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Abstract
While reinforcement learning (RL) algorithms have generated impressive strategies for a wide range of tasks, the per-

formance improvements in continuous-domain, real-world problems do not follow the same trend. Poor exploration and

quick convergence to locally optimal solutions play a dominant role. Advanced RL algorithms attempt to mitigate this

issue by introducing exploration signals during the training procedure. This successful integration has paved the way to

introduce signals from the intrinsic exploration branch. ACRE algorithm is a framework that concretely describes the

conditions for such an integration, avoiding transforming the Markov decision process into time varying, and as a result,

making the whole optimization scheme brittle and susceptible to instability. The key distinction of ACRE lies in the way of

handling and storing both extrinsic and intrinsic rewards. ACRE is an off-policy, actor-critic style RL algorithm that

separately approximates the forward novelty return. ACRE is shipped with a Gaussian mixture model to calculate the

instantaneous novelty; however, different options could also be integrated. Using such an effective early exploration,

ACRE results in substantial improvements over alternative RL methods, in a range of continuous control RL environments,

such as learning from policy-misleading reward signals. Open-source implementation is available here: https://github.com/

athakapo/ACRE.
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1 Introduction

Reinforcement learning (RL) has been the main driving

force for developing the minds of our future robots.

Breakthroughs in the hardware (e.g., GPU acceleration)

and software (e.g., powerful RL algorithms) have led to

extraordinary results, such as interacting with humans in a

conversational way [25], surpassing human intelligence at

playing Atari games [2], performing dexterous

manipulation tasks [10], navigating using self-supervised

learning [13], etc. However recent promising attempts, e.g.,

[33] and [39], the level of performance achieved in the

discrete and deterministic world, mainly in video or board

games (e.g., [4, 31]), seems out of reach in the continuous

and stochastic domain of real-life robots. On top of that, the

available simulators do not provide engines with arbitrary

accuracy, rendering the interaction with the real-world

mandatory. All the above reinforce the quick convergence

to sub-optimal solutions or the acquisition of brittle poli-

cies that do not generalize well on a wide variety of real-

world situations [8].

To mitigate the aforementioned issues, almost all

model-free RL algorithms attempt to encourage explo-

ration somehow, e.g., �-greedy [19], noise-corrupted

actions [17], stochastic policies [30], entropy-regulated

learning [12], etc. The most advanced off-policy RL

algorithms, e.g., SAC [12] and TD3 [9], own their premium

performances, to some extent, in the extra introduced

exploration signals during the learning procedure (in

addition to the exploration noise during the interaction with

the environment). Such an observation paves the way for
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directly integrating into the learning process exploration

signals from the literature of intrinsic exploration strategies

(e.g., [1, 28]). Although these application-specific, intrinsic

exploration signals can be pretty appealing, their integra-

tion with the main body of the RL algorithm requires

special attention. A ‘‘blind’’ incorporation with the envi-

ronmental reward could give rise to several issues that may

significantly hinder the additional performance improve-

ments, especially in real-life environments with more

complex states/actions, e.g., [32] and [14].

The proposed Actor-Critic with Reward-Preserving

Exploration (ACRE) algorithm is a first attempt to formalize

the integration of such intrinsic signals into the main body of

off-policy actor-critic1 RL algorithms without jeopardizing

the integrity of the learning procedure. A Gaussian mixture

model (GMM) is employed on the already visited states to

perform a novelty assessment in terms of density estimation.

It is crucial tomention that, although theGMMapproachwas

found to be quite efficient, a different mechanism for esti-

mating the novelty of transition could also be utilized to

achieve a better or more specific performance of the problem

at hand. In the heart of the proposed ACRE algorithm lies a

separate module capable of estimating online the forward

novelty (till the end of the episode) from each specific state.

During the core update of the actor-critic structure, both

value (Q) and policy (p) networks are also trained to optimize

this forward novelty, stemming from the soft actor-critic

framework [11]. In a nutshell, the ACRE algorithm intro-

duces a new way of handling environmental and novelty

returns. The environmental reward and the corresponding

transition are stored ‘‘as is’’ in a standard replay buffer. On

the contrary, the intrinsic, time-varying novelty return is

estimated online based on the cumulative novelties of the

states since the previous training cycle. Conceptually, ACRE

deals with the exploration problem as having a separate time-

varying Markov decision process (MDP), simultaneously

with the original RL problem.

Figure 1 graphically illustrates the effect of ACRE on the

policy-misleading reward environment of MountainCar, to

escape local optimum without jeopardizing the gathered

environmental transitions. From the 4 snapshots, which

depict key insights related to the learning process, we focus

on d) to deduce an exciting remark. The generation of new

Gaussian curves around the velocity value of 0.025 is not by

any means random. Actually, based on the dynamics of the

environment, this is the exact velocity that is required to

reach the goal position (see Fig. 2b of [15]). The RL agent

learns that it only needs to reach this velocity to avoid

spending time gaining extra speed that is not required. As a

matter of fact, any additional movements would add more

Fig. 1 ACRE performance insights on the MountainCarContinuous

OpenAI-gym environment. Each one of the four snapshots depicts

(i) on the left-hand side the belief of Gaussian mixture model with

respect to states space (inverse novelty) and (ii) on the right-hand side

a superimposed visualization of the car’s position (the dimmer the

picture of the car, the less frequent to find it there) for the

corresponding episode. a Initial episodes where the car moves

randomly, exploring only a tiny subset of the whole state space.

b Based on the reward feedback, the car attempts to move closer to

the flag; however, the environmental dynamics severely limit its

performance. c Exploration now pays off, and the car has reached

even the farthest states. d Based on these experiences, ACRE acquires

and retains the optimal policy

1 Methods that learn approximations to both policy and value

functions are often called actor-critic methods, where ‘‘actor’’ is a

reference to the learned policy, and ‘‘critic’’ refers to the learned value

function, usually a state-value function [34].
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steps to the episode length, and thus, based on the reward

scheme of MountainCar, would result in inferior returns.

Beyond this indicative example, Sect. 4 presents a

thorough study of the ACRE’s performance. Sections 4.1

and 4.2 present an ablation study with respect to different

components of the ACRE methodology, analyzing (i) the

performance of core ACRE methodology as novelty inte-

gration mechanism and (ii) the effectiveness of GMM-

based intrinsic reward signal, respectively. Finally,

Sect. 4.3 presents an extensive study of the performance of

ACRE against 6 state-of-the-art RL approaches on 12

continuous control tasks retrieved from 3 of the most well-

established collections of RL benchmarks. All in all,

ACRE’s ability to explore effectively while retaining the

reward signal intact led to premium performance. More

specifically, in the majority of the cases, ACRE matched

the best-achieved performance—which was not attained by

a single RL algorithm alternative—while, at the same time,

in two environments, the early exploration resulted in

significant performance improvements over the status quo.

2 Preliminaries

2.1 Notation

We consider a standard reinforcement learning format,

where an agent is allowed to interact with the environment in

discrete timesteps t. The standard approach formulates such a

setup into an MDP, described by a tuple

S;A;P; r; q0; c; df g. The state space S and action space A

are assumed to be continuous, and the transition dynamics

Pðs0ks; aÞ : S � S �A! 0; 1½ � represent the environment-

related probability density of arriving at a next state s0 2 S

given the current state s 2 S and action a 2 A. q0 represents
the initial state distribution from which s admits its values at

the beginning of each episode. Each transition gets assessed

by the environment with a scalar reward

r s; að Þ : S �A! R. The Boolean signal d 2 f0; 1g indi-

cates the termination of an episode (e.g., exceeding the

maximum number of iterations or colliding with an obsta-

cle). The ultimate objective is the generation of a policy

pðsÞ : S ! A that maximizes the expected sum of rewards

discounted by a factor c 2 ð0; 1�: Est �P;at �p
P

t c
tr st; atð Þ

� �
.

2.2 Exploration elements in SOTA RL algorithms

While the aforementioned problem setup formally describes

the mission of the RL agent, trying to ‘‘blindly’’ optimize

such an objectivemay lead to getting stuck in extremely sub-

optimal behavior due to poor exploration of the available

S �A. More often than not, in model-free, RL algorithms,

the policy that gathers the new interaction samples with the

environment is a combination of the current best policy pbest,
fused with some exploration signal, e.g., �-greedy-like

exploration strategies (e.g., DQN [19]), policy stochasticity

(e.g., PPO [30], TRPO [29]), noise-corrupted actions (e.g.,

DDPG [17]), etc. Recent state-of-the-art, off-policy RL

algorithms introduce Bellman backup updates’ exploration

elements by implementing either non-deterministic (i.e.,

TD3 [9]) or entropy-regulated (i.e., SAC [12]) target updates.

Table 1 summarizes all these exploration mechanisms in the

state-of-the-art RL algorithms.

2.3 Exploration through extra reward signal

A special type of RL exploration strategy that has gained a lot

of attention alters the received environmental reward to serve

also as an exploration assessment. To accomplish that, these

approaches build re as an intrinsic/information gain signal.

Such an intrinsic reward represents an estimation with respect

to the novelty of the new state (or state–action pair), usually in

a form of counting [35], diversity [7], or curiosity [27]. This

reward is mostly combined linearly with the environment’s

reward, i.e., ~r,r þ re [1, 24, 28]. In essence, they alter the

original MDP setup to S;A;P; ~r; q0; c; df g so as to enable

extra exploration capabilities. After doing so, one of the state-

of-the-art RL algorithms fromTable 1, with all its exploration

mechanisms in place, is employed to address the policy con-

struction for this altered MDP. The problem with such an

approach is that assuming a replay buffer, the RL agent may

attempt to train on corrupted reward signals that probably

contain non-relevant exploration signals, due to all the tran-

sitions that have been performed afterward. This can lead to

instability and also without any guarantee that the achieved

policy is optimized for the problem at hand.

3 Actor-Critic Reward-Preserving
Exploration (ACRE) algorithm

Within this paper, we discuss why the exploration problem

does not fit well inside the original MDP, and building

around this idea, we propose ACRE, an off-policy, actor-

critic style RL algorithm that takes special care of envi-

ronmental and exploration returns.

3.1 Exploration is a separate time-varying MDP

Disregarding for themoment the exact method of acquiring a

novelty estimation for every state, let us assume that at each

timestep t and after observing state s0, a novelty reward

reðs0; tÞ : S ! R can be assigned. Please note that reðs0; tÞ is
time varying, meaning that its form actually depends on all
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previously visited states. Exploration-wise only, the agent

should pick states according to an exploration policy pe that
maximizes Je ¼ Es0 �q0;at �pe

P
t c

tre Pðstþ1kst; atÞ; tð Þ
� �

.

Therefore an extra time-varyingMDP, described by the tuple

S;A;P; re; q0; c; df g, is now formed with the key difference

that reward function re is now time varying and actually

dependent on all the previously visited states.

Although a policy pe that only maximizes Je would not be

particularly fruitful (technically would be equivalent to just

arriving at all states with a uniform probability), this dis-

tinction acknowledges the different nature of these two sig-

nals. The reward signal r from the environment that assesses

a transition from state s to s0 after applying action a is con-

sidered to be static2. On the other hand, novelty value re is a

dynamically evolving signal that is directly correlated with

the so-far visited states. The latter means that the novelty

signal re related to the transition from a state s to s0 after
applying action a is not constant. The above analysis

endorses that careful integration of the exploration and

reward signal is needed to avoid rendering the problem at

hand a time-varying MDP with known challenges [23]. That

is of paramount importance in off-policy algorithms (e.g.,

SAC, TD3, A3C, etc.) that utilize past transitions to update

the current policy and value networks.

To retain the information of the original problem intact,

we propose two different structures for storing these two

sources of information. More specifically, the environ-

mental reward is stored in a traditional replay buffer, while

the novelty signal is represented as a dynamic model that

changes over time. Similarly to a V-value estimation for the

original MDP, we build a novelty return estimator fitted on

the calculated
P

t c
tre. By doing so, we ensure that the

state’s future novelty is indeed taken into consideration

without jeopardizing the integrity of the environmental

reward. In the following subsections, we analyze how these

elements can be combined into an actor-critic framework,

constituting the ACRE algorithm.

3.2 Estimate novelty returns for exploration
MDP

Gaussian mixture models (GMMs) are universal approxi-

mators of densities; therefore, they can be used to

approximate each state’s novelty. Additionally, due to the

nonparametric nature of the GMM, we do not need to make

any assumption about the distribution that collects the

environment’s states, rendering them a quite universal

independent of the environment and the current policy.

Following GMM procedure, each state’s novelty will be

given by:

reðs; tÞ ¼
Xl

i¼1
wip skli;Rið Þ; ð1Þ

where p skli;Rið Þ denotes the probability density function

of a Gaussian indexed by i, where i 2 f1; 2; . . .; lg and wi

denotes the corresponding mixing factor. Periodically, a

standard expectation–maximization (EM) algorithm is

applied to a randomly selected subset of previously visited

states to perform the fitting of the mixture of Gaussians,

i.e., calculate wi; li;Rif g8i ¼ 1; . . .; l. Utilizing this GMM

novelty estimator of (1), we can now explicitly calculate

the forward novelty from each state st using:

R̂eðstÞ ¼
XT

t0¼t
ct
0�treðst0 ; t0Þ; ð2Þ

where sT denotes the last state of the episode, i.e., d ¼ 1.

To be able to predict these novelty returns, we build a

neural network estimator NuðsÞ that fits on batches of

fsi; R̂eðsiÞg from the information buffer I , as follows:

ru
1

kIk
X

s2I
NuðsÞ � R̂eðsÞ
� �2

ð3Þ

In RL terms, the update of NuðsÞ is performed ‘‘on-policy’’

(in terms of novelty return estimation), on all the states that

Table 1 Exploration mechanisms in state-of-the-art RL algorithms

Algorithm Environment interactions Learning

Action generation Exploration Bellman backup update Exploration

TRPO pð�ksÞ Policy stochasticity – None

PPO pð�ksÞ Policy stochasticity – None

DDPG lðsÞ þN ou Ornstein-Uhlenbeck process r þ cQ s0; lðs0Þð Þ None

TD3 lðsÞ þN ð0;rÞ Zero-mean Gaussian noise rt þ cQ
�
s0; ~a0

�
;

~a0 ¼ lðs0Þ þN ð0; rÞ
Zero-mean Gaussian noise

SAC pð�ksÞ Policy stochasticity r þ c
�
Q s0; ~a0ð Þ � a logpð ~a0ks0Þ

�
; ~a0 � pð�ks0Þ Policy entropy

2 Actually, for stochastic environments, the environmental reward

may change. Still, this variation depicts the innate uncertainty of the

environmental dynamics Pðs0ks; aÞ that can be estimated by a large

enough number of samples.
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were visited till the previous forward novelty update, i.e.,

R̂eðsiÞ; 8i ¼ ft � Tw; tg where Tw denotes the information

buffer I size. Please note that a state s is considered to

have the maximum forward novelty as NuðsÞ ! 0; there-

fore, to translate this into the common RL maximization

framework the �NuðsÞ quantity is going to be used.

3.3 Incorporation of novelty returns estimations
inside actor-critic framework

Having defined the updating procedure of NuðsÞ (1)–(3),
which can estimate the novelty return from s till the end of

the episode, now we turn on how this value can be utilized

inside the construction of the policy to tackle the original

RL problem. The agent interacts with the environment by

drawing actions from the so-far learned policy distribution

a� phðsÞ. After receiving the corresponding reward signal

r and the new s0, the collected tuple ðs; a; r; s0; dÞ is stored
in replay buffer D. For the update of both actor and critic, a

batch of transitions B is randomly sampled from D. For

each ith tuple ðsi; ai; ri; s0i; diÞ from B, we calculate the

target for the critic update based on the Bellman backup

rule regulated by the estimated novelty return, i.e.,

yi ¼ ri þ cð1� diÞ min
j¼1;2

Q/targ;j
ðs0i; ~ai0Þ � bNuðs0iÞ

� 	

; ð4Þ

where ~ai
0 � phðs0iÞ. The temperature parameter b weights

the importance of novelty over the reward returns and thus

controls the stochasticity of the converged policy. Apart

from the extra term evaluating the novelty of being at state

s0, the update rule of (4) employs a double Q-learning

approach, i.e., minj¼1;2 Q/targ;j
ðs0i; ~ai0Þ term, to compensate

for the overestimation bias in Q-function learning [37], as

it is commonly used in the state-of-the-art Q-learning

approaches (e.g., [9, 12]). Additionally, and in line with

most stable Q-learning implementations (e.g., [20]) two

additional target networks Qtarg;1;Qtarg;2 are utilized for the

yi calculation to bypass convergence issues [17]. Having

calculated the target values yi, both Q/1
and Q/2

are

updated by one step of gradient descent for j ¼ 1; 2 using:

r/j

1

kBk
X

s;a;r;s0;dð Þ2B
Q/j
ðs; aÞ � yðr; s0; dÞ

� �2

ð5Þ

The actor part, responsible for the policy generation, builds

around the previously defined critics Q//;1
, Q//;2

and the

novelty return Nu. Conceptually, in the policy improvement

step, 8s 2 B we generate the new policy as follows:

pnewð�ksÞ ¼ argmax
p02P

min
j¼1;2

Q/targ;j
ðs; p0ðsÞÞ � bNuðsÞ


 �

ð6Þ

Following [12], the new actor is being calculated by jointly

optimizing Q function and estimated novelty returns NuðsÞ.

The last step of the actor-critic update cycle invokes a

polyak-averaged rule for the update of Q target networks,

i.e., /targ;j  q/targ;j þ ð1� qÞ/j; for j ¼ 1; 2. The com-

plete ACRE pseudo-code, combining the estimation of

NuðsÞ (Sect. 3.2), is provided in Appendix A.

Remark 1 ACRE is agnostic with respect to the nature of the

novelty reward signal; thus, instead of the GMM, any other

universal approximator scheme (e.g., RBFs)—probably more

specific to the problem at hand—can be applied. Actually, in

Sect. 4 an alternative methodology that utilized ACRE with

RND [7] (instead of GMM) is being described and evaluated.

Remark 2 Although ACRE may assign different novelty

signals on the same states at different timesteps, all the

transitions are permanently stored ‘‘as measured’’ from the

environment. By doing so, ACRE manages to explore

online, but in a reward-preserving manner, which is suit-

able for the off-policy family of RL algorithms.

Remark 3 Each state gets an estimation regarding the

cumulative novelty expected to receive until the end of the

episode. Thereby, ACRE avoids myopic evaluation of the

exploration status while, at the same time, properly tack-

ling the underlying time-varying exploration MDP (as

described in Sect. 3.1).

Remark 4 The overall stability of the training is significantly

improved (reduced standarddeviation inFigs. 2, 6, 7 and8) by

the fact that (3) and (5) are updated using different—tailored

to each case characteristics—chunks of data.

4 Experimental evaluation

The objective of the empirical evaluation is to study the

following questions: (1) What is the performance of the

core ACRE’s novelty integration mechanism? (2) Is the

GMM alone an adequate intrinsic reward estimator? (3)

How does the complete ACRE algorithm compare to state-

of-the-art methods on a diverse set of continuous control

environments from different suites? Please note that in all

forthcoming learning curves (Figs. 2, 4, 6, 7 and 8), the

average, over 10 different seeds ð0; 1; 2; . . .; 9Þ, value is

depicted with the thick line and the shaded region around it

represents the corresponding standard deviation.

4.1 Analysis of ACRE novelty signal integration
mechanism

We first investigate the performance of the core ACRE

methodology, disregarding the effectiveness of GMM as a

novelty estimator for the moment. Thus, we employ a popular

variation of PPO methodology capable of incorporating
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intrinsic rewards [6, 7, 28]. To constitute a fair comparison, we

utilize the sameGMMmodulewith all theparameters utilized in

ACRE, forming PPO?GMM. As evaluation environments, we

utilized the MountainCarContinuous and Swimmer. Both

environments have relatively small state space, allowing quick

evaluation of the results. At the same time, quite efficient

exploration of the state space is needed; otherwise, the policy

networks may early converge to sub-optimal behaviors. All the

PPO hyperparameters are chosen according to best practices for

these environments. Appendix B extensively covers all hyper-

parameters’ choices for both ACRE and PPO?GMM. Addi-

tionally, forPPO?GMMcase, agrid searchwasperformedwith

respect to the factor (b) that weights extrinsic and intrinsic

rewards and is presented inAppendixD.Based on that analysis,

b is set to 0.05 for MountainCarContinuous and 1.0 for

Swimmer.

Figure 2a, c presents the average episode return for

ACRE?GMM and PPO?GMM, for both the environments.

Evidently, ACRE?GMM consistently outperforms

PPO?GMM presenting superior performance in integrating

theGMM-related intrinsic reward. An important insight can be

drawn by examining Fig. 2b, d that depict the average value of

the extra GMM-based reward. ACRE novelty integration

scheme utilizes the extra reward signal effectively, requiring

only a fraction of the magnitude of extra reward that is needed

in the best case of PPO?GMM. Figure 3 visualizes the state-

space coverage for both environments. Especially for Swim-

mer, a t-SNE transformation [18] is utilized to efficiently

project the state space into 2 dimensions. Zooming in on

Fig. 3a, we can observe the effective exploration of Moun-

tainCarContinuous state space of ACRE?GMM compared to

PPO?GMM. PPO?GMM exploration (blue dots) seems to

follow a normal distribution around the starting state of the car,

whereas ACRE?GMM seems to have formed a very specific

pattern, that is needed in order to reach the goal position reli-

ably. Switching to Fig. 3b, we can see that the extra states

reached by ACRE?GMM have been interpreted as distinct

classes in the t-SNE representation.

Fig. 2 Performance comparison

between ACRE (with GMM)

and PPO?GMM for

MountainCarContinuous &
Swimmer environments

Fig. 3 State-space coverage study between ACRE?GMM and

PPO?GMM
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4.2 Performance of GMM on novelty estimation

We next evaluate the performance of GMM novelty esti-

mator, as described in (1), with respect to the ability to

assist the underlying RL algorithm in escaping local opti-

mal configurations. To do so, we devise a version of ACRE

methodology that uses random network distillation (RND)

[7] as a novelty estimator. More specifically, instead of

deploying a GMM 1 (step 16 of Algorithm 1 in Appendix

A), we approximate the novelty as the MSE between

RND’s predictor and target networks. Following RND

methodology, the predictor network is updated to minimize

exactly this loss (see Appendix A.2 in [7] for more details).

Other than that, all the other functionalities of the ACRE

algorithm are intact, as outlined in Appendix A. Intuitively,

wider RND networks will be capable of a more fine-

grained assessment of the environment’s state space at the

expense of slower convergence and adaptation to state

discovery. To investigate the effect of this novelty reward

for different network sizes, we consider 4 versions of this

variation with respect to the width of the two hidden layers

for the RND networks, i.e., [32, 32], [64, 64], [128, 128],

[256, 256] number of neurons, respectively. As in the

previous subsection, we are going to evaluate these algo-

rithms on MountainCarContinuous and Swimmer.

Figure 4 visualizes the results of this study. The ACRE

configuration with GMM (green line) consistently achieves the

best performance. ACRE?RND[128, 128] seems tomatch the

performance of ACRE?GMM for the MountainCarContinu-

ous environment. Overall, by examining both Fig. 4b, d, it is

evident that all the RND components quickly lose their ‘‘in-

terest’’ as the predictor network is well-capable of generalizing

even for states that have not been seen before. As expected,

wider networks for the RNDcomponents tend towork better as

they canbemoredetailedon the state-space representation.The

pattern seems to break for [256, 256] case (orange line) as the

performance degrades seriously, technically misleading the

underlyingACREmethodology.Some spikes that appear in the

extra reward visualization (Fig. 4b) for ACRE?RND

[256, 256] case are probably ‘‘too little too late,’’ as both theRL

agent is already too confident about its policy and Q-function,

and, at the same time, these increased values of the RND

component vanish rapidly. Similar to the previousSect. 4.1,we

present in Fig. 5 study of the state-space coverage for

ACRE?GMM and the best-performing variant of

ACRE?RND, i.e., ACRE?RND[128, 128]. Aligned with the

learning curves (green and blue lines) presented in Figs. 4a, 5a

depicts an equivalently efficient way of exploring the state

spaceofMountainCar. Turning intoFig. 5b,wecan see that the

performance improvements as reported in Fig. 4c have led to a

more effective exploration of the state space, forming spatially

disconnected classes of visited states. We devote the last

remark of this subsection to pointing out that although GMM

has achieved this remarkable performance, its incorporation

into an environment with enormous state space (e.g., pixel-

based setups) is not trivial. On the contrary, RND-based

Fig. 4 Comparison between

ACRE (with GMM) and

ACRE?RND for

MountainCarContinuous &
Swimmer environments
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intrinsic reward has achieved human-like performance in sev-

eral exploration-hard arcade environments [7].

4.3 Extensive analysis on ACRE performance

Finally, we perform extensive testing, evaluating the complete

ACRE algorithm on 12 continuous control tasks from the most

well-known and used, OpenAI-gym-style collections. We group

the evaluation environments into three bundles with four envi-

ronmental setups each. More precisely, the first bundle contains

only standard OpenAI-gym control [5] tasks, namely Bipe-

dalWalker-v3, LunarLanderContinuous-v2, MountainCarCon-

tinuous-v0, and Pendulum-v0. The second bundle focuses on the

advanced physics simulator ofMuJoCo [38], containing theAnt-

v3,Hopper-v3,Swimmer-v3andWalker2d-v3environments.The

third bundle consists of environments from the DeepMind Con-

trol Suite [36], namely ball_in_cup-catch, cartpole-two_poles,

finger-turn_easy and quadruped-walk.

The performance of ACRE was compared against six (6),

well-established RL algorithms: (i) A2C [21], (ii) DDPG, (iii)

PPO, iv) SAC, (v) TD3 and (vi) TRPO. The rationale behind

choosing such algorithms is to construct a diverse pool of state-

of-the-art algorithms, e.g., on-policy/off-policy, stochastic/de-

terministic policy, etc., to position ACRE accurately and

perform a thorough comparison study. The majority of these

algorithms have extensions that exploit some kind of paral-

lelism, e.g., DDPG with multiple distributed actors (and other

performance improvements) becomes D4PG [3]. However, to

construct a comparable pool of algorithms,we focusonlyon the

original algorithms, excluding their parallelism-favored ver-

sions, that can also be applied in the proposed ACRE.

To devise a single framework for all the evaluation studies,

the recently introduced tonic library [26] was utilized. Also, to

avoid contributing to the problem of reporting different eval-

uation metrics for the same pair of falgorithm, environmentg,
mainly due to different settings of hyperparameters or imple-

mentation details, we run only the simulations related to the

proposed ACRE methodology and rely on the already stored

learning curves, optimized by the framework designer, for the

other state-of-the-art RL approaches. By doing so, we also

wanted to removeanyambiguity related to theproper appliance

of the aforementioned state-of-the-art RL algorithms. The

architectural decisions (e.g., number of layers and neurons

inside the neural networks) for ACRE were similar to the

alternative state-of-the-art methods (where possible) and were

kept constant for all the benchmarks. Figures 6, 7 and 8 report

all the evaluated algorithms’ learning curves for the 3 bundles,

respectively.

Starting from the standard OpenAI-gym environments

(Fig. 6), ACRE matches or overcomes the best-achieved value

by any of the evaluated state-of-the-art RL algorithms. Addi-

tionally, focusing on Fig. 6a, b, we can observe that this per-

formance has been achieved quite rapidly, underlying ACRE’s

ability to explore the state space quickly. Turning to the original

MuJoCo environments (Fig. 7), the proposed ACRE approach

onceagainmatches thebest-achievedperformance.Exceptional

performance is achieved in Swimmer (Fig. 7c), where ACRE

attained almost �3 the performance of the best performing

algorithm (DDPG) for the task at hand. Thanks to the efficient

exploration of the available state space, ACRE does not allow

both policy and value networks to converge quickly, paving the

way fordiscovering themost efficient policies. Such feature isof

Fig. 5 State-space coverage study between ACRE?GMM and

ACRE?RND[128, 128]

Fig. 6 Standard OpenAI-Gym continuous control environments
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paramount importance, as one of themajor issues that cause the

current RL algorithm to get stuck in localminima is the learning

bias from the initial interactions with the environment [22].

Figure 8 concludes the evaluation study by presenting the

results from the DeepMind Control Suite. In the ball_in_cup-

catch environment, ACRE achieves the average performance,

while for cartpole-two_poles and finger-turn_easy it matches

the best-achieved performance. Finally, a strong result is also

achieved in the quadruped-walk environment, where ACRE

achieves an improvement of � 74% over the best-performing

algorithm (PPO), even from the first half a million interactions

with the environment.

5 Conclusion

This paper studied the integration of extra reward signals in

model-free RL algorithms. We started that by observing that a

combined tackling of both the problem at hand and the explo-

ration renders the underlying MDP time varying. Directly

attempting to establish an optimized policy in such a time-

varying MDP can lead to instability and also without any

guarantee that the achieved policy is optimized for the problem

at hand.

Within this paper we described ACRE algorithm which

provides a simple solution tomitigating these harmful effects of

extra reward signal integration by having separate handling and

storing mechanisms for each signal. On the one hand, the

environmental reward is stored persistently in the replay buffer

to be ready to be used as many times as needed in its measured

form.On the other hand, novelty return is only estimated online

during the training procedure to encompass as recent infor-

mation as possible regarding states’ visitation. An ablation

simulation study revealed the effectiveness of each component

separately. In the follow-up comparison study, ACRE was

substantially better than any individual alternative in the sim-

ulation trials, exceeding their cumulative returns.

We are only scratching the surface of the many ways to

estimate the novelty returns. As a matter of fact, several

alternatives in the literature have achieved tremendous per-

formance, e.g., [1], and the majority of them can be directly

incorporated into the body of ACRE. A fascinating direction

for future work would be to include a size-reduction step on

the states,with respect to the novelty return estimation, e.g., a

Variational Auto-Encoder (VAE) [16]. Such a size-reduc-

tion step could unlock the utilization of the highly accurate

GMM-based novelty return estimators in complex control

systems with observation vector sizes of several hundred

elements (e.g., pixel-based state space).

Fig. 8 DeepMind Control Suite

Fig. 7 MuJoCo environments
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Appendix A: ACRE Pseudo-code

This appendix section outlines the complete ACRE pseudo-code.
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Appendix B: hyperparameters

See Tables 2 and 3.

Table 2 ACRE hyperparameters

Parameter Value Comments

c 0.99 Discount factor of the MDP

lr 1e-3 Learning rate

Twin Q True Use two Q-networks

Q hidden [256, 256] Hidden layers size

Policy hidden [256, 256] Hidden layers size

Q and Policy models activation relu Activation function

Buffer size 1e6 Size of the replay buffer

Batch size 100 Minibatch size for SGD

Actor-critic updates 50 Environment interactions till the next update on Q and p networks

q 0.995 Polyak coefficient for target networks update

b / kS �Ak�1 Weights the importance of novelty over the reward returns

j 1 Number of last episodes the transitions of which

are going to be used for the next GMM update

l 7 The number of mixture components

GMM covariance 1e-5 Non-negative regularization added

to the diagonal of covariance

Iterations per Nu estimation 80 Number of gradient descent steps to take on value function per novelty estimation

Table 3 PPO?GMM hyperparameters

Parameter Value Comments

c 0.99 Discount factor of the MDP

target_kl 0.01 KL divergence threshold between new and old policies after an update

clip_ratio 0.2 Hyperparameter for clipping in the policy objective

vf_lr 1e-3 Learning rate for value function optimizer

pi_lr 3e-4 Learning rate for policy optimizer

V hidden [256, 256] Hidden layers size

p hidden [256, 256] Hidden layers size

activation_function relu Activation function

train_pi_iters 80 Number of gradient descent steps to take on policy loss per epoch

train_v_iters 80 Number of gradient descent steps to take on value function per epoch

Buffer size 4000 Size of the epoch buffer (=steps_per_epoch)

k 0.97 Lambda for GAE-Lambda

b / kS �Ak�1 Weights the importance of novelty over the reward returns

j 1 Number of last episodes the transitions of which are going to be used for the next GMM update

l 7 The number of mixture components

GMM covariance 1e-5 Non-negative regularization added to the diagonal of covariance

Iterations per Nu estimation 80 Number of gradient descent steps to take on value function per novelty estimation
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Appendix C: ACRE exploration strategy
in accordance with SOTA RL algorithms

Table 4 positions ACRE in accordance with relevant

SOTA RL algorithms with respect to the exploration

mechanisms both in the environmental interaction and

during the learning routines.

Appendix D: grid search on the weighting
factor of PPO with GMM

Figure 9 presents a grid search on the weighting factor of

PPO?GMM for MountainCarContinuous-v0 and Swim-

mer-v2 environments. The weights that achieved the best

value is set to 0.05 for MountainCarContinuous-v0 and 1.0

for Swimmer-v2 and are going to be used in all the

experimental evaluation of Sect. 4.1.

Table 4 ACRE positioning with respect to the exploration mechanisms in SOTA RL algorithms

Algorithm Environment interactions Learning

Action

generation

Exploration Bellman backup update Exploration

TRPO pð�ksÞ Policy

stochasticity

– None

PPO pð�ksÞ Policy

stochasticity

– None

DDPG lðsÞ þN ou Ornstein-

Uhlenbeck

process

r þ cQ s0; lðs0Þð Þ None

TD3 lðsÞ þN ð0; rÞ Zero-mean

Gaussian

noise

rt þ cQ
�
s0; ~a0

�
; ~a0 ¼ lðs0Þ þN ð0; rÞ Zero-mean Gaussian noise

SAC pð�ksÞ Policy

stochasticity
r þ c

�
Q s0; ~a0ð Þ � a logpð ~a0ks0Þ

�
; ~a0 � pð�ks0Þ Policy entropy

ACRE pð�ksÞ Policy

stochasticity
rþ c

�
Q s0; ~a0ð Þ � bNuðs0Þ

�
;~a0 � pð�ks0Þ;

$u
1
kIk

P
s2I NuðsÞ � R̂eðsÞ

� �2
;

R̂eðsÞ ¼
PT

t0¼t c
t0�treðs0Þ;

reðs0Þ �Gaussian mixture model

Forward novelty estimated by

probability density function of a

mixture of Gaussians

Fig. 9 Grid search on the

weighting factor of PPO?GMM
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Appendix E: effect of GMM on the log (p)
evolution

Additionally to the analysis presented in Sect. 4.2, an

important conclusion can be also drawn by studying the

evolution of logðpÞ for all the evaluating algorithms on

both MountainCarContinuous-v0 & Swimmer-v2, as pre-

sented in Fig. 10.

Although ACRE with GMM seems to constantly have

an average intrinsic reward above 0 (almost like a DC

component), the average logðpÞ is greater, meaning that the

RL agent is more certain about its choices.
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