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Abstract
Epilepsy is a chronic neurological disorder. Epileptics are prone to sudden seizures that cause disruptions in their daily

lives. The separation of epileptic and non-epileptic activity on the electroencephalogram (EEG) and identification of the

form of epileptic activity play critical roles in providing patients with appropriate treatment. To recognize epileptic

seizures, medical experts visually inspect recordings of EEG signals, which require much time and effort. Therefore, a

seizure detection system can improve the monitoring and diagnosis of epilepsy and reduce the doctors’ workload. This

paper presents an end-to-end automated seizure detection method based on deep learning that does not require considerable

EEG data preprocessing or feature extraction. As a result presents a one-dimensional convolutional neural network-long

short-term memory (1D-CNN-LSTM) model for differentiating normal, ictal, and interictal EEG data. This method is

evaluated using the University of Bonn (BoU) and Neurology and Sleep Centre database (NSC). We achieved accuracy

values of 99–100% for the BoU dataset and 100% for the NSC dataset with our best model. In contrast with recent studies,

our hybrid automated approach does not require any pre-selected features to be estimated and shows high performance with

promising possibilities for their use in clinical practice.
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1 Introduction

The epilepsy disorder is characterized by a fast abnormal

evacuation of the brain neurons accompanied by seizures

and can affect anyone regardless of age. About 1% of the

world’s population suffers from epilepsy, a severe neuro-

logical disease. The effects include loss of consciousness,

audible or visual distortions, unusual behavior, or jerky

movements. As a result of epilepsy’s consequences,

patients’ quality of life is significantly impacted [1–4].

Patients with epilepsy suffer both physical and mental

health issues, and it may even threaten their lives in some

severe cases. To improve the quality of life of patients with

epilepsy, it is important to provide suitable and effective

protective measures [5].

A non-invasive biophysical tool called an electroen-

cephalogram (EEG) can detect many neurological disor-

ders since it provides a non-invasive assessment of

electrical brain activity [6]. Doctors visually analyze EEG

signals to diagnose and treat epilepsy, although this process

is time-consuming and difficult to perform. Up to now,

numerous attempts have been made to detect epileptic

seizure patterns automatically [7–9].

An automated diagnosis system is developed through a

series of sequential steps that are preprocessing, feature

extraction, and classification [10–15]. Various normaliza-

tions and transformations are performed on the raw signals

in the preprocessing stage, in order to standardize the

model for the following stages. During the feature extrac-

tion stage, the signals are analyzed in order to identify the

distinctive signatures present in them. For extracting fea-

tures from these signals, wavelet transforms [16–18],

empirical mode decompositions [19, 20], nonlinear fea-

tures [21], empirical wavelet transforms (EWTs) [22], and
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variational mode decompositions (VMDs) [23] are com-

monly used. As a result, handcrafted feature extraction

methods are widely used to extract attributes that are then

classified by neural networks [24] and support vector

machines (SVM) [25]. The DWT decomposition is used to

perform three-class seizure categorization using a nonlin-

ear sparse extreme learning machine classifier with an

eight-dimensional feature vector [26].

According to the above methods, each EEG signal is

decomposed into several levels, and different characteris-

tics from each level are analyzed to increase classification

accuracy. The dynamics of the signal cannot be accurately

described by any standard group of features. On top of that,

it creates a wider range of features, which reduces accuracy

and is more likely to overfit the classification model

because incoherent and unnecessary features expand that

range. This has resulted in computational complexity and a

feature-dependent nature of seizure detection approaches.

Deep learning systems are now outperforming classical

machine learning techniques in several disciplines [27–29].

Analysis of intracranial and scalp EEGs using time-domain

and frequency-domain features as inputs to a CNN [30]. A

deep learning model, which consists of a 13-layer convo-

lutional neural network (CNN) algorithm, was imple-

mented by Acharya et al. [31] in three-class classifications,

and it achieved 88.67% accuracy, 90% specificity, and 95%

sensitivity on the seizure detection problem. A further part

of the dataset was further divided into four sub-segments of

1024 by Ullah et al. [32]. By reducing the sub-bands by

50% overlap, sub-bands were then formed by utilizing 512

window lengths. They used pyramidal neural network

models of one-dimensional convolution (P-1D-CNN) to

classify the EEG data. In their studies, 99.1% of seizures

were detected accurately. According to Hussein et al.

(2018), the data were initially divided into segments whose

non-overlapping steps were then used to detect patterns

between successive samples of EEG data. To classify

normal and seizure EEG signals with high-level features

learned from the long short-term memory (LSTM) network

and the Softmax classifier, accuracy of 90.0–100% has

been reported in [33].

The long short-term memory (LSTM) developed by

Hochreiter and Schmidthuber has been improved by Alex

Graves. Context information is used by recurrent neural

networks in the mapping process of inputs and outputs.

This is a special recurrent neural network (RNN) that

incorporates context information into the mapping between

input sequences and outputs. LSTM was considered an

improved version of the conventional recurrent neural

network (RNN). A two-layer LSTM network has been

proposed by Tsiouris et al. by using LSTMs to predict

seizure occurrences [34]. The long-term recurrent convo-

lutional networks (LRCNs) can be used to detect and locate

epileptogenic zones using image-based scalp EEG wave-

forms developed by [35]. The fully convolutional nested

long short-term memory (FCNLSTM) detects epileptic

seizures end-to-end automatically [36]. Additionally,

CNN-LSTM architectures are combined to detect seizures

[37]. In this 1D-CNN extracts features, whereas an LSTM

network is used to recognize EEG sequences. According to

this model, the accuracy of the binary class is 99.39 and

82.00% for five classes.

This paper has the following main contributions:

(i) The performance of deep learning models depends

on more data. There are not enough data in

datasets to train deep learning models. So, this

work uses overlapped sliding rectangular window

technique to create a large number of samples

from raw EEG data.

(ii) As an alternative to current methods, we develop

1D-CNN-LSTM hybrid model to improve seizure

detection accuracy.

(iii) Furthermore, the purpose of this paper is to assess

the performance of an equal as well as

unequal number of EEG samples from each class

in order to detect different epilepsy cases.

(iv) More emphasis is placed on fine-tuning the

hyperparameters of the classification model to

produce accurate results.

(v) All state-of-the-art performance measures are

utilized in order to ensure reliable results in

classification. To further increase reliability,

K-fold validation is applied.

(vi) The proposed research work outperforms many

existing systems without incorporating any feature

engineering onto the given dataset and is evaluated

and compared with recent existing approaches.

The remaining paper has been organized as follows: The

EEG dataset details are described in Sect. 2. Section 3

describes the framework that has been proposed for the

classification of the given dataset. Section 4 examines and

analyzes the classification results of both datasets. Sec-

tion 5 effectively concludes the proposed work’s findings.

2 Materials and methods

2.1 Datasets

Two different single-channel EEG datasets were used to

evaluate the efficacy and robustness of the proposed model

for seizure EEG signal classification. A total of five clini-

cally relevant multiclass classification tasks (CTs) have

been examined using database sets from Bonn University

(BoU) and Neurology and Sleep Centre (NSC).
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2.1.1 Dataset-1: Bonn University dataset (BoU)

In this study, we used a freely available EEG dataset [38].

Five subsets are included here: A, B, C, D, and E. All

subsets contain 100 single-channel EEG signals. It takes

23.6 s for each signal. Each of sets A and B consists of five

healthy individuals undergoing extracranial EEG record-

ings in awake and relaxed states with their eyes opened or

closed, respectively. An archive of presurgical EEG signals

is used to produce sets C, D, and E. After hippocampal

resection, five patients are selected whose seizures have

been completely controlled. Therefore, epileptogenic zones

are diagnosed in these resection sites. EEG signals from the

epileptogenic zone and hippocampal formation in opposite

hemisphere are captured during seizure-free intervals (i.e.,

interictal) in sets C and D. An ictal EEG recorded with

intracranial electrodes corresponds to the signals of seizure

activity in set E. A sampling rate of 173.61 Hz is used for

recording the signals in digital format. Each signal consists

of 4097 samples. The following five sets of EEG signals

were used to develop four different classification tasks

(CTs). Table 1 summarizes the CTs as well as their

descriptions.

2.1.2 Dataset-2: Neurology and Sleep Centre dataset (NSC)

The dataset used in this study was collected from the

Neurology and Sleep Centre (NSC), Hauz Khas, New

Delhi [39]. The gold-plated electrodes were arranged on

the scalps of ten epileptic patients in accordance with the

10–20 electrode placement system, resulting in 200-Hz

sampling rates of EEG obtained with a Grass Telefactor

Comet AS40 Amplification System. After filtering EEG

recordings between 0.5 and 70 Hz, an expert team classi-

fied filtered recordings into preictal, interictal, and ictal

categories. Based on the three classes, there are three

folders: preictal, interictal, and ictal. For each of these

folders, there are fifty EEG segments with 1024 points of

data. Here, preictal, interictal, and ictal classes are referred

to as G, H, and I, correspondingly. We designed a G–H–I

classification task using the sets G, H, and I described in

Table 1.

2.2 Preprocessing of EEG dataset

2.2.1 Data preparation

Dataset-1: The Bonn dataset, which is a smaller dataset not

suitable for deep learning, was divided into equal parts in

order to increase the number of samples in the dataset. A

total of 4097 data points are contained in each EEG record.

It was necessary to overlap the last data points with the

previous samples in order to segment the dataset into 24

equal pieces. An average of 174 samples is contained in

each piece. Therefore, each set consists of 2400 observa-

tions. In total, 12,000 observations were collected across

five sets.

Dataset-2: This is also a smaller dataset, so the same

procedure was followed to increase the total number of

samples. Each signal consists of 1024 data points, which

are divided into 200 sub-samples with overlapped sliding

rectangular windows. Thus, each set is comprised of 60

segments, resulting in 3000 samples. The total number of

data points is 9000. In Table 2, the number of samples

generated from data preparation is shown.

Figure 1 illustrates the method for dividing data into

training, validation, and testing sets of A–C–E classifica-

tion tasks. The whole dataset is divided as follows: 80% for

training and 20% for testing. Those training/testing sets are

referred to as Group-1. In order to obtain metrics and fine-

tune hyperparameters used for seizure detection, we per-

form tenfold cross-validation (CV) splitting on 10% of

validation data at each fold on the training set. These

training and validation sets belong to Group-2. The pro-

posed model is evaluated using 20% of testing set Group-1.

Table 1 The details of CTs from two datasets

Scenarios Classification tasks

BoU dataset (Dataset - I)

Case 1 Normal (A)–Interictal (C)–Seizure(E)

Case 2 Normal (A)–Interictal (D)–Seizure(E)

Case 3 Normal (B)–Interictal (C)–Seizure(E)

Case 4 Normal (B)–Interictal (D)–Seizure(E)

Case 5 Normal (AB)–Interictal (CD)–Seizure(E)

Case 6 Eyes opened (A)–Eyes closed (B)–Hippocampal region (C)–Epileptogenic region(D)–During epileptic (E)

NSC dataset (Dataset - II)

Case 7 Preictal (G)–Interictal ( H)–Ictal(I)
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2.2.2 Z-score

EEG signals recorded from the scalp are highly non-sta-

tionary and dynamic. For the purpose of reducing varia-

tions in EEG signals among different datasets, we use the

common Z-score normalization method. For a given EEG

signal X 2 RL�1, L represents the Length or sampling fre-

quency of the signal.

The mean value (Xmean) and standard deviation (Xstd)

value of the input signal is calculated using Eqs. (1)–(2),

respectively.

Xmean ¼
1

L

XL

i¼1

Xi ð1Þ

Xstd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi � Xmeanð Þ2

L

s

ð2Þ

Z-score is calculated using Eq. (3)

Xzscore ¼
Xi � Xmean

Xstd

ð3Þ

2.3 Proposed model

2.3.1 Convolutional neural network (CNN)

Among deep learning-based networks, CNNs are most

popular for learning features in a variety of tasks. A CNN

algorithm does not require defining features manually,

unlike a traditional machine learning algorithm. Convolu-

tion kernels are used to generate the local receptive field,

which is then automatically identified from the raw data to

avoid removing valuable information. It is possible to

classify features by a CNN without relying on a more

traditional framework that usually involves learning fea-

tures and classifying them separately. Normally, CNNs

have five layers: an input, a convolutional, an activation, a

pooling, and a fully connected layer [40]. This type of

convolution arises from the one-dimensional data signals

designed for analyzing epilepsy EEG signals for the pur-

poses of processing epilepsy signals. Using a one-dimen-

sional convolutional layer [40], the neuron i produces the

following output:

yi ¼ f
Xn

j¼1

xj �Wi�jþn

 !
þ b ð4Þ

Table 2 The number of EEG samples in each set

Dataset Set A Set B Set C Set D Set E

Dataset-I 2400 2400 2400 2400 2400

Dataset-II Set G Set H Set I

3000 3000 3000

Fig. 1 Dataset split for A–C–E classification tasks

Fig. 2 Proposed seizure classification architecture
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where W is the convolutional kernal, xj is the input EEG

signal, the number of samples in x is n, the bias is b, and the

nonlinear activation function is f.

2.3.2 Long short-term memory network (LSTM)

Time series with nonlinear characteristics are frequently

analyzed by LSTM. Three gates are included in an LSTM:

the forget gate, the memory cell, and the output gate, which

increase its capability to process temporal information [41].

With the help of the sigmoid function, the forget gate

determines what information from the previous cell state

should be discarded and is given as follows:

ft ¼ r Wf ;x � Xt þWf ;h � ht�1 þ bf
� �

ð5Þ

During the input gate, the state is updated or not based

on the current input. There are three steps involved in

adding information. Using a sigmoid function, it regulates

which values from Xt and ht�1 need to be added to the cell

state. The second step creates a vector representing all of

the temporary cell gates with tanh function. As a final step,

the regulatory filter value is multiplied by the newly cre-

ated vector, and the resulting information is added to the

next LSTM block via the recurrent connections. These

operations are calculated by Eqs. (6)–(8)

it ¼ r Wi;x � Xt þWi;h � ht�1 þ bi
� �

ð6Þ

cCt ¼ tanh Wc;x � Xt þWc;h � ht�1 þ bc
� �

ð7Þ

ct ¼ Ct�1 � ft þ it �cCt ð8Þ

As a result, the output gate is responsible for selecting

useful information from the current state of the cell.

Finally, it is obtained using Eqs. (9) and (10) in the output

layer.

Ot ¼ r Wo;x � Xt þWo;h � ht�1 þ bo
� �

ð9Þ

ht ¼ Ot � tanh Ctð Þ ð10Þ

The hidden state of an LSTM unit is updated via input

gates, the previous hidden state is retained or discarded via

forget gates, and the output gates decide if the current

hidden state is carried forward into the next cycle.

2.3.3 1D-CNN-LSTM hybrid model

Figure 2 shows the automatic detection process for epi-

lepsy utilizing a CNN-LSTM model.

Specifically, the proposed model consists of an input

layer, three convolutional layers, a max-pooling layer, two

LSTM layers, a time-distributed fully connected (TDFC)

layer, and two fully connected (FC) layers, and a Softmax

output layer. Table 3 describes the structure of the layers

comprising the proposed model.

Weight sharing and local receptive fields are how CNN

models learn the relevant features of input signals. In the

LSTM model, each of the time step output characteristics is

extracted through the gate mechanism. Instead of taking

only the output of the last time step, the time-distributed

fully connected layer takes the outputs of all time steps. On

this basis, this paper proposes an automatic classification

system for epileptic EEG signals that use CNN and LSTM

networks.

Table 3 Complete information about the 1D-CNN model including the layers and parameters involved (Bonn University dataset)

Layer Type Kernel size/number of kernels Layer parameters Output size

1 Input – – 174 � 1

2 Conv1D 3 9 1/32 Stride = 1, activation = ReLu 174 � 32

3 Conv1D 3 9 1/64 Stride = 1, activation = ReLu 174 � 64

4 Conv1D 3 9 1/128 Stride = 1, activation = ReLu 174 � 128

5 Maxpool1D 2 9 1/ Stride = 2 87 � 128

6 Time distributed (flatten) – – 87 � 128

6 LSTM – Hidden nodes = 128,

Dropout rate = 0.25

87 � 128

7 LSTM – Hidden nodes = 64,

Dropout rate = 0.25

87 � 64

8 Time distributed – Hidden nodes = 50 87 � 50

9 GlobalAveragePooling1D – – 50 � 1

10 Fully connected layer Activation = ReLu 512 � 1

11 Fully connected layer Activation = ReLu 256 � 1

12 Classification layer Activation = Softmax 3 or 5
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This proposed model was directly fed the 1D EEG

signal data, and its shape is N 9 1. In this case, N is 1741

� 1 for the Bonn University dataset and 200 � 1 for the

NSC dataset. In the first convolutional layer, the input data

are subjected to 1D convolutional kernels, their shapes are

3 � 1 and their stride is 1, which allows to extraction of

abstract features of the signal data. In this convolutional

layer, followed by batch normalization (BN) and rectified

linear unit (ReLU) activation are presented. BN uses re-

centering to ensure that the data are nonlinear and fully

activates the ReLU to ensure effective training and per-

formance [27].

In Conv Layer 2, 64 kernels in the size of 3 � 1 128

kernels in the same size in the Conv Layer 3. Similar to the

convolution operation in Conv Layer1, ReLU is also used

as an activation function. To reduce the size of the feature

matrix, following the third convolutional layer, apply a

max-pooling layer, which has a pool window size of 2 with

a stride of 2. A total of 128 feature maps with signal length

that was 87 � 1 are output after the pooling operation.

Two LSTM layers are used in the sequence learning

block. Layer1 and Layer2 of the LSTM contain 128 and 64

neurons, respectively, with a dropout ratio of 0.25. Both

LSTM layers are set to return sequence so the full hidden

state sequence will be output. LSTM layers are translated

into meaningful seizure-associated features using a time-

distributed fully connected (dense) layer. It has 50 hidden

nodes since it takes the outputs of all the time steps as

inputs instead of just the output of the last time step. We

used a global average pooling (GAP) layer because all

EEG segments are equally important in predicting labels.

The output features are fed into three FC layers after

they pass through the GAP layer. In FC Layer1, there are

512 neurons, and in FC Layer2, there are 256 neurons.

Finally, a Softmax layer is employed to predict the label of

each input EEG signal, which is used for calculating the

probability that each input EEG segment belongs to each

class. The same procedure was followed in dataset 2.

3 Results and discussion

3.1 Training parameters

It is essential to tune the proposed model for seizure

detection to achieve the best performance. The perfor-

mance depends on the number of hidden neurons, the

learning rate, the batch size, and the regularization effect.

In cross-validation of a training set, hyperparameters are

adjusted to control a model’s learning capability. Losses

are determined by sparse cross-entropy, and it used Adam

optimizers whose hyperparameters are decay rate (beta

1 = 0.9), square gradient decay rate (beta 2 = 0.999), and

learning rate (0.0001). The batch size of the model was 32

and trained with 100 epochs.

3.2 Data split strategy

There are two parts to the database: training and testing.

Initially, from the total amount of dataset, 80% was used

for training and 20% for testing. During the learning pro-

cess, 80% of train datasets are used tenfold cross-validation

to tune hyperparameters are used to improve proposed

model performance on test data for the dataset. Data dis-

tributions were chosen randomly, and specific random seed

values were used to assure a reliable and consistent model.

This method was evaluated using cross-validation in

order to assess its reliability. There is an equal span of

normal–interictal–ictal EEG data samples among the N

folds of the training EEG signals. In the proposed model,

onefold of the N folds of data was used as test data to

evaluate the trained models. Hence, the models have been

Table 4 Confusion matrix based

on three classifications
Predicted Actual class summation

Seizure Interictal Normal

Actual Seizure Css Csi Csn Cs ¼ Css þ Csi þ Csn

Interictal Cis Cii Cin Ci ¼ Cii þ Cis þ Cin

Normal Cns Cni Cnn Cn ¼ Cns þ Cni þ Cnn

Table 5 The detailed definition of the three-class performance

metrics

Class Sensitivity Specificity Accuracy

Seizure Css

Cs

CiiþCinþCnnþCni

CiþCn

CssþCiiþCnn

Ctotal

Interictal Cii

Ci

CssþCsnþCnnþCns

CsþCn

Normal Cnn

Cn

CssþCsiþCiiþCis

CsþCi
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validated (N–9) and trained using (N–1) folds. The fold

validation split has been set up to avoid the problem of

overfitting. Every time an epoch ends, a corresponding loss

is calculated in order for the model not to overfit the

training data. The training process is terminated if the loss

remains to rise continuously over ten consecutive epochs

evaluating models with the test fold and then repeating this

process until all folds have been processed. The final step is

to evaluate each classification problem’s model efficiency

using the remaining 20% of unseen test data.

3.3 Performance evaluation criteria

A Python 3.7.13 environment is used to design and

implement the deep learning model used to detect seizure

events automatically using the deep learning tool Keras.

The Keras library was implemented using TensorFlow 2.8.

We performed all experiments on a desktop computer

consisting of an Intel(R) Core(TM) i5-6500 processor

running at 3.20 GHz, 16 GB of RAM memory, and a 2-GB

NVIDIA GeForce GT 710 GPU.

The proposed model performance is measured by the

fact that it performs well on the test data that it has never

encountered during training. The test data were evaluated

using a variety of evaluation criteria [42], which include

sensitivity (Sen), specificity (Spe), and recognition accu-

racy (Acc). They are as follows:

sensitivity Senð Þ ¼ number of true positive signals

number of actually positive signals

ð11Þ

specificity Speð Þ ¼ number of true negative signals

number of actually negative signals

ð12Þ

Accuracy Accð Þ ¼ number of correct signals

total number of signals
ð13Þ

The proportion of correctly detected positive data to the

total number of actual positives is considered a measure of

how well the system detects positive outcomes is called

sensitivity. In terms of specificity, the ratio of correctly

detected negative signals to the number of actual negative

signals measures the ability to correctly detect nega-

tive signals. Accuracy measures the ratio of accurately

estimated observations to the total number of observations.

Table 6 Cross-validation accuracy results with various CTs

Dataset F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Avg

Dataset-I

A–C–E Sen 0.96875 0.9704 0.9722 0.97048 0.97048 0.9652 0.9722 0.9670 0.9722 0.9687 0.9697

Spe 0.9843 0.9852 0.9861 0.9852 0.9852 0.9826 0.9861 0.9835 0.9861 0.9843 0.9848

Acc 0.96870 0.97040 0.9722 0.97040 0.97040 0.9652 0.9722 0.9670 0.9722 0.9687 0.9697

A–D–E Sen 0.97740 0.97040 0.9618 0.96520 0.98090 0.9548 0.9861 0.9357 0.9618 0.9861 0.9680

Spe 0.9887 0.9852 0.9809 0.9826 0.99040 0.9774 0.9930 0.9678 0.9809 0.9930 0.9839

Acc 0.97740 0.97040 0.9618 0.96520 0.98090 0.9548 0.9861 0.9357 0.9618 0.9861 0.9680

B–C–E Sen 0.99130 0.98260 0.9913 0.99470 0.99300 0.9895 0.9930 0.9913 0.9913 0.9913 0.9909

Spe 0.9956 0.9913 0.9956 0.9973 0.9965 0.9947 0.9965 0.9956 0.9956 0.9956 0.9954

Acc 0.9913 0.9826 0.9913 0.9947 0.9930 0.9895 0.9930 0.9913 0.9913 0.9913 0.9909

B–D–E Sen 0.9861 0.993 0.9878 0.9809 0.9878 0.9843 0.9843 0.9878 0.9895 0.9861 0.9867

Spe 0.9930 0.99652 0.9939 0.9904 0.9939 0.9921 0.9921 0.9939 0.9947 0.9930 0.9933

Acc 0.9861 0.9930 0.9878 0.9809 0.9878 0.9843 0.9843 0.9878 0.9895 0.9861 0.9867

AB–CD–E Sen 0.9713 0.9609 0.9644 0.97480 0.97390 0.9782 0.9782 0.9791 0.9782 0.9774 0.9736

Spe 0.9817 0.9752 0.9797 0.9840 0.9833 0.9862 0.9862 0.9868 0.9862 0.9856 0.9834

Acc 0.9666 0.9552 0.9635 0.9708 0.9697 0.975 0.975 0.976 0.975 0.9739 0.9707

A–B–C–D–E Sen 0.93125 0.94062 0.9552 0.95937 0.95937 0.9666 0.9656 0.9445 0.9597 0.9656 0.9547

Spe 0.99781 0.98015 0.9738 0.99484 0.97484 0.9766 0.9864 0.9961 0.9874 0.9864 0.9854

Acc 0.93125 0.94062 0.9552 0.95937 0.95937 0.9666 0.9656 0.9545 0.9597 0.9456 0.9537

Dataset–II

G–H–I Sen 1 1 0.9916 1 0.9958 1 0.9958 1 1 1 0.9982

Spe 1 1 0.9958 1 0.9979 1 0.9979 1 1 1 0.9991

Acc 1 1 0.9916 1 0.9958 1 0.9958 1 1 1 0.9983
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The confusion matrix of the three classes is presented in

Table 4. Csi signifies the sum of signals from the seizure

class and, according to the proposed system, is classified as

signals from the interictal class, and similar interpretations

are possible for the rest of the parameters.

3.4 Results of the 1D-CNN-LSTM model

In this section, Table 5 gives performance metric formulae

for three class classification problems.

Table 6 shows the performance values obtained from

cross-validation. Cross-validation results show that pro-

posed hybrid 1D–CNN-LSTM models succeed in achiev-

ing high-performance rates, regardless of the dataset

partitioning. The five balanced three-class classification

tasks achieved an average of 96% on all three performance

metrics. However, the unbalanced (AB-CD-E) also

achieved an average of 97% Sen, 98% Spe, and 97%

accuracy. There is an average classification performance of

95% for five class CTs. It is almost attained 100% of the

classification results for the DSC dataset.

Table 7 The classification

results for different cases of

BoU and NSC

Predicted Acc (%) Sen (%) Sep (%)

A C E

A–C–E Actual A 479 1 0 97.43 99.79 100

C 0 462 18 96.25 98.02

E 0 18 462 96.25 98.125

Overall (mean) 97.43 98.68

A D E (%) (%) (%)

A–D–E Actual A 470 10 0 97.36 97.91 97.59

D 23 454 3 94.58 98.75

E 0 2 478 99.58 99.67

Overall (mean) 97.35 98.67

B C E (%) (%) (%)

B–C–

E

Actual B 478 0 2 99.09 99.58 97.63

C 2 473 5 98.54 99.58

E 0 4 476 99.16 99.27

Overall (mean) 99.09 98.82

B D E (%) (%) (%)

B–D–E Actual B 480 0 0 99.37 100 99.58

D 4 475 1 98.95 99.58

E 0 4 476 99.16 99.89

Overall (mean) 99.37 99.68

(AB)–(CD)–E Actual (AB) (CD) E (%) (%) (%)

(AB) 930 30 0 97.08 96.875 97.98

(CD) 28 932 2 97.08 97.29

E 3 9 468 97.50 100

Overall (mean) 97.15 98.42

G–H–I Actual G H I (%) (%) (%)

G 600 0 0 100 100 100

H 0 600 0 100 100

I 0 0 600 100 100

Overall (mean) 100 100
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It includes six classification tasks, and Table 7 presents

the performance results with the confusion matrix associ-

ated with each of the tasks.

According to the overall accuracy, 97.43% for A–C–E,

97.36% for A–D–E, 99.09% for B–C–E, 99.37% for B–D–

E, 97.08% for (AB)–(CD)–E, and 100% for G – H – I. We

found that the closed eye signal (dataset B) performed

better than the open eye (Set A) signal in the classification

of normal–interictal–ictal. A second important finding was

that both datasets also achieved higher classification

accuracy with a wide sensitivity range.

Based on the whole sets of values from the Bonn

University dataset, Table 8 shows the results of five class

classifications.

3.5 A visual representation of the discrimination
power of the proposed model

A dimensionality reduction technique called t-SNE (t-dis-

tributed stochastic neighbor embedding) is used to display

high-dimensional data in a lower-dimensional space

[43, 44]. It is used to visualize the discriminating power of

the proposed model on different classes of datasets. In

Fig. 3, the 2D space output of the proposed model with the

Conv1D, LSTM, and FCN layers is visualized with t-

SNEA cluster of feature vectors associated with the same

classes of EEGs reside together, whereas the feature vec-

tors associated with different classes of EEGs are sepa-

rated. It is clear in Fig. 3 that the normal–interictal or

preictal–ictal EEG signals have been separated efficiently

with less overlapping with other classes, which exhibits the

great generalization proficiency of the 1D-CNN-LSTM

architecture. Here, ‘Label 0’ is set (AB) and set G, ‘Label

1’ is set (CD) and set H, and ‘Label 2’ is set E and set I.

4 Discussion

Different datasets are not appropriate for evaluating the

different models. The performance of the model can differ

depending on the dataset used to train and test it. In order to

demonstrate the effectiveness of the proposed model, we

have used the same dataset, the EEG dataset from Bonn

University and the Delhi sleep center. In Table 9, we

compare existing systems with ours, comparing their

accuracy, sensitivity, and specificity.

The Fourier, wavelet, and EMD transforms are used as

an input of the deep learning model with two Conv layers

and three FCN layers [45]. The 2D frequency–time scalo-

grams are with 2D-CNN for the classification of EEG

signals, which have an accuracy rate of 94–99% but a

significantly lower sensitivity rate [46]. Using three Conv

blocks and three FC layers, the 1D-CNN classified the

three classes with an accuracy of 96.73–98.06% [47]. To

detect seizures, Zhao proposed seizureNet [48], which used

two parallel 1D-CNNs and achieved classification accuracy

between 97 and 99%.

The proposed method achieved better classification

results for complicated five classification tasks than the

hybrid model used in [37]. In comparison with [43, 45], our

results are lower, but the number of data used in our model

is larger.

For Dataset 2, Stein kernel-based sparse representation

(SR) algorithm was proposed by Hong Peng et al. [49], it

reached 97.21% for seizure EEG classification. The

method for detecting epileptic seizures is through the use of

SVM classifiers, along with a denoising technique that

takes advantage of multiscale principal component analysis

(MSPCA) and empirical mode decomposition (EMD) with

three refined composite multiscale features [50]. In [51],

the multiscale spectral features (MSSFs) are derived from

the multiscale power spectral density (MPSD), and random

forest (RF) was used to classify seizure EEG signals.

As shown in Table 9, the proposed method provides

greater discrimination accuracy and sensitivity than that of

the previous studies. It was found that the proposed system

could differentiate ictal (seizure) from interictal and normal

cases with high accuracy. Several studies in the literature

are compared with the results. These studies used different

techniques to identify features. In some studies, signal-to-

image conversion methods are used to increase the success

rate. But proposed model using 1D-CNN and LSTM in

Table 8 Results of five class

classifications from Bonn

University dataset

Predicted Acc Sen Sep

A B C D E (%) (%) (%)

A–B–

C–D–

–E

Actual A 437 26 13 4 0 92.5 91.04 96.92

B 37 438 0 4 1 91.25 99.68

C 10 4 433 30 3 90.20 97.86

D 12 1 28 437 2 91.04 97.91

E 0 3 0 2 475 98.95 99.68

Overall (mean) 92.5 98.41
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Dataset – I ( E – (CD) – (AB) )
Layer 2  (Conv1D) Layer 6 (LSTM)

Layer 11 (FCN)

Dataset – II (G –H –I)
Layer 2  (Conv1D) Layer 6 (LSTM)

Layer 11 (FCN)

Fig. 3 Two-dimensional feature

visualization using t-SNE
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combination is significantly effective at detecting seizures

and identifying features automatically in EEG signals for

two different datasets.

5 Conclusion

The proposed architecture is composed of a deep learning-

based 1D-CNN-LSTM with dense convolution blocks, an

LSTM, and a time-distributed fully connected layer

(TDFCL) and deals with three-class classification problems

using publically available datasets. The overlapped sliding

rectangular window technique creates a large number of

samples from raw EEG data. The proposed model signifi-

cantly improved the accuracy of a variety of EEG classi-

fication problems when compared to current state-of the-art

methodologies. Therefore, this model provides neurologists

with a more reliable and accurate way to diagnose seizures

in epileptic patients, improving their confidence in their

diagnoses. Moreover, because of the unavailability of

labeled EEG data and the complexity of labeling EEG

samples, the research could utilize the data augmentation

technique of the proposed model which could be used to

diagnose and predict other brain diseases such as Alzhei-

mer’s disease, mental disorders, and Parkinson’s disease.

Additionally, we will investigate conducting further

research on the topic in the future, including validation of

the proposed model on additional datasets, such as multi-

channel datasets.
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Table 9 Performance comparison using two datasets

Method/data selection A–C–E A–D–

E

B–C–

E

B–D–

E

(AB)–

(CD)–E

A–B–C–

D–E

FT ? 1D-CNN [45]/fivefold CV Acc 96.3 95.6 – – – –

CWT ? 2D-CNN [46]/tenfold CV Acc 94.97 99.33 99.1 98.66 – 93.6

Sen 92 99 98.66 98 – 93.6

Spe 96.53 99.53 99.32 99.07 – 98.33

1D-CNN [47]/tenfold CV Acc 96.73 97.04 97.91 98.06 – 93.55

1D-CNN [48]/tenfold CV Acc 97.00 97.11 98.22 99.00 97.07 95.84

Sen 95.67 95.67 97.33 98.33 95.40 89.40

Sep 97.83 97.83 98.67 99.17 97.70 97.35

1D-CNN-LSTM [37]/

90% training and 10% testing

Acc – – – – – 82

Sen – – – – – 81.70

Spe – – – – – –

1D-CNN 1 LSTM/randomly selected 80% for training (tenfold
cv),20% testing

Acc 97.43 97.36 99.09 99.37 97.08 92.5

Sen 97.43 97.35 99.09 99.37 97.15 92.5

Sep 98.68 98.67 98.82 98.82 98.42 98.41

Method/data selection G - H - I

Stein kernel-based SR [49] Acc 97.21

Sen 97.02

Sep 97.40

EMD-MSPCA [50]/tenfold CV Acc 93.49

MSSFs ? RF classifier [51]/tenfold CV Acc 96.17

Sen 95.99

Sep 97.94

1D-CNN 1 LSTM/randomly selected 80% for training (tenfold cv),
20% testing

Acc 100

Sen 100

Sep 100
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