problems with
complicated pareto sets, moea/d and nsga-ii. IEEE Trans Evol
Comput 13(2):284-302

Yang NC, Mehmood D (2022) Multi-objective bee swarm opti-
mization algorithm with minimum Manhattan distance for pas-
sive power filter optimization problems. Mathematics 10(1):133
Bakhshinezhad S, Mohebbi M (2020) Multi-objective optimal
design of semi-active fluid viscous dampers for nonlinear struc-
tures using NSGA-II. Structures 24:678-689

Liu M, Li Y, Zhao S et al (2022) Multi-objective optimization
and test of a tractor drive motor. World Electr Veh J 13(2):43
Marghny MH, Zanaty EA, Dukhan WH et al (2022) A hybrid
multi-objective optimization algorithm for software requirement
problem. Alex Eng J 61(9):6991-7005

Singh N, Bharti PS (2022) Multi-objective parametric optimiza-
tion during micro-EDM drilling of Ti-6Al-4V using teaching
learning based optimization algorithm. Mater Today Proc
62(1):262-269

@ Springer


https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1109/TEVC.2004.826067
https://doi.org/10.1109/TEVC.2004.826067
https://doi.org/10.1007/s10489-016-0825-8
https://doi.org/10.1007/s10489-016-0825-8
https://doi.org/10.1016/j.eswa.2015.10.039
https://doi.org/10.1016/j.eswa.2015.10.039
https://doi.org/10.1109/CEC.2015.7257185
https://doi.org/10.1016/j.asoc.2014.10.042
https://doi.org/10.1016/j.asoc.2014.10.042

20802

Neural Computing and Applications (2023) 35:20771-20802

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

Lian L (2022) Reactive power optimization based on adaptive
multi-objective optimization artificial immune algorithm. Ain
Shams Eng J 13(5):101677

Martinez-Rico J, Zulueta E, de Argandona IR et al (2020) Multi-
objective optimization of production scheduling using particle
swarm optimization algorithm for hybrid renewable power plants
with battery energy storage system. J Mod Power Syst Clean
Energy 9(2):285-294

Fox AD, Corne DW, Mayorga Adame CG et al (2019) An effi-
cient multi-objective optimization method for use in the design of
marine protected area networks. Front Mar Sci 6:17

Li H, Liu Z, Zhu P (2021) An improved multi-objective opti-
mization algorithm with mixed variables for automobile engine
hood lightweight design. J Mech Sci Technol 35(5):2073-2082
Tian C, Niu T, Wei W (2023) Volatility index prediction based
on a hybrid deep learning system with multi-objective opti-
mization and mode decomposition. Expert Syst Appl 213:119184
Nakashima RN, Junior SO (2023) Multi-objective optimization of
biogas systems producing hydrogen and electricity with solid
oxide fuel cells. Int J Hydrog Energy 48(31):11806-11822

Cao C, Liu F, Tan H, Song D, Shu W, Li W, Xie Z (2018) Deep
learning and its applications in biomedicine. Genom Proteom
Bioinform 16(1):17-32

Chen D, Li X, Li S (2021) A novel convolutional neural network
model based on beetle antennae search optimization algorithm for
computerized tomography diagnosis. IEEE Trans Neural Netw
Learn Syst 34:1418

Yang Z, Qiu H, Gao L, Chen L, Liu J (2023) Surrogate-assisted
MOEA/D for expensive constrained multi-objective optimization.
Inf Sci 639:119016

Tariq I, AlSattar HA, Zaidan AA, Zaidan BB, Abu Bakar MR,
Mohammed RT, Albahri AS (2020) MOGSABAT: a meta-
heuristic hybrid algorithm for solving multi-objective optimisa-
tion problems. Neural Comput Appl 32:3101-3115

Wolpert DH (2023) The implications of the no-free-lunch theo-
rems for meta-induction. J General Philos Sci. https://doi.org/10.
1007/s10838-022-09609-2

Chopra N, Ansari MM (2022) Golden jackal optimization: a
novel nature-inspired optimizer for engineering applications.
Expert Syst Appl 198:116924

Rizk-Allah RM, Hassanien AE, Bhattacharyya S (2018) Chaotic
crow search algorithm for fractional optimization problems. Appl
Soft Comput 71:1161-1175

Rizk-Allah RM, Hassanien AE, Song D (2022) Chaos-opposi-
tion-enhanced slime mould algorithm for minimizing the cost of
energy for the wind turbines on high-altitude sites. ISA Trans
121:191-205

Chou JS, Truong DN (2020) Multiobjective optimization inspired
by behavior of jellyfish for solving structural design problems.
Chaos Solitons Fractals 135:109738

Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mir-
jalili SM (2017) Salp Swarm algorithm: a bio-inspired optimizer

@ Springer

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

for engineering design problems. Adv Eng Softw. https://doi.org/
10.1016/j.advengsoft.2017.07.002

Das AK, Nikum AK, Krishnan SV et al (2020) Multi-objective
Bonobo Optimizer (MOBO): an intelligent heuristic for multi-
criteria optimization. Knowl Inf Syst 62:4407-4444. https://doi.
org/10.1007/s10115-020-01503-x

Wilcoxon F (1992) Individual comparisons by ranking methods.
Breakthroughs in statistics. Springer, pp 196-202

Khodadadi N, Abualigah L, Al-Tashi Q, Mirjalili S (2023) Multi-
objective chaos game optimization. Neural Comput Appl
35:14973

Khodadadi N, Azizi M, Talatahari S, Sareh P (2021) Multi-ob-
jective crystal structure algorithm (MOCryStAl): introduction
and performance evaluation. IEEE Access 9:117795-117812
Houssein EH, Mahdy MA, Shebl D, Manzoor A, Sarkar R,
Mohamed WM (2022) An efficient slime mould algorithm for
solving multi-objective optimization problems. Expert Syst Appl
187:115870

Tharwat A, Houssein EH, Ahmed MM, Hassanien AE, Gabel T
(2018) MOGOA algorithm for constrained and unconstrained
multi-objective optimization  problems. Appl Intell
48(8):2268-2283

Nematollahi AF, Rahiminejad A, Vahidi B (2019) A novel multi-
objective optimization algorithm based on lightning attachment
procedure optimization algorithm. Appl Soft Comput 75:404-427
Sharifi MR, Akbarifard S, Qaderi K, Madadi MR (2021) A new
optimization algorithm to solve multi-objective problems. Sci
Rep 11(1):20326

Derrac J, Garcia S, Molina D, Herrera F (2011) A practical
tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intelligence
algorithms. Swarm Evol Comput 1(1):3-18

Sundaram A (2022) Multiobjective multi verse optimization
algorithm to solve dynamic economic emission dispatch problem
with transmission loss prediction by an artificial neural network.
Appl Soft Comput 124:109021

Guo CX, Zhan JP, Wu QH (2012) Dynamic economic emission
dispatch based on group search optimizer with multiple produc-
ers. Electr Power Syst Res 86:8-16. https://doi.org/10.1016/j.
epsr.2011.11.015

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.


https://doi.org/10.1007/s10838-022-09609-2
https://doi.org/10.1007/s10838-022-09609-2
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1007/s10115-020-01503-x
https://doi.org/10.1007/s10115-020-01503-x
https://doi.org/10.1016/j.epsr.2011.11.015
https://doi.org/10.1016/j.epsr.2011.11.015

	Guided golden jackal optimization using elite-opposition strategy for efficient design of multi-objective engineering problems
	Abstract
	Introduction
	Overview
	Literature review

	Research gap and contributions
	Paper organization

	Background
	Multi-objective optimization (MOO): problem statement

	Multi-objective golden jackal optimization (MOGJO)
	Single-objective golden jackal optimization
	Initialization
	Searching the prey: exploration phase
	Encircling and pouncing the prey: exploitation phase

	The proposed multi-objective GJO (MOGJO)
	Initialization
	Evaluation and updating the archive
	Mechanisms of hunting tactic of jackals
	Elite jackals
	Leader (male jackal) selection
	Movement of jackals

	Improving diversity of population
	Eliciting the compromise solution


	Experimental simulation and discussion
	Descriptions of the studied benchmark functions and engineering designs
	Parameters settings
	Performance assessments
	Hypervolume (HV) index
	Generational distance (GD) metric
	Spacing (SP) metric

	Results on ZDT and DTLZ suits
	Pair-wise Wilcoxon rank sum test
	Comparison analysis versus some state-of-the-art methods
	Results on multi-objective constrained suits
	Multi-objective engineering designs
	Description of WBD problem
	Description of SRD problem
	Description of DBD problem
	Description of FBTD problem

	Dynamic economic-emission power dispatch (DEEPD)
	Further discussion
	Benefits and limitations of the proposed algorithm
	Benefits of the algorithm
	Limitations of the algorithm


	Conclusion and future work
	Funding
	References




