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Abstract
Multi-objective optimization (MOO) issues that are encountered in the realm of real engineering applications are char-

acterized by the curse of economically or computationally expensive objectives, which can strike insufficient performance

evaluations for optimization methods to converge to Pareto optimal front (POF). To address these concerns, this paper

develops a guided multi-objective golden jackal optimization (MOGJO) to promote the coverage and convergence

capabilities toward the true POF while solving MOO issues. MOGJO embeds four reproduction stages during the seeking

process. Firstly, the population of golden jackals is initialized according to the operational search space and then the

updating process is performed. Secondly, an opposition-based learning scheme is adopted to improve the coverage of the

Pareto optimal solutions. Thirdly, an elite-based guiding strategy is incorporated to guide the leader golden jackal toward

the promising areas within the search space and then promote the convergence propensity. Finally, the crowding distance is

also integrated to provide a better compromise among the diversity and convergence of the searched POF. To evaluate the

MOGJO’s performance, it is analyzed against sixteen frequently utilized unconstrained MOO issues, five complex con-

strained problems, four constrained engineering designs, and real dynamic economic-emission power dispatch (DEEPD)

problem. The experimental results are performed using the generational distance (GD), hypervolume (HV), spacing (SP)

metrics to validate the efficacy of the proposed methods, which affirms the progressive and competitive performance

compared to thirteen state-of-the-art methods. Finally, the results of the Wilcoxon rank sum test with reference to GD and

HV exhibited that the proposed algorithm is significantly better than the compared methods, with a 95% significance level.

Furthermore, the results of the nonparametric Friedman test were performed to detect the significant of average ranking

among the compared algorithm, where the results confirmed that the proposed MOGJO outperforms the best algorithm

among thirteen state-of-the-art algorithms by an average rank of Friedman test greater than 41% while outperforming the

worst one, MOALO, by 84% for ZDT and DTLZ1 suits. Additionally, the proposed algorithm saved the overall energy cost

and total emission of the DEEPD problem by 1.89%, and 1.48%, respectively, compared with the best existing results and

thus, it is commended to adopt for new applications.
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1 Introduction

1.1 Overview

Currently, engineering designs have become a global

challenge due to the industrial revolution and population

growth. In fact, the problems encountered in real life are in

the form of multi-benefit and/or multi-cost objectives that

need to be handled simultaneously and this type of problem

is termed as multi-objective optimization (MOO) problem.

Therefore, optimizing this type of problem has become a

great challenge for practical engineering felids to maintain

reliable design in terms of operationality and accuracy. In

MOO problems, the difficulty level of the problem likewise

rises as the number of conflicts of objective functions

increases [1, 2]. Unlike a single solution to the optimization

of a single objective (SO) problem, the optimal of the

MOO problem is a set of solutions caused by the con-

flicting nature among the targets or objectives, which is

denoted by Pareto optimal set (POS) that is purported in the

decision space while its corresponding set in the objective

space is denoted by Pareto optimal front (POF). Based on

this sense, a solution is termed as POF, if no goal or

objective can be advanced without harming one another

goal at least [3].

To deal with MOO problems, there are three categories-

based approaches on the basis of the perspectives or pref-

erences of decision maker (DM), which are priory, inter-

active, and posteriorly methods [4]. In a priory method,

termed as (decide ) search), the DM decide his/her

preferences before the beginning of the searching process.

This type of preference is formulated using the utility

function to aggregate all objective functions into only one

function (i.e., for example, weighted sum approach), and

then MOO problem can be solved by the SO method. The

drawback of this category is the difficulty of articulating

the DM’s preferences. In the interactive method, termed as

decide $ search, the DM elicit s the compromise solution

in interactive articulation from the local/partial generated

POF. The STEM and Steuer represent the prominent

methods for this category [5, 6]. These methods are

occupied by shortages such as relying on derivative cal-

culations, initial estimates, and they suffer from local

optima stagnation. In a posteriorly method, termed as

search) decide, the POF is generated tentatively, and then

the DM can select a solution from the POF based on utility

function. However, the production of the entire POF

requires a significant amount of processing time. Conse-

quently, the aforementioned approaches are not appropriate

for handling a wide range of optimization problems [7]. For

the three last decades, several attentions have been paid to

using the meta-heuristics algorithms (MHAs) to overcome

the shortages of traditional approaches. MHAs have a

capability in providing a good coverage and convergence

search toward the POF due to stochastic rules associated

with their iterative processing. MHAs often imitate effec-

tive traits found in nature, especially in biological and

swarm systems, and they can offer workable solutions to

challenging optimization tasks.

1.2 Literature review

As previously stated, it is desired to meet the two chal-

lenges while dealing with the MOO problem which are that

the attainable solutions should be well converged and well

distributed along the POF. Toward this mission, research-

ers have proposed several multi-objective MHAs to deal

with MOO problem using three groups of methods: (1)

MHAs based on Pareto dominance, (2) MHAs based on

indicator concept, and (3) MHAs based on decomposition.

In the first group, the algorithms employ the Pareto dom-

inance relation (PDR) to guide the search toward the POF.

One the popular MHAs based on PDR is the non-domi-

nated sorting genetic algorithm (NSGA) that selects the

elite solution based on PDR and then preserves the diver-

sity of the selected solutions using the crowding distance

[8]. Also, there are many attentions have been introduced

in the field of multi-objective MHAs based on the concept

of PDR including the multi-objective (MO) particle swarm

optimization (MOPSO) [9], MO ant lion algorithm

(MOALA) [10], MO grey wolf optimizer (MOGWO) [11],

MO artificial bee colony (MOABC) [12], and MO water

cycle optimization (MOWCO) [13], MO slime mould

algorithm (MOSMA) [14], and non-sorted moth-flame

optimizer (NSMFO) [15], MO equilibrium optimizer

(MOEO) [16], MO crow search algorithm-based on

orthogonal-opposition strategy (M2O-CSA) [17], MO

hurricane optimization (MOHO) [18], and MO ant colony

optimization (MOACO) [19]. Other meta-heuristics present

a modified aspect of PDR via relaxation to attain well

diversity and convergence of solutions. In this context, the

epsilon-dominance relation was proposed to extend the

dominance region of a solution vector through modulating

the related objective values by a small value [20]. This

concept of relaxation is employed in many works of multi-

objective MHAs whether for improving the solutions’

diversity or updating and avoiding the explosion of the

archive [21]. Similar to that, some relaxation concepts have

been proposed including the alpha-dominance [22], grid

dominance [23], cone dominance [24], fuzzy dominance,

1�Mð Þ-dominance [25], and theta-dominance [26].

However, the majority of the suggested dominance rela-

tions aim to enhance the convergence of MHAs, they may

not provide a reasonable balance among coverage and
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convergence capabilities while dealing with MOO

problem.

The second group is the multi-objective MHAs based on

indicator concept. In this sense, the performance metrics

have been proposed to reach a good compromise among

the diversity and convergence, where these metrics include

inverted generational distance (IGD) indicator, hypervol-

ume indicator (HV), and S-metric. For example, HV metric

and new HV have been introduced to guide the optimiza-

tion operation toward the Pareto front [27, 28]. Recently,

there are some MHAs that have employed the distance

indicators, IGD metric, and R-metric to guide the searching

toward the POF [29]. The advantage of these indicators is

that can provide a good balance among coverage and

convergence abilities.

The third group is the decomposition-based algorithm in

which the main problem is decomposed into sub-problems,

and they are optimized simultaneously through using the

scalarizing functions and weight vectors. The frequently

used scalarizing functions are the weighted sum, Tcheby-

chef method, vector angle distance scaling, and the

boundary intersection. One of the most well-known MO

evolutionary algorithms (MOEAs) algorithms based on

decomposition is MOEA/D [30]. It performs the explo-

ration of the candidate search region using a set of scalar

subproblems. Also, there are some algorithms that are

presented based the decomposition such as NSGA-III [31],

MOEA based on dominance and decomposition (MOEA/

DD) [32], and MOEA/D-DE [33], etc. The MHAs based on

decomposition can provide an effective manner in solving

MOO problem. However, the selection of the scalarizing

function affects each of these strategies differently.

Apart from the previously mentioned approaches, the

scientific literature is highly rich with several applications

of multi-objective MHAs. For example, in [34] the authors

introduced a MO bee swarm optimization (MOBSO) to

deal with the harmonic loss problem that occurs in power

system operation. Study [35] analyzed the performance of

designing a semi-active Fluid Viscous Damper (SAFWD)

system using the NSGA-II on the basis of MOO problem

with the purpose of lowering the seismic reaction of non-

linear frames. Authors applied an improved variant of the

NSGA-II for tractor electromechanical drive system [36].

In [37] a hybrid algorithm based on MO artificial bee

colony and differential evolution (HABC-DE) was applied

to deal with the Next Release Problem (NRP) to identify

the best demand set with the aim to boost the value of

software release. Study [38] applied the teaching learning-

based optimization (TLBO) to solve the MOO of TI-6Al-

4 V micro-EDM with the aim to reach the best combina-

tion of program parameters. In [39] the authors applied an

adaptive MO artificial immune algorithm (MOAIA) to

solve the reactive power model with the aim to improve the

stability aspect of power grid voltage. In addition, some

practical MOO tasks have been solved, such as power

generation problem based on renewable energy technolo-

gies using MOO methodology [40], designing and

improving the network of maritime protected areas [41],

automobile hood problem [42], volatility index prediction

problem based on deep learning system and MOO [43],

biogas systems [44], biomedical field [45], and computer-

ized tomography diagnosis [46]. Most of the world’s issues

acquire different natures, finite or infinite, continuous,

discrete. Some works show that for more complicated

issues with nonlinear and indiscernible concerns, methods

such as the use of equality constraints to address these

issues is often ineffective [47]. Therefore, the MHAs are

designed and employed as an effective tool because of their

convenience and ability [48].

2 Research gap and contributions

Although the recent advances in the field of MOO, there is

still room for improvement to emphasize the quality of

final results as well as finding well-distributed solutions

regarding the POF. For example, the use of the normal

algorithmic updating steps may lead to poor spread per-

formance on MOO problems associated with irregular and

non-smooth POFs. Moreover, ignoring the experience-

based elite guiding strategy through the iterative process

may degrade the convergence performance of the algo-

rithm toward the POF. Besides, there is always inquiry

‘‘might a novel algorithm provide a better outcome?’’ The

answer is ‘yes’ according to perspective of the No-Free-

Lunch (NFL) theorem [49] that says, no optimization

algorithm can address all natures of optimization tasks with

reaching the global optimal solutions. Meanwhile, the main

challenge in the MOO using optimization algorithms is the

coverage and convergence features which are in conflict

nature. In this sense, the coverage will be poor if an

algorithm merely focuses on enhancing the accuracy of

non-dominated solutions. By contrast, the accuracy of the

non-dominated solutions is negatively impacted by the

simple consideration of the coverage. Notwithstanding

numerous alternatives as per the above-mentioned to reach

the POF of the MOO designs with ensuring well-dis-

tributed solutions along the POF, and once again, still

always there are room of improvements to precisely

address two conflicting perspectives in dealing with MOO

designs, convergence (i.e., that refers to the process of

finding approximations very close to the true POF) and

coverage (i.e., that refers to the process of improving the

distribution of the solutions to cover the entire true POF).

Therefore, scientists continue to be motivated to develop

novel methods wishing to address a wider variety of
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difficulties or specific unsolved optimization challenges

while fulfilling the convergence and coverage perspectives.

Thus, this study aims to fill this research gap by proposing

a novel multi-objective algorithm. It involves finding an

accurate and reliable solution for MOO issues. In this

sense, a Golden Jackal Optimization (GJO) [50] based on

multi-objective strategy, opposition-based learning con-

cept, and elite-based guidance strategy, named MOGJO, is

developed to deal with MOO problems. The incorporation

of these strategies into the single objective GJO aims to

provide better convergence and more uniform coverage

solutions toward the true POF. Hence, the major’s contri-

butions regarding the present work are listed as follows:

• Prospective of the multi-objective GJO A new version

of GJO, named MOGJO, is developed for the first time.

MOGJO incorporates the guided archive to store and

retrieve the generated Pareto front so far, and crowding

distance is to manage the archive size while surviving

the best non-dominated solutions during the iterative

process.

• Integration of improvement strategy The MOGJO

embeds the concept of opposition and elite learnings

to enhance the diversification and identification

searches, respectively. By this conception, the conver-

gence and coverage processes toward the POF can be

realized.

• Validation and performance analysis The performance

of the MOGJO is rigorously validated and analyzed on

eleven well-known problems, five constrained prob-

lems, four engineering designs and real dynamic

economic-emission power dispatch (DEEPD). Also,

graphical representation, performance metrics, Wil-

coxon test, and Friedman test are conducted to statis-

tically compare and realize the performance of the

proposed algorithm with other methodologies.

The novelty and effectiveness of the MOGJO lie behind

the intelligent exploration of golden jackals during the

hunting strategies and management the movement of the

male and female jackals using archive population. Fur-

thermore, opposition and elite strategies can enrich

exploration and exploration toward promising regions,

thereby reaching a good balance among the coverages and

convergence patterns. Besides, the best of our information,

no attempts to suggest the MOGJO version in solving the

MOO designs and DEEPD problem have been recorded in

the literature.

2.1 Paper organization

Following Sect. 1 that has offered the introduction, the

remainder sections of the paper are outlined as follows.

Section 2 offers the basic concepts of MOO and briefly

overviews the framework of classical GJO. Section 3

provides the proposed multi-objective variant of GJO. The

experimental simulations and results are addressed in

Sect. 4. Lastly, Sect. 5 offers the conclusion and delivers

some worth directions for future works.

3 Background

This section exhibits background information regarding the

formulation of MOO problem, solution concepts, and a

brief overview regarding the original GJO concept.

3.1 Multi-objective optimization (MOO):
problem statement

In the single objective (SO) task, usually there is only one

alternative or solution that wants to be regarded, due to the

unitary nature of the objective and the existence of a single

global optimal solution. It is relatively simple to compare

alternatives when a target is taken into account, which is

typically done using relational operators. This type of

problem’s characteristics makes it simple to assess poten-

tial solutions and ultimately identify the best one. How-

ever, in real-world engineering problems, it is common for

optimization problems to have multiple objectives that may

conflict with each other. Such optimization problems are

called MOO problems [3, 4]. Generally, a MOO can be

modeled as follows.

Minimize:F hð Þ f1 hð Þ; f2 hð Þ; . . .; fM hð Þf g;
h ¼ h1; h2; . . .; hnf g 2 Rn

Subject to :

gj hð Þ� 0 j ¼ 1; 2; :::;P

hl hð Þ ¼ 0 l ¼ 1; 2; :::;Q

hLbi � hi � hUbi 8i ¼ 1; 2; . . .; n

8
><

>:

ð1Þ

where F hð Þ containsM conflicting objectives, P defines the

number of inequality constraints, Q denotes the number of

equality constraints, and n stands for number of control

variables. Here, fm hð Þ, gj hð Þ, and hl hð Þ define m th objec-

tive function element, the j th inequality constraint, and the

l th equality constraint, respectively, and hLbi ; hUbi define

the lower and upper bounds of i th decision variable (hi).

C ¼
Qn

i¼1 hLbi ; hUbi
� �

� Rn defines the decision space of n

decision variables. It is clear that relational operators are

ineffective for addressing MOO issues, so multi-objective

Pareto regulations are utilized to resolve such issues, and

the Pareto optimal formulas can be provided as follows [3].

Definition 1 Pareto-dominance regulation: A solution hi is

said to dominate the solution hj, (termed as hi�hj) if two

rules are hold:
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fi hið Þ� fi hj
� �

; 8i 2 1; 2; . . .;M

fj hið Þ\fj hj
� �

; 9j 2 1; 2; . . .;M
ð2Þ

If neither hi nor hj dominates each other, then the

solutions hi and hj are said to be equivalent or incompa-

rable (termed as hi � hj).

Definition 2 Solution feasibility: The presence of con-

straints prospective on C leads to the necessity of defining

the feasibility concept in terms of the overall constraint

violation / hð Þ of a solution h which is expressed as

follows:

/ hð Þ ¼
X

j

max gj hð Þ; 0
� �

þ
X

l

hl hð Þ � cj j ð3Þ

where c defines a tiny real-value threshold (c ¼ 10�6 for

the studied problems in this work). When / hð Þ ¼ 0; h is

defined as a feasible solution, otherwise, it is denoted as an

infeasible solution. The set of all feasible solutions is

expressed by W ¼ h 2 C / hð Þ ¼ 0jf g.

Definition 3 Pareto optimality regulation. A solution hi is

termed as Pareto-optimal solution, if and only if:

9= hj 2 W hj�hi
�
� ð4Þ

Each solution with the set W is compared with everyone

in this set according to Pareto dominance (given in Def. 1).

Then, if there is not a solution hj prevails over solution hi,

then hi is a Pareto-optimal solution.

Definition 4 Pareto optimal set (POS). The collection of

all Pareto-optimal solutions is defined as POS and is

expressed as follows:

PS ¼ hi 2 W 9= hj 2 W ^ hj�hi
�
�

� �
ð5Þ

Definition 5 Pareto optimal front (POF): The set of solu-

tions in the objective functions space is defined as POF and

can be expressed as follows:

PF ¼ F hið Þf g : 8hi 2 POS ð6Þ

For every MOO issue, there is a POS, which illustrates

the optimal trade-off among the multiple objectives. The

POS’s projection into the target space is known as POF.

However, because the POF contains several solutions, and

the fronts of various MOO problems have different natures

(convex, concave, separated, discrete, linear), it is very

challenging to reach the POF with uniform distribution for

each nature. If the optimization algorithm is employed to

find a uniformly distributed POF, two prospectives (con-

vergence and coverage) should be realized. The former’s

ultimate goal is to identify an approximation that closely

matches the true POF. In the latter scenario, the algorithm

should attempt to broaden the distribution of non-domi-

nated solutions to fully cover the true POF. This is an

essential factor in the Pareto reaching process due to the

conflict among the convergence and coverage being the

main challenge to MOO issue. In this sense, the coverage

will be decreased if an algorithm concentrates primarily on

enhancing the accuracy of non-dominated solutions. Con-

trarily, focusing only on coverage has a detrimental effect

on the precision of non-dominant solutions. Most of the

present optimization methods can balance convergence and

coverage regularly to discover the POF spread uniformly

along all targets.

4 Multi-objective golden jackal optimization
(MOGJO)

This section addresses the basics of GJO regarding the

updating procedures and then these procedures are adapted

to introduce the multi-objective GJO (MOGJO) variant

through embedding the relevant strategies of multi-objec-

tive nature.

4.1 Single-objective golden jackal optimization

GJO is a recent nature-inspired optimization algorithm, that

describes the jackals’ cooperative foraging and hunting

mechanism [50]. In GJO, jackals run in parallel to their

prey and surpass it. The jackals mainly include three

foremost stages during the hunting process: (1) looking for

and proceeding toward the prey; (2) encircling, and trou-

bling the victim until it stops moving, and pouncing on the

victim. This behavior was modeled mathematically to

design the GJO which was performed on 23 benchmark

functions and seven engineering design problems. The

results and comparisons have been proved the effective

performance of GJO in dealing with the diverse set of

benchmark problems. Generally, the mathematical formu-

lation of the GJO approach is summarized below.

4.1.1 Initialization

Like many other optimization algorithms, GJO starts its

iterative searching by a population of jackals that are

generated using the uniform distribution as follows.

hij ¼ hLbj þ U 0; 1ð Þ: hLbj � hUbj

	 

;

i ¼ 1; 2; . . .;N; j ¼ 1; 2; . . .; n
ð7Þ

where U 0; 1ð Þ denotes a random number ranged from 0 to

1, N number of jackals, and n number of variables. This
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initialization generates initial positions which are consid-

ered as the initial Prey’s matrix as follows.

Prey ¼
h11 h12 . . .

..

. ..
.

hij
hN1 hN2 . . .

h1n
..
.

hNn

2

6
4

3

7
5 ð8Þ

where hij denotes the i th jackal in the j th dimension.

Afterward, each position is evaluated using the fitness

function (fi hið Þ), where male jackal is referred to be the

fittest, and the female jackal is the second fittest.

4.1.2 Searching the prey: exploration phase

In this phase, the exploration phase is carried out. The

jackal’s nature allows them to observe and pursue the prey,

yet occasionally the prey escapes or cannot be caught

easily. Consequently, the jackals wait and look for new

prey. The hunting process during this phase is driven by

male jackal which is followed by a female jackal.

h1 tð Þ ¼ hM tð Þ � E � hM � rl � Prey tð Þj j ð9Þ
h2 tð Þ ¼ hFM tð Þ � E � hFM tð Þ � rl � Prey tð Þj j ð10Þ

where Prey tð Þ denotes the position of prey, t denotes the

current iteration, and hFM and hM define, respectively, the

positions of the male and female jackals. h1 and h1 define,
respectively, the renewed positions of male and female

jackals.

The evading energy (E) regarding the prey defiance is

expressed as:

E ¼ E0 � E1 ð11Þ

E0 defines the initial energy, and E1 defines the reducing

energy of the prey when it is exhausted.

E0 ¼ 2 � r � 1 ð12Þ
E1 ¼ 1:5 � 1� t=Tð Þ ð13Þ

where r denotes an arbitrary value within [0,1], and T

defines the maximum restrict of iterations.

Over the course of iteration, the defense energy E

decreases. So, when Ej j � 1, the jackal pairs perform the

searching in different areas for exploring prey, while when

Ej j\1, then perform the exploitation phase and then attack

the prey.

Here rl represents a vector of arbitrary numbers gener-

ated based on Levy distribution to simulate the prey’

movement according to Levy search and is expressed as

follows.

rl ¼ 0:05 � LF hð Þ ð14Þ

LF denotes the levy flight function, that is considered as

follows.

LF hð Þ ¼ 0:01: l � rð Þ= m 1=bð Þ�
�

�
�;

r ¼
C 1þ bð Þ sin pb

2

	 


b � C 1þb
2

	 

� 2 b�1ð Þ

2

8
<

:

9
=

;

1=b
ð15Þ

where l; m represent random numbers within (0,1) and b is

default parameter which is set to 1.5. Finally, the jackal

renewed its position in terms of mean positions as follows.

h t þ 1ð Þ ¼ h1 tð Þ þ h2 tð Þ
2

ð16Þ

4.1.3 Encircling and pouncing the prey: exploitation phase

When jackals harass the prey, the prey loses some of its

ability to flee, and the jackal pairs and then encloses the

prey they had previously detected. After encircling, they

pounce on the victim or prey and eat it. The mathematical

expression for this cooperative hunting behavior regarding

the male and female jackals is as follows:

h1 tð Þ ¼ hM tð Þ � E � rl � ahM tð Þ � Prey tð Þj j ð17Þ
h2 tð Þ ¼ hFM tð Þ � E � rl � hFM tð Þ � rl � Prey tð Þj j ð18Þ

After this update, the jackal positions are again renewed

by Eq. (16). The pseudo-code regarding the GJO is illus-

trated in Fig. 1.

4.2 The proposed multi-objective GJO (MOGJO)

The MOGJO was established based on three features to

deal with MOO natures. (1) An external archive is

embedded with GJO to save and retrieve the Pareto optimal

solutions during the searching process. (2) Crowding dis-

tance is used to manage the archive size during the

exploration phase; (3) Opposition and elite strategies are

integrated to MOGJO to enrich the convergence and cov-

erage capabilities.

4.2.1 Initialization

Typically, random initialization is used to start the MOGJO

population. To enhance the diversity of the solutions,

logistic map is adopted as the one of the prominent and

simplest chaotic maps [51]. This map offers more diver-

sified solutions than the random aspects, and it has a lower

likelihood of convergence’ stagnation dilemma [51].

Therefore, this map is adopted in this work which is

expressed as follows.

zkþ1 ¼ D � zk 1� zkð Þ; k ¼ 0; 1; . . .;N � 1 ð19Þ

where zk stands for the kth number in the chaotic sequence

and k denotes as the chaotic sequence’ index of z; zkþ1
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defines the next chaotic number in the sequence. z0 denotes

the initial point for the chaotic map, z0 [ (0, 1),

z0 62 0; 0:25; 0:75; 0:5; 1f g; and D is a control parameter

that is set to 4.0. Then the new population is generated as

follows.

hij ¼ hLbj þ zkþ1: hLbj � hUbj

	 

; i ¼ 1; 2; . . .;N;

j ¼ 1; 2; . . .; n
ð20Þ

4.2.2 Evaluation and updating the archive

After obtaining the solutions or positions of jackals, the

non-dominated set of solutions are evaluated and stored in

the archive AR hð Þ which is updated with growth of iter-

ation until it may become full. In this sense, a solution is

not prevented from storing in the archive, if it is non-

dominated by all stored solutions in the archive. Also, the

solution removes some of stored Pareto solutions in the

archive, if it dominates them, and then it becomes a

member of the archive. If a solution is dominated by at

least one member of the archive, then it is not becoming a

member of the archive. In order to provide some room for

new solutions in the archive when it becomes full, at least

one solution must be deleted from the most occupied

portions. To effectively choose the solution that is leaving

the archive, the worst (most overcrowded) hyper-sphere

should be chosen to prevent the jackals from searching

around unproductive crowded places. The selection of this

solution is performed using the roulette-wheel mechanism

associated with the subsequent probability (Ps) as follows.

Ps ¼
Ms

d
ð21Þ

where d defines a non-negative number greater than one

(i.e., d is adopted as 10), andMs defines the number of non-

dominated solutions within the archive in the s th segment.

4.2.3 Mechanisms of hunting tactic of jackals

4.2.3.1 Elite jackals This step is vital for selection of

leader of male jackal during the hunting process. The elite

jackals EJ hð Þ aim to save the best positions that previ-

ously searched by jackals during each iteration, and this

can facilitate the generation of non-dominated solutions.

The step firstly constitutes an elite population with the

initial population in first iteration. Afterward, during the

growth of iteration, the trial solution hs t þ 1ð Þ is assessed
by the comparison with the target solution hs tð Þ that is

stored in the current elite population according to the

dominance concept. If the target solution can be dominated

by the trial solution, then it replaces the target solution.

During the growth of iteration, the elite members are pre-

sented to renew the archive members.

4.2.3.2 Leader (male jackal) selection In the construction

of the MOGJO, an archive is embedded into GJO in order

to store and retrieve the closest matches to the true POF

throughout iterative optimization in order to find a widely

distributed Pareto-front, an elite population member must

be located in the area of least populated within the attained

POF. This area is detected by segmenting the search space

through obtaining the ideal and anti-ideal (i.e., best, and

1: Inputs:  invoke size of population ( ), Max. iteration number ( )

2: Create intial population of  preys at random 

3: while ( not reahed) do
4: Evaluate the fitness of each prey

5: Obtain the male jackal 1 (the position of best prey)

6: Obtain the female jackal 2 (the position of second best prey)

7: Update the evading energy ( ) by Eq. (11)

8: Update the levy vector ( ) by Eq. (14)

9: for = 1: do
10: If | | ≥ 1 then % Exploration phase
11: Update the position of prey by Eqs.(9), (10), and (16)

12: If | | < 1 then % Exploitation phase
13: Update the position of prey by Eqs.(17), (18), and (16)

14: end if
15: end for
16: end for
17: = + 1

18: end While
19: Output: return M

Fig. 1 The working steps of

GJO
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worst objective values) of the attained POF, defining Ngrid

cells that include all solutions, as well as splitting the

hyper-spheres in each iteration into equal sub-hyper-

spheres. After generating the segments, the selection is

performed by the roulette-wheel mechanism along with the

subsequent probability (PLs) for each segment as follows.

PLs ¼
d
Ms

ð22Þ

Equation (22) increases the likelihood that MOGJO will

select the population’s elite member from less-populated

segments. Therefore, the jackals’ population are encour-

aged to roam through this area, which improves their dis-

tribution throughout the entire POF.

4.2.3.3 Movement of jackals In this step, the exploration

phase is carried out using the concept of archive population

(AR h) and elite jackals. The population of elite jackals

denoted by EJ h and the stored solutions in the archive

denoted by AR h are used to perform this tactic of hunting

process for male jackal and female jackal as follows.

h1 tð Þ ¼ AR hM;h tð Þ � E � AR hM;h tð Þ � rl � EJ h tð Þ
�
�

�
�

ð23Þ

h2 tð Þ ¼ AR hFM;h1 tð Þ � E � AR hFM;h tð Þ � rl � EJ h tð Þ
�
�

�
�

ð24Þ

where AR hM;h, AR hFM;h1 tð Þ are positions of the male and

female jackals that are chosen from the archive according

to the roulette-wheel mechanism with random indices h

and h1, respectively. EJ h defines the elite positions of

jackals; h1 and h1 define, respectively, the renewed posi-

tions of male and female jackals.

Similarly, the encircling, and pouncing on the prey

during hunting process are simulated according to the

concept of archive and elite jackals as follows:

h1 tð Þ ¼ AR hM;h tð Þ � E � rl � AR hM;h tð Þ � EJ h tð Þ
�
�

�
�

ð25Þ
h2 tð Þ ¼ AR hFM;h tð Þ � E � rl � hFM tð Þ � rl � EJ h tð Þj j

ð26Þ

After this update, the jackal positions are again renewed

by Eq. (16).

4.2.4 Improving diversity of population

Learning based on opposition (LBO) strategy is presented

to improve the diversity of solutions due to its effectiveness

as it has been attracted much considerable attentions in the

past decade [52]. In this sense, LBO can enable the pop-

ulation to jump at new enrich search space. It is carried out

herein if rand\t=T , then the corresponding opposition

solution carried out as follows.

hopi ¼ U 0; 1ð Þ: hLbj � hUbj

	 

� hi; i ¼ 1; 2; . . .;N ð27Þ

where hopi defines the opposite of the i th solution hi.

4.2.5 Eliciting the compromise solution

For most engineering problems, the designer preferred to

apply its design with a single operating point rather than a

set of solutions. In this sense, the concept of compromise

solution (CS) can be evident. Fuzzy technique (FT) pre-

sents one of most decision-making methods for selecting

the CS [53]. Therefore, FT is presented in this work with a

membership value (ci) and it is modeled for each objective

fi of the i th solution as follows.

ci ¼
1 fi � fmin

i

fmax
i � fi
� ��

fmax
i � fmin

i

� �
fmin
i � fi � fmax

i

0 fi � fmax
i

8
><

>:
ð28Þ

For the stored non-dominated solutions in the archive,

the normalized value of all membership functions is

denoted by ck and it is defined by:

ck ¼
PM

i¼1

cki

,

PQ

k¼1

PM

i¼1

cki
ð29Þ

where Q defines the size of non-dominated solutions in the

archive, and M is the number of objectives. The maximum

of ck is termed as the best compromise point.

All the MOGJO’s parameters are typical of the GJO’s

initial work, though a new parameter for indicating archive

size has been added. Moreover, the framework of the

proposed MOGJO is illustrated by the flowchart as depic-

ted in Fig. 2.

5 Experimental simulation and discussion

In this section, the performance of the MOGJO is evaluated

and analyzed on sixteen well-known problems, five con-

strained problems, four engineering designs and real

dynamic economic-emission power dispatch (DEEPD)

[17, 53]. In this regard, some successful multi-objective

optimizers, including MOPSO [9], NSMFO [15], MSSA

[54], MOSMA [14], and MO bonobo optimizer (MOBO)

[55], are presented to assess the performance of MOGJO

variant. As these metaheuristic algorithms have stochastic

characteristics and may yield some fluctuation regarding

the optima [17], each algorithm was carried out 20 inde-

pendent runs for each benchmark problem to avoid any

stochastic discrepancy. In regard to the hardware, a laptop
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with the following specifications, AMD Ryzen 5 5600u

CPU, @ 2.30 GHz, 16 GB RAM, and Windows 10 with

64-bit OS. MATLAB_R2021a is used for the implemen-

tation issue.

In addition, some metric indices are presented to assess

the quality of outcomes obtained by the implemented

algorithms such as generational distance (GD) metric, the

hypervolume (HV), and spacing (SP) metric [4] where the

superiority of results are evaluated with respect to the

minimum values of the GD, SP, and the maximum value of

the HV metric.

5.1 Descriptions of the studied benchmark
functions and engineering designs

Some of challenging and well-known benchmark functions

with different landscape shapes regarding the Pareto front

are collected from the literature, where these benchmark

t=
t+

1

Start 

-Initialize a population of preys using the chaotic pattern by Eqs.(19) and (20)
-Compute the fitness of each prey
-Initialize the elite population with the current population
-Evaluate the non-dominate solutions using the Pareto concept
-Fill the archive with the non-dominate solutions

Inset the related parameters of the algorithm,
maximum size of archive, number of grids 

Termination condition not
satisfied

Visualizing the Pareto solution

End 

Yes 
No if 1E

Update the position of the pair
jackals by Eqs. (25), (26)

Update the position of the pair
jackals by Eqs. (23), (24)

Update the position of preys using Eq. (16)

-Compute the crowding distances for the members of archive 
-Obtain the leader or elite member using roulette-wheel mechanism and Eq. (22)

Renewed the evading energy of the prey using Eq. (11)

If rand < t/T

Update the position using the opposition using 
Eq. (27)

-Compute the fitness of each prey
-Evaluate the non-dominate solutions by the Pareto concept
-Update the archive with the non-dominate solutions

Yes 

No

If the archive size > Max. size

-Compute the crowding distances for the members of archive 
-Use Eq. (21) and roulette-wheel mechanism to delete the 
worst members

Elicit the compromise
solution by Eqs. (28) , 

and (29)

Yes 

No

Fig. 2 Framework of the proposed MOGJO
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functions contain two or three objectives, namely ZDT and

DTLZ suits. They also bear up to 30 dimensions (control

variables). These benchmark suits along with related

characteristics of POFs such as nonconvex or convex,

discontinuous or continuous, and non-uniform or uniform

distribution are summarized in Table 1. To confirm appli-

cability of the proposed MOGJO, its performance is

applied and realized on some engineering designs includ-

ing welded beam design (WBD) problem, speed reduced

design (SRD), disk brake design (DBD), and four bar truss

design (FBTD).

5.2 Parameters settings

In this subsection, the parameter values of the compared

algorithms (MOPSO, NSMFO, MSSA, MOSMA, and

MOBO) are suggested based on the found values in the

original works. To make sure that the algorithms are fairly

compared, the maximum number of iterations and the

population size are adjusted after some trails and they are

set to 1000, and 100, respectively. Each test problem was

performed for 20 independent runs to mitigate the hap-

hazardness situation. For a fair comparison among the

presented algorithms (MOPSO, NSMFO, MSSA,

MOSMA, and MOBO), and proposed MOGJO, they start

with same population generated randomly per run.

5.3 Performance assessments

As the discovered set of solutions by multi-objective

optimization methods represent an approximated POF,

therefore their convergence and coverage behaviors must

be assessed. In this sense, the popular employed assessment

indices include the following [4]. (1) Convergence: implies

that the best non-dominated solutions are those that most

closely match the true POF. (2) Uniformity: implies that

the good non-dominated alternatives are those evenly dis-

tributed along the true POF. (3) Distribution: implies that

the POF should be fully covered by the searched non-

dominated solutions. In this sense, some performance

metrics can be adopted as follows.

5.3.1 Hypervolume (HV) index

HV index refers to the volume in the objective space that is

occupied by the alternations of the non-dominated set ARð Þ
[4]. Mathematically, for each member of archive (i 2 ARÞ,
the hypercube vi is constructed in terms of the reference

point (RP). The RP can be obtained by forming a vector of

the worst values of the objective functions. The HV values

of the discovered hypercubes are produced by Eq. (30).

H ¼ Volume [
AR

i¼1
vi

� 

ð30Þ

Table 1 The characteristic and nature of the studied multi-objective functions

Name M n Nature Characteristics

ZTD1 2 30 UC CF

ZTD2 2 30 UC NCF

ZTD3 2 30 UC DF

ZTD4 2 30 UC MF with 221 local Pareto-optimal fronts

ZTD6 2 30 UC NU

DTLZ1 3 7 UC Linear POF

DTLZ2 3 12 UC Spherical POF

DTLZ4 3 12 UC POF involves dense set of alternatives to exist near the fM � f1

DTLZ5 3 12 UC Aims to verify the ability of multi-objective optimizer to converge to a degenerated curve

DTLZ6 3 12 UC Acquires 2M�1 disconnected POF

DTLZ7 3 22 UC POF is a combination of a straight line and a hyper-plane

SRN 2 2 CO CC

BNH 2 2 CO CC

KIT 2 2 CO CC

TNK 2 2 CO D

CONSTR 2 2 CO CCA

CC continuous concave, CCA continuous concave, D discrete, UC unconstrained, CO constrained, CF convex front, NCF non-convex front, DF
discontinuous front, MF multi-modal front, NU non-uniformity, POF Pareto-optimal front, M No. of objectives, n No. of variables
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HV exhibits information about both the diversity and

convergence of set AR, where larger HV values denote a

superior algorithm.

5.3.2 Generational distance (GD) metric

The GD index was provided by Veldhuizen [17] as a

convergence index to clarify the distance between the

reached POF and the true POF. The GD index is expressed

mathematically as follows [17]:

GD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnPF

i¼1 d
2
i

p

nPF
ð31Þ

where nPF denotes the number of reached Pareto optimal

solutions and di defines the Euclidean distance among a

solution from the reached Pareto front and the corre-

sponding true solution on POF. GD = 0 stands for the

reached solutions are the true solutions.

5.3.3 Spacing (SP) metric

SP represents an index to measure the distribution of

searched solution vectors throughout the whole nondomi-

nated vectors reached so far [17]. It is expressed as follows.

SP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nPF � 1

XnPF

j¼1

d � dj
� �2

v
u
u
t ð32Þ

where dj ¼
PM

i¼1 f ji � f ki
�
�

�
�; j 6¼ k; k 2 obtained POF, nPF

defines the number of obtained solution vectors in the

archive, while d denotes the average of all dj. SP defines

the standard deviation regarding the distance among two

consecutive solutions on the reached POF. A smaller value

of the SP denotes that obtained solutions have better dis-

tribution. Also, a zero value of SP implies that all members

of the reached POF are equidistantly spaced.

5.4 Results on ZDT and DTLZ suits

In this subsection, the performance of the proposed MOGJO

and the compared counterparts (MOPSO, NSMFO, MSSA,

MOSMA, and MOBO) is evaluated on the ZDT and DTLZ

test suits. Each algorithm was carried out 20 times, and the

statistical measures of assessment metrics (HV, and GD) are

reported as in Tables 2 and 3. In Table 2, the GD values for

proposedMOGJO and other counterparts are recorded. Based

on theGDbest values, it canbeobserved thatMOGJO is better

than MOPSO, NSMFO, MSSA, MOSMA, and MOBO, in

10/11, 11/11, 11/11, 11/11, 11/11 test functions, respectively,

illustrating that MOGJO provides better approximate solu-

tions compared to other competitors. Moreover, the results of

HV values are reported in Table 3, which exhibits that the

MOGJO is better than MOPSO, NSMFO, MSSA, MOSMA,

and MOBO, in 11/11, 10/11, 11/11, 10/11, 11/11 test func-

tions, respectively, illustrating that MOGJO achieves higher

diversity and convergence than the other algorithms. Also, in

terms of mean values of HV and GD, the proposed MOGJO

provides superior and affirms the stability of the proposed

algorithm. The best result among the compared algorithms is

highlighted in boldface. Moreover, the searched POFs by the

proposedMOGJO and the other peers on ZDT and DTLZ test

suits are depicted in Figs. 3 and 4, respectively. Inspecting

these figures, it is observed that MSSA offers the poorest

convergence while the proposed MOGJO exhibits good con-

vergence and coverage results with respect to the true POFs.

On the other hand, the NSMFO and MOBO offer provide a

competitive edge with the proposed MOGJO algorithms,

especially for ZDT suit. The most interesting features behind

the superior performance of the proposed MOGJO are con-

tained in chaotic initialization and opposition strategies that

help in preserving the diversity of solutions as well as the

concept of elite strategy that helps in enhancing the conver-

gence behavior during the iteration searching. For clarity, the

overall best values among the compared optimization meth-

ods are highlighted in boldface.

5.5 Pair-wise Wilcoxon rank sum test

In this subsection, the Wilcoxon rank sum test (WRST)

[56] is carried out to further assess the significance of the

searched results of POF. WRST is presented with a sta-

tistical significance value (a ¼ 0:05). Also, WRST aims to

affirm that the obtained results did not occur by chance,

i.e., caused by the stochastic nature of metaheuristic

algorithms. WRST is carried out based on the null

hypothesis H0 regarding this test states that no difference

among the medians of two solutions searched by algorithm

A and B. To regulate whether algorithm A achieved sta-

tistically better results than B, or if not, the alternative

hypothesis is valid. Thus, the superiority can be guaranteed

if the p value is below significance value (a ¼ 0:05). In this

context, the results of GD and HV metrics obtained by

compared algorithms are examined using the WRST and

the obtained results of p values are reported in Table 4.

Based on these results, it is obvious that the obtained p

values are below a significance value, and this can validate

the superiority of the proposed MOGJO over the imple-

mented competitors.

5.6 Comparison analysis versus some state-of-
the-art methods

In this section, the suggested MOGJO is further examined

and evaluated against thirteen well-known state-of-the-art

optimizers: MO jellyfish (MOJF) [53], MOEA/D [53],
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Table 2 Statistical measures for GD metric by the proposed and compared optimizers for ZTD and DTLZ suits

Test function Statistical metric MOPSO NSMFO MSSA MOSMA MOBO MOGJO

ZTD1 Best 1.1733E-02 4.4553E-03 7.6149E-01 9.3454E-03 9.8633E-03 1.7946E204

Mean 5.5836E-02 4.7936E-03 1.0247E ?00 9.9714E-03 1.0410E-02 2.0200E-04

Median 3.0358E-02 4.7874E-03 9.7718E-01 9.6229E-03 1.0208E-02 2.0584E-04

Worst 1.7062E-01 5.1672E-03 1.2652E ?00 1.1527E-02 1.1348E-02 2.1089E-04

St. Dev 6.6146E-02 2.5280E-04 2.0254E-01 9.0763E-04 5.8000E-04 9.6489E-06

ZTD2 Best 5.6482E-04 1.1742E-04 5.7820E-02 1.1424E-03 1.6586E-04 0.0000E 100

Mean 4.4460E-01 1.2424E-04 1.0668E-01 1.1944E-03 1.8373E-04 7.5095E-05

Median 4.0021E-01 1.2169E-04 1.2490E-01 1.2054E-03 1.8241E-04 1.0979E-04

Worst 9.4681E-01 1.3243E-04 1.4322E-01 1.2723E-03 2.0701E-04 1.4785E-04

St. Dev 4.5183E-01 7.5553E-06 3.8262E-02 5.3875E-05 1.7245E-05 6.5596E-05

ZTD3 Best 1.2945E-03 1.6749E-04 5.3897E-02 7.2066E-04 1.8747E-04 1.2341E204

Mean 1.2154E-02 2.1012E-04 8.1522E-02 1.2502E-03 2.0239E-04 1.2925E-04

Median 1.0747E-02 1.8569E-04 7.0063E-02 1.0285E-03 2.0343E-04 1.2895E-04

Worst 2.1300E-02 2.7730E-04 1.1466E-01 2.2758E-03 2.1549E-04 1.3646E-04

St. Dev 8.1149E-03 4.7763E-05 3.0310E-02 6.1436E-04 1.1347E-05 4.5202E-06

ZTD4 Best 1.4096E ?01 2.4557E-04 8.6463E-01 1.0445E-03 5.0252E-02 1.1258E204

Mean 3.1702E ?01 3.6386E-01 2.1500E ?00 4.4564E-03 2.3885E-01 1.6517E-04

Median 2.8609E ?01 3.1841E-04 2.4103E ?00 2.0990E-03 1.9422E-01 1.7512E-04

Worst 4.6910E ?01 1.5179E ?00 2.7477E ?00 9.9569E-03 5.6964E-01 1.9333E-04

St. Dev 1.2895E ?01 6.5808E-01 7.6024E-01 4.1608E-03 1.9889E-01 2.3513E-05

ZTD6 Best 1.3848E-02 4.7910E-02 5.5968E-01 2.3629E-02 1.5775E-04 7.2461E205

Mean 5.6316E-01 5.2906E-02 5.7425E-01 2.7148E-01 2.3101E-04 1.3077E-02

Median 4.6981E-01 4.9817E-02 5.6460E-01 3.4392E-01 1.6233E-04 1.3838E-02

Worst 1.5019E ?00 6.4858E-02 6.0903E-01 3.7166E-01 5.0661E-04 2.4239E-02

St. Dev 5.6965E-01 7.1153E-03 2.0875E-02 1.4701E-01 1.5412E-04 7.6640E-03

DTLZ1 Best 3.6136E ?00 3.4364E ?00 2.8820E ?00 2.9611E ?00 4.2834E-02 8.1797E203

Mean 3.9936E ?00 4.4915E ?00 3.3544E ?00 3.2466E ?00 2.3014E-01 6.6621E-02

Median 4.1551E ?00 4.6924E ?00 3.1467E ?00 3.0966E ?00 9.8937E-02 4.7579E-02

Worst 4.2408E ?00 5.5271E ?00 3.9058E ?00 3.9418E ?00 6.1949E-01 1.7355E-01

St. Dev 2.9819E-01 8.1160E-01 4.3203E-01 4.0091E-01 2.5052E-01 6.0144E-02

DTLZ2 Best 1.0238E-01 8.6481E-02 4.6614E-01 2.7635E-01 1.1821E-01 1.4205E202

Mean 1.0535E-01 9.6692E-02 4.7869E-01 3.5631E-01 1.2410E-01 2.7412E-02

Median 1.0304E-01 9.2101E-02 4.7460E-01 3.6760E-01 1.2362E-01 2.8289E-02

Worst 1.1148E-01 1.0969E-01 4.9803E-01 3.9746E-01 1.2950E-01 4.4075E-02

St. Dev 3.9770E-03 9.4789E-03 1.3546E-02 4.6923E-02 4.9033E-03 9.3542E-03

DTLZ4 Best 5.3487E-03 1.8607E-02 3.9470E-01 2.4852E-02 6.5841E-03 2.6028E203

Mean 1.2829E-02 2.5427E-02 7.0995E-01 2.8965E-02 7.2476E-03 1.6691E-02

Median 1.2343E-02 2.3653E-02 7.7257E-01 2.7504E-02 7.2952E-03 9.2346E-03

Worst 2.0434E-02 3.6018E-02 9.2914E-01 3.4199E-02 7.8067E-03 3.8549E-02

St. Dev 5.6275E-03 6.7884E-03 2.4128E-01 4.2258E-03 4.5900E-04 1.4862E-02

DTLZ5 Best 2.4060E-02 2.7440E-03 2.7075E-01 1.8401E-01 1.9336E-02 1.5153E204

Mean 3.2208E-02 2.9411E-03 3.1577E-01 2.0133E-01 2.1872E-02 2.7828E-03

Median 3.0532E-02 2.9456E-03 3.1434E-01 1.9737E-01 2.2013E-02 3.3810E-04

Worst 4.2943E-02 3.1464E-03 3.8773E-01 2.3231E-01 2.4113E-02 1.5067E-02

St. Dev 7.3735E-03 1.9564E-04 4.6078E-02 2.0066E-02 1.6998E-03 5.3141E-03

DTLZ6 Best 8.1428E206 1.4235E-05 3.4513E-02 9.3994E-02 1.3867E-05 8.6040E-06

Mean 2.3830E-02 1.6151E-05 8.3602E-02 1.1274E-01 1.5223E-05 9.9809E-06

Median 8.4606E-06 1.5644E-05 7.4867E-02 1.0997E-01 1.5170E-05 9.4282E-06
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MOPSO1 [53], NSGA-II [53], MO chaos game optimiza-

tion (MOCGO) [57], MO crystal structure algorithm

(MOCryStAl) [58], efficient MOSMA (EMOSMA) [59],

MO grasshopper optimization algorithm (MOGOA) [60],

MO ant lion optimizer (MOALO) [60], MO lightning

attachment procedure optimizer (MOLAPO) [61],

MOGWO [61], M2O-CSA [17], and MO moth swarm

algorithm (MOMSA) [62]. These algorithms are assessed

according to GD index, where lower GD indicates better

performance. In this context, the statistical results using the

mean (average) and standard deviation (S.D) values of the

compared algorithms are recorded in Table 5. The com-

parisons affirmed that the MOGJO surpasses most of the

state-of-the-art counterparts for most ZDT and DTLZ1

suits, where the best result among the compared algorithms

is highlighted in boldface. Moreover, a statistical conclu-

sion is drawn based on a nonparametric statistical test

named Friedman-test [63] to detect the significant differ-

ences among the proposed algorithm and its competitors. In

this sense, the compared algorithms are divided to four

groups (i.e., Gi symbolizes the group index) according to

the availability of reported results. Figure 4 depicts the

average ranking of each method on the candidate test suits

using Friedman’s test. Note that in the Friedman test, the

lower the ranking, the better the performance of the algo-

rithm. It is clear from Fig. 4 that the proposed MOGJO

ranks first regarding the GD metric among the thirteen-

competing methods. The results confirm that the proposed

MOGJO outperforms the best algorithm, MOJF, within the

thirteen state-of-the-art algorithms by an average rank of

Friedman test greater than 41% for ZDT and DTLZ1 suits

while outperforming the worst one, MOALO, by 84%.

Therefore, the quantitative results along with nonpara-

metric test demonstrate that the MOGJO exhibits better,

and more competitive performance compared to the other

competitors.

5.7 Results on multi-objective constrained suits

In this section, the effectiveness of the proposed MOGJO is

further assessed and clarified using some well-known

multi-objective constrained suits with diverse characteris-

tics regarding the Pareto front including discontinuous and

continuous convex natures as illustrated in Table 1 [17].

The results of the proposed MOGJO are compared with

the other optimizers using the GD metric. The statistical

results are reported in Table 6 for the MOGJO and other

counterparts, where the best results are marked with bold

font. Based on the best values of the GD metric, it can be

concluded that the proposed MOGJO suppresses the other

peers. Although it can be noted that the MSSA provides

minimum value for GD index, it is not satisfied with the

coverage feature as it reaches the set of semi-identical

points for POF and can seem to be as single point which

may reduce the GD metric. Moreover, the searched POFs

by the presented algorithms are illustrated in Fig. 5. It

should be observed that the suggested MOGJO offers high

coverage and coverage regarding the true POFs for all

multi-objective constrained test suits.

5.8 Multi-objective engineering designs

In this subsection, the proposed MOGJO is applied on

some popular real engineering designs which are the wel-

ded beam design (WBD), speed reduced design (SRD),

disk brake design (DBD), and four bar truss design (FBTD)

[17]. Furthermore, these designs include some optimization

natures such as constraints, discrete variables, and non-

convex objectives.

5.8.1 Description of WBD problem

The WBD aims to simultaneously minimize the objectives

of the overall fabrication and the end deflection which are

subjected to some constraints such as bending stress, shear

stress, the buckling load, and weld length. In this sense,

four design parameters are needed to be optimized which

are the height, the welded joint length, thickness, and the

beam width. The mathematical model is presented as

follows.

Table 2 (continued)

Test function Statistical metric MOPSO NSMFO MSSA MOSMA MOBO MOGJO

Worst 1.1911E-01 1.8763E-05 1.7375E-01 1.3141E-01 1.7498E-05 1.3268E-05

St. Dev 5.3266E-02 1.6906E-06 5.7537E-02 1.6376E-02 1.4189E-06 1.4770E-06

DTLZ7 Best 2.7433E-02 4.1216E-03 9.6144E-02 3.7764E-03 3.8728E-03 2.3666E203

Mean 1.4974E-01 1.1224E-02 4.0404E-01 4.6602E-03 6.3751E-03 3.0511E-03

Median 5.5101E-02 1.1061E-02 4.1759E-01 4.7019E-03 7.2364E-03 2.9808E-03

Worst 5.6533E-01 1.6301E-02 6.3437E-01 5.3225E-03 8.2814E-03 3.5581E-03

St. Dev 2.3260E-01 4.5980E-03 1.9707E-01 5.9467E-04 2.0111E-03 3.2714E-04
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Table 3 Statistical measures for HV metric by the proposed and compared optimizers for ZTD and DTLZ suits

Test function Statistical metric MOPSO NSMFO MSSA MOSMA MOBO MOGJO

ZTD1 Best 7.0767E-01 7.1910E-01 3.7849E-02 7.1208E-01 7.1436E-01 7.2104E201

Mean 6.5098E-01 7.1886E-01 7.5699E-03 7.1097E-01 7.1381E-01 7.2069E-01

Median 6.8116E-01 7.1881E-01 0.0000E ?00 7.1151E-01 7.1402E-01 7.2068E-01

Worst 5.1097E-01 7.1857E-01 0.0000E ?00 7.0846E-01 7.1256E-01 7.2049E-01

St. Dev 8.1532E-02 2.3330E-04 1.6927E-02 1.4616E-03 7.3335E-04 1.4765E-04

ZTD2 Best 4.3690E-01 4.4364E-01 0.0000E ?00 4.2649E-01 4.4148E-01 4.4603E201

Mean 1.6059E-01 4.4341E-01 0.0000E ?00 4.2569E-01 4.3998E-01 3.0365E-01

Median 0.0000E ?00 4.4339E-01 0.0000E ?00 4.2570E-01 4.3983E-01 4.4511E-01

Worst 0.0000E ?00 4.4327E-01 0.0000E ?00 4.2486E-01 4.3895E-01 9.0909E-02

St. Dev 2.2132E-01 1.4428E-04 0.0000E ?00 5.9678E-04 1.1073E-03 1.8310E-01

ZTD3 Best 5.8414E-01 6.0012E-01 6.3063E202 6.0776E-01 5.9870E-01 6.0042E-01

Mean 5.3138E-01 5.9875E-01 2.1584E-02 6.0013E-01 5.9614E-01 6.0035E-01

Median 5.2309E-01 5.9928E-01 0.0000E ?00 5.9865E-01 5.9559E-01 6.0034E-01

Worst 4.8654E-01 5.9641E-01 0.0000E ?00 5.9749E-01 5.9369E-01 6.0032E-01

St. Dev 3.7314E-02 1.5003E-03 3.0248E-02 4.2978E-03 2.2754E-03 3.2921E-05

ZTD4 Best 0.0000E ?00 7.1870E-01 0.0000E ?00 5.2915E-01 4.4936E-01 7.2201E201

Mean 0.0000E ?00 4.3104E-01 0.0000E ?00 3.2566E-01 1.4515E-01 7.2180E-01

Median 0.0000E ?00 7.1823E-01 0.0000E ?00 2.8063E-01 9.2068E-02 7.2186E-01

Worst 0.0000E ?00 0.0000E ?00 0.0000E ?00 1.5186E-01 0.0000E ?00 7.2157E-01

St. Dev 0.0000E ?00 3.9349E-01 0.0000E ?00 1.4490E-01 1.8644E-01 1.5221E-04

ZTD6 Best 3.8264E-01 3.8727E-01 0.0000E ?00 3.6004E-01 3.7468E-01 3.8992E201

Mean 7.6528E-02 3.8683E-01 0.0000E ?00 1.4474E-01 3.6873E-01 3.8942E-01

Median 0.0000E ?00 3.8694E-01 0.0000E ?00 9.0909E-02 3.7413E-01 3.8937E-01

Worst 0.0000E ?00 3.8607E-01 0.0000E ?00 9.0909E-02 3.5349E-01 3.8906E-01

St. Dev 1.7112E-01 4.6175E-04 0.0000E ?00 1.2036E-01 9.1023E-03 2.5563E-04

DTLZ1 Best 0.0000E ?00 0.0000E ?00 0.0000E ?00 3.2437E-01 7.9876E201 7.8722E-01

Mean 0.0000E ?00 0.0000E ?00 0.0000E ?00 2.5652E-01 4.6717E-01 3.4446E-01

Median 0.0000E ?00 0.0000E ?00 0.0000E ?00 3.2189E-01 6.6477E-01 2.3345E-01

Worst 0.0000E ?00 0.0000E ?00 0.0000E ?00 0.0000E ?00 0.0000E ?00 0.0000E ?00

St. Dev 0.0000E ?00 0.0000E ?00 0.0000E ?00 1.4347E-01 3.9139E-01 3.1805E-01

DTLZ2 Best 4.6882E-01 4.7562E-01 1.4554E-01 1.9323E-01 4.6356E-01 5.2286E201

Mean 4.6105E-01 4.3849E-01 1.2959E-01 1.6021E-01 4.4497E-01 5.0082E-01

Median 4.6274E-01 4.3258E-01 1.2628E-01 1.4863E-01 4.3594E-01 4.9989E-01

Worst 4.5034E-01 4.1574E-01 1.2038E-01 1.3981E-01 4.3406E-01 4.8975E-01

St. Dev 6.7782E-03 2.2391E-02 1.0156E-02 2.1951E-02 1.4100E-02 1.0214E-02

DTLZ4 Best 4.9638E-01 5.2822E-01 2.4893E-01 9.0909E-02 4.5130E-01 5.2882E201

Mean 4.0388E-01 4.9549E-01 1.2437E-01 9.0879E-02 4.4019E-01 5.1386E-01

Median 3.9918E-01 4.9040E-01 9.6320E-02 9.0909E-02 4.4582E-01 5.1438E-01

Worst 3.5200E-01 4.7320E-01 8.1155E-02 9.0760E-02 4.1903E-01 5.0228E-01

St. Dev 5.7473E-02 2.0547E-02 7.0695E-02 6.6534E-05 1.3061E-02 7.6480E-03

DTLZ5 Best 1.8022E-01 2.0093E201 6.9229E-02 6.6436E-02 1.8478E-01 1.9866E-01

Mean 1.7355E-01 2.0044E-01 5.7878E-02 6.5387E-02 1.8260E-01 1.9785E-01

Median 1.7477E-01 2.0057E-01 6.0221E-02 6.4780E-02 1.8294E-01 1.9794E-01

Worst 1.6429E-01 1.9979E-01 3.5861E-02 6.4694E-02 1.8007E-01 1.9690E-01

St. Dev 5.9244E-03 4.2964E-04 1.3417E-02 9.0710E-04 1.7465E-03 6.2290E-04

DTLZ6 Best 1.9743E-01 1.9349E-01 1.8501E-01 1.0053E-01 1.9119E-01 2.0011E201

Mean 1.6673E-01 1.9269E-01 1.3325E-01 9.9119E-02 1.8844E-01 1.9997E-01

Median 1.9692E-01 1.9257E-01 1.5974E-01 9.8527E-02 1.8838E-01 1.9996E-01
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Min :

f1 xð Þ ¼ 1:10471x21x2 þ 0:04811x3x4 14þ x2ð Þ

f2 xð Þ ¼ 4PL3

Ex33x4

8
<

:

ð33Þ
Subject to:

g1 xð Þ ¼ � ta� tamaxð Þ� 0;

g2 xð Þ ¼ � r� rmaxð Þ� 0;

g3 xð Þ ¼ � x1 � x4ð Þ� 0;

g4 xð Þ ¼ � P� pcð Þ� 0;

h; l; t; b½ 	 ¼ x1; x2; x3; x4½ 	;
where

pc ¼ 1� x3=2Lð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
E=4G

p	 
	 
	 
 4:013E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x23x
6
4=36

q

L2

0

@

1

A

ta ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ta21 þ 2ta1 � ta2 � x2=2Rð Þ þ ta22

q

ta1 ¼ P=
ffiffiffi
2

p
x1x2; ta2 ¼ MpR=J; Mp ¼ P � Lþ x2=2ð Þ

J ¼ 2 �
ffiffiffi
2

p
x1x2 x22=12

� �
þ x1 þ x3ð Þ=2ð Þ2

	 
	 


R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x22=4
� �

þ x1 þ x3ð Þ=2ð Þ2
q

r ¼ 4PL=x23x4

P ¼ 6000; tamax ¼ 13600; L ¼ 14; rmax ¼ 30000;

G ¼ 12e6; E ¼ 30e6

0:125� x1; x4 � 5; 0:1� x2; x3 � 10

5.8.2 Description of SRD problem

The SRD aims to simultaneously reduce the gear assembly

weight and the transverse deflection for achieving opti-

mized shaft. This design is optimized under some con-

straints which are the transverse deflections of the shafts,

the surfaces stress, bending stress of the gear teeth, and

stresses in the shafts. In this regard, seven design param-

eters are needed to be optimized, the face width, a module

of teeth, teeth number in the pinion, the first shaft length

between bearings, the second shaft length between bear-

ings, and the first and second shafts’ diameters. This

problem is regarded as mixed-integer design as the teeth

number in the pinion is an integer while the others are

continuous. The mathematical model is expressed as fol-

lows.

Subject to:

g1 xð Þ ¼ 27=x1x
2
2x3 � 1� 0;

g2 xð Þ ¼ 397:5=x1x
2
2x

2
3 � 1� 0;

g3 xð Þ ¼ 1:93x34=x2x3x
4
6 � 1� 0;

g4 xð Þ ¼ 1:93x35=x2x3x
4
7 � 1� 0;

Table 3 (continued)

Test function Statistical metric MOPSO NSMFO MSSA MOSMA MOBO MOGJO

Worst 4.5177E-02 1.9226E-01 0.0000E ?00 9.8424E-02 1.8661E-01 1.9986E-01

St. Dev 6.7949E-02 4.6835E-04 7.5715E-02 9.4934E-04 1.7618E-03 6.9200E-05

DTLZ7 Best 1.8411E-01 2.4143E-01 9.5453E-03 2.3483E-01 2.5205E-01 2.7062E201

Mean 1.1286E-01 2.3140E-01 2.9489E-03 2.3039E-01 2.4036E-01 2.6786E-01

Median 1.1734E-01 2.3072E-01 0.0000E ?00 2.2900E-01 2.3863E-01 2.6782E-01

Worst 5.2534E-03 2.1627E-01 0.0000E ?00 2.2627E-01 2.3378E-01 2.6528E-01

St. Dev 6.6426E-02 1.0422E-02 4.3204E-03 4.1327E-03 6.8946E-03 1.5623E-03

Min:

f1 xð Þ ¼ 0:7854x1x
2
2 3:3333x23 þ 14:9334x3 � 43:0934
� �

� 1:508x1 x26 þ x27
� �

þ 7:4777 x36 þ x37
� �

þ 0:7854 x4x
2
6 þ x5x

2
7

� �

f2 xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

745x4
x2x3

� 2

þ16:9e6

s ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

745x4
x2x3

� 2

þ16:9e6

s !,

110x36

8
><

>:

ð34Þ
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g5 xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

745x4
x2x3

� 2

þ16:9e6

s0

@

1

A

,

0:1x36 � 1� 0;

g6 xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745x5
x2x3

	 
2
þ157:5e6

r !,

0:1x37 � 1� 0;

g7 xð Þ ¼ x2x3=40� 1� 0;

g8 xð Þ ¼ 5x2=x1 � 1� 0;

g9 xð Þ ¼ x1=12x2 � 1� 0;

g10 xð Þ ¼ 1:5x6 þ 1:9ð Þ=x4 � 1� 0;

g11 xð Þ ¼ 1:1x7 þ 1:9ð Þ=x5 � 1� 0;
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2:6� x1 � 3:6; 0:7� x2 � 0:8; 17� x3 � 28;

7:3� x4; x5 � 8:3; 2:9� x6 � 3:9; 5� x7 � 5:5:

5.8.3 Description of DBD problem

The multi-plate disk brake is used in airplanes that aims to

simultaneously minimize the overall mass of the brake as

well as braking time. The design parameters are the inner

and outer radii, the engaging force, and the friction surfaces

(plates). Moreover, this problem is regarded as mixed-in-

teger problems as the friction surfaces takes a discrete

value. Also, this design is subjected to some constraints:

the pressure sustained by the plates, distance among the

radii of the friction plates, brake length, maximum limit of

temperature, and the braking torque. The mathematical

model is formulated as follows.

Min :
f1 xð Þ ¼ 4:9e� 5 x22 � x21

� �
x4 � 1ð Þ

f2 xð Þ ¼ ð 9:82e6ð Þ x22 � x21
� �

=x3x4 x32 � x31
� �� �

�

ð35Þ
Subject to:

g1 xð Þ ¼ 20þ x1 � x2 � 0

g2 xð Þ ¼ 2:5 x4 þ 1ð Þ � 30� 0

g3 xð Þ ¼ x3=3:14 x22 � x21
� �2�0:4� 0

g4 xð Þ ¼ 2:22e� 3x3 x32 � x31
� �

= x22 � x21
� �2�1� 0

g5 xð Þ ¼ 900� 2:66e� 2x3x4 x32 � x31
� �� �

= x22 � x21
� �� �

� 0

55� x1 � 80; 75� x2 � 110;

1000� x3 � 3000; 2� x4 � 20

5.8.4 Description of FBTD problem

The simultaneously minimization of the volume and dis-

placement of joints represents the main aim of FBTD,

where the design variables of this design are considered as

the areas of joints. The mathematical model is described as

follows.

Min:

f1 xð Þ ¼ L 2x1 þ
ffiffiffi
2

p
x2 þ

ffiffiffiffiffi
x3

p þ x4
� �

f2 xð Þ ¼ F
L

E

2

x2
þ 2

ffiffiffi
2

p

x2
� 2

ffiffiffi
2

p

x3
þ 2

x4

� 

8
<

:
ð36Þ

Subject to:

1� x1; x4 � 3;
ffiffiffi
2

p
� x2; x3 � 3;

F ¼ 10; L ¼ 200; E ¼ 2e5:

The results of the proposed MOGJO and the compared

algorithms obtained for the engineering design problems

are assessed using the statistical measures of the SP and

HV. The obtained results of these metrics are reported in

Table 7. Based on observation of the SP results obtained in

Table 7, the proposed MOGJO ensures the best statistical

results compared to the other competitors for the engi-

neering designs, WBD, SRD, DBD, and FBTD, where the

best results are marked with bold font. Also, by observing

the HV metric, it can be concluded that the MOGJO pro-

vides the best performance on all engineering designs by

the comparisons with the other presented algorithms.

According to the presented metrics, it can be revealed the

MOGJO has a good convergence and coverage for the

studied engineering optimization designs. Moreover, the

searched POFs by the proposed MOGJO algorithm for all

considered designs are depicted in Fig. 6.

5.9 Dynamic economic-emission power dispatch
(DEEPD)

The DEEPD problem represents MOO problem that aims

to minimize the objectives of fuel cost and emission levels

in the power system stations. The term dynamic implies

that the operation is performed over a specific time horizon

with taking into account the dynamic changes in load. To

maintain the real power balance in the power system, the

output of the generators must be adjusted in accordance

with changes in load in the power system. Therefore, the

solution the DEEPD problem not only brings economic

advantages but also lowers atmospheric pollutant gas

emissions [64]. Moreover, the fuel cost equation acquires

some ripples in its operation curve caused by opening and

closing the steam values of the turbine. Due to the ripples’

nonlinear effect on the quadratic fuel cost equation, the

Table 4 Results of Wilcoxon test using significance level (p� 0:05) for GD and HV metrics

Metric MOGJO versus MOPSO MOGJO versus NSMFO MOGJO versus MSSA MOGJO versus MOSMA MOGJO versus MOBO

GD 1.09E-02 7.69E-03 7.69E-03 7.69E-03 7.69E-03

HV 7.69E-03 3.00E-02 7.69E-03 1.09E-02 2.84E-02
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realistic model of DEEPD formulation must take this into

account, leading to many local optima. Additionally, con-

sidering the dynamic term as well as power balance con-

straints lead to non-monotonic, non-linear, non-convex,

and non-smooth characteristics into DEEPD formulation

and thus finding a compromise solution under aforemen-

tioned characteristics is a true challenge to the power

system operations. The mathematical formulation is

expressed as follows [64].

Cost: f1 PGð Þ ¼
XH

h¼1

XNG

i¼1

ci þ biPGi;h þ aiPG
2
i;h

	 


þ di sin ei PG
min
i � PGi;h

� �� �� ��
�

�
�

ð37Þ

Emission: f2 PGð Þ ¼
XH

h¼1

XNG

i¼1

mi þ liPGi;h þ kiPG
2
i;h

	 


þ ni exp
qi�PGi;h

� �

ð38Þ
Subject to:

XNG

i¼1

PGi;h ¼ PDh þ PLh ð39Þ

PLh ¼
XNG

i¼1

XNG

j¼1

PGi;hBijPGi;h þ
XNG

i¼1

B0iPGi;h þ B00 ð40Þ

PGmin
i �PGi;h �PGmax

i ; i ¼ 1; 2; . . .;NG & h
¼ 1; 2; . . .; 24 ð41Þ

where H defines the dispatch period that usually taken as

24 h. PGi;h denotes the produced power by the generator i

at time h, ai; bi; ci represent the coefficients of fuel cost,

di; ei represent the coefficients acquired by valve effect of

the i th. generator. li; mi; ni; ki; qi denote the coefficients of

emission function of the i th unit. PGmin
i defines the lower

bound for generation unit PGi.

Equation (39) expresses the power balance constraint

for the generated power at time h, where PDh defines the

power demand at time h and PLh denotes the transmission

loss at time h that is expressed in Eq. (40). Where Bij;B0i;

and B00 denote the ij th member of the B-loss matrix, the

i th member of the loss coefficient vector, and a constant,

respectively. Equation (41) defines the boundaries of the

search region, where PGmin
i and PGmax

i denote the lower

and upper bounds, respectively. In this context, the pro-

posed method is applied on the IEEE 30-bus system, where

the single-line diagram is depicted in Fig. 7 [51]. The load

profile for DEEPD was taken from data available in [65].

Table 6 Statistical measures for GD metric by the proposed and compared optimizers for constrained suits

Test function Statistical metric MOPSO NSMFO MSSA MOSMA MOBO MOGJO

SRN Best 4.8371E-02 1.1491E-01 9.4999E-04 3.1638E-01 1.3732E-01 1.8990E202

Mean 7.4294E-02 1.8969E-01 5.9990E-03 5.1648E-01 1.7690E-01 2.1887E-02

Median 7.4450E-02 1.5928E-01 5.5556E-03 5.0107E-01 1.7607E-01 2.0808E-02

Worst 9.0994E-02 3.0816E-01 1.4117E-02 8.3128E-01 2.1054E-01 2.7240E-02

St. Dev 1.6321E-02 7.4425E-02 5.0812E-03 2.0403E-01 2.6373E-02 2.9750E-03

BHN Best 6.1659E-02 6.8026E-02 2.8214E-03 6.7603E-02 6.2490E-02 2.2486E202

Mean 7.8622E-01 1.0753E-01 2.1760E-02 7.0837E-02 1.0556E-01 2.3762E-02

Median 2.2043E-01 8.7162E-02 1.2971E-02 6.9523E-02 8.9104E-02 2.3887E-02

Worst 2.2248E ?00 1.6355E-01 4.6683E-02 7.6272E-02 1.7057E-01 2.4833E-02

St. Dev 9.7030E-01 4.5321E-02 2.0937E-02 3.4070E-03 4.5494E-02 8.2212E-04

KIT Best 2.6340E ?00 3.0036E ?00 1.6520E ?00 2.5677E ?00 3.1672E ?00 4.6025E204

Mean 2.8005E ?00 3.0100E ?00 1.6550E ?00 2.5937E ?00 3.2745E ?00 3.1838E-03

Median 2.7874E ?00 3.0109E ?00 1.6550E ?00 2.5900E ?00 3.2995E ?00 1.5423E-03

Worst 2.9641E ?00 3.0148E ?00 1.6571E ?00 2.6251E ?00 3.4340E ?00 1.4401E-02

St. Dev 1.1800E-01 4.1659E-03 2.1525E-03 2.3022E-02 1.1037E-01 4.2824E-03

TNK Best 1.0607E-03 1.9577E-03 2.9092E-04 1.4475E-02 1.5783E-03 2.6114E204

Mean 6.4610E-03 2.5221E-03 6.8262E-04 1.7697E-02 2.1911E-03 3.5615E-04

Median 6.7285E-03 2.1908E-03 6.7617E-04 1.8960E-02 1.8139E-03 3.6479E-04

Worst 1.5764E-02 3.5838E-03 1.1470E-03 1.9836E-02 3.8323E-03 4.2497E-04

St. Dev 5.9585E-03 6.5212E-04 3.0579E-04 2.4138E-03 9.3199E-04 5.1993E-05
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Fig. 5 The obtained POF for constrained suits using the proposed MOGJO and compared ones
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To evaluate the applicability of the proposed MOGJO, it

is investigated on the DEEPD problem for every hour,

where the POF obtained for each hour along with the

compromise solution is depicted as in Fig. 8. The bar plot

of the obtained real generated power of the compromise

solution is depicted in Fig. 9. Moreover, the reached

compromise solution by the proposed MOGJO is compared

with existing algorithms in terms of dominance relation

and savings regarding the fuel cost and emission levels,

where the fuel cost and emission obtained by the GSOMP

[65] are 25924.4$ and 6.0041 ton, and the obtained the fuel

cost and emission by MOMVO [64] are 25831.48$ and

5.9666 ton. Based on the recorded results, the proposed

algorithm achieves daily savings in fuel costs and emission

levels over the other competitors by 489.5001$ and 0.0882

ton for MOMVO, and by 582.4201$ and 0.1257 ton for

GSOMP. The compromise solution of the fuel cost and

emission reached by the proposed MOGJO at each hour as

well as the generated power per hour is recorded in

Table 8.

5.10 Further discussion

In this work, the performance of the MOGJO was applied

on some benchmark suits including the ZDT suit with

optimizing bi-objective functions, DTLZ suits with opti-

mizing three-objective functions, constrained test suits and

real engineering applications such as the welded beam

design, speed reduced design, four-bar truss, disk brake

design, and real DEEPD problem. The assessment of the

proposed MOGJO was carried out by the comparisons with

other optimization algorithms, and some performance

metrics such as HV, SP, and GD. The statistical outcomes

of assessment metrics affirmed that the MOGJO algorithm

performs well regarding the converge and coverage fea-

tures toward POF without suffering, while the compared

counterparts may suffer from converge and coverage

T
N

K

Fig. 5 continued
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features toward POF. At the same time, the POF obtained

by the proposed MOGJO, and its competitors are depicted,

where the visualization perspective realized that the pro-

posed MOGJO algorithm can reach more concise shape

with the true POF for most of the test functions. Moreover,

the proposed MOGJO is further verified by the compar-

isons with some implemented algorithms including

MOPSO, NSMFO, MSSA, MOSMA, MOBO, and some

state-of-the-art methods including MOJF, MOEA/D,

MOPSO1, NSGA-II, MOCGO, MOCryStAl, EMOSMA,

MOGOA, MOALO, MOLAPO, MOGWO, M2O-CSA, and

MOMSA. The obtained results using the statistical metrics

along with the nonparametric tests have affirmed the pro-

gressive and competitive performance of the proposed

algorithm compared to its competitors. In this regard, the

Wilcoxon rank sum test affirmed that the MOGJO

algorithm is significantly better than the compared meth-

ods, with a 95% significance level. On the other hand, the

Friedman test was detected the significancy of average

ranking among the compared algorithm, and it was con-

firmed that the proposed MOGJO outperforms the best and

worst algorithms, MOJF and MOALO, among the state-of-

the-art algorithms by an average rank greater than 41% and

84% on for ZDT and DTLZ1, respectively. Finally, the

results of engineering designs and real dynamic economic-

emission power dispatch (DEEPD) problems demonstrated

that the MOGJO algorithm has good applicability to deal

with challenging tasks with complicated search space

constraints. Furthermore, the proposed algorithm saved the

overall energy cost and total emission of the DEEPD

problem by 1.89%, and 1.48%, respectively, compared

with the best existing results. Therefore, it can be con-

cluded that the presented methodology provides progres-

sive and competitive performance with existing multi-

objective optimization methods in terms of ductility and

coverage. The main reasons behind the superior perfor-

mance of the MOGJO can be interpreted as follows:

Firstly, the incorporation of chaotic logistic and opposition

searching can provide a good exploration aspect, where this

can explore new positions in opposite directions of current

ones which improves the diversity of solutions. Secondly,

the integrating of elite strategy that operates in surviving

the best solutions can improve the intensifying of solutions

and improve the convergence aspect. Finally, the embed-

ding of the relevant tools related to multi-objective strategy

into GJO algorithm can make adaption to deal with the

MOO issues such as the external archive population to

maintain the best non-dominated solutions during the

iterative process, conception of crowding distance to avoid

the archive size explosion, and the selection of pair golden

jackals from the archive population can guide the whole

population to attain the Pareto front with good balance

among the exploration and the exploitation searching.

Furthermore, we anticipate that the provided methodology

will inspire practitioners and engineers to use it in dealing

with practical applications such as climate changes and

a) WBD b) SRD c) DBD d) FBTD

Fig. 6 The obtained POF for the engineering designs by the proposed MOGJO

Fig. 7 The structure of IEEE 30-bus system using the single-line

diagram [51]
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renewable energy sources that aims to simultaneously

optimize large-scale multi- and many-objective optimiza-

tion problems.

5.11 Benefits and limitations of the proposed
algorithm

5.11.1 Benefits of the algorithm

• Enhanced exploration: The algorithm integrates the

chaotic logistic and opposition-based learning concepts

with the MOGJO algorithm to explore more promising

Fig. 8 POFs for each hour of the dispatch period (red star) and compromise solution (blue square)
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areas during the search process, leading to improve the

spread performance along the entire Pareto front.

• Guided exploitation: The use of the elite-based strategy

in the MOGJO helps to introduce guidance pattern into

the updating process, leading to emphasize the exploita-

tion feature with promoting the convergence perfor-

mance toward the POF.

• Robustness: The algorithm can strike a good balance

among the exploitative and explorative features,

demonstrating the robustness performance over the

compared ones for most of the studied problems.

• Assistance-based tool: Fuzzy technique is adopted to

assist the DM mission to select the best compromise

solution (CS) from the overall POF.

5.11.2 Limitations of the algorithm

• Limited scalability: The algorithm is highly susceptible

to worsening while dealing with many-objective prob-

lems. More specifically, since MOGJO optimizes the

objectives of a MOO problem simultaneously, there is a

chance that the algorithm loses performance when the

MOO problem has more than two objectives. So, the

proposed algorithm can be further integrated with other

searching strategies to create a more effective and

robust algorithm for optimizing many-objective

problems.

• Limited applicability: The algorithm’s effectiveness

may depend on the specific features of the problem
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Fig. 9 Bar plot of the generated power corresponding to compromise

solution of the DEEPD problem

Table 8 The best compromise

solution reached by the

proposed algorithm for the

DEEPD problem

h PDh PG1 PG2 PG3 PG4 PG5 PG6 Emission (ton) Fuel cost ($)

1 3.2500 0.2880 0.4228 0.6388 0.7741 0.6399 0.4863 0.2028 703.6166

2 3.9000 0.3855 0.5062 0.7928 0.9037 0.7525 0.5593 0.2117 859.1323

3 3.5000 0.3372 0.4146 0.6980 0.8584 0.6797 0.5122 0.2067 760.6734

4 3.0000 0.2839 0.3985 0.5718 0.7420 0.5762 0.4276 0.2016 646.3300

5 3.3500 0.3044 0.4225 0.6810 0.8270 0.6094 0.5057 0.2048 725.7823

6 4.0000 0.3807 0.5092 0.8026 0.9321 0.7863 0.5892 0.2145 883.0348

7 4.7500 0.5088 0.5894 0.9479 1.0783 0.9379 0.6877 0.2377 1076.3574

8 5.0500 0.5620 0.6181 0.9976 1.1724 0.9728 0.7270 0.2523 1156.5174

9 5.4500 0.6301 0.6636 1.0748 1.2717 1.0411 0.7688 0.2762 1267.1308

10 5.2000 0.5737 0.6461 1.0251 1.1887 0.9973 0.7691 0.2593 1198.6784

11 5.5000 0.5473 0.7120 1.0790 1.2994 1.0975 0.7642 0.2840 1277.8676

12 5.7500 0.6542 0.6759 1.1200 1.3881 1.1206 0.7913 0.3033 1349.2569

13 5.2500 0.5273 0.6728 1.0385 1.2313 1.0271 0.7531 0.2656 1209.4003

14 5.1500 0.5243 0.6345 0.9963 1.1948 1.0705 0.7296 0.2610 1181.2043

15 4.7500 0.5031 0.6013 0.9246 1.0908 0.9179 0.7122 0.2373 1077.1114

16 5.3000 0.5758 0.6418 1.0712 1.2240 0.9964 0.7907 0.2669 1225.2375

17 5.1500 0.5236 0.6282 1.0189 1.1900 1.0314 0.7578 0.2596 1181.9437

18 5.7500 0.5654 0.6638 1.1706 1.4242 1.1667 0.7593 0.3166 1343.1344

19 5.2500 0.5373 0.6457 1.0570 1.2361 1.0448 0.7291 0.2675 1207.7034

20 5.2500 0.5800 0.6557 1.0379 1.2371 1.0184 0.7208 0.2650 1209.9368

21 4.5500 0.4710 0.5957 0.8900 1.0258 0.9017 0.6658 0.2291 1024.9511

22 4.2500 0.4234 0.5369 0.8494 0.9607 0.8780 0.6014 0.2207 946.2351

23 4.2500 0.4212 0.5513 0.8319 0.9711 0.8401 0.6345 0.2199 947.1190

24 4.0000 0.3701 0.5186 0.8125 0.9033 0.8221 0.5733 0.2143 883.6251

Total 5.8784 25341.9799
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being addressed such as multi-modal, non-separable or

deceptive natures, and it maybe could not grantee the

best performance for all optimization tasks.

6 Conclusion and future work

This paper proposes a guided multi-objective golden jackal

optimization (MOGJO) based on opposition mechanism

and elite-based-based learning scheme to deal with MOO

issues. While preserving the searching capability of the

GJO, a dynamic opposition strategy and guidance strategy

based on the elite non-dominated solutions are equipped

into GJO algorithm to reach the promising regions of POF,

and thus, diversity and coverage toward the POF is pre-

served to the greatest extent attainable through the inte-

gration of two mechanisms. Moreover, the crowding

distance conception is also incorporated to emphasize the

survivability of solutions and avoid the premature con-

vergence. The suggested MOGJO algorithm can find the

optimal Pareto frontier in a variety of testing functions and

engineering challenges. The proposed algorithm was tested

on 21 cases, including 11 unconstrained MOO issues with

two objective or three objective, 5 constrained MOO

issues, 4 high-constraint engineering design application,

and one real power system problem. Quantitative results

were performed by using three performance indicators

(GD, HV, and SP) along with comparisons with some well-

known implemented algorithms and other algorithms from

the literature. In this sense, the performance of proposed

MOGJO is verified with MOPSO, NSMFO, MSSA,

MOSMA, MOBO, MOJF, MOEA/D, MOPSO1, NSGA-II,

MOCGO, MOCryStAl, EMOSMA, MOGOA, MOALO,

MOLAPO, MOGWO, M2O-CSA, and MOMSA. The

obtained results show that the proposed MOGJO algorithm

can provide progressive and competitive performance with

the compared algorithms for most of the ZDT, DTLZ

problems. Also, for constrained problems, the results on the

studied problems demonstrated that the MOGJO can

explore the promising regions under the constraints chal-

lenging with providing superior results than the compared

algorithms. At the same time, MOGJO algorithm can attain

the Pareto optimal front of the real shape for most of the

studied problems. Finally, the results of engineering

designs and real dynamic economic-emission power dis-

patch (DEEPD) problems affirmed that the MOGJO algo-

rithm has good applicability to deal with challenging tasks

with complicated search space constraints. Finally, Wil-

coxon rank sum test was performed on GD, and HV indi-

cators, and the results demonstrated that the MOGJO

algorithm is significantly better than the compared meth-

ods, with a 95% significance level. Furthermore, the results

of the nonparametric Friedman test were performed to

detect the significant of average ranking among the com-

pared algorithm, where the results confirmed that the pro-

posed MOGJO outperforms the best algorithm, MOJF,

among thirteen state-of-the-art algorithms by an average

rank of Friedman test greater than 41% for ZDT and

DTLZ1 suits while outperforming the worst one, MOALO,

by 84%. Furthermore, the proposed algorithm saved the

overall energy cost and total emission of the DEEPD

problem by 1.89%, and 1.48%, respectively, compared to

the best existing results. Therefore, it can be claimed that

the suggested methodology performs outstanding ductility

and coverage among existing multi-objective optimization

methods.

With respect to future work, some considerations can be

explored. Though MOGJO has outstanding performance in

most of the studied cases, it is susceptible to performance

loss for large-scale and multi-modal problems. More

studies can also be conducted on improving the global

searching ability of the proposed algorithm in terms of

convergence and coverage trends using other improvement

strategies to be competitive enough with top performing

methods in the literature. Additionally, future studies could

examine the performance of the proposed algorithm for

large-scale many-objective tasks that have four or more

objectives. Also, adapting the performance of the proposed

algorithm to deal with real-life MOO issues, such as

CEC2020 Real-World Constrained Optimization competi-

tion, wind farm layout optimization problem, DEEPP

problem based on renewable technologies, and deep

learning technique-based prediction of the load dispatch

period for the DEEPP problem, is part of our future

direction. Please note that the MOGJO cannot be viewed as

the optimum methodology for all situations because there

is no such methodology, as it is evident from ‘‘no free

lunch’’ (NFL) theorem. Furthermore, since MOGJO uses

stochastic population-based optimization, it can still

encounter a stagnation challenge, especially while dealing

with some more challenging datasets including huge

dimensions and/or complicated constraints.
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