
ORIGINAL ARTICLE

Real-time traffic, accident, and potholes detection by deep learning
techniques: a modern approach for traffic management

Sarthak Babbar1 • Jatin Bedi1

Received: 17 September 2022 / Accepted: 12 June 2023 / Published online: 28 June 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
The practical applications of social media have raised the bar for real-time event detection all over the globe. It has been

deemed useful for extracting important data that enables people across the world to access information within mere seconds

of its occurrence. Among the many use cases of the aforementioned applications lies detection of issues regarding the

smooth mobility of traffic on the road. Machine learning models that were developed earlier used support vector machines

with Bag of Words. However, BoW (Bag of Words) suffers from problems such as the inability to manage semantic

relationships between words, limited representation, and high dimensional representation. Our model developed for a

similar cause fetches the required data from Twitter to make the target authorities aware of the issues like potholes,

accidents, and high traffic density (congestion) of the Chandigarh tri-city area. The data collected then undergoes multiple

stages of pre-processing. After that, multiple word embedding models come into play to build semantic relationships

between the words and intra software jargon. The resultant is then processed through the several recently introduced deep

learning based natural language processing. The current study aims to perform a comparative evaluation of the several

advanced state-of-the-art classification models at the target traffic event detection activity. The developed models make a

fact-based prediction to make multi-class classification into the aforementioned categories. From the comparative eval-

uation, it has been observed that the proposed language processing model (RoBERTa based) pipeline outperforms the

existing approaches and is 97% accurate at classifying the real-time tweets. Moreover, the proposed pipeline achieves 96%

recall at segregating the traffic events efficiently.

Keywords Traffic events � Deep learning � Intelligent transportation � RoBERTa � Accidents

1 Introduction

Detecting traffic activities and places is crucial for building

a robust and sustainable system to manage transportation

and higher urban policy-making activities. It is related to

several critical aspects of the society such as sustainability,

delivery, development, economic activities, and many

more. Traffic events can be associated with various dif-

ferent activities such as traffic accidents, parking problems,

traffic jams, potholes, and more. Currently, traffic events

are being detected by hardware components like sensors

(e.g., cameras) [1–3]. Previously, enormous amount of

efforts have been performed by researchers to accurately

identify traffic-related issues by formulating several algo-

rithms using physical sensors to spot the event in real-time.

However, these existing studies are characterized by

restricted spatial coverage and high upkeep fee, particu-

larly in developing regions [4, 5]. Alternatively, with web

2.0 and other popular mobile platforms, human beings can

act as social sensors who share special traffic events from

within their respective places. In the past decade, social

media networks have obtained an awful amount of atten-

tion among ordinary people, corporations, and research

pupils [6–8]. Many systems and platforms have been

conceived to collect big datasets to represent the behavior

and characteristics of different phenomena in varying

contexts. In this study, we focus on exploring the reliability

of micro-blogging sites (Facebook or Twitter) toward

& Jatin Bedi

jatin.bedi@thapar.edu; jbedi@cs.iitr.ac.in

1 Department of Computer Science and Engineering, Thapar

Institute of Engineering and Technology, Patiala,

Punjab 147001, India

123

Neural Computing and Applications (2023) 35:19465–19479
https://doi.org/10.1007/s00521-023-08767-8(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08767-8&domain=pdf
https://doi.org/10.1007/s00521-023-08767-8

developing a robust and sustainable system to help the

society.

Twitter is one of the fastest-growing social media plat-

forms that enable users to disseminate and study brief

messages, referred to as tweets. India is ranked among the

first three countries with the highest number of Twitter

users 2022 [9]. Using Twitter applications on smartphones,

customers can report events happening around them in

real-time. Daily, the records disseminated through thou-

sands of active users generate a new version of the dynamic

database containing facts about various topics. In recent

years, the dataset generated through Twitter API has been

widely adopted to resolve problems pertaining to different

application domains [7, 8, 10, 11]. The current study uses

Twitter to collect data about several transportation-related

events in this context. Twitter has built up a reputation as a

valuable source of information for identifying and detect-

ing traffic events [12, 13]. Thus, we have crawled tweets

from the Chandigarh Tri-city region as a case study.

Henceforth, this report proposes a methodology to

extract tweets using Tweepy API, save those tweets as an

SQL-lite file, pre-process, and sort those extracted tweets.

These tweets are then examined to crawl non-recurrent

events facts using deep learning and Natural Language

Processing (NLP) techniques. The paper also proposes an

approach using NER (Named Entity Recognition) and POS

(Part of speech) to identify the information regarding the

location from the textual content [14, 15]. The primary

research contributions of the research study are listed as

follows:

• The result and fidelity of social media in apprehending

human behavior on multiple common issues have been

well established [12, 13] in recent years. The research

utilized Twitter data for the multi-class transportation-

related event classification task. Moreover, the location

extraction of the identified incidents is performed using

Named Entity Recognition (NER) and Part-of-Speech

(POS) tagging.

• Identifying transportation-related complaints is critical

for the smooth execution of several related activities,

such as optimized transportation, reducing traffic acci-

dents, resource usage optimization, and many more.

The current work provides a standardized dataset and an

end-to-end pipeline (tweets collection, pre-processing,

location extraction, and event identification) to iden-

tify/classify traffic, accidents, and potholes-related

tweets.

• A detailed analysis (from the perspective of implemen-

tation and comparison) of several state-of-the-art word

embeddings [16] in integration with deep learning

models is provided for a better understanding of the

problem under study. The comparative evaluation

results of the proposed work with these deep learning

models show that the proposed approach outperforms

existing approaches by generating the least prediction

error.

• The applications of recently introduced natural lan-

guage processing models (BERT: Bidirectional Enco-

der Representations from Transformers [17] and

XLNET [18]) on the target application domain (trans-

portation) are well explored in the current study.

Furthermore, a RoBERTa (Robustly Optimized BERT

Pre-training Approach) [19]-based approach is pro-

posed to identify/classify the real-time traffic, potholes,

and accidents related events with 97% accuracy, which

is higher than any other existing benchmark techniques

in the transportation domain.

2 Literature review

Traffic event detection has always been a hot research topic

for the community as it can directly impact society and

related factors such as air pollution, accidents, hotspots,

etc. [20–22]. In recent years, the role of Twitter in the

detection of traffic events has gained wide popularity. We

perform an exhaustive analysis of research studies targeted

at using Twitter for intelligent traffic management activi-

ties in the current section.

Andrea et al. [6] proposed a machine learning-based

approach for detecting traffic events (either related to

traffic or not) from real-time tweets. The authors imple-

mented Support Vector Regression for the events classifi-

cation task (binary classification). The experimental results

evaluated on the Italian dataset show that the model

achieved 95% classification accuracy in identifying traffic

events. Ribeiro et al. [23] developed a methodology to

analyze the traffic conditions of a particular place. The

approach identifies the traffic conditions and geocodes the

situation to visualize traffic scenarios to the users. The

approach achieved satisfactory results with precision

varying between 50% and 90%.

Yiming Gu et al. [24] introduced an approach to collect,

pre-process, and identify traffic incidents from the users’

tweets. From the experimental results, the authors con-

cluded that incidents occurrence frequency is higher on

weekends than weekdays and is directly related to the

crowd density. Dabiri and Heaslip [25] developed a deep

learning-based approach to detect or classify traffic events

from the real-time streaming dataset. The classification

approach involved implementing two neural models

(Convolutional Neural Networks and Recurrent Neural

Networks) for identifying three classes of tweets, i.e.,

traffic incident, non-traffic, and traffic information. The

19466 Neural Computing and Applications (2023) 35:19465–19479

123

experimental results validated the effectiveness of the

approach.

Albuquerque et al. [26] developed a tool to detect traf-

fic-related incidents by interpreting users’ tweets. The

approach utilized two kinds of tweets (a) users posted

tweets, (b) government and news agencies posted tweets.

The approach includes deploying machine learning tech-

niques for the tweets interpretation tasks. Traffic flow

estimation has always been a critical topic for several

traffic management activities such as congestion, road

closures and accidents. Essien et al. [27] developed an

approach to integrate traffic flow data with twitter infor-

mation for the short-term traffic patterns estimation task.

The authors implemented a deep neural architecture, i.e., a

Bi-directional Long Short-Term Memory network with

auto-encoders for the prediction task. Alomari et al. [28]

proposed iktishaf, a Spark-based tool to analyze traffic data

collected from Twitter API. The tool utilizes three machine

learning algorithms (Naı̈ve Bayes, Support Vector and

Logistic Regression) to classify the eight-event types (road,

fire, traffic, accident, closure, roadwork, weather and social

events). The tool assessment and validation are carried out

on several real-time events in Saudi Arabia. Agarwal et al.

[29] utilized Twitter data to identify and classify citizens’

complaints on several traffic-related issues such as bad

road conditions, discomfort and bad road experiences. The

proposed approach obtained 67% accuracy at classifying or

identifying the killer roads. Chaturvedi et al. [30] collected

Twitter data to analyze citizens’ opinions on several

transportation-related issues. The authors implement a

dictionary-based approach (context-free) for the desired

sentiment analysis task.

Rojas et al. [31] proposed a way to analyze Spanish

traffic-related tweets. The approach includes implementing

several modules: data preprocessing, location identifica-

tion, and classification module. Yao et al. [32] proposed a

novel application by estimating the one day ahead traffic

density from the Twitter data of the previous day. The

proposed model aims to determine traffic characteristics for

better traffic management practices effectively. Sveta

Milusheva [33] proposed a low-cost approach to effectively

utilize Twitter data for urban planning activities. The

approach involved implementing spatial clustering to

identify crash activities and their precise location for better

help and management activities.

Azhar et al. [34] proposed a deep learning-based

approach to predict traffic accidents. The approach inte-

grated tweets text with additional information such as

sentiment, weather, and geocoded for accidents detection.

The performance assessment on the real-time dataset

shows that the approach achieved 94% accuracy at the

desired task, and it outperforms the existing techniques.

Deb et al. [35] performed a comparative analysis of

different contextual and context-free embeddings. The

approach signifies the importance and performance of

contextual embeddings like BERT (Bidirectional Encoder

Representations from Transformers) in the natural lan-

guage processing task. Also, it involved discussing various

challenges and opportunities associated with contextual

embeddings.

3 Methodology

In the present study, an integrated model has been devel-

oped to detect traffic events and locations, which consist of

four major phases mentioned below and the corresponding

diagramatic representation is shown in Fig. 1.

• Using Twitter Streaming API for Collection of real-

time tweets.

• Pre-processing of tweets and location Extraction

• Identifying the type of word-embeddings and Deep

learning models to be used

• Implementing Deep Learning models for the target

Classification Task and Evaluating Experimental

Results

3.1 Collection of tweets

Twitter is a giant blogging application and social net-

working site where users post and share messages known

as ‘‘tweets’’. For accessing Twitter, Tweepy (A reliable and

easy-to-use library that can be used to access Twitter API

in python language) is used with geocoding

‘‘30.7333,76.7794, 8km’’ (i.e., Chandigarh tri-city area

with radius 8 km). People use government handles to report

agencies about the several transportation-related issues

faced in their daily lives. The relevant hashtags for the data

collection on the transportation-related issues/events have

been identified using the trending Tweets posts. Moreover,

the handles/hashtags related to the government agencies

(Chandigarh road safety, awareness, and traffic manage-

ment) have been used to collect the data. The keyword/

hashtags used in the current study to collect dataset are

([‘‘accident‘‘, ’’caraccident’’, ‘‘trafficchd‘‘, ‘‘parkingspace’’,

‘‘potholes‘‘, ‘‘roadsafetyawareness’’, ‘‘roadsafetyaware-

ness‘‘, ‘‘ssptfcchd’’, ‘‘crash‘‘, ‘‘traffic’’, ‘‘personalinjury‘‘,

‘‘roadjam’’, ‘‘trafficjam‘‘, ‘‘trafficlights’’, ‘‘roadblock‘‘,

‘‘chandigarhtraffic’’, ‘‘chandigarhaccidents‘‘, ‘‘chandi-

garhaccidents’’, ‘‘rashdriving‘‘, ‘‘chandigarhtrafficlife’’,

‘‘baddriver‘‘]). The tweets were crawled for over a time

period of four months and around 10k tweets are collected

related to the keywords. The Twitter API provides us with

many attributes, but we have only stored the attributes

relevant to us. The real-time streaming tweets are then

Neural Computing and Applications (2023) 35:19465–19479 19467

123

stored with the help of SQLAlchemy [36], (SQLAlchemy

gives application developers the full power and is flexible

integrated Python SQL toolkit with Object Relational

Mapper). The information collected in the crawled tweets

includes tweets geolocation, tweet text, tweet id, and

search word as a Relational Database. The word cloud

representation of the collected tweets is shown in Fig. 2.

3.2 Pre-processing of tweets and location
extraction

It is an utmost as well as a challenging task to predict

emotional variability due to the unusual, short text type

(wassup, bruh, etc.), short length, and slang text for tweets.

In many forums, the language used which describes the

sentiments of users is less formal. Users create their names

and spelling as punctuation marks, misspellings, pronouns,

URLs, and terms and use abbreviations of different types.

Fig. 1 Methodology of the traffic event detection pipeline

Fig. 2 Word cloud representation of frequently occurring words

19468 Neural Computing and Applications (2023) 35:19465–19479

123

Therefore, these kinds of text need to be corrected.

Henceforth, for textual analysis, HTML characters,

thumbnails, stop words, punctuation marks, slang words,

URLs, etc., need to be removed [37, 38].

Before preprocessing the data for Sentimental Analysis,

a model is trained for Named Entity Recognition (NER)

which helps in extracting the location from the textual

content. POS tagging is done on sample tweets to identify

the locations, which are then trained as a NER model. All

of this combined is a step-by-step process, explained as

follows:

• Hashtag elimination: Hashtags ‘‘#’’ have been recog-

nized by Twitter/ social media users to be used with a

connected or relevant keyword/ word to specify their

tweets and display them to a greater audience without

problems in Twitter search. So, hashtags symbols have

been eliminated as they carry zero relevance.

• URL removal: URL addresses are links to significant

web resources. But in general, they don’t have the

relevant information. Therefore, the URL will be

removed.

• Handle removal: ‘‘@’’ is used in Tweet by the user to

tag or refer other Twitter users to follow the tweet,

which is also irrelevant to our study. Hence, ‘‘@’’

symbols are eliminated from the tweets.

• Remove stop words: In any language, stop words are

commonly used in every line. While their use in the

language is substantial, they carry zero weightage to our

study. Stop words commonly consist of adverbs,

articles, conjunction, etc., Stop-word removal is an

important step in text pre-processing and the mandatory

stop-word list is used from the NLTK (Natural

Language Toolkit) library.

• Disposal of punctuation marks: These symbols, which

consist primarily of periods, commas, and parentheses,

were standard punctuation marks used to separate

sentences so that the elements could be understood

quickly. However, these elements do not provide

factual data on a regular basis. Therefore, these

punctuation marks have been removed from the tweet.

• Stemming: Stemming is a process that is used to reduce

each word to its base form. The aim is to group words

with similar semantics to the standard format in order to

train the model more efficiently.

• Detection of location: A considerable number of

tweets have a location in the textual content. It has

been observed that only a few tweets have geolocation

tagged with them, but the count or percentage was not

considerable. Considering location from the textual

content is much more accurate as people mention it

more often. In this context, Named Entity Recognition

(NER) is deployed to spot the area. The NER identifies

the organizations named in the text and classifies them

by organization, place, and categories of people.

However, the NER method fails because many local-

ities and road names in India are named after some

renowned person. For example, ‘‘Too much traffic near

Elante mall in Ashok Nagar stuck around 2 hours in a

jam’’. NER identifies ‘‘Ashok Nagar’’ as a person, not a

location in this example.

3.3 Identifying the type of word-embeddings
and deep learning models to be used

With the clean dataset obtained after pre-processing, it has

been processed through different word embeddings and

deep learning models. Convolutional Neural Networks

(CNN) [25] and Recurrent Neural Networks (RNNs) [39]

are two broadly used deep learning architectures with first-

rate success within the textual content type problem. But

CNN and RNN do not learn on text; they need numerical/

floating-point numbers, which computers understand. To

convert these texts numerically,Word Embeddings are

used.

3.3.1 Word embeddings

Word embeddings [16] are used to convert words and

complete sentences into a numerical representation. As

computers apprehend the language of zeros and ones, we

strive to encode words with us to numbers so that the

computer can learn them and process them. But studying

and processing are not the most straightforward matters

which are needed to be done by computers. Additionally,

computer systems are needed to build a connection

between each word in a sentence or document and other

words in the same text.

Word embeddings are supposed to apprehend the textual

context of the paragraph or preceding sentences alongside

capturing the semantic and syntactic properties and

similarities.

For example: ’’The Policeman was standing beside the

road while the pedestrian couldn’t cross the road due to

traffic.‘‘

...then, we will take the two subjects (Policeman and

Pedestrian) and switch them within the sentence making it:

’’The Pedestrian was standing beside the road while the

Policeman couldn’t cross the road due to traffic.‘‘

The semantic or meaning-related relationship is pre-

served in both sentences, i.e., policeman and pedestrian are

humans. And the sentence makes sense. In addition, the

sentence also preserved syntactic relationships, i.e., rule-

based relationships or grammar.

Neural Computing and Applications (2023) 35:19465–19479 19469

123

To find that semantic and syntactic relationship, The

mapping of sentences to numbers is not the only thing

needed. Thus, a better and more extensive illustration of

these numbers representing semantic and syntactic prop-

erties is needed. Hence, word embeddings are used to

generate these kinds of relationships. The different Word

Embeddings used in this paper are explained as follows:

• Word2vec model [40]: It is a language model of the

Neural Network with two-layer structures. It takes as

input an extensive collection of words and then after the

processing of those words, it produces a vector space of

several hundred sizes. All the unique words are

identified and all of them within the corpus are given

a corresponding vector in space. Word vectors are

inserted into the vector space so that the percentage of

familiar words within the corpus is placed next to each

other in the space. Word2vec uses CBOW or Skip-

Gram to calculate weights. In CBOW, the words given

in the context predict the target word. While in Skip-

Gram, when looking at a target word, we do the

opposite i.e., prediction of the context words. The use

of parameters of various models and specific corpus

sizes can significantly affect the quality of the

word2vec model. Parameters: Accuracy may be

advanced in some methods, along with better model

architecture choices (CBOW or Skip-Gram), expanded

training record sets, increased dimensionality of vectors

in various ways, as well as using the algorithm with an

expanded window size of words. The aforementioned

upgrades come with the cost of extended computational

complexity and consequently accelerated model gener-

ation time. Also, accuracy increases typically because

the number of words used increases and the range of

dimension increases. If the amount of training data is

multiplied with a factor of n, it results in an equal

increment in computational complexity as it does with

multiplying the number of vector dimensions with the

same factor n. In models using massive corpora and a

high quantity of dimensions, the Skip-Gram model

yields the best overall accuracy, continually produces

the highest accuracy on semantic relationships and

yields the best syntactic accuracy in maximum

instances. However, CBOW costs less per computer

and has approximately the same accuracy results.

• GloVe [41]: It is a method to capture global corpus

statistics. It is an increment to the shallow window

approach of the early 2000s in which the semantic

meaning is analyzed on a small window around the

word in a text sentence. The goal of this word

Embedding is to reduce the dimensionality, as it is

not possible to feed the network a binary ASCII or

something one-hot encoded, based on comprehensive

vocabulary because these soon blow up into unaccept-

ably large dimensions that any work simply cannot

handle. GloVE aims to improve all of these by

capturing the context of the word in the embedding

through explicitly capturing co-occurrence probabili-

ties. In GloVE, we incorporate a notion of contextual

distance, i.e., the word closer to the tagged word is

weighed more than the words which are farther. To

make a difference with Word2vec, Word2vec embed-

ding is based on training a neural feed-forward network,

while glove embedding is learned based on matrix-

based techniques. The technique is based on matrix

factorization techniques in the name of the matrix

content. It begins to form a large matrix (of words x

context) for information that happens together, that is,

each ’’word‘‘ (lines), counting how often we see this

word in another ’’total‘‘ (columns) in a large corpus.

The number of ’’contexts‘‘ is quite large, as it is equal in

size. Therefore, this matrix is combined to produce

another matrix (as shown in Fig. 3) with low resolution,

where each line has now a vector image of the

corresponding word. Typically, this is done by mini-

mizing ’’reconstruction-loss‘‘. These losses attempt to

obtain low-level presentations that may explain many

of the variations in high-dimensional data.

• FastText [42]: It has the same goal as Word2vec, i.e.,

to learn the representations of the words. But the key

difference is fastText works at a more granular level

with letters and grams. Where words are represented by

the sum of the character n-gram vectors. For example,

the word ‘‘accident’’ is the sum of the vectors of

n-grams: ‘‘ac’’, ‘‘acc’’, ‘‘acci’’, ‘‘accid’’,‘‘accide’’,‘‘ac-

ciden’’,‘‘accident’’, ‘‘cc’’,‘‘cci’’,‘‘ccid’’,‘‘cciden’’,‘‘cci-

dent’’,‘‘cid’’, ‘‘cide’’, ‘‘ciden’’, ‘‘cident’’ ,

‘‘ide’’,‘‘ident’’. It is possible to generate better words

embeddings for rare words using fastText because even

if words are rare their character n-grams are still shared

with other words. The main issue regarding FastText is

that the memory requirement grows much more if the

corpus size grows. So, fastText even being faster and

better shall only be used if your data contains more rare

words than the common ones.

In addition to these, other state-of-the-art natural language

processing models like BERT and RoBERTa are also used

for sentiment classification, which are discussed later in

this paper.

3.3.2 Recurrent neural networks (RNNs)

Recurrent neural networks [43, 44] are a type of Deep

Neural network mainly used for natural language pro-

cessing tasks. To get an idea about it, a few applications of

19470 Neural Computing and Applications (2023) 35:19465–19479

123

RNN are (a) Sentence auto-completion used in Gmail

services. (b) Google language translator (c) Sentiment

Analysis. RNNs are used for these types of problems

because these are sequence modeling problems, i.e., saving

the output of a particular layer and feeding it back to the

input in order to predict the output. In Fig. 4, hðt � 1Þ and
h(t) are hidden states, while x(t) is the input word. hðt � 1Þ
and x(t) go through the weighted sum and then through the

activation function, i.e., tanh in case of RNNs.

RNNs themselves face the vanishing gradient problem.

To overcome this, there are particular types of RNNs like

LSTM and GRU that address the issue of short-term

memory.

3.3.3 LSTM

LSTM [44, 45] or long short-term memory is a special type

of RNN that solves traditional RNN’s short-term memory

problem. In RNNs, there is the cell state h, i.e., the short-

term memory, while in LSTM, we introduce a new state c,

i.e., the long term memory as shown in Fig. 5. The state of

the cell is like a transmission belt, which goes down

straight across the chain, with just a little junction of the

line. It makes it easy for information to flow freely. LSTM

cell has majorly three types of gates, namely, forget gate,

input gate, and output gate. Forget gate helps in discarding

previous memory, which is no longer helpful. Input gate

adds the memory of the new relevant word that appeared.

Output gate does the weighted sum of the previous hidden

state and the new long-term memory and feeds the new

hidden state as the input for the next state. A typical

working model of LSTM is shown in Fig. 5.

3.3.4 GRU

GRU or Gated Recurrent Units [44, 46] is a version of

RNN, a newer version than LSTM, and was invented in

2014. While LSTM has a separate long-term and short-

term memory, GRU is a modified or lightweight version

that combines these long-term and short-term memory into

its hidden state. GRU consists of two gates, namely, the

update gate and the reset gate (as shown in Fig. 6). Update

gate knows how much of the past memory is to be retained,

and reset gate knows how much past memory to forget.

Due to the simpler architecture of GRUs, they are faster to

train.

Fig. 3 Embedding matrix representation

Fig. 4 Recurrent neural

networks

Neural Computing and Applications (2023) 35:19465–19479 19471

123

4 Implementation details

The following models are tested against the dataset

obtained after the pre-processing step:

1. GloVe with Bidirectional GRU

2. GloVe with Bidirectional LSTM

3. Fast text with Bidirectional LSTM

4. Word2Vec with Bidirectional LSTM

5. Bidirectional Encoder Representations from Trans-

formers (BERT)

6. RoBERTa

7. XLNET

The detailed explanation of these models is given as

follows:

4.1 GloVe with bidirectional GRU

In most of the NLP tasks, texts are converted into integer

values that are further fed into models. One way to convert

text into a sequence of numbers is with the help of ‘Keras’.

‘Keras’ with its API provides ways to tokenize the texts.

Tokenizer in Keras is used to find the frequency of every

distinct word and then it arranges them according to it.

Starting with 1, an integer value is assigned to every ele-

ment on the stack. The index mapping dictionary can be

accessed by using the ‘word_index’ function. The

Fig. 5 LSTM network model

Fig. 6 GRU network model

19472 Neural Computing and Applications (2023) 35:19465–19479

123

tokenizing is a two-step process, firstly we used ‘fit_on_-

texts’ which creates word indices by fitting the tokenizer on

our training data, followed by the ‘text_to_sequences’

function which uses the dictionary made in the previous

step to transform both train and test data.

Now, ‘num_words’ attribute is set to 10000 words.

‘num_words’ is a parameter that defines the maximum

number of words to keep, based on the occurrence/fre-

quency at which the word appears. We can also leave the

‘num_words’ to be assigned as ’None’; this would enable

the tokenizer to select all the words in the vocabulary.

The next step is to pad the sequence, it is required that

all the input sequences to the deep learning model need to

be exactly the same length. To make this happen, a func-

tion has been used that pads the short sequences with zeros.

It also crops a sequence if it is longer than a predefined

parameter ‘maxlen’. In this model,‘maxlen’ is set to 171.

Now on the tokenized text, we use pre-trained GloVe

‘‘glove-wiki-gigaword-300’’. The embedding matrix has a

defined shape (vocabulary length � embedding dimension)

which is initialized with zeros. If a word in the function

‘word_index’is found to be missing in the embedding

vectors from GloVe, the weight of that word remains as

zero.

The generated model (Fig. 7) has the first layer as the

Embedding layer. The embedding layer by ‘Keras’ is a

tangible layer such that it can also be used without any pre-

trained weights. In that case, the Embedding layer is ini-

tialized with random weights and will learn an embedding

for all of the words in the training dataset. In this exercise,

the weights of the Embedding layer are set to the embed-

ding matrix from GloVe pre-trained vectors. Hence, the

concept of transfer learning is implemented for achieving

the better learning accuracy.

The embedding layer has a parameter called ‘‘trainable’’

that can be set to TRUE if you want to fine-tune the word

embedding. If you don’t want the embedding weights to be

updated; as in this case, it is set to false. After the

Embedding layer, multiple bidirectional GRU layers are

added and then a dense layer with ‘‘softmax’’ activation to

predict the Tweet as traffic, accident, or pothole-related.

The optimizer used in compiling is ‘‘adam’’ with loss as

‘‘sparse_categorical_crossentropy’’. Further, hyperparame-

ters in model fitting that are epochs, batch size, etc., are

tuned by adapting the random search method, generating

training and validation accuracy as shown in Fig. 2a.

Fig. 7 GLoVE with GRU

network model description

Neural Computing and Applications (2023) 35:19465–19479 19473

123

4.2 GloVe with bidirectional LSTM

All things like tokenizing and GloVe model download

were kept the same as in the above model. The significant

difference comes at the model building step, where LSTM

layers are replaced with GRU layers. Now comes the part

to define early stopping and model checkpoint function by

‘Keras’, in early stopping, the parameter mode can be

assigned three options—min, max, and auto. In the min

mode, the training will stop if the supervised number has

ceased to decrease; in the ‘‘max’’ mode, it will stop when

the rented value has stopped increasing; in the ‘‘automatic’’

mode, the direction is automatically directed from the

name of the supervised quantity. In our case, the quantity to

monitor is validation loss. Furthermore, hyper-parameters

are again set with the random search method and accuracy

graphs are generated, shown in Fig. 2b.

4.3 Fast text with bidirectional LSTM

After tokenizing and padding the sequences as performed

in the previous models, the fastText English word vectors

are added from ‘‘cc.en.300.bin’’ which have been trained

on many different and vast datasets.

We analyzed the tweets on the fitted model and gener-

ated the classification report. On further analysis, It was

found that the traffic category had an F1-score of 0.99.

Fast-text being a better performer on rare words showed

positive results, with accuracy’s shown in Fig. 2c.

4.4 Word2vec with bidirectional LSTM and GRU

Word vectors for word2vec are used from ‘‘Word2vec-

google-news-300’’ which is about 1.6GB in size. These

word vectors are then trained on both LSTM and GRU. It is

observed that GRU did better on validation data than

LSTM keeping the same hyper-parameters. The Precision,

Recall, and f1-score of all three categories were better than

word2vec ? LSTM as compared to word2vec ? GRU-

based architecture. Train and validation accuracy of both

the models (Word2vec with LSTM and Word2vec with

GRU) are measured on the number of epochs as shown in

Fig. 2d, e, respectively.

4.5 Bidirectional encoder representations
from transformers (BERT)

BERT [17] as the name stands uses transformers that again

learns the contextual relationship between the words. It was

introduced in 2018 by Google AI and is a revolutionary

model for natural language processing. In vanilla form, a

transformer has two different components, an encoder and

a decoder. But in this task, we only need encoders to

encode our text into numeric data. While providing an

input to a BERT model, a single sentence is converted by

adding three embeddings—Token embeddings, sentence

embeddings, and transformer positional embeddings. In

token embeddings ‘[CLS]’ token is added at the beginning,

and the ‘[SEP]’ token is added at the end of each sentence.

‘CLS’ stands for classification and ‘SEP’ means separator.

In sentence Embedding, the sentences are marked as Sen-

tence A or Sentence B, while in transformer positional

embeddings, it represents the position of each token in the

sequence.

We used a BERT base which is a stack of 12 encoders

(BERT large has 24 layers). These layers consist of a large

feed-forward neural network, in which each layer applies

self-attention and then passes it to the next layer and finally

to the next encoder. The final encoder outputs three 3-di-

mensional arrays (tokens- input_words_ids, masks-

input_masks, and segments- segment_ids). We build a

BERT model with a max length of 171. The overview of

the BERT model is shown in Fig. 8, and the corresponding

layered description is depicted in Fig. 9. The evaluated

train and validation accuracy of the BERT model are

demonstrated in Fig. 2f.

4.6 RoBERTa

RoBERTa [19] or Robustly Optimized BERT Pre-training

Approach is an optimized approach of BERT. BERT ran-

domly masks and predicts tokens and this happens a single

time at the time of pre-processing. We can increase the

number of times the masking occurs but it still remains

static. RoBERTa uses a different approach in which

masking is done during training, which is also referred to as

dynamic masking. i.e., each time a sentence is merged into

a mini batch; it is masked, so the number of possible

masked versions of each sentence is not tied as in BERT.

RoBERTa also removed the next sentence prediction

objective in BERT, which is nothing but the ability of the

model to predict whether the segments of the target doc-

ument are from the same or different documents with the

loss of Next Sentence Prediction (NSP). Researchers have

previously found that removal of NSP loss either improves

performance or matches the performance with NSP. Hence,

all these optimizations led to the creation of RoBERTa

from BERT (Fig. 10).

4.7 XLNET

XLNET [18] is a permutational approach to solve the

prediction of word tasks in contrast to BERT which uses a

masking approach for NLP. The major difference between

BERT and XLNET is BERT uses Auto-encoding, while

19474 Neural Computing and Applications (2023) 35:19465–19479

123

XLNET is an Auto-Regressive Pretraining method. It uses

the concept of joint probability in which it calculates the

probability of the word token on the basis of all the per-

mutations of word tokens in a sentence. BERT has a lim-

itation in that it cannot justify the interdependence of two

masked tokens. XLNET does not use LSTM and only uses

self-attention. It has also integrated methods from Trans-

formerXL which can catch dependency from far away.

Also, from the available models ‘‘Xlnet-large-cased’’

model is used to generate word embeddings, and predic-

tions are made on the pre-processed dataset. The accuracy

of the model is evaluated and is shown graphically in

Fig. 2g.

Fig. 8 BERT model

Fig. 9 Layered description of the BERT model

Neural Computing and Applications (2023) 35:19465–19479 19475

123

Fig. 10 Models’ performances (RMSE) comparison

19476 Neural Computing and Applications (2023) 35:19465–19479

123

5 Results and discussion

In this section, to begin with, we have assessed the models

or architecture of all the models mentioned above with the

means of graphs (Fig. 2a–g). We have discussed the vari-

ous evaluation parameters used to evaluate the models. To

conclude, the evaluation of models is conducted on real-

world problems of traffic, accidents, and potholes. The

evaluation metrics that are used for classification problems

are discussed as follows:

• Accuracy [49]; It is defined as the ratio of the number

of correctly classified cases to the total number of cases

predicted. Accuracy is not a reliable measure of the

model if the dataset is imbalanced. It is given as:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð1Þ

• Precision [49]: It is calculated as the ratio of true

positive to the total of true positive and false positive

(i.e., the number of predicted positives).

Accuracy ¼ TP

TPþ FP
ð2Þ

• Recall [49]: It is calculated as the number of true

positives divided by the total number of actual

positives. It is good to have a higher recall in cases

like medical diagnosis.

Accuracy ¼ TP

TPþ FN
ð3Þ

• F1-Score [49]: The F1-score is the harmonic mean of

precision and recall. It is highest when precision is

equal to recall.

Accuracy ¼ 2 � Precision � Recall
Precision þ Recall

ð4Þ

The above listed performance measures have been evalu-

ated on the collected dataset. The categories are labeled as:

0-ACCIDENTS, 1- TRAFFIC, 2- POTHOLES. The

evaluation results are listed in Tables. Measuring the

accuracy (Table 1) of different models evaluated in this

data, it has been observed that the accuracy of these models

does not vary that much. This is due to the imbalanced

distribution of data among the three categories. Anyhow,

GloVe, word2vec with BiLSTM and RoBERTa has shown

the same test accuracy of 96% which doesn’t differ much

from the rest of the models. So, we shifted to other eval-

uation metrics.

This paper has three use cases, i.e., Traffic, accidents,

and potholes. Depending on the use case, we studied which

evaluation metric is a better measure to evaluate the model.

Considering accidents, it is about saving lives and is an

issue of high importance. Therefore, Recall (Table 2) is a

good measure as it is higher when false negatives are less.

Furthermore, the model of category 0-Accidents is good to

be measured by the recall, and it is found that word2vec

gives the highest recall among the eight models evaluated.

The next two categories are Traffic and potholes, Traffic

is a problem that has to be precisely measured to reduce the

unnecessary manpower and development costs. Again, we

found that word2vec slightly outperforms the other models

with a precision of 0.98. In the end, potholes are somewhat

a problem that can be addressed instantly or can have a

delayed solution. We can choose F1-score to compare the

models.On analysis, RoBERTa gave the highest F1 score

(Table 3) for category 2-Potholes.

6 Conclusion

The proposed research has suggested the use of the data

fetched from Twitter to formulate highly accurate deep

learning models. The approach targets areas affected by

various traffic-related issues in a four-stage architecture

format to treat the said issues with an increased level of

efficiency. The first problem that this study encountered

was the abundance of meta-information that resided within

the data fetched from Twitter. The data while being fetched

from the Twitter API was simultaneously labeled which

further helped the program to categorize the information

among three broad categories (accidents, potholes, traffic).

Secondly, the data were used to construct distributed vector

representations using different word embeddings (Word2-

vec, Glove, FastText). These embeddings were then com-

bined with different deep learning models in many possible

permutations. Furthermore, many different approaches

like- the self-attention mechanism of the transformers

(BERT and RoBERTa) and per-mutational approach (as of

XLNET) are also applied for the sentiment classification

task. Finally, all these techniques are compared and eval-

uated with different evaluation parameters (Accuracy,

Precision, Recall, and F1-measure) to conclude the best

Table 1 Accuracy of several models implemented in the current

research study

Word embedding/ Model Accuracy

GloVe ? BiGRU 0.95

GloVe ? BiLSTM 0.96

FastText ? BiLSTM [31] 0.95

Word2vec ?BiLSTM [47] 0.96

BERT [13] [48] 0.95

XLNET 0.95

Proposed approach (RoBERTa) 0.97

Neural Computing and Applications (2023) 35:19465–19479 19477

123

technique for the given task of real-time traffic detection.

From the experimental evaluation, it has been observed

that the RoBERTa language model-based pipeline outper-

forms all exisiting techniques by achieving 97% accuracy,

96% Recall and 95% F1-Score. Furthermore, the evalua-

tion for our study can be concluded with the argument that

tweets having fixed-length limits the user to generate

lengthily context. Hence, many of the models which detect

the syntactic relationships at a greater level are of the same

use as traditional models. Thus, word2vec gives better

results in two out of three cases.

Data availability statement The datasets generated during and/or

analyzed during the current study are available from the corre-

sponding author on reasonable request.

Declarations

Conflict of interest The author(s) declare(s) that there is no conflict of

interest.

References

1. Sarrab M, Pulparambil S, Awadalla M (2020) Development of an

iot based real-time traffic monitoring system for city governance.

Glob Transit 2:230–245

2. Zhu F, Lv Y, Chen Y, Wang X, Xiong G, Wang F-Y (2019)

Parallel transportation systems: toward iot-enabled smart urban

traffic control and management. IEEE Trans Intell Transp Syst

21(10):4063–4071

3. Singh R, Sharma R, Akram SV, Gehlot A, Buddhi D, Malik PK,

Arya R (2021) Highway 4.0: Digitalization of highways for

vulnerable road safety development with intelligent iot sensors

and machine learning. Safety Sci 143:105407

4. Silva BN, Khan M, Han K (2018) Towards sustainable smart

cities: a review of trends, architectures, components, and open

challenges in smart cities. Sustain Cities Soc 38:697–713

5. Afrin T, Yodo N (2020) A survey of road traffic congestion

measures towards a sustainable and resilient transportation sys-

tem. Sustainability 12(11):4660

6. D‘Andrea E, Ducange P, Lazzerini B, Marcelloni F (2015) Real-

time detection of traffic from twitter stream analysis. IEEE Trans

Intell Transp Syst 16(4):2269–2283

7. Ilieva RT, McPhearson T (2018) Social-media data for urban

sustainability. Nat Sustain 1(10):553–565

8. Hysa B, Zdonek I, Karasek A (2022) Social media in sustainable

tourism recovery. Sustainability 14(2):760

9. Dixon S (2022) Countries with most twitter users 2022. https://

www.statista.com/statistics/242606/number-of-active-twitter-

users-in-selected-countries. Accessed: (April 3, 2023)

10. Duan HK, Vasarhelyi MA, Codesso M, Alzamil Z (2023)

Enhancing the government accounting information systems using

social media information: An application of text mining and

machine learning. Int J Account Inf Syst 48:100600

11. Savastano M, Suciu M-C, Gorelova I, Stativă G-A (2023) How

smart is mobility in smart cities? an analysis of citizens‘ value

perceptions through ict applications. Cities 132:104071

12. Agarwal A, Toshniwal D, Bedi J, (2019) Can twitter help to

predict outcome of, Indian general election: A deep learning

based study. Joint Eur Conf Mach Learn Knowl Discov Data-

bases. Springer 2019:38–53

13. Bedi J, Toshniwal D (2022) Citenergy: a bert based model to

analyse citizens‘ energy-tweets. Sustain Cities Soc 80:103706

Table 2 Recall
Word embedding/model RECALL

0-Accident 1-Traffic 2-Potholes Macro avg Weighted avg

GloVe ? BiGRU 0.79 0.99 0.44 0.74 0.95

GloVe ? BiLSTM 0.82 0.99 0.56 0.79 0.96

FastText ? BiLSTM 0.80 0.98 0.44 0.74 0.95

Word2vec ?BiLSTM 0.82 0.99 0.56 0.79 0.96

BERT 0.79 0.98 0.44 0.74 0.95

XLNET 0.76 0.99 0.44 0.73 0.95

Proposed approach (RoBERTa) 0.79 0.99 0.6 0.79 0.96

Table 3 F1-score
Word embedding/model F1-score

0- Accident 1-Traffic 2-Potholes Macro avg Weighted avg

GloVe ? BiGRU 0.83 0.97 0.62 0.8 0.95

GloVe ? BiLSTM 0.86 0.97 0.67 0.83 0.95

FastText ? BiLSTM 0.83 0.97 0.57 0.79 0.94

Word2vec ?BiLSTM 0.88 0.98 0.67 0.84 0.96

BERT 0.83 0.97 0.62 0.8 0.94

XLNET 0.83 0.97 0.62 0.8 0.95

Proposed approach (RoBERTa) 0.85 0.98 0.75 0.86 0.96

19478 Neural Computing and Applications (2023) 35:19465–19479

123

14. Mohit B (2014) Named entity recognition. In: Natural language

processing of semitic languages. Springer, pp 221–245

15. Voutilainen A (2003) Part-of-speech tagging. In: The Oxford

handbook of computational linguistics, pp 219–232

16. Torregrossa F, Allesiardo R, Claveau V, Kooli N, Gravier G

(2021) A survey on training and evaluation of word embeddings.

Int J Data Sci Anal 11:85–103

17. Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: Pre-

training of deep bidirectional transformers for language under-

standing. arXiv preprint: arXiv:1810.04805

18. Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR (2019)

Le QV, Xlnet: generalized autoregressive pretraining for lan-

guage understanding. Adv Neural Inf Process Syst, 32

19. Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis

M, Zettlemoyer L, Stoyanov V (2019) Roberta: a robustly opti-

mized bert pretraining approach. arXiv preprint: arXiv:1907.

11692

20. Hu D, Wu J, Tian K, Liao L, Xu M, Du Y (2017) Urban air

quality, meteorology and traffic linkages: evidence from a six-

teen-day particulate matter pollution event in december 2015,

Beijing. J Environ Sci 59:30–38

21. Giuliano G, Lu Y (2021) Analyzing traffic impacts of planned

major events. Transp Res Record 2675(8):432–442

22. da Silva Barboza F, Stumpf L, Pauletto EA, de Lima CLR, Pinto

LFS, Jardim TM, Pimentel JP, Albert RP, Vivan GA (2021)

Impact of machine traffic events on the physical quality of a

minesoil after topographic reconstruction. Soil Tillage Res

210:104981

23. Ribeiro Jr. SS, Davis Jr. CA, Oliveira DRR, Meira Jr. W, Gon-

çalves TS, Pappa GL (2012) Traffic observatory: a system to

detect and locate traffic events and conditions using twitter. In:

Proceedings of the 5th ACM SIGSPATIAL international work-

shop on location-based social networks, pp 5–11

24. Gu Y, Qian ZS, Chen F (2016) From twitter to detector: real-time

traffic incident detection using social media data. Transp Res Part

C Emerg Tech 67:321–342

25. Dabiri S, Heaslip K (2019) Developing a twitter-based traffic

event detection model using deep learning architectures. Exp Syst

Appl 118:425–439

26. Albuquerque FC, Casanova MA, Lopes H, Redlich LR, de

Macedo JAF, Lemos M, de Carvalho MTM, Renso C (2016) A

methodology for traffic-related twitter messages interpretation.

Comput Ind 78:57–69

27. Essien A, Petrounias I, Sampaio P, Sampaio S (2021) A deep-

learning model for urban traffic flow prediction with traffic events

mined from twitter. World Wide Web 24(4):1345–1368

28. Alomari E, Katib I, Mehmood R (2020) Iktishaf: a big data road-

traffic event detection tool using twitter and spark machine

learning. Mobile Netw Appl, pp 1–16

29. Agarwal S, Mittal N, Sureka A (2018) Potholes and bad road

conditions: mining twitter to extract information on killer roads.

In: Proceedings of the ACM India joint international conference

on data science and management of data, pp 67–77

30. Chaturvedi N, Toshniwal D, Parida M (2019) Twitter to trans-

port: geo-spatial sentiment analysis of traffic tweets to discover

people‘s feelings for urban transportation issues. J Eastern Asia

Soc Transp Stud 13:210–220

31. Suat-Rojas N, Gutierrez-Osorio C, Pedraza C (2022) Extraction

and analysis of social networks data to detect traffic accidents.

Information 13(1):26

32. Yao W, Qian S (2021) From twitter to traffic predictor: next-day

morning traffic prediction using social media data. Transp Res

Part C Emerg Technol 124:102938

33. Milusheva S, Marty R, Bedoya G, Williams S, Resor E, Legovini

A (2021) Applying machine learning and geolocation techniques

to social media data (twitter) to develop a resource for urban

planning. PloS One 16(2):e0244317

34. Azhar A, Rubab S, Khan MM, Bangash YA, Alshehri MD, Illahi

F, Bashir AK (2022) Detection and prediction of traffic accidents

using deep learning techniques. Cluster Comput, pp 1–17

35. Deb S, Chanda AK (2022) Comparative analysis of contextual

and context-free embeddings in disaster prediction from twitter

data. Mach Learn Appl, p 100253

36. Sqlalchemy MB (2012) In: Brown A, Wilson G (eds) The

architecture of open source applications volume II: structure,

scale, and a few more fearless hacks. aosabook.org. http://aosa

book.org/en/sqlalchemy.html

37. Singh T, Kumari M (2016) Role of text pre-processing in twitter

sentiment analysis. Proc Comput Sci 89:549–554

38. Symeonidis S, Effrosynidis D, Arampatzis A (2018) A compar-

ative evaluation of pre-processing techniques and their interac-

tions for twitter sentiment analysis. Exp Syst Appl 110:298–310

39. Tarwani KM, Edem S (2017) Survey on recurrent neural network

in natural language processing. Int J Eng Trends Technol

48:301–304

40. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient esti-

mation of word representations in vector space. arXiv preprint:

arXiv:1301.3781

41. Pennington J, Socher R, Manning CD (2014) Glove: global

vectors for word representation. In: Proceedings of the 2014

conference on empirical methods in natural language processing

(EMNLP), pp 1532–1543

42. Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching

word vectors with subword information. Trans Assoc Comput

Linguist 5:135–146

43. Aggarwal CC et al (2018) Neural networks and deep learning.

Springer 10:978–3

44. Bengio Y, Goodfellow I, Courville A (2017) Deep learning, vol

1. MIT press Cambridge, MA, USA

45. Hochreiter S, Schmidhuber J (1997) Long short-term memory.

Neural Comput 9(8):1735–1780

46. Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical eval-

uation of gated recurrent neural networks on sequence modeling.

arXiv preprint: arXiv:1412.3555

47. Xu M, Zhang X, Guo L (2019) Jointly detecting and extracting

social events from twitter using gated bilstm-crf. IEEE Access

7:148462–148471

48. Prasad R, Udeme AU, Misra S, Bisallah H (2023) Identification

and classification of transportation disaster tweets using improved

bidirectional encoder representations from transformers. Int J Inf

Manage Data Insights 3(1):100154

49. Tan P-N, Steinbach M, Kumar V (2016) Introduction to data

mining. Pearson Education India

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Neural Computing and Applications (2023) 35:19465–19479 19479

123

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://aosabook.org/en/sqlalchemy.html
http://aosabook.org/en/sqlalchemy.html
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1412.3555

	Real-time traffic, accident, and potholes detection by deep learning techniques: a modern approach for traffic management
	Abstract
	Introduction
	Literature review
	Methodology
	Collection of tweets
	Pre-processing of tweets and location extraction
	Identifying the type of word-embeddings and deep learning models to be used
	Word embeddings
	Recurrent neural networks (RNNs)
	LSTM
	GRU

	Implementation details
	GloVe with bidirectional GRU
	GloVe with bidirectional LSTM
	Fast text with bidirectional LSTM
	Word2vec with bidirectional LSTM and GRU
	Bidirectional encoder representations from transformers (BERT)
	RoBERTa
	XLNET

	Results and discussion
	Conclusion
	Data availability statement
	References

