
ORIGINAL ARTICLE

Multi-objective QoS-aware optimization for deployment of IoT
applications on cloud and fog computing infrastructure

Mirsaeid Hosseini Shirvani1 • Yaser Ramzanpoor2

Received: 29 December 2021 / Accepted: 12 June 2023 / Published online: 30 June 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
Internet of Things (IoT) technology serves many industries to improve their performance. As such, utilizing far distant

cloud datacenters to run time-sensitive IoT applications has become a great challenge for the sake of real-time interaction

and accurate service delivery time requests. Therefore, the fog computing as a deployment approach of IoT applications

has been presented in the edge network. However, inefficient deployment of applications’ modules on the fog infrastructure

leads to physical resource and bandwidth dissipations, and debilitation of quality of service (QoS), and also increases the

power consumption. When all application’s modules are highly utilized on a single fog node owing to the reduction in the

power consumption, the level of service reliability is decreased. To obviate the problem, this paper takes the concept of

fault tolerance threshold into account as a criterion to guarantee applications’ running reliability. This paper formulates

deployment of IoT applications’ modules on fog infrastructure as a multi-objective optimization problem with minimizing

both bandwidth wastage and power consumption approach. To solve this combinatorial problem, a multi-objective opti-

mization genetic algorithm (MOGA) is proposed which considers physical resource utilization and bandwidth wastage rate

in their objective functions along with reliability and application’s QoS in their constraints. To validate the proposed

method, extensive scenarios have been conducted. The result of simulations proves that the proposed MOGA model has 18,

38, 9, and 43 percent of improvement against MODCS, MOGWO-I, MOGWO-II, and MOPSO in terms of total power

consumption (TPC) and it has 6.4, 15.99, 28.15, and 15.43 dominance percent against them in term of link wastage rate

(LWR), respectively.

Keyword Industrial Internet of Things (IIoT) � Fog computing � Application module deployment � Reliable deployment �
Traffic-aware deployment

1 Introduction

The modern computing and networking approaches are

rapidly extending IoT applications in miscellaneous

domains [1]. Real-time interaction and accurate service

delivery time request associated with IoT applications

make hesitation to adopt far distant cloud datacenters for

these application deployment. Many researches in recent

efforts are focusing on how to exploit edge network

capabilities for supporting IoT applications and their

requirements efficiently [1–4]. Computing nodes at the

proximity of edge network act in both filtering the gathered

data owing to sending low and condensed amount of data

volume to the cloud datacenters and for analysis and pro-

cessing of data in the vicinity where data have been per-

ceived. Therefore, the fog computing has been developed

cloud-based applications on the edge networks for exe-

cuting IoT applications. Fog computing is as a comple-

mentary facility of IoT ? Cloud scenarios comprising new

layer of collaborative devices which are capable of deliv-

ering the services and doing business missions completely

and independently. In the fog, network components like

smart gateways, micro-datacenters, routers, and switches

are considered as fog nodes utilized for processing

& Mirsaeid Hosseini Shirvani

mirsaeid_hosseini@iausari.ac.ir;

mirsaeid_hosseini@yahoo.com

1 Department of Computer Engineering, Sari Branch, Islamic

Azad University, Sari, Iran

2 Department of Computer Engineering, Qaemshahr Branch,

Islamic Azad University, Qaemshahr, Iran

123

Neural Computing and Applications (2023) 35:19581–19626
https://doi.org/10.1007/s00521-023-08759-8(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08759-8&domain=pdf
https://doi.org/10.1007/s00521-023-08759-8

objectives [2]. Inasmuch as a fog server can autonomously

process the data gathered from IoT devices without relying

on cloud datacenters, it effectively saves network band-

width usage, cloud storage space, and resource storage for

data and critical processes [3, 4]. In addition, fog com-

puting can support usage of unified cloud and edge

resources. So, it facilitates IoT application deployment near

to data sources. Therefore, it reduces network traffic load

and guarantees on-time service delivery. Although the fog

computing is the extension and development of cloud

computing, the deployment, management, and updating of

IoT applications in such layered environment make new

challenges. Firstly, fog computing works in large-scale

environment comprising a lot of number of nodes with

heterogeneous and separate processing, memory, and

storage capabilities. Secondly, the workload on each pro-

cessing node is dynamic and variable. Finally, each IoT

application has its own requirements and limitations such

as the degree of sensitivity on delay, computing require-

ment, and preserving privacy constraints. Thus, the

deployment of application modules must be properly per-

formed in the fog infrastructure; at the same time, the

application requirements along with the features of soft-

ware, hardware, bandwidth, and delay between nodes in

deployment of application modules on fog infrastructure

must be taken into consideration [5]. The smart and intel-

ligent deployment of a user’s application modules on fog

infrastructure can lead to gain the maximum amount in

power consumption reduction and efficient usage of

physical resources and bandwidth. For illustration, Fig. 1a

demonstrates when a fog node which hosts all modules of

associated an application breaks down, this user’s IoT

application does not work in which it has drastic effect on

QoS of delivery services. For this reason, the applicable

policy must be taken in an appropriate deployment of

application modules for reliable service delivery. For

instance as Fig. 1b depicts, the customer determines one

point of fault tolerance for a requested application; then,

regarding the determined amount of fault tolerance, the

minimum number of fog nodes along with meeting the QoS

for deployment of application modules must be taken into

consideration till the effect of failure of some fog nodes be

in acceptable level.

In distribution of application modules, there are several

possible mappings in which one suitable and optimal

mapping must be selected in regard to objective functions.

According to Fig. 1, in a problem with little number of

modules, there are many possible states to place modules

on available fog nodes; so, with the increase of both

application modules and the number of fog nodes and also

with regard to heterogeneous nature of fog environment,

finding an optimal solution for application module

deployment on fog infrastructure is a combinatorial

problem. This deployment issue is an NP-hard problem in

which there is not any exact solution in polynomial time

[6, 7]. Recently, several researches have been done to solve

distribution of application modules on cloud and fog

infrastructure [8–13]. A distribution algorithm of IoT

application modules on fog nodes has been done with

regard to delay sensitivity and efficient network resource

utilization [8]. Moreover, Venticinque and Amato [9] have

presented a methodology for solving fog service placement

problem which contains an optimal mappings between IoT

applications and computing resources for meeting the QoS

requirements, but the sensor requirements were neglected

in this article. An integrated fog computing platform has

been suggested in the literature to figure out dynamic

deployment of modules on fog devices [10]. In [10], to

avoid from one point of failure the modules are distributed

on more than one fog node, but the distribution mechanism

has not been elaborated. A decentralized collaborative

scheme was proposed for forwarding and placement of

modules so that it controls on centralize surveillance lim-

itations such as application management overhead, one

point of failure, residual communications, and delay in

decision-making process [14]. A general and developable

model has been published in the literature for description of

QoS-aware deployment of IoT applications over fog

computing infrastructure [15]. Although many researches

have been disseminated to solve service and module dis-

tribution, and deployment in the literature, there is a clear

lack of multi-objective QoS-aware and reliable deployment

model in the literature. To this end, this paper presents a

multi-objective QoS-aware and traffic-aware algorithm for

reliable module deployment on fog infrastructure. To har-

ness this huge search space of fog colonies, the proposed

algorithm exploits graph theory; then, it models search

space as a connected graph. It works in two phases; at first

in the preprocessing phase, it finds all full connected

graphs; it abstracts them to well-known clique problem

owing to have subgraphs with one-hop connected nodes

provided satisfying determined QoS and constraints.

Afterward, the second phase finds optimal distributed

deployment inside one of the extracted cliques in regard to

objective functions. Therefore, the main contributions of

the current paper are as follows:

• This paper defines the new parameter of ‘‘fault toler-

ance against failure’’ to guarantee the customer desired

execution reliability.

• This paper defines the ‘‘link resource wastage’’ concept

to improve the efficiency of utilizing fog node’s

bandwidth.

• This paper formulates deployment of IoT applications’

modules on fog infrastructure into a multi-objective

optimization problem with minimizing both bandwidth

19582 Neural Computing and Applications (2023) 35:19581–19626

123

wastage and power consumption approach which is an

NP-hard problem.

• This paper presents an advanced multi-objective

genetic-based optimization algorithm (MOGA) to solve

the aforementioned NP-hard combinatorial problem

with regard to minimization of both total power

consumption and bandwidth wastage perspectives along

with guarantee of user application reliability.

The proposed method has been validated in different

extensive scenarios. The gained results from simulation

show the significant dominance of suggested method in

terms of stated objectives against other state-of-the-art

approaches. The rest of the paper is organized as follows.

Section 2 is dedicated to related works. The proposed

system models and framework are placed in Sect. 3.

Problem statement is expressed in Sect. 4. The proposed

MOGA model which solves the problem of IoT application

deployment on fog platforms is presented in Sect. 5. The

proposed work is simulated and evaluated in Sect. 6. A

brief discussion is placed in Sect. 7. Section 8 concludes

this paper and indicates future direction.

2 Related works

In this section, published studies associated with service

deployment or module distribution of IoT applications in

fog computing environment are investigated regarding

different objectives and perspectives. This approach

reveals the shortcomings for paving the way for further

improvement. A mapping algorithm for module deploy-

ment of distribution applications in fog environment has

been proposed [8]. It was a network-aware approach in

which it sorts fog nodes and application modules based on

their capacity and current requests; then, the modules are

distributed providing the constraints are preserved. In other

words, proposed algorithm assigns preference on modules

based on their waiting on resources. This policy leads a

way to maximizing resource utilization for distributed IoT

applications. Furthermore, this algorithm proves that

interaction between cloud and fog yields better perfor-

mance in terms of end-to-end delay in comparison with

only cloud-based approaches. A platform as a service

(PaaS) architecture was presented for IoT application

management based on requirements during development

process so that the deployment of applications on mixing

cloud2fog scenario is facilitated [16]. A PaaS architecture

Fig. 1 Deployment of customer’s IoT application modules

Neural Computing and Applications (2023) 35:19581–19626 19583

123

that they proposed is as centralized coordinator in which it

can develop applications according to their objective

domains; it can also discover, initiate, configure, and scale

the resources exploitation and execution of application

modules, management of execution streaming between

modules, monitoring on service-level agreement (SLA),

module migration, and presenting interfaces for resource

management and components for evaluation. Development

and deployment of IoT applications were inspired from

DevOps concept propounded in [17]. The cornerstone of

this approach includes remote resource management of IoT

applications and an integrated tool for development,

deployment, and exploitation. The concentration of the

proposed approach was to guarantee the accuracy of

applications functionality once the old version is substi-

tuted by the new one. To this end, the blue–green devel-

opment patterns is used for a device and the Canary

development method is used for reliable substitution on set

of devices. With the increase in the (machine-to-machine)

M2M communication traffic, bandwidth limitation of edge

network, congestion prevention, and service delay became

a critical issue in M2M platforms. Since IoT applications

are made based on M2M platform, it is an approach pre-

sented to decrease the traffic from network to cloud and

deployment of IoT application modules on M2M platform

so that data are preprocessed before sending on network;

therefore, sent traffic is reduced. As existing M2M plat-

forms do not support automatic and dynamic module

deployment, a dynamic deployment framework has been

suggested in [18]. The main concentration was on auto-

matic and dynamic management and optimal deployment

of modules according to the user service requirements. A

methodology was presented to support developers in

solution of service placement problem in fog environment

[9]. The proposed methodology contains finding optimal

mapping between IoT applications and computing resour-

ces in regard to QoS meeting of application. In addition, an

optimal deployment configuration is presented for smart

energy ambit and response to application’s QoS, deadline

times, and throughput which must be preserved. Hong et al.

[10] have proposed an integrated fog computing platform

for dynamic module deployment on fog devices. To solve

the module deployment problem, a heuristic approach has

been suggested. In their work, users’ requests are directed

to a server and then are registered. Each request may be

split to several modules each of which can be encapsulated

by a docker or a container. After gathering a set of requests,

the server runs the algorithm of distribution modules for

generating a deployment plan of modules associated with

one request. In the following, distribution plan sends

modules of each request for deployment on to the fog

platform. The main objective was to increase the number of

satisfied requests in regard to their requirements. In

addition, for running away from one point of failure, the

modules may be distributed over more than one computing

node. An automated cloud-based IoT application deploy-

ment was presented in [19]. This paper exploits Topology

and Orchestration Specification for Cloud Applications

(TOSCA) standards, a standard for cloud service manage-

ment, for determining of systematic components and con-

figuration of IoT applications. The automatic deployment

process is done in heterogeneous IoT environment by uti-

lizing TOSCA standards. TOSCA is a new standard of

Organization for the Advancement of Structured Informa-

tion Standards (OASIS) organization so that it improves

cloud application portability in confronting with hetero-

geneous cloud environment. This standard is a model for

service structure specification and IT service management.

In addition, the conceptual of application modules’ internal

topology and IoT application deployment process are

descripted by exploiting TOSCA. Regarding aforemen-

tioned issues, the main objective of proposed model was a

clear description and interpretation of application modules

and their adaptation executing on fog nodes. Saurez et al.

published a distributed infrastructure programming inter-

face, so-called foglets, for computing chain of fog and

cloud nodes which are geographically distributed [20]. The

proposed method provides application programming

interface (APIs) for abstraction of data dependent on time

and place for storing and retrieval of data produced by

applications in local nodes and initiation of communication

between resources and computing chain. Foglets manage

the application components over fog nodes. This method

provides different algorithms for execution of application

components and management of component migrations

between fog nodes based on sensors mobility patterns and

applications’ dynamic computing requirements. Four fea-

tures are supported in Foglets. In the first stage, the auto-

matic fog computing resources are discovered in different

levels of networks hierarchy and application components

are deployed over fog computing nodes commensurate

with tolerable delay for each component. At the second

stage, it supports co-hosted multi-programming policy on

each fog node. In the third stage, it provides communica-

tion APIs for application components which are placed on

different physical layers of network hierarchy so that they

can negotiate and communicate based on their situation.

Finally, it supports adoption of delay-sensitive resources of

workload and migration dependent on time and situation

for getting over in dynamic situation awareness. Moreover,

Foglets supports QoS-aware migration in which quality

parameter is relevant to the delay between a component

and its parents in an application. To make the flexibility of

applications which their deployment topology is completed

during the elapsed time, the separation between application

components and their executions are necessary. Topology

19584 Neural Computing and Applications (2023) 35:19581–19626

123

changes in application deployment are done not only in the

time which applications are created, but also it is done in

user request pattern changes, physical infrastructure chan-

ges, and in edge network changes such as drop/add sensors

and gateways. It can also be done for the sake of evolu-

tionary changes of application business during its life

cycle. Therefore, Vogler et al. proposed a framework

entitled DIANE for generating optimal dynamic deploy-

ment topology for IoT applications commensurate with

existing physical infrastructure [21]. In this process

parameters such as the time needed for deployment, edge

device exploitation, bandwidth and execution time needed

for running the IoT applications are investigated. Mahmud

et al. propounded an approach for management of delay-

aware application modules over fog computing environ-

ment [14]. In this proposed work, different facets of delay

in distributed applications such as delay for service avail-

ability, service delivery time, and internal delay commu-

nications were considered. The aim of this policy was to

manage the time-sensitive and delay-tolerant IoT applica-

tions via different approaches in which deadline-based QoS

for all type of applications are met besides optimal resource

utilization in fog environment. For the sake of optimization

in utilizing the number of active fog nodes, the forward and

re-allocation application module strategies are used. Fur-

thermore, decentralized organizing is suggested for place-

ment and forwarding the application modules so that it gets

over on limitation of centralized surveillance such as

application management overhead, one point of failure,

residual communications, and delay in decision-making

process. Availability of suitable infrastructure and fog

application models are very important for success of

automated QoS-aware deployment in chaining of clouds to

things. Unfortunately, the most advanced tools for auto-

mated deployment of distributed software do not deal with

non-functional attributes for gaining favorite deployment.

Therefore, a simple and general model has been pro-

pounded by Brogi et al. for supporting of QoS-aware IoT

multi-component applications on fog computing infras-

tructures [15]. This model descripts the quality of opera-

tional systems associated with existing infrastructures in

terms of delay and bandwidth; interaction between soft-

ware components and things; and the business policies. In

addition, a number of algorithms have been proposed for

favorite component deployment on fog infrastructure. A

multi-objective fault-tolerant optimization algorithm based

on multi-objective cuckoo search algorithm was extended

to solve resource allocation for IoT applications deploy-

ment on fog platforms [11]. The resource allocation is done

in such a way that to decrease additional power con-

sumption and to minimize the overall latency of all

applications [11]. To meet the reliability and to avoid one

point of failure, some conditions were added in the

problem’s constraints. A multi-objective algorithm based

on multi-objective optimization PSO algorithm was

developed to solve micro-service QoS-aware placement of

IoT applications on fog computing infrastructure [12]. The

objective functions were makespan, budget satisfaction,

and network resource utilization that the proposed algo-

rithm generated solutions which make a compromise

between conflicting objectives. A reinforcement learning

heuristic algorithm was presented to solve micro-service

deployment of IoT applications on edge–cloud hybrid

environment [13]. The proposed algorithm is aware of

challenges such as heterogeneity of underlying resources,

dynamic geographical information of IoT devices to

decrease the total average of waiting time for all devices in

this hybrid complex environment.

Table 1 reviews the literature of researches and

achievement along with existing limitations in deployment

of IoT application modules on fog and cloud infrastructures

by a contrast viewpoint.

The review study reveals that there is a clear lack in

studies for considering the degree of fault tolerance in

module distribution and also for taking the coefficients of

user requested QoS during distribution and deployment of

application modules into account. Note that taking afore-

mentioned parameters into consideration has drastic impact

on system’s overall performance. Therefore, this paper

presents solutions to make a trade-off between user’s

requested requirements and system’s utilization objectives

to meet both objectives of two prominent stakeholders in

the system which are users and providers.

3 System models

This section presents system models and proposed frame-

work for the suggested IoT application deployment

scheme. For simplicity and to ease following the models,

Table 2 is used for introduction of nomenclature, notation,

and utilized parameters and symbols in this paper.

3.1 System framework

The proposed system framework is depicted in Fig. 2.

Regarding Fig. 2, a fog orchestrator component is placed

on the top of fog layer. One of the most important

responsibilities of a fog orchestrator is to select appropriate

fog nodes and deployment the IoT application modules. An

orchestrator makes decision for module deployment on

cloud or fog platforms according to application module

attributes. This orchestrator is logically centralized, but it

can be implemented with distributed fashion to prevent

single point of failure phenomenon. In the proposed

framework, the priority is to apply fog computing nodes for

Neural Computing and Applications (2023) 35:19581–19626 19585

123

Table 1 Summary of the literature review

Author(s)/

Ref

Distributed

application

User-oriented System-oriented Merit Limitations

QoS Base

Deployment

Reliable

deployment

Optimize

resource

Traffic-

aware

Energy

efficient

Taneja et al.

[8]

4 4 7 4 7 4 It supports different

network topologies

It suffers from:

– One point of failure

– How to distribute

dependent modules

over fog nodes

Yangui et al.

[16]

4 4 7 7 7 7 It provides a PaaS for

automated IoT

application module

distribution

It suffers from:

– Not supporting

optimal module

deployment

– One point of failure

Chen et al.

[18]

4 4 7 7 7 7 It takes benefit of

distribution with the

minimum delay. To

this end, it considers a

user’s distance to the

place of deployed

module

With the increase in the

number of modules,

the QoS delivery is

declined for the sake

of proposed method

limitation in

scalability. In

addition, there is no

detailed description

between module

communications.

Also, it suffers from

one point of failure

Venticinque

et al. [9]

4 4 7 4 7 7 It investigates different

situations for module

distribution on cloud,

fog, and hybrid

infrastructure models

It only considers general

module

communications, but

it does not investigate

interdependency

challenges between

modules during

distribution

Hong et al.

[10]

4 4 7 4 7 4 It distributes user

requested modules on

minimum number of

fog nodes on network

To avoid one point of

failure, it suggests to

distribute application

modules on more than

one computing node,

but it does not clarify

how to do so

Saurez et al.

[20]

4 4 7 7 7 7 Presenting a

programming

infrastructure for IoT

application’s

development and

deployment. It also

supports module

migration

Generally, it only

considers module

communications, but

it does not investigate

interdependency

challenges between

modules during

distribution

Vögler et al.

[21]

4 4 7 4 7 4 Presenting a framework

for producing optimal

deployment topology

and supporting

different IoT

application’s

topologies

Although it pays

attention to module

interdependencies, it

does not state how to

prevent delay of

dependent modules’

deployment

19586 Neural Computing and Applications (2023) 35:19581–19626

123

distribution of application modules, but the cloud data-

centers are utilized only for deployment of modules which

are not time-sensitive and are engaged for periodically

information processing. To deploy application modules,

the fog nodes are defined as fog mesh network for the sake

of communication between fog nodes. The fog mesh can be

defined as a computing pattern which differs from tradi-

tional mesh networks, but it uses mesh networks of fog

nodes such as switches and fog servers for distribution

process inside the network. Figure 2 also illustrates a high

perspective of fog mesh computing pattern. The architec-

ture of fog mesh pattern is similar to wireless mesh

network (WMN) proposed in [22], but it has its own

characteristics.

To manage the appropriate deployment of application

modules on fog nodes, a module management framework is

placed in the orchestrator component regarding system’s

performance. As Fig. 3 demonstrates, this framework has

different components. One of them is the planner compo-

nent which includes application module manager and other

components. Besides the planner, there are other compo-

nents to store and retrieve of network information and other

fog resources. The gathered information is used for appli-

cation module management and presenting a deployment

Table 1 (continued)

Author(s)/

Ref

Distributed

application

User-oriented System-oriented Merit Limitations

QoS Base

Deployment

Reliable

deployment

Optimize

resource

Traffic-

aware

Energy

efficient

Mahmud

et al. [14]

4 4 7 4 7 4 It prioritizes the time-

sensitive applications

for assigning on the

proximity resources

It does not investigate

chain of module

interdependencies

Ramzanpoor

et al. [11]

4 4 4 7 4 4 It considers the

minimum number of

processing nodes to

meet reliable

execution

It does not consider

bandwidth wastage

rate which indirectly

impacts on the overall

delivered QoS

Pallewatta

et al. [12]

4 4 7 7 4 7 It models satisfaction

budget, total execution

time, and network

resource utilization in

the fitness function

which may lead to

sustainable decision

The fitness model

ignores power

consumption

optimization which

has drastic impact on

provider’s cash flow

Chen et al.

[13]

4 4 7 7 7 7 It considers resource

heterogeneity model

which can have

efficient resource

allocation tailored

with diverse resource

requests of IoT

applications

Although the proposed

model is aware of

underlying

heterogeneity, it does

not consider all QoS

relevant to all

system’s stakeholders

Proposed

paper

4 4 4 4 4 4 – Utilizing the degree of

QoS function for

decision making in

distribution strategy

Although it is not a

drawback for

proposed approach,

the deployment

approach is fully

dependent on full-

mesh subnetworks

derived from whole

fog infrastructure

network

– Distribution of

application modules

regarding its degree of

tolerance against

faults

– Attention to

communication link

wastage rate in

module distribution

process

Neural Computing and Applications (2023) 35:19581–19626 19587

123

scheme by planner component. In the following, the

functionality of components are elaborated.

The components are enlisted and clarified as below:

Application module manager The main component which

exploits other existing components of the proposed

framework in decision-making process determining how to

deploy application modules on cloud or fog nodes. In

multi-module applications, the decision of module

deployment strongly depends on several determinants such

as accessible to the resources, network structure, QoS

requested for the application, and load balancing. The

deployment process can be done with regard to the

reduction in the power consumption and network traffic

minimization viewpoints.

Resource management This component decides based on

processing and memory capacity requirements and deploys

modules according to existing resources and objective

functions. One of the main objectives is to balance loads

over host nodes. Recall that load balancing is not a goal,

but is a technique for improving other QoS objectives such

as response time, makespan, and system throughput.

Communication management Communication significantly

incorporates in usage of fog resources that are consuming

for IoT applications. Management of IoT application

modules includes optimization in utilization of computing

resources, memory, and communications simultaneously.

Therefore, communication management component plays

vital role in this ambit. This component determines which

of the fog nodes can communicate with each other and

what is the optimal way for sharing data between different

nodes.

Resource discovery Resource discovery means to find fog

nodes which can provide information and services

requested for each module. Trustable resource discovery in

determined time frame is a challenge because the network

is large scale and susceptible to topology changes. The

gained information via this component is used for

Table 2 Introduction of nomenclature and used parameters

Notation Description Notation Description

N Number of fog nodes fni ith fog node where i = 1,…,N

Id Fog node identifier H Hardware specification of fog node

S Software specification of fog node fntype Fog node type, where type = (high, medium, low)

Rfn Resource capacity in terms of processing, memory, and

storage associated with fog node fn
sensorlist Sensors of fog node fn

B Bandwidth capacity of link L Delay of link

Bij Bandwidth between nodes i and j Lij Delay communication link between nodes i and j

dij distance between nodes i and j Costij Communication cost between nodes i and j

FPF Failure probability of fog node F nA Fog nodes serving modules of application A

UApp User application UAppi User’s ith application

Mi Number of modules in ith application FTTi Failure tolerance of ith application

Appmodlisti Module list of ith application Appmodk;i kth module of ith application

hk Requested hardware for kth module sk Requested software for kth module

mi;L Modules of ith application deployed on fog node L bij The favorite bandwidth between modules i and j

lij The favorite delay between modules i and j thrQoSscore The threshold of requested QoS for a module

rAppmod Resource capacity for requested module in terms of

processor, memory, and storage

tmn traffic between modules m and n

ScoreQoS QoS ranking calculated for a module q qth QoS parameter

aq The weight of qth QoS parameter ScoreqQoS Ranking value for qth QoS parameter in [0..1]

rq The qth (in QoS) value for requested module oq The qth (in QoS) value delivered for module

diff rq; oq
� �

The difference of qth (in QoS) value between requested and

delivered for a module

b The level of flexibility of a module in regard to qth
(in QoS) which is in [0..1] interval

xAppmod;fn A decision binary variable which shows whether module

Appmod is deployed on fog node fn or not

yfn A decision binary variable which indicates whether

fog node fn is active or not

rCPUAppmodj
CPU requirement for jth module associated with an

application App
rRAMAppmodj

RAM requirement for jth module associated with an

application App

RCPU
fni

CPU capacity of fog node fni RRAM
fni

RAM capacity of fog node fni

19588 Neural Computing and Applications (2023) 35:19581–19626

123

determining which nodes for deployment of modules to be

interacted. The decision, which planner component makes,

depends on discovered information by resource discovery

component.

FN Information This component saves all information

about a fog node such as available sensor types, informa-

tion about modules that are running on the fog node, using

of existing resources like energy, memory, and CPU. The

deployment of modules on each fog node depends on

information presented by FN information component. This

information is applied in planner component by resource

management component.

Network information This component registers all infor-

mation about the routers, neighbor fog nodes, connected

end devices, different kinds of sensors in the network, etc.

The information obtained via resource discovery compo-

nent is delivered to network information component and is

stored in its memory. The decision for module deployment

which communication management component makes in

the planner is based on the information saved in the net-

work information component.

Fig. 2 System framework based on fog mesh network

Neural Computing and Applications (2023) 35:19581–19626 19589

123

3.2 Fog and communication network models

Fog Model: In this paper, it is assumed that there are N fog

nodes heterogeneous in terms of processing and energy

capacity in the network which are capable of storing and

executions of application modules. Figure 4 depicts a

sample fog model specification. Each fog node accesses to

different kinds of sensor nodes directly or indirectly via

wired or wireless communications. Each fog node fn 2 F is

presented with a tuple id;H; S; fntype; sensorlist
� �

where

parameters id is fog node identifier, H is the hardware, S is

the software, fntype is the fog node type in terms of per-

formance, and sensorlist is the list of sensors available for

the fog node. Since the fog node’s energy consumption

Fig. 3 Application module

management framework

Fig. 4 Example of fog model specification

19590 Neural Computing and Applications (2023) 35:19581–19626

123

greatly depends on CPU power usage, the concentration on

improvement of CPU usage associated with fog nodes can

enhance both resource utilization and power consumption

[23]. Therefore, the resource utilization and performance of

fog nodes are taken into account during the process of

application module deployment. In this regard, high-per-

formance fog nodes are preferred in comparison with low-

performance nodes because each high-performance fog

node consumes relatively lower energy in comparison with

the low-performance ones although they host more work-

load to process. Note that the communication links between

two different nodes are modeled by vector (L,B) where

parameters L and B are the delay of communication link

and communication bandwidth, respectively.

Communication network model In this paper, commu-

nication network model comprises a mesh network with

connected nodes. The communication network is modeled

by a graph G = (FN, D). In this graph, FN ¼
fn1; fn2; . . .; fnNf g is a set of fog nodes and D = {dij =

distance between two fog nodes fni and fnj} is a set of

edges. In this heterogeneous model, each fog node fni is

shown by a vector fni=(idi; hi; si; sensolrlisti) where its

elements are identifier, hardware, software, and equipped

and available sensors for fog node fni, respectively. In this

regard, Fig. 5 illustrates communication network graph and

matrix in Eq. (1) is dedicated for distance between each

pair of fog nodes.

ð1Þ

Owing to the reduction in the search space and for the sake

of dependent module deployment, the full-mesh network is

initially extracted from the existing primary fog network.

In other words, all full connected subgraphs which are

abstracted to a clique problem are extracted because the

one-hop full connected networks can shorten delay for

time-sensitive applications. Then, the distance matrix value

is set via Eq. (2).

Dij ¼
0; if i ¼ j
1; else i 6¼ j

�
ð2Þ

3.3 Application model

The current applications that process big data explosion

specifically in the large scale are no longer monolithic, but

they have multi-module structure [24]. Therefore, the

applications which run on fog computing infrastructure are

a set of dependent modules incorporating to meet customer

requests. For instance, take a simple IoT application

associated with a theft alarm system for smart home which

are presented by a safety company to its customers. This

application has three different modules. As Fig. 6 depicts,

the modules are M1 (threat manager) that monitors the

environment for inception of control and intrusion alarm

once it detects; M2 (control center) for gathered data

interpretation and manual system control; and M3 (ma-

chine learning) for storing of data history and updating the

intrusion detection model to be deployed on strong fog

nodes or cloud ones.

In this regard, Fig. 6 illustrates list of hardware resources

and software capabilities requested for each module. The

relationship between modules are depicted by links which

must meet QoS constraints associated with delay and link’s

bandwidth. In addition, for on-time management of urgent

threat circumstances, a module M1must access to necessary

sensors (acoustic, motion, virtual sensor, etc.) and an actu-

ator which triggers safety mechanism. Note that this process

must be done in 10 ms from where the M1 module is

deployed to installed sensors and actuator. Furthermore, it is

expected fog and cloud nodes can remotely access to things

existing in their neighbor nodes in the network via API

proposed by fog middleware layer [2]. The problem that

must be solved for modules is how to implement three

modules so that all determined non-functional constraints on

software, hardware resources, software interactions, and

remote access to IoT are to bemet; even for a simple example

where the number of application modules are 3 and the

number of nodes in a full connection graph is 5 (3 fog nodes

and 2 cloud nodes), there are up to 50 possible deployment

options to find appropriate mapping of software modules on

fog or cloud nodes. This is because that more than one

module can be deployed on the nodes based on existing
Fig. 5 Communication network graph

Neural Computing and Applications (2023) 35:19581–19626 19591

123

resources. This is impossible for a human user to determine

favorite deployment once the infrastructure and the number

of software modules grow significantly and the search space

grows exponentially accordingly. To get thesemoduleswork

properly and also the application as a consequence, it is

necessary to meet resource requirement and requested QoS

accurately. In this paper, it is assumed that we are given a set

of R IoT applications, each of which r e R is shown by a

vector r = ðFTT ;M;AppmodlistÞ where FTT is fault toler-

ance threshold parameter (c.f. in Sect. 3.4). Each application

has M different modules where are enlisted in Appmodlist

variable. Accordingly, each module is elaborated in a vector

Appmodi=ðk; h; s; sensorlist; thrQoSscore). Note that parame-

ter thrQoSscore is used to indicate the requested QoS which

must bemet by fog node hosting the consideredmodule.User

application is modeled in the form of graph G ¼
Appmodlist; Tð Þ where Appmodlist = (Appmod1;

Appmod2; . . .;Appmodm) is module list and T = {tij| is the

amount of traffic between Appmodi and Appmodj} is set of

traffic pairs. Figure 7 demonstrates communication graph

and matrix in Eq. (3) is dedicated for traffic between each

pair of application modules.

ð3Þ

3.4 Reliability model

Assume that the fog orchestrator component receives R

execution requests from fog layer for requested applica-

tions concern to different customers. The users requested

applications are modeled by Eq. (4)

Fig. 6 Application module specifications

Fig. 7 Traffic matrix and communication network graph of applica-

tion modules

19592 Neural Computing and Applications (2023) 35:19581–19626

123

UApp ¼ UAppij0\i�Rf g ð4Þ

In this model, each user application UAppi is determined

by a specification vector which Eq. (5) shows.

UAppi ¼ FTTi;Mi;Appmodlistið Þ ð5Þ

where the parameters Mi and FTTi are used for the number

of modules and fault tolerance threshold determined for an

application UAppi. Fault tolerance threshold parameter is

the number which the customer submits to the system

along with other application’s information. In addition, as

Eq. (6) calculates, Appmodlisti specifies list of modules

concerning to ith requested application, namely

Applicationi.

Appmodlisti ¼ Appmodkj0\k�Mif g ð6Þ

where parameter Appmodk indicates kth module of an

application. This parameter is elaborated in Eq. (7).

Appmodk ¼ Appmodk 2 AppmodlistijAppmodkf
¼ k;H; S; sensorlist; thrQoSscore

� ð7Þ

The aforementioned parameters requested by a customer

are registered in fog orchestrator component. Then, the

orchestrator applies this information for decision making of

module deployment process. In this paper, we assume the

probability of simultaneously crashing more than one fog

nodes is very low. In addition, we consider crashing

probability is the same for all fog nodes. To investigate the

reliability execution of requested application on specific

fog node, it is compared with user’s submitted FTT

parameter. To do so, the average effect of fog nodes’ crash

on customer’s application is compared with the FTT

parameter submitted by a customer. To calculate the effect

amount of fog nodes’ crash on customer’s application,

Eq. (8) is dedicated [25].

FTTi ¼
XnL

L

FPL �
mi;L

Mi
ð8Þ

The parameter FTTi is dedicated for the average amount of

fault tolerance relevant to customer’s application running

on fog nodes. In this regard, FPL is the fault probabilty of

each fog node L, and mi;L is the number of modules asso-

ciated with an application UAppi deployed on fog node L.

In addition, Mi is the number of whole modules in an

application UAppi and
mi;L

Mi
is the the effect amount which an

application UAppi is affected once the fog node L is cra-

shed. Moreover, the parameter nL is used for the number of

fog nodes in the network incorporating in running an

application UAppi. If we consider the same probability of

failure for each fog node, namely FPL ¼ 1
nL
, consequently,

Eq. (6) is simplified in Eq. (9) [25].

FTTi ¼
1

nL
�
XnL

l

mi;l

Mi
¼ 1

nL
ð9Þ

As explained earlier, there is a meaningful relationship

between the fault-tolerant threshold of an application run-

ning on fog nodes and the number of underlying utilized

fog nodes. In other words, the minimum number of fog

nodes nL is needed to meet fault-tolerant threshold FTTi of

an application UAppi. Therefore, Eq. (10) indicates the

necessary number of fog nodes to meet the fault-tolerant

objective for running an application UAppi.

nL [
1

FTTi
ð10Þ

3.5 Deployment model

The problem of module deployment can be solved in both

static and dynamic fashions. As the number of fog nodes is

considered fix in a time frame, the decision for deployment of

modules is made in predetermined time window. Therefore,

the optimization deployment scheme can be periodically re-

executed to be commensurate with the dynamic nature of IoT

and fog environment. There are two stakeholders in the

system under study, namely customer and provider, each of

which has its own objectives to be met. The objectives may

have conflict, so the proposed scheme must compromise

between them. In the proposed paper to meet reliability,

which is associated with user perspective for requested

application, the minimum number of fog nodes is calculated

for module deployment. On the other hand, to minimize the

total power consumption, which is associated with provider

perspective, the modules must be distributed on calculated

fog nodes, but it is not always possible because of variable

requirement of modules, heterogeneous fog node specifica-

tion, and different constraints. So, it may utilize more fog

nodes for deployment process which not only increases

power consumption, but also increases bandwidth wastage.

Therefore, a trade-off is necessary between stakeholders’

objectives. To figure out module deployment problem, all

full-mesh networks are extracted from an initial fog network

graph in which fog nodes in extracted full mesh can meet all

requirement of requested applications in terms of delay,

bandwidth, and sensors. It is also assumed that if a sensor is

not supported for a fog node, other fog nodes can satisfy the

limitation via resources existing in extracted full-mesh

Neural Computing and Applications (2023) 35:19581–19626 19593

123

subnetwork by a single-hop connection. In this line, decision

variable dij is used to indicate whether the module Appmodi
is deployed on a fog node fnj or not. To decrease network

traffic load, the distance matrix between fog nodes in net-

work graph and traffic matrix between each pair of modules

must be calculated. Since there is a limitation in delay and

bandwidth between each communication link, the traffic rate

between modules of applications are bounded based on

communication links capacity. Therefore, Eq. (11) indicates

the communication constraint in this domain.
X

Appmodi2fnm

X

Appmodj2fnn
bij � lij\Bmn � Lmn ð11Þ

Among QoS parameters, the latency and bandwidth are

taken into consideration. QoS parameters are evaluated in

regard to the kind of modules in an application and the

distance between requested QoS by customer and presented

QoS by provider [26]. To this end, aforementioned attri-

butes of QoS are measured in Eq. (12) which finally gains a

score in interval [0..1].

ScoreQoS ¼
Xd

q¼1

aq � ScoreqQoS ð12Þ

In Eq. (12), parameters d and aq are the number of attri-

butes in QoS and the weight of qth quality attribute in whole

QoS. In addition, the score of qth quality, ScoreqQoS, is

determined in [0..1] which is calculated via Eq. (13) [27].

ScoreqQoS ¼
0 if diff rq; oq

� �
¼ 1

1 if diff rq; oq
� �

¼ 0

f diff rq; oq
� �� �

else

8
<

:

ð13Þ

where function diff rq; oq
� �

returns the difference between

requested amount of qth quality for a module (rq) and

presented amount of qth quality presented by provider (oq).

It shows that if the difference is zero, the score is one; in

case the difference is ultimate, the score is zero. For other

cases, the score is gained via the degree of satisfaction

fucntion which Eq. (14) calculates [27].

f diff rq; oq
� �� �

¼ e�diff rq;oqð Þ ð14Þ

The function diff(.,.) is calculated by Eq. (15).

where parameter b e [0..1] is used for level of flexibility

associated with a module in regard to attribute qth quality.

For instance, b = 0 means that the special service must be

completely met with high degree of obligation. In addition,

typeq e {- 1, 1} which takes 1 or - 1 according to type of

qth quality. In other words, it takes 1 for capacity-based

quality parameters and takes - 1 for time-based quality

parameters. For instance, in regard to latency parameter, if

4 ms in terms of latency is necessary for a module and the

presented latency by fog is 2 ms, then

rq � oq
� �

� typeq = (4 - 2) � -1\ 0; it means

diff rq; oq
� �

= 0 based on Eq. (15).

In deployment process, the score gained via Eq. (12)

which is the capability of fog for execution of application

modules must be greater than user determined QoS

threshold. This inequality constraint is presented in

Eq. (16) [27].

ScoreQoS � thrQoSscore ð16Þ

In addition, there are some other constraints that will be

explained in problem statement section.

4 Problem statement

As explained earlier, the static module deployment issue is

formulated to a multi-objective optimization problem with

simultaneous minimization of both link wastage rate

(LWR) and total power consumption (TPC) perspectives.

To this end, we present two objective models

mathematically.

4.1 Link wastage model

To model link wastage rate (LWR), the cost model asso-

ciated with communication of each pair of fog nodes is

calculated by Eq. (17).

Costij ¼
X

Appmodm2fni

X

Appmodn 2 fnj
fni 6¼ fnj

dij � tmn ð17Þ

Therefore, total link wastage rate is equal to sum of all

mutual traffics traded between each pair of modules dis-

tributed over fog nodes. So, the total link wastage rate is

modeled by Eq. (18).

diff rq; oq
� �

¼
1 if b ¼ 0 and rq � oq

� �
� typeq [0

� �

0 if b� 0 and rq � oq
� �

� typeq � 0
� �

rq � oq
� �

� typeq if b[0 and rq � oq
� �

� typeq [0
� �

8
<

:
ð15Þ

19594 Neural Computing and Applications (2023) 35:19581–19626

123

LinkWastageRateðUAppCostÞ ¼
X

fni2F

X

fnj 2 F
i 6¼ j

Costij ð18Þ

4.2 Power consumption model

Generally, several factors effect on total power consump-

tion of a system under study such as computation work-

loads, communication technology, amount of traded traffic,

and distance between each pair of fog nodes. To calculate

power consumption of each fog node, power consumption

relevant to running of modules on the fog nodes and the

power consumed as for information communication

between each pair fog nodes are considered. The power

consumption of each fog node directly depends on its

resource utilization [28]. Therefore, average normalized

resource utilization of a fog node fni is calculated by

Eq. (19).

Ures
fni

¼
W1:

Pfni
j

rCPUAppmodj

RCPU
fni

þW2:
Pfni

j

rRAMAppmodj

RRAM
fni

2
ð19Þ

Note that two real-valued coefficients W1 and W2, where

0 B W1 B 1, 0 B W2 B 1, and W1 ? W2 = 1, are applied

to indicate the importance of resources incorporating in

total power consumption. As the big portion of power

consumption is relevant to processing units instead of main

memory, in this paper the CPU utilization is considered for

power consumption, namely W1 = 0.9 and W2 = 0.1 [6].

So, Eq. (20) calculates the power consumption (Pres
fni
) owing

to used resources associated with each node (fni) which

hosts different modules [6, 28].

Pres
fni

¼ ð Pmax � Pminð Þ � Ures
fni

þ PminÞ ð20Þ

where parameters Pmin and Pmax are used to indicate the

minimum and maximum power consumption of each pro-

cessing node in the lowest and uppest utilization circum-

stances, respectively. In addition, a decision binary variable

yfni is applied to imply whether the processing node fni is

active or not. It is multiplied with parameter Pres
fni

in

Eq. (23). In addition, the power consumption owing to data

transfer via communication links are calculated by

Eq. (21).

Ptr
fni

¼
X

fni 6¼fnj

tAppmodm;Appmodn � Ptr ð21Þ

The parameter Ptr is used for prower consumption unit of

traffic exchanges. Note that this power is considered pro-

vided the modules are deployed on different computing

nodes. Cosequently, the total power consumption is cal-

culated via Eq. (22). The first part is for resource utiliza-

tion, whereas the second part is for traffic transfer power

cost.

Pfni ¼ Pres
fni

þ Ptr
fni

ð22Þ

4.3 Multi-objective QoS-aware optimization
deployment model

After two objective models has been defined, we formulate

module deployment problem to a multi-objective QoS-

aware optimization model. In this line, Eqs. (23–24) are

dedicated to objective functions, whereas Eqs. (25–33) are

presented to indicate problem constraints.

minTPC ¼ Min
X

fni2F
Pfni � yfni ð23Þ

minLWR ¼ Min
X

fni2F

X

fni 2 F
i 6¼ j

Costij ð24Þ

Subject to:

nL [
1

FTTk
; k ¼ 1; 2; . . .;R ð25Þ

X

Appmodm2fni

X

Appmodn2fnj
bmn � lmn\Bij � Lij ð26Þ

ScoreQoS � thrQoSscore; 8Appmod 2 UApp; fni; fnj 2 F

ð27Þ
X

Appmod2UApp
xAppmod;fni � sAppmod � Sfni ; 8fni 2 F ð28Þ

xAppmod;fni � yfni ; 8Appmod 2 UApp; fni 2 F ð29Þ
X

Appmod2UApp
xAppmod;fni � rAppmod �Rfni ; 8fni 2 F ð30Þ

X

fni2F
xAppmod;fni ¼ 1; 8Appmod 2 UApp ð31Þ

Neural Computing and Applications (2023) 35:19581–19626 19595

123

xAppmod;fni 2 0; 1f g ð32Þ

yfni 2 0; 1f g ð33Þ

Note that Eq. (28) states that available sensors must be

more than the requested number of sensors. Equation (29)

indicates that the module can be deployed on a fog node

providing it is an active node. In addition, the total

resources requested by modules deployed on a fog node

cannot exceed from its capacity; so, Eq. (30) is dedicated

to this issue. Moreover, each module should be only placed

on one fog node; so, the constraint of Eq. (31) is dedicated

to this issue. Furthermore, Eqs. (32–33) are used for two

binary decision variables indicating whether the module is

deployed on fog node and whether a fog node is active or

not, respectively.

5 Proposed MOGA for module deployment

As the stated multi-objective optimization problem is

computationally NP-hard, so finding an optimal solution of

large-scale problem is impossible in practice; therefore, we

apply a hybrid and effective approach which has two

phases to figure it out. Firstly, a heuristic algorithm is

utilized to reduce very large search space into a concise

district in short time. Secondly, this balanced search space

is given to a meta-heuristic algorithm for finding non-

dominated solutions because the problem is a multi-ob-

jective optimization and there is not any single optimal

solution to meet all objectives. To this end, we utilize

dominance concept [29]. To solve aforementioned combi-

natorial optimization problem, we engage genetic algo-

rithm (GA) although we examined several meta-heuristic

optimization algorithm. Then, we trust on genetic-based

algorithm in this project because of gained results. Since

the search space of stated problem is discrete in nature, the

GA is more flexible for customizing in discrete search

space. In multi-objective domain, famous GA-based

NSGA-II had several achievements in solving combinato-

rial studies [29]. Therefore, we customize multi-objective

GA capability in such a way to solve module deployment

problem. To do so, we conduct two operators: crossover for

exploration and mutation for exploitation. It this way, it

escapes from getting stuck in local optimal. Figure 8

depicts the block diagram of proposed algorithm. This

algorithm receives input parameters relevant to deployment

modules such as information of requested resources for

applications’ modules, communication pattern between

modules, fog infrastructure configurations, population size,

and the maximum number of iterations. Then, it outputs set

of non-dominated deployment schemes in regard to

objective functions.

In the following, encoding schema, operators, fitness

function, non-dominated sorting, and the crowding distance

concepts are elaborated and discussed.

5.1 Encoding schema

One of the most important of GA’s elements is the genes

and chromosomes concepts and how to encode the prob-

lem. There may be several encoding schemas for a single

problem each of which has its own performance; then,

proposing an efficient encoding schema has drastic impact

on overall algorithm performance [26, 30, 31]. Each

chromosome is an agent of a possible solution. In this line,

a chromosome contains |M| genes where M is the number

of modules, each of which is used for a module to be

deployed on the set of N fog nodes. This is the reason each

gene gets an integer value in [1..|N|] interval such as in

[6, 26, 32]. Figure 9 demonstrates a feasible solution

scheme.

5.2 Preprocessing

Since there exist dependencies between application’s

modules, it is necessary to select fog nodes for deployment

so that they have communication with each other and can

meet QoS requirement in network domain. Full-mesh

extraction from initial network graph, which is abstracted

to famous Clique problem, has multiple advantages; firstly,

it shortens search space for extraction of optimal deploy-

ment scheme. Secondly, if a sensor is not supported for

application’s module by a fog node, the required sensors

can be available via other fog nodes in full-mesh subnet-

work with one-hop connection. To extract full-mesh sub-

networks that can support all modules’ requirements,

Algorithm 1 is designed.

19596 Neural Computing and Applications (2023) 35:19581–19626

123

Fig. 8 Block diagram of

proposed algorithm

Neural Computing and Applications (2023) 35:19581–19626 19597

123

Algorithm 1 receives fog set specifications and returns

all full-mesh networks. It applies data structure

FullMesh_FN_SubNetworks as a vertical array in which its

every row has a linked list of elements. In the inception, all

pair of fog nodes which directly communicate with each

other are added to this data structure. In other words, at the

outset for each fog node Fi, the FullMesh_FN_SubNet-

works [Fi]. LinkedList is filled by direct fog nodes which

Fi connects with. Afterward, the algorithm plummets into

while-loop. It is iterated until the specified criteria are met.

The termination criterion is the number of desired clique

size (K). In other words, the main loop is iterated K times.

At the next rounds, for each node each row of data struc-

ture is investigated. If the node is not in the list, but is

connected to all of nodes in the list; then, this node is added

to the linked list. After each round, duplicated record is

discarded. Finally, all of full-mesh subnetworks are

returned. In this way, the search space is declined and

Fig. 9 Example for encoded of feasible solution to a chromosome

19598 Neural Computing and Applications (2023) 35:19581–19626

123

condensed to concise district. Since the effective state-

ments of Algorithm 1 are in the while-loop, its time

complexity is O (K.N2). Up now, we have several full-

mesh subnetworks, but a question arises: Which of them is

well suited for requested IoT applications’ modules? To

meet the problem constrains which have been formulated

in Eqs. (25–32), after extraction of full-mesh subnetworks,

Algorithm 2 selects number of nodes to construct target

subnetwork nodes for hosting requested modules provided

the constraints are satisfied.

In the first line of Algorithm 2, the minimum number of

requested fog nodes is determined to fulfill condition of

Eq. (25). In the second line, the minimum number of fog

nodes regarding their existing capacity and requested

resources of modules is estimated. If estimated number of

fog nodes are more than existing fog nodes, all available

fog nodes are considered for Number_of_Fog_Nodes

variable. In line 6, different full-mesh permutations with

estimated number of fog nodes are extracted from

FullMesh_FN_subNetworks via nchoosek(.) function. To

meet constraint of Eq. (26), in line 11, function Check_-

Delay_DW(.) compares minimum bandwidth and maxi-

mum delay of subnetwork in Rowi with maximum

bandwidth and minimum delay requested for modules. If it

is the case, it returns true. Lines 12–15, try to meet other

constraint of stated problem, i.e., Eq. (27). If each of

Delay_BW_Status or Check_QoS_Score returns true, the

full-mesh subnetwork is registered in Candidate_SunNet-

works and is returned as a candidate full-mesh subnetwork.

All calculation and checker functions of Algorithm 2 are

simple and belong to O (1) except for function nchoosek(.)

in line 6 and main loop in line 10 which belong to

O (N) and O (M), respectively. Therefore, Algorithm 2’s

time complexity is O (N ? M).

Neural Computing and Applications (2023) 35:19581–19626 19599

123

5.3 Initialization step

Similar to other meta-heuristic algorithms, our proposed

algorithm starts with initial population after preprocessing

phase which meets Eqs. (25–27). To this end, initial pop-

ulation is randomly produced regarding satisfying con-

straints stated in Eqs. (29–31). Note that, during the course

of algorithm running for producing possible new solutions,

some solutions violate constraints generating infeasible

solutions; this is because Algorithm 3 is proposed to repair

them for exploiting all population possibilities and capa-

bilities toward final solutions. It finds a fog node which is

overloaded; then, it selects an Appmod with minimum

dependency to other modules; then, it migrates preferably

on an active fog node which has sufficient resources to

adopt it. Afterward, this solution and related data structure

are updated.

Time complexity of Algorithm 3 is O (N.PopSize)

because two nested for-loop are the most effective

statements.

5.4 Selection strategy

There are several strategies for selection of solutions such

as roulette wheel, rank-biased, and tournament. All of them

are conducted in such a way that the fittest solution has the

high probability to be selected. Algorithm 4 is dedicated

for this issue. It firstly selects two group of solutions;

namely, one of them is from the first Pareto front and the

other is from the second Pareto front of population. Then,

one individual is randomly selected from each group.

Afterward, the one has upper crowding distance is returned

because the crowding distance indicate high potential of

searching divergence [29]. It is clear-cut that its time

complexity is O (1).

Algorithm 3. Repair Solutions

Input Parameters:
 define Fog_Data_Structure : Fog nodes status in each solution;

 define Fog_Node_List : node list taken from Algorithm 2;

 define Appmod={ | set of application modules ,i=1,..,M};

 define AppmodDataset : Application modules Specification;

 define Solutions is all solutions in a population;

 define PopSize : Population Size

Output:
 Feasible Solutions and Fog_Data_Structure

1: For Each solution in Solutions Do
2: For Each Fog node in solution as sourceFN Do
3: If sourceFN Resource overload is true Then
4: violation = true;

5: While violation is true Do
6: find Appmod with minimum dependency to other modules on

 sourceFN and migrate it to other fog node in

 Fog_Node_List with enough resource. Candidate Appmod has

 maximum dependency to modules on destination Fog node;

7: Update solution;

8: Update Fog_Data_Structure;

9: If sourceFN resource overload is false Then
10: violation = false;

11: End If
12: End While

19600 Neural Computing and Applications (2023) 35:19581–19626

123

5.5 Crossover Operator

To explore search space, crossover operator is applied to

produce new generations. Then, the new generation is

added to current population with predetermined probabil-

ity. In this line, the single-point procedure is done for

crossover. Figure 10 exemplifies a single-point crossover

application.

Algorithm 5 is presented for crossover (exploration).

It is clear-cut that its time complexity of Algorithm 5

belongs h (nCrossover) which is O (PopSize).

5.6 Mutation Operator

Mutation is applied in GA to avoid pre-saturation and early

convergence in course of execution. Despite crossover

behavior, mutation only changes one gene randomly. In

each generation, some new solutions are added to popu-

lation which was predetermined by mutation percentage

parameter. Figure 11 depicts how the mutation operator

works. In the main proposed algorithm, one chromosome is

selected as a parent by tournament method; then, two

random genes are selected for exchange in the opted par-

ent. Newborn individual is added to the population.

Algorithm 6 is dedicated to mutation operator.

Fig. 10 Application of crossover for exploration Fig. 11 Application of mutation for exploitation

Neural Computing and Applications (2023) 35:19581–19626 19601

123

It is clear-cut that its time complexity of Algorithm 6

belongs h (nMutation) which is O (PopSize).

5.7 Fitness function

Generally, one of the most important issues in evolutionary

computation is to evaluate competency of each candidate

solution. Since each solution is equivalent to one deploy-

ment scheme, the objective functions or fitness values of

Eqs. (23–24), namely total power consumption and total

link wastage rate, are calculated regarding information

derived from candidate solution. Algorithm 7 receives a

candidate solution; then, it returns two objective function

values as a result.

It is clear-cut that its time complexity of Algorithm 7 is

O (PopSize).

5.8 Non-dominated sorting

In multi-objective meta-heuristic optimization algorithm,

population evolution is gained by special strategy with the

aim of omitting inferior solutions and preserving superior

solutions. In other words, low-level solutions are gradually

discarded. In this line, dominance concept is applied and

non-dominated solutions are remained in the final result set

called Pareto set [29]. Similar to NSGA-II, our algorithm

exploits non-dominated sorting algorithm to classify indi-

viduals based on their competencies in regard to domi-

nance concept [29]. Note that all individuals in the same

class, hereafter called Frontier, do not dominate each other,

but they dominate individuals in the upper levels which are

inferior. So, the topmost Frontier belongs to the first

Frontier. Algorithm 8 calculates all Frontiers of a given

population.

19602 Neural Computing and Applications (2023) 35:19581–19626

123

Since the effective statements of Algorithm 8 are in

nested For-loop, its time complexity is O (PopSize2).

5.9 Crowding distance

In multi-objective domain, another important thing is to

how extent the solutions are scattered in search space. The

more distribution in search space, the more probability to

find better solutions. For this reason, we apply crowding

distance strategy which Algorithm 9 draws. This algorithm

avoids early convergence of solutions in course of evolu-

tionary process.

Neural Computing and Applications (2023) 35:19581–19626 19603

123

It is clear that the time complexity of Algorithm 9 is

O (PopSize. Log (PopSize)) which is mostly relevant to

sorting procedure.

5.10 Description of proposed MOGA

The problem of IoT application modules’ deployment is

solved by calling Algorithm 10. This algorithm receives

problem specifications relevant to both application and fog

infrastructure; then, it returns non-dominated solutions

regarding two defined objective functions. Firstly, it calls

Algorithm 1 to extract full-mesh subnetworks. Then,

Algorithm 2 is called to refine subnetworks in such a way

that to reach the target full-mesh subnetworks which cover

all applications requirements. In line 5 of Algorithm 10, the

random population is generated. To repair the probable

infeasible solutions, Algorithm 3 is called in line 8. To

calculate the fitness values of each individual Algorithm 7

is called in line 9. Afterward, Algorithms 8 and 9 are called

to find initial non-dominated solutions and balance them in

crowding distance. The main loop of Algorithm 10 is

started from line 13 and ends in line 33. It is iterated until

the termination criteria are met. At the outset of the main

loop, Algorithm 4 is called to select good individuals for

crossover; also, it is called for mutation. After both of

them, Algorithm 3 is run to repair probable defective

chromosomes. Then, Algorithms 8 and 9 are called to find

non-dominated solution and balance them based on

crowding distance. Since the size of population may exceed

from its initial size because of adding newborn individuals

resulting from crossover and mutation operations, selecting

the most suitable individuals is done for next round with

the same size as initial size. To do so, the selection of

individuals to consider for next round is based on solu-

tions’ rankings. It is done from the first Pareto ranking to

the worse. In case of selection in the same ranking, the ones

which have greater crowding distance value are in high

priority to be selected. Thus, the new population is ready

for the next round. Once the last iteration is done, the final

non-dominated solutions associated with the first front are

returned as a Pareto front or set of non-dominated

solutions.

19604 Neural Computing and Applications (2023) 35:19581–19626

123

Now that time complexity of all subalgorithms have

been determined, the time complexity of Algorithm 10 is

easily calculated. Its initialize phase take O (M ? K.N2). In

addition, the main loop iterates MaxIteration times. For the

main loop, we have MaxItera-

tion � (N.PopSize ? PopSize. Log(PopSize) ? PopSize2).

After simplification, its time complexity is O

(M ? K.N2 ? MaxIteration. PopSize2) which is relatively

acceptable time complexity.

6 Simulation and evaluation

To evaluate the proposed algorithm for solving IoT appli-

cation module deployment on fog computing infrastruc-

ture, we conduct extensive scenarios along with

considering two prominent criteria, i.e., total power con-

sumption and total link wastage rate. In this line, the pro-

posed algorithm is compared with different state of the art

such as MODGWO [33], MODCS [34], and MODPSO

[35] in different scenarios. Note that all comparative

algorithms associated with each scenario have been run in

the fair conditions. In this regard, all of them were run 20

Neural Computing and Applications (2023) 35:19581–19626 19605

123

times independently. Then, the comprehensive simulation

results along with descriptive statistics in terms of min,

max, average, and standard deviation (STD) values asso-

ciated with each scenario have been reported. This report

can strongly support the current proposal.

6.1 Experimental settings, datasets,
and scenarios

In this section, experimental settings, scenarios, datasets

associated with both requested applications and fog

infrastructure are presented. To this end, 12 different sce-

narios are conducted in 3 groups. In the first group, the

number of modules are fix, whereas the number of fog

nodes are gradually increased. In the second group, the

number of fog nodes are fix, whereas the number of

modules are gradually increased. Finally, in the third

group, number of both modules and fog nodes are gradu-

ally augmented. Table 3 depicts the details of different

scenarios. Note that all simulations have been executed in a

computer specified by Dual core Intel Core i3380M with

2.53 GHz clock rate, four logical processors, and 8 GB

RAM.

As fog infrastructure is ad hoc and heterogeneous in

nature, there is not abundant dataset in the literature. This

is the reason we produce our own dataset and we take its

heterogeneity into account. Fog nodes’ heterogeneity are in

terms of processing power, storage capacity, bandwidth,

delay, and power consumption as well. For instance,

Tables 4, 5, and 6 are dedicated to specification of a sample

fog network which has 10 different heterogeneous pro-

cessing nodes. Note that CPU capacity, memory, band-

width, power consumption and delay are based on GHz,

GB, Mbps, Watt, and ms units, respectively. As Table 4

shows, threshold of CPU and memory usage, minimum and

maximum of power consumption, type of supported sen-

sors, and power consumption of data transfer are com-

pletely different.

In this regard, Tables 5 and 6 are used to indicate

bandwidth and delay between each pair of fog nodes. To

make dimensionless, the values in the tables are normal-

ized in [0..1] interval. In Table 5, the zero means two nodes

do not have direct connection, but one means source and

destination are the same. Also in Table 6, the one means

two nodes do not have direct connection, but zero means

two nodes are the same.

Similar to Tables 4, 5, 6, 7, 8, and 9 are dedicated to

module specifications in terms of requested resources,

recommended bandwidth and delay between modules.

Note that the values of Tables 7, 8, and 9 have been

received from processing power and storage capacity of

fog nodes based on their architecture and existing com-

puting fog nodes such as personal digital assistant (PDA),

smart phones, and internal computers.

In addition, parameters of proposed, MODGWO,

MODCS, and MODPSO algorithms are set in such a way

Table 10 draws.

6.2 Experimental results

In this section, the result of simulations are analyzed in

three categories. To compare performance of comparative

algorithms, one of the good solutions of them in each

scenario was selected to be depicted. The illustration is

relevant to Pareto front, and status of objective functions in

each iteration along with their convergence in course of

running, the values of objective functions, and elapsed time

are utilized. Finally, at the end of this subsection, the

descriptive statistics in terms of min, max, average, and

STD values relevant to all scenarios are tabulated. As

forthcoming figures demonstrate, there are two versions for

MODGWO, i.e., MODGWO-I and MODGWO-II. In the

former, GA’s operators are applied for evolutionary pro-

cess, whereas in the latter canonical MODGWO’s opera-

tors are applied. Moreover, for geography place map of fog

nodes, random values in normal distribution are generated

Table 3 Determined Scenarios

for Simulation
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Category 1 Fog nodes # 10 15 20 25

Application modules #: 20 20 20 20

Scenario 5 Scenario 6 Scenario 7 Scenario 8

Category 2 Fog nodes # 15 15 15 15

Application modules # 20 25 30 35

Scenario 9 Scenario 10 Scenario 11 Scenario 12

Category 3 Fog nodes # 10 15 20 25

Application modules # 25 30 35 40

19606 Neural Computing and Applications (2023) 35:19581–19626

123

for fog nodes’ (X, Y) coordinates value in its network. In

addition, fog nodes’ distribution map relevant to each

scenario is depicted. In this map, the host nodes which

deploy application’s modules are placed in the map with

blue color.

Table 4 Resource specification

of fog nodes
Fog nodes 1 2 3 4 5 6 7 8 9 10

CPU 1.02 1.15 1.38 1.46 1.06 1.21 1.42 1.41 1.09 1.45

RAM 1.3 1.6 1.2 1.4 1.3 1.4 1.3 1.4 1.4 1.4

CPU_Thr 0.98 0.93 0.96 0.94 0.92 0.94 0.94 0.90 0.92 0.91

RAM_Thr 1.00 0.99 0.91 0.92 0.98 0.97 0.93 0.93 0.96 0.97

P_min 94 82 99 81 91 86 93 81 93 84

P_max 133 132 133 147 142 146 133 144 145 130

Sensor 1,2 1,2 1,2 2 1,2 1,2 1 2 1 2

P_tr 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.2 0.2

Table 5 Bandwidth

specification between each pair

of nodes

Fog nodes 1 2 3 4 5 6 7 8 9 10

1 1 0.98 0.80 0.89 0.97 0.82 0 0 0 0.87

2 0.84 1 0.82 0.94 0.92 1.00 0 0 0 0.99

3 0.93 0.94 1 0.97 0 0.97 0 0 0 0.90

4 0.88 0.92 0.91 1 1.00 0.96 0.84 0.99 0 0.85

5 0.92 0.99 0 0.90 1 0.85 0 0 0 0.82

6 0.93 0.90 0.87 0.98 0.99 1 0.89 0.90 0 0.81

7 0 0 0 0.83 0 0.96 1 0.94 0.86 0.87

8 0 0 0 0.90 0 0.96 0.94 1 0.94 0.94

9 0 0 0 0 0 0 0.84 0.87 1 0

10 0.92 0.98 0.84 0.98 0.99 0.98 0.92 0.88 0 1

Table 6 Delay specification

between each pair of nodes
Fog nodes 1 2 3 4 5 6 7 8 9 10

1 0 0.17 0.19 0.10 0.10 0.14 1 1 1 0.12

2 0.12 0 0.10 0.11 0.18 0.19 1 1 1 0.17

3 0.18 0.14 0 0.12 1 0.15 1 1 1 0.13

4 0.16 0.19 0.14 0 0.14 0.19 0.18 0.13 1 0.18

5 0.11 0.14 1 0.16 0 0.11 1 1 1 0.11

6 0.12 0.17 0.11 0.20 0.13 0 0.12 0.15 1 0.18

7 1 1 1 0.15 1 0.13 0 0.12 0.14 0.18

8 1 1 1 0.15 1 0.15 0.10 0 0.10 0.12

9 1 1 1 1 1 1 0.18 0.11 0 1

10 0.12 0.10 0.12 0.18 0.17 0.11 0.18 0.16 1 0

Table 7 Specification of

requested resources for

applications’ modules

Application modules 1 2 3 4 5 6 7 8 9 10

CPU 0.15 0.19 0.24 0.26 0.29 0.25 0.22 0.16 0.26 0.16

RAM 0.2 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.1 0.2

Sensor 1 1 2 2 2 1.2 1.2 1.2 1 1.2

ThrQosScore 0.75 0.8 0.9 1 0.84 0.95 0.77 0 0 0

Neural Computing and Applications (2023) 35:19581–19626 19607

123

6.2.1 First category: the number of fog nodes is variable
and the number of modules is fixed

In this subsection, four different scenarios are investigated.

Figure 12 demonstrates performance comparison of dif-

ferent algorithms for solving the first scenario, in a plat-

form containing 10 fog nodes with 20 requested modules

when FTT parameter is 0.24. In regard to FTT parameter, at

least 5 fog nodes are needed for module deployment. The

best so far solution is to select node numbers 2, 4, 6, 8, and

10 which our proposed algorithm determined. Figure 12a

compares Pareto fronts associated with different algo-

rithms; as it shows, our proposed algorithm outperforms

against others regarding the quality and number of finding

non-dominated solutions. Figure 12b, c shows that pro-

posed algorithm beats others in terms of two objective

functions with the increase of iterations. In this line, the

best results are depicted in Fig. 12d, e which proves

dominance of proposed algorithm. In addition, our best so

far plan is depicted in Fig. 12.

Furthermore, the average elapsed time of different

algorithms are compared in Table 11. In contrast to other

algorithms, our algorithm has favorite time elapsed.

Figure 13 illustrates performance comparison of differ-

ent algorithms for solving the second scenario, in a plat-

form containing 15 fog nodes with 20 requested modules

when FTT parameter is 0.24. In regard to FTT parameter, at

least 5 fog nodes are needed for module deployment. The

best so far solution is to select node numbers 4, 10, 12, 14,

and 15 which our proposed algorithm determined. Fig-

ure 13a compares Pareto fronts concern to different algo-

rithms; as it draws, our proposed algorithm has dominance

against others regarding the quality and number of finding

non-dominated solutions. Figure 13b, c indicates that pro-

posed algorithm has better results against others in terms of

two objective functions with the increase of iterations. In

this line, the best results are depicted in Fig. 13d, e. Fig-

ure 13d proves dominance of proposed algorithm in terms

of the best result of the first objective function, but Fig. 13e

shows that our algorithm is marginally in the third place

Table 8 Specification of

bandwidth recommended for

applications’ modules

Application

modules

1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0.20 0.29 0.20 0.34

2 0 1 0.33 0 0.32 0.35 0.31 0.35 0 0.25

3 0 0 1 0.31 0.20 0.21 0.27 0.23 0 0.31

4 0 0 0 1 0.39 0.23 0 0 0.40 0.33

5 0 0 0 0 1 0.31 0 0.24 0.27 0

6 0 0 0 0 0 1 0 0.37 0 0.22

7 0 0 0 0 0 0 1 0.22 0.30 0.36

8 0 0 0 0 0 0 0 1 0 0

9 0 0 0 0 0 0 0 0 1 0

10 0 0 0 0 0 0 0 0 0 1

Table 9 Specification of delay

recommended for applications’

modules

Application

modules

1 2 3 4 5 6 7 8 9 10

1 0 1 1 1 1 1 0.26 0.28 0.20 0.23

2 0 0 0.20 1 0.28 0.25 0.24 0.28 1 0.25

3 0 0 0 0.24 0.21 0.26 0.29 0.22 1 0.21

4 0 0 0 0 0.20 0.22 1 1 0.23 0.24

5 0 0 0 0 0 0.24 1 0.30 0.26 1

6 0 0 0 0 0 0 1 0.21 1 0.23

7 0 0 0 0 0 0 0 0.28 0.28 0.23

8 0 0 0 0 0 0 0 0 1 1

9 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 0 0 0 0

19608 Neural Computing and Applications (2023) 35:19581–19626

123

after MODGWO-I and MODCS in terms of the best of

second objective function. In addition, our best so far plan

is drawn in Fig. 13f.

In addition, the average elapsed time of different algo-

rithms are compared in Table 12. In regard to elapsed time,

two algorithms MODPSO and MODCS have the shortest

value, but in regard to overall objective functions all of

them fall behind to our proposed algorithm.

Figure 14 demonstrates performance comparison of

different algorithms for solving the third scenario, in a

platform containing 20 fog nodes with 20 requested mod-

ules when FTT parameter is 0.2. In regard to FTT param-

eter, at least 5 fog nodes are needed for module

deployment. The best so far solution is to select node

numbers 2, 5, 10, 12, and 14 which our proposed algorithm

determined. Figure 14a compares Pareto fronts associated

with different algorithms; as it proves, our proposed algo-

rithm outperforms against others regarding the quality and

number of finding non-dominated solutions. Figure 14b, c

shows that proposed algorithm beats others in terms of two

objective functions with the increase of iterations. In

addition, the best results depicted in Fig. 14d, e prove

dominance of proposed algorithm. In addition, our best so

far plan is depicted in Fig. 14f.

In addition, the average elapsed time of different algo-

rithms are compared in Table 13. In regard to elapsed time,

MODPSO has the shortest value, but in regard to overall

objective functions our proposed algorithm is in the first

place.

Figure 15 shows the performance comparison of dif-

ferent algorithms for solving the fourth scenario, in a

platform containing 25 fog nodes with 20 requested mod-

ules when FTT parameter is 0.2. In regard to FTT param-

eter, at least 5 fog nodes are needed for module

deployment. The best so far solution is to select node

numbers 3, 8, 12, 13, and 15 which our proposed algorithm

determined. Figure 15a compares Pareto fronts relevant to

different algorithms; as it indicates, our proposed algorithm

beats others regarding the quality and number of finding

non-dominated solutions. Figure 15b, c indicates that pro-

posed algorithm outperforms against others in terms of two

objective functions with the increase of iterations. In this

line, the best results are illustrated in Fig. 15d, e which

proves dominance of proposed algorithm. In addition, our

best so far plan is depicted in Fig. 15f.

In addition, elapsed time comparison of different algo-

rithms which is placed in Table 14 proves that our pro-

posed algorithm has better performance in terms of

execution time.

Table 10 Parameter settings of algorithms selected for comparison

Algorithms Specific parameters Number of objective Population size Max iterations

MOGA Crossover Percentage: 0.7 2 100 100

Mutation Percentage: 0.4

MODGWO Archive size: 100 Alpha: 0.1

nGrid: 10 Beta: 4

Gamma: 2

MODCS Pa: 0.25

MODPSO nGrid: 20 W: 0.4

maxvel: 5 C1: 2

u_mut: 0.5 C2: 2

Alpha: Grid inflation parameter

Beta: Leader selection pressure parameter

maxvel: Maximum velocity in percentage (search space percentage)

Gamma: Extra repository member selection pressure

u_mut: Uniform mutation percentage

Archive size: Repository size

W: Inertia weight

nGrid: Number of grids per each dimension

C1: Individual confidence factor

Pa: Discovery rate of alien eggs/solutions

C2: Swarm confidence factor

Neural Computing and Applications (2023) 35:19581–19626 19609

123

6.2.2 Second category: the number of fog nodes is fixed
and the number of modules is variable

In this subsection, four scenarios numbered 5 through 8 are

investigated. Figure 16 demonstrates performance com-

parison of different algorithms for solving the fifth sce-

nario, in a platform containing 15 fog nodes with 20

requested modules when FTT parameter is 0.24. Note that

in our simulations there may be similar scenarios, but the

values used in datasets are completely different. For

instance, the fifth scenario is similar to second one, but the

data are different. Anyway, in regard to FTT parameter in

fifth scenario, at least 5 fog nodes are needed for module

deployment. The best so far solution is to select node

numbers 2, 3, 5, 7, and 8 which our proposed algorithm

determined. Figure 16a compares Pareto fronts associated

with different algorithms; as it shows, our proposed algo-

rithm significantly outperforms against others regarding the

quality and number of finding non-dominated solutions.

Figure 16b, c also shows that proposed algorithm beats

others in terms of two objective functions with the increase

of iterations. In this line, the best results are depicted in

Fig. 16d, e which proves dominance of proposed

Fig. 12 Simulation results of a scenario in a platform containing 10 fog nodes with 20 requested modules

Table 11 Average elapsed time comparison of studies for a scenario in a platform containing 10 fog nodes with 20 requested modules

MOGA: 240.67 s MODGWO-I: 876.99 s MODPSO: 213.91 s

MODCS: 242.07 s MODGWO-II: 266.67 s

19610 Neural Computing and Applications (2023) 35:19581–19626

123

algorithm. In addition, our best so far plan is depicted in

Fig. 16f.

In addition, elapsed time comparison of different algo-

rithms which is placed in Table 15 proves that our pro-

posed algorithm has better performance in terms of

execution time.

Figure 17 depicts performance comparison of different

algorithms for solving the sixth scenario, in a platform

containing 15 fog nodes with 25 requested modules when

FTT parameter is 0.24. In regard to FTT parameter, at least

5 fog nodes are needed for module deployment. The best so

far solution is to select node numbers 1, 2, 3, 4, 9, and 13

which our proposed algorithm determined. Figure 17a

compares Pareto fronts related to different algorithms; as it

shows, our proposed algorithm outperforms against others

regarding the quality and number of finding non-dominated

solutions. Figure 17b shows that proposed algorithm is

marginally in the third place after two competing MODCS

and MODPSO algorithm in terms of first objective func-

tion, but Fig. 17c indicates our proposed algorithm and

MODCS, which having near results, beat others in terms of

second objective functions with the increase of iterations.

In this line, the best results are depicted in Fig. 17d, e

which proves dominance of proposed algorithm. In addi-

tion, our best so far plan is depicted in Fig. 17f.

Fig. 13 Simulation results of a scenario in a platform containing 15 fog nodes with 20 requested modules

Table 12 Average elapsed time comparison of studies for a scenario in a platform containing 15 fog nodes with 20 requested modules

MOGA: 268.22 s MODGWO-I: 968.46 s MODPSO: 225.21 s

MODCS: 242.92 s MODGWO-II: 272.28 s

Neural Computing and Applications (2023) 35:19581–19626 19611

123

In addition, elapsed time comparison of different algo-

rithms is placed in Table 16. Although our proposed

algorithm is ranked in second place after MODCS in terms

of execution time, our proposed algorithm has better per-

formance in terms of objective functions.

Figure 18 demonstrates performance comparison of

different algorithms for solving the seventh scenario, in a

platform containing 15 fog nodes with 30 requested mod-

ules when FTT parameter is 0.21. In regard to FTT

parameter, at least 5 fog nodes are needed for module

deployment. The best so far solution is to select node

numbers 3, 7, 8, 9, 10, and 15 which our proposed algo-

rithm determined. Figure 18a compares Pareto fronts

associated with different algorithms; as it shows, our pro-

posed algorithm outperforms against others regarding the

quality and number of finding non-dominated solutions.

Figure 18b shows that proposed algorithm beats others in

terms of first objective function, but Fig. 18c indicates our

proposed algorithm after MODCS, which having near

results, beat others in terms of second objective functions

with the increase of iterations. In this line, the best results

are depicted in Fig. 18d, e which proves dominance of

proposed algorithm against others in terms of the first

objective and second place after MODCS in second

objective. In addition, our best so far plan is depicted in

Fig. 18f.

Fig. 14 Simulation results of a scenario in a platform containing 20 fog nodes with 20 requested modules

Table 13 Average elapsed time comparison of studies for a scenario in a platform containing 20 fog nodes with 20 requested modules

MOGA: 240.62 s MODGWO-I: 1162.5 s MODPSO: 219.86 s

MODCS: 248.63 s MODGWO-II: 288.12 s

19612 Neural Computing and Applications (2023) 35:19581–19626

123

In addition, elapsed time comparison of different algo-

rithms is placed in Table 17 which has similar result in

comparison to previous scenario. Although our proposed

algorithm is ranked in the second place after MODCS in

terms of execution time, our proposed algorithm has better

performance in terms of objective functions.

Figure 19 demonstrates performance comparison of

different algorithms for solving the eighth scenario, in a

platform containing 15 fog nodes with 35 requested mod-

ules when FTT parameter is 0.23. In regard to FTT

parameter, at least 5 fog nodes are needed for module

deployment. The best so far solution is to select node

numbers 1, 2, 9, 10, 11, 12, 13, and 14 which our proposed

algorithm determined. Figure 19a compares Pareto fronts

associated with different algorithms; as it shows, our pro-

posed algorithm outperforms against others regarding the

quality and number of finding non-dominated solutions.

Figure 19b shows that proposed algorithm beats others in

terms of first objective function, but Fig. 19c indicates our

proposed algorithm after MODCS, which having near

results, beat others in terms of second objective functions

with the increase of iterations. In this line, the best results

are depicted in Fig. 19d, e which proves dominance of

proposed algorithm against others in terms of both objec-

tive functions. In addition, our best so far plan is depicted

in Fig. 19f.

Fig. 15 Simulation results of a scenario in a platform containing 25 fog nodes with 20 requested modules

Table 14 Average elapsed time comparison of studies for a scenario in a platform containing 25 fog nodes with 20 requested modules

MOGA: 262.75 s MODGWO-I: 982.53 s MODPSO: 241.54 s

MODCS: 273.01 s MODGWO-II: 311.69 s

Neural Computing and Applications (2023) 35:19581–19626 19613

123

In addition, elapsed time comparison of different algo-

rithms is placed in Table 18 which has similar result in

comparison with the previous scenario. Although our pro-

posed algorithm is ranked in second place after MODCS in

terms of execution time, our proposed algorithm has better

performance in terms of objective functions.

6.2.3 Third category: the number of fog nodes is variable
and the number of modules is variable

In this subsection, four other scenarios numbered 9 through

12 are investigated. In this line, Fig. 20 depicts

performance comparison of different algorithms for solving

the ninth scenario, in a platform containing 10 fog nodes

with 25 requested modules when FTT parameter is 0.19.

Note that in our simulations there may be similar scenarios,

but the values used in datasets are completely different. For

instance, the tenth scenario is similar to seventh one, but

the data are different. Anyway, in regard to FTT parameter

in fifth scenario, at least 6 fog nodes are needed for module

deployment. The best so far solution is to select node

numbers 1, 2, 4, 6, 9, and 10 which our proposed algorithm

determined. Figure 20a compares Pareto fronts associated

with different algorithms; as it illustrates, our proposed

Fig. 16 Simulation results of a scenario in a platform containing 15 fog nodes with 20 requested modules

Table 15 Average elapsed time comparison of studies for a scenario in a platform containing 15 fog nodes with 20 requested modules

MOGA: 240.43 s MODGWO-I: 926.41 s MODPSO: 219.84 s

MODCS: 250.48 s MODGWO-II: 280.72 s

19614 Neural Computing and Applications (2023) 35:19581–19626

123

algorithm significantly outperforms against others regard-

ing the quality and number of finding non-dominated

solutions. Figure 20b, c also shows that proposed algorithm

beats others in terms of two objective functions with the

increase of iterations. In this line, the best results are

depicted in Fig. 20d, e which proves dominance of pro-

posed algorithm. In addition, our best so far plan is

depicted in Fig. 20f.

In addition, the average elapsed time of different algo-

rithms are compared in Table 19. In contrast to other

algorithms, our algorithm has favorite time elapsed.

Figure 21 depicts performance comparison of different

algorithms for solving the tenth scenario, in a platform

containing 15 fog nodes with 30 requested modules when

FTT parameter is 0.18. In regard to FTT parameter in tenth

scenario, at least 6 fog nodes are needed for module

deployment. The best so far solution is to select node

numbers 1, 3, 6, 8, 9, and 13 which our proposed algorithm

determined. Figure 21a compares Pareto fronts associated

with different algorithms; as it illustrates, our proposed

algorithm significantly outperforms against others regard-

ing the quality and number of finding non-dominated

solutions. Figure 21b, c also shows that proposed algorithm

beats others in terms of two objective functions with the

increase of iterations. In this line, the best results are

depicted in Fig. 21d, e which proves dominance of

Fig. 17 Simulation results of a scenario in a platform containing 15 fog nodes with 25 requested modules

Table 16 Average elapsed time comparison of studies for a scenario in a platform containing 15 fog nodes with 25 requested modules

MOGA: 324.74 s MODGWO-I: 1105.6 s MODPSO: 279.88 s

MODCS: 424.28 s MODGWO-II: 353.12 s

Neural Computing and Applications (2023) 35:19581–19626 19615

123

proposed algorithm. In addition, our best so far plan is

depicted in Fig. 21f.

In addition, the average elapsed time of different algo-

rithms are compared in Table 20. In contrast to other

algorithms, our algorithm has favorite time elapsed.

Figure 22 illustrates performance comparison of differ-

ent algorithms for solving the eleventh scenario, in a

platform containing 20 fog nodes with 35 requested mod-

ules when FTT parameter is 0.24. In regard to FTT

parameter in tenth scenario, at least 5 fog nodes are needed

for module deployment. The best so far solution is to select

node numbers 1, 4, 8, 10, 15, 17, and 18 which our pro-

posed algorithm determined. Figure 22a compares Pareto

fronts associated with different algorithms; as it illustrates,

our proposed algorithm significantly outperforms against

others regarding the quality and number of finding non-

dominated solutions. Figure 22b, c also shows that pro-

posed algorithm beats others in terms of two objective

functions with the increase of iterations. In this line, the

best results are depicted in Fig. 22d, e which proves

dominance of proposed algorithm. In addition, our best so

far plan is depicted in Fig. 22f.

Fig. 18 Simulation results of a scenario in a platform containing 15 fog nodes with 30 requested modules

Table 17 Average elapsed time comparison of studies for a scenario in a platform containing 15 fog nodes with 30 requested modules

MOGA: 397.91 s MODGWO-I: 1297.5 s MODPSO: 317.68 s

MODCS: 344.86 s MODGWO-II: 353.7 s

19616 Neural Computing and Applications (2023) 35:19581–19626

123

In addition, the average elapsed time of different algo-

rithms are compared in Table 21. In contrast to other

algorithms, our algorithm has favorite time elapsed.

Figure 23 illustrates performance comparison of differ-

ent algorithms for solving the twelfth scenario, in a plat-

form containing 25 fog nodes with 40 requested modules

when FTT parameter is 0.20. In regard to FTT parameter in

tenth scenario, at least 5 fog nodes are needed for module

deployment. The best so far solution is to select node

numbers 1, 5, 6, 13, 14, 17, 18, 19, 20, and 25 which our

proposed algorithm determined. Figure 23a compares

Pareto fronts associated with different algorithms; as it

illustrates, our proposed algorithm significantly outper-

forms against others regarding the quality and number of

finding non-dominated solutions. Figure 23b shows that

after MODCS, the proposed algorithm beats others in terms

of first objective function, whereas Fig. 23c shows that

proposed algorithm beats others in terms of second

objective functions with the increase of iterations. In this

line, average results are depicted in Fig. 23d, e which

proves dominance of proposed algorithm. In addition, our

best so far plan is depicted in Fig. 23f.

Fig. 19 Simulation results of a scenario in a platform containing 15 fog nodes with 35 requested modules

Table 18 Average elapsed time comparison of studies for a scenario in a platform containing 15 fog nodes with 35 requested modules

MOGA: 515.6 s MODGWO-I: 1602.7 s MODPSO: 421.00 s

MODCS: 445.48 s MODGWO-II: 407.33 s

Neural Computing and Applications (2023) 35:19581–19626 19617

123

In addition, the average elapsed time of different algo-

rithms are compared in Table 22. In contrast to other

algorithms, our algorithm has favorite time elapsed.

To closer look and to have better analysis for evaluation

of comparative algorithms in different scenarios, the

descriptive statistics gives supportive information. To this

end, Tables 23, 24, 25, 26, 27, and 28 are dedicated.

Table 23 shows the min andMax values associated with the

first objective (TPC) gained from simulation results in

different scenarios. Note that the min and Max values of

proposed MOGA is less than others in terms of TPC as the

first objective function.

Table 24 shows the min and Max values associated with

the second objective (LWR) gained from simulation results

in different scenarios. Note that the min and Max values of

proposed MOGA is less than others in terms of LWR as the

second objective function except for some cases for lower

search space that MOPSO is better.

Table 25 compares the average values of different

algorithm in terms of the first objective function along with

relative percentage deviation (RPD) [7]. As Table 25

shows, the proposed MOGA has the best average value. In

addition, the improvement of the proposed MOGS against

other state of the art is separately reported.

Fig. 20 Simulation results of a scenario in a platform containing 10 fog nodes with 25 requested modules

Table 19 Average elapsed time comparison of studies for a scenario in a platform containing 10 fog nodes with 25 requested modules

MOGA: 261.69 s MODGWO-I: 1197.1 s MODPSO: 284.04 s

MODCS: 277.99 s MODGWO-II: 304.84 s

19618 Neural Computing and Applications (2023) 35:19581–19626

123

Table 26 compares the average values of different

algorithm in terms of the second objective function along

with relative percentage deviation (RPD). As Table 26

shows, the proposed MOGA has the best average value. In

addition, the improvement of the proposed MOGS against

other state of the art is separately reported.

To prove the convergence of comparative algorithms,

the STD value for both objective functions are brought in

Tables 27 and 28, respectively.

The lowest STD value of proposed MOGA in both

objective function associated with all scenarios proves the

high rate of convergence and low data skewness.

7 Discussion

In the fog systems, there are two prominent stakeholders

which are service providers and resource requesters. Each

stakeholder needs to meet their requirement based on its

business objectives. One of the most important issues in the

reduction in the providers’ capital expenditure (CAPEX) is

associated with power management [32], the reason why

the first objective of the current paper is to minimize the

TPC during the IoT applications’ deployment. Secondly,

the IoT applications are typically wireless and their per-

formance are strongly dependent on the common

Fig. 21 Simulation results of a scenario in a platform containing 15 fog nodes with 30 requested modules

Table 20 Average elapsed time comparison of studies for a scenario in a platform containing 15 fog nodes with 30 requested modules

MOGA: 288.78 s MODGWO-I: 1503.2 s MODPSO: 294.17 s

MODCS: 327.15 s MODGWO-II: 392.15 s

Neural Computing and Applications (2023) 35:19581–19626 19619

123

bandwidth usage the reason why the second objective of

this paper is to minimize total bandwidth wastage rate. On

the other side, the users eventually release cloud/fog ser-

vice providers which deliver unreliable service provision-

ing [36]; so, the minimum number of processing nodes

which meet the least reliability execution of IoT applica-

tions are considered in the constraints of the proposed

model. To solve this combinatorial problem, the MOGA

model was proposed which takes benefit of several novel

operators each of which is exploited in timely manner. The

new utilized operators improve the quality of produced

solutions. Firstly, it applies the new efficient selection

strategy that works better than existing tournament, roulette

wheel, and rank-biased strategies. The single-point cross-

over and random mutation is utilized similar to multi-ob-

jective genetic presented by Hosseini et al. in [6]. Also, the

crowding distance procedure is customized based on the

stated problem (c.f. in Algorithm 9) to produce randomly

diverse solutions which contingently lead to efficient

solutions. One important novelty of the current solution is

to apply two heuristic algorithms 1 and 2 as preprocessing

by incorporating the clique concept from graph theory

which accurately confines the search space and increase the

convergence speed. To evaluate the performance of the

Fig. 22 Simulation results of a scenario in a platform containing 20 fog nodes with 35 requested modules

Table 21 Average elapsed time comparison of studies for a scenario in a platform containing 20 fog nodes with 35 requested modules

MOGA: 323.22 s MODGWO-I: 1466.9 s MODPSO: 338.04 s

MODCS: 366.72 s MODGWO-II: 404.11 s

19620 Neural Computing and Applications (2023) 35:19581–19626

123

proposed MOGA model against other state-of-the-art

MODCS, MOGWO-I, MOGWO-II, and MOPSO, 12

extensive scenarios were conducted. All of the aforemen-

tioned state of the art were customized based on the stated

problem and have been run on the same platform and

datasets with the same conditions to reach fair results and

comparisons. The result of extensive simulations proves

that the proposed MOGA model has 18, 38, 9, and 43

percent of improvement against MODCS, MOGWO-I,

MOGWO-II, and MOPSO in terms of TPC and it has 6.4,

15.99, 28.15, and 15.43 dominance percent against them in

terms of LWR, respectively. In terms of real run time, the

average execution times of MODCS, MOGWO-I,

MOGWO-II, MOPSO, and proposed MOGA models in all

12 scenarios are, respectively, 341.32, 1236.70, 342.87,

293.61, and 323.49 s. Although the convergence speed of

MOGA model in solving the stated multi-objective opti-

mization problem is marginally in the second ranking after

MOPSO, the closer look in the quality of generated solu-

tions in terms of objective functions shows that the MOGA

model beats others. Consequently, it is worth mentioning

that the quality of solutions generated by MOGA model is

acceptable in comparison with other models with over-

looking the little bit slow convergence in regarding

MOPSO model.

8 Conclusion and future direction

This paper focused on problem of application module

deployment on cloud and fog nodes with regard to two

prominent stakeholders’ viewpoints, namely users and

Fig. 23 Simulation results of a scenario in a platform containing 25 fog nodes with 40 requested modules

Table 22 Average elapsed time comparison of studies for a scenario in a platform containing 25 fog nodes with 40 requested modules

MOGA: 517.25 s MODGWO-I: 1750.5 s MODPSO: 468.13 s

MODCS: 652.26 s MODGWO-II: 479.67 s

Neural Computing and Applications (2023) 35:19581–19626 19621

123

providers. For users viewpoints, the QoS and reliability are

the most relevant objectives and for providers the power

consumption is one of the most concerns. This is the reason

this paper formulates the IoT application deployment

modules to a multi-objective QoS-aware reliable opti-

mization problem with minimization of total energy con-

sumption and total link wastage rate inclination. To solve

this combinatorial problem, a multi-objective genetic

algorithm (MOGA) has been presented. To validate the

proposed GA-based algorithm, extensive scenarios were

conducted. It was evaluated against some other compara-

tive state of the art in different scenarios. The analysis and

assessment were based on descriptive statistics, namely

min, Max, average and STD values to support the simula-

tion results. The simulation results gained from extensive

scenarios prove the superiority of proposed algorithm in

terms of prominent evaluation parameters along with

analysis of descriptive statistics. Totally in all 12 scenarios

on average, the proposed MOGA model beats other com-

paratives models with the amount of 27 and 16.49%

Table 23 Obtained range of TPC value in terms of minimum and maximum associated with different algorithms

Min–Max

Scenarios FN Appmod TPC

MODCS MOGWO-I MOGWO-II MOPSO MOGA

Category 1 10 20 589.28–590.97 588.29–590.94 593.75–595.08 590.44–592.34 588.32–589.54

15 20 596.36–602.44 599.98–604.84 606.766–611.70 600.83–604.91 595.79–599.81

20 20 595.59–600.12 598.75–602.26 602.31–605.78 595.24–602.20 595.25–598.39

25 20 580.82–583.65 580.68–583.04 586.45–589.95 580.97–583.39 580.19–581.94

Category 2 15 20 591.57–593.74 592.12–594.27 595.24–597.51 592.96–594.93 591.09–592.99

15 25 689.53–693.33 689.36–694.40 694.42–696.37 691.03–695.57 689.67–691.83

15 30 728.49–733.58 732.76–735.98 734.25–739.72 732.63–736.70 728.43–731.89

15 35 957.56–961.41 961.01–962.69 959.24–963.54 959.67–961.61 957.44–958.93

Category 3 10 25 694.93–701.28 693.56–701.99 701.701–705.24 694.25–701.46 693.36–696.96

15 30 758.03–761.90 760.48–763.72 762.70–767.80 762.05–765.50 755.61–759.42

20 35 879.16–884.27 879.01–883.20 884.71–887.92 881.43–886.25 878.76–881.61

25 40 1198.28–1200.93 1199.54–1202.03 1199.41–1201.03 1199.54–1201.75 1195.20–1197.01

Table 24 Obtained range of

LWR value in terms of

minimum and maximum

associated with different

algorithms

Min–Max

Scenarios FN Appmod LWR

MODCS MOGWO-I MOGWO-II MOPSO MOGA

Category 1 10 20 0.84–1.09 0.84–1.14 1.24–1.49 0.78–1.14 0.81–1.02

15 20 0.87–1.15 0.92–1.36 1.27–1.61 1.03–1.24 0.82–0.97

20 20 0.76–1.12 1.15–1.41 1.16–1.69 0.99–1.27 0.73–1.01

25 20 0.98–1.2 1.1–1.37 1.36–1.62 1.08–1.36 0.84–1.07

Category 2 15 20 1.86–2.16 2.05–2.31 2.51–2.84 1.98–2.22 1.8–2.04

15 25 0.83–0.85 0.85–0.88 0.95–1.15 0.85–0.88 0.82–0.83

15 30 1.25–1.47 1.57–1.92 2.07–2.26 1.76–2.04 1.21–1.36

15 35 2.95–3.07 3–3.17 2.98–3.16 3.06–3.2 2.89–3.01

Category 3 10 25 2.55–2.91 2.37–2.74 3.16–3.66 2.34–2.89 2.31–2.7

15 30 1.21–1.68 1.72–2.15 1.67–2.44 1.62–2.02 1.11–1.5

20 35 1.8–2.07 1.92–2.21 2.05–2.38 1.89–2.27 1.7–1.94

25 40 2.68–3 2.89–3.06 2.86–3.07 2.94–3.16 2.6–2.79

19622 Neural Computing and Applications (2023) 35:19581–19626

123

improvement, respectively, in terms of TPC and LWR as

two prominent objective functions. Except for the MOPSO

model which delivers poor results, the proposed MOGA

model returns more efficient solutions quicker than others

in terms of real execution time. For future work, we

envisage to present a QoS-aware economic model for

dynamic deployment of IoT applications in fog

environment.

Table 25 Performance comparison of different algorithms in terms of TPC mean value

Mean value

Scenarios FN Appmod TPC RPD (%)

MODCS MOGWO-I MOGWO-II MOPSO MOGA MODCS MOGWO-I MOGWO-II MOPSO

Category 1 10 20 590.4 589.97 594.46 591.32 588.93 0.25 0.18 0.93 0.4

15 20 599.97 602.23 608.91 603.02 598.09 0.31 0.69 1.78 0.82

20 20 597.41 600.63 604.31 599.66 596.57 0.14 0.68 1.28 0.52

25 20 582.42 582.13 588.04 582.38 581.14 0.22 0.17 1.17 0.21

Category 2 15 20 592.53 593.47 596.56 593.96 591.84 0.12 0.28 0.79 0.36

15 25 690.98 692.1 695.26 692.9 690.96 0 0.17 0.62 0.28

15 30 730.53 734.5 737.41 734.5 730.55 0 0.54 0.93 0.54

15 35 960.26 961.75 961.24 960.82 958.3 0.21 0.36 0.31 0.26

Category 3 10 25 698.54 699.1 703.21 697.96 695.72 0.4 0.48 1.07 0.32

15 30 759.05 762.19 764.73 764.04 758.09 0.13 0.54 0.87 0.78

20 35 881.44 881.22 886.88 883.36 880.76 0.08 0.05 0.69 0.29

25 40 1199.48 1201.17 1200.39 1200.65 1195.83 0.3 0.44 0.38 0.4

AVG 0.18 0.38 0.9 0.43

Table 26 Performance comparison of different algorithms in terms of LWR mean value

Mean value

Scenarios FN Appmod LWR RPD (%)

MODCS MOGWO-I MOGWO-II MOPSO MOGA MODCS MOGWO-I MOGWO-II MOPSO

Category 1 10 20 0.97 0.96 1.36 0.94 0.89 7.84 6.88 34.07 5.3

15 20 1 1.11 1.45 1.11 0.9 10 19.06 38.1 18.92

20 20 0.9 1.27 1.46 1.11 0.85 4.9 32.86 41.59 22.78

25 20 1.09 1.28 1.55 1.27 0.95 12.82 25.63 38.66 25.16

Category 2 15 20 2.04 2.19 2.71 2.12 1.92 6.16 12.34 29.17 9.7

15 25 0.83 0.87 1.03 0.87 0.83 0.72 5.26 19.92 5.26

15 30 1.34 1.73 2.2 1.91 1.28 4.32 25.87 41.58 32.77

15 35 3.01 3.1 3.06 3.12 2.95 2.26 4.97 3.79 5.64

Category 3 10 25 2.73 2.56 3.4 2.64 2.54 7.04 0.86 25.41 4.01

15 30 1.46 1.99 2.12 1.82 1.26 13.31 36.42 40.26 30.7

20 35 1.92 2.09 2.19 2.11 1.83 4.38 12.18 16.27 13.09

25 40 2.79 2.99 2.96 3.06 2.7 3.09 9.58 8.91 11.88

AVG 6.4 15.99 28.15 15.43

Neural Computing and Applications (2023) 35:19581–19626 19623

123

Funding There is no funding.

Data availability The datasets generated during and/or analyzed

during the current study are available from the corresponding author

on reasonable request.

Declarations

Conflict of interest There is no conflict of interest.

Table 27 Performance comparison of different algorithms in terms of TPC STD value

Standard deviation (STD) value

Scenarios FN Appmod TPC RPD (%)

MODCS MOGWO-I MOGWO-II MOPSO MOGA MODCS MOGWO-I MOGWO-II MOPSO

Category 1 10 20 0.63 0.88 0.53 0.68 0.39 37.12 55.35 25.39 42.26

15 20 2.03 1.78 1.87 1.66 1.54 23.93 13.44 17.67 7.31

20 20 1.58 1.39 1.27 2.33 1.03 34.7 25.75 18.67 55.76

25 20 0.92 0.88 1.12 0.82 0.71 22.13 18.91 36.35 13.01

Category 2 15 20 0.85 0.81 0.9 0.82 0.73 13.53 10.07 18.63 10.42

15 25 1.28 2.21 0.69 1.7 0.76 40.14 65.43 11.54 55.1

15 30 1.68 1.26 2.34 1.35 1.24 25.93 1.14 46.76 7.63

15 35 1.4 0.76 1.46 0.64 0.54 61.17 28.1 62.78 15.11

Category 3 10 25 2.17 3.02 1.43 2.54 1.26 41.85 58.23 11.68 50.27

15 30 1.44 1.29 1.8 1.43 1.33 7.83 3.02 26.37 7.24

20 35 1.95 1.71 1.12 1.72 1.04 46.73 39.5 7.62 39.68

25 40 1.04 0.86 0.79 0.71 0.64 38.59 25.59 19.26 9.61

AVG 32.8 28.71 25.23 26.12

Table 28 Performance comparison of different algorithms in terms of LWR STD value

Standard deviation (STD) Value

Scenarios FN Appmod LWR RPD (%)

MODCS MOGWO-I MOGWO-II MOPSO MOGA MODCS MOGWO-I MOGWO-II MOPSO

Category 1 10 20 0.1 0.1 0.08 0.14 0.08 20.61 26.15 4.19 46.5

15 20 0.12 0.17 0.12 0.08 0.06 51.92 66.59 50.12 31.71

20 20 0.12 0.11 0.18 0.11 0.10 19.17 11.8 46.21 12.24

25 20 0.09 0.1 0.1 0.1 0.09 2.01 6.91 6.59 8.7

Category 2 15 20 0.11 0.09 0.15 0.08 0.08 25.92 9.26 45.51 3.36

15 25 0.01 0.01 0.07 0.01 0.05 50 66.67 94.04 66.67

15 30 0.07 0.14 0.07 0.09 0.05 28.29 63.66 24.52 41.14

15 35 0.04 0.07 0.06 0.05 0.04 8.25 36.9 34.53 17.37

Category 3 10 25 0.15 0.16 0.17 0.24 0.15 3.21 6.15 15.33 39.54

15 30 0.16 0.15 0.26 0.17 0.14 13.81 9.67 48.05 21.9

20 35 0.11 0.11 0.15 0.13 0.10 7.52 12.29 33.47 27.8

25 40 0.12 0.08 0.09 0.07 0.06 48.76 18.24 34.03 13.6

AVG 23.29 27.86 36.38 27.54

19624 Neural Computing and Applications (2023) 35:19581–19626

123

References

1. Azimi S, Pahl C, Shirvani MH (2020) Particle swarm optimiza-

tion for performance management in multi-cluster IoT edge

architectures. In: International cloud computing conference

(CLOSER), pp 328–337. https://doi.org/10.5220/

0009391203280337.

2. Bonomi F, Milito R, Natarajan P, Zhu J (2014) Fog computing:

‘‘a platform for internet of things and analytics’’. In: Big data and

internet of things: a roadmap for smart environments. Springer,

Berlin, pp 169–186. https://doi.org/10.1007/978-3-319-05029-4_

7

3. Andriopoulou F, Dagiuklas T, Orphanoudakis T (2017) Inte-

grating IoT and fog computing for healthcare service delivery. In:

Components and services for IoT platforms. Springer, Berlin,

pp 213–232. https://doi.org/10.1007/978-3-319-42304-3_11

4. Shi Y, Ding G, Wang H, Roman HE (2015) The fog computing

service for healthcare. In: International Symposium on future

information and communication technologies for ubiquitous

healthcare, pp 70–74. https://doi.org/10.1109/Ubi-HealthTech.

2015.7203325

5. An OpenFog Architecture Overview, OpenFog (2017) https://

www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_

09_17.pdf. Accessed 2017

6. Farzai S, Hosseini Shirvani M, Rabbani M (2020) Multi-objective

communication-aware optimization for virtual machine place-

ment in cloud datacenters. Sustain Comput Inform Syst

28:100374. https://doi.org/10.1016/j.suscom.2020.100374

7. Hosseini Shirvani M (2020) A hybrid meta-heuristic algorithm

for scientific workflow scheduling in heterogeneous distributed

computing systems. Eng Appl Artif Intell 90:103501. https://doi.

org/10.1016/j.engappai.2020.103501

8. Taneja M, Davy A (2017) Resource-aware placement of IoT

application modules in fog-cloud computing paradigm. In: Proc.

of the IFIP/IEEE symposium on integrated network and service

management, IM’15. IEEE, pp 1222–1228. https://doi.org/10.

23919/INM.2017.7987464

9. Venticinque S, Amato A (2018) A methodology for deployment

of IoT application in fog. J Ambient Intell Humaniz Comput

1–22, https://doi.org/10.1007/s12652-018-0785-4

10. Hong HJ, Tsai PH, Hsu CH (2016) Dynamic module deployment

in a fog computing platform. In: 18th Asia-Pacific network

operations and management symposium (APNOMS), pp 1–6.

https://doi.org/10.1109/APNOMS.2016.7737202

11. Ramzanpoor Y, Hosseini Shirvani M, Golsorkhtabaramiri M

(2022) Multi-objective fault-tolerant optimization algorithm for

deployment of IoT applications on fog computing infrastructure.

Complex Intell Syst 8:361–392. https://doi.org/10.1007/s40747-

021-00368-z

12. Pallewatta S, Kostakos V, Buyya R (2022) QoS-aware placement

of microservices-based IoT applications in Fog computing envi-

ronments. Futur Gener Comput Syst 131:121–136. https://doi.

org/10.1016/j.future.2022.01.012

13. Chen L et al (2021) IoT microservice deployment in edge-cloud

hybrid environment using reinforcement learning. IEEE Internet

Things J 8(16):12610–12622. https://doi.org/10.1109/JIOT.2020.

3014970

14. Mahmud R, Ramamohanarao K, Buyya R (2018) Latency-aware

application module management for fog computing environ-

ments. ACM Trans Internet Technol 1–21. https://doi.org/10.

1145/3186592

15. Brogi A, Forti A (2017) QoS-aware deployment of IoT applica-

tions through the fog. iEEE Internet Things J 4:1185–1192.

https://doi.org/10.1109/JIOT.2017.2701408

16. Yangui S, Ravindran P, Bibani O, Glitho RH, Hadj-Alouane NB,

Morrow MJ, Polakos PA (2016) A platform as-a-service for

hybrid cloud/fog environments. In: 2016 IEEE international

symposium on local and metropolitan area networks (LAN-

MAN), pp 1–7.https://doi.org/10.1109/LANMAN.2016.7548853

17. Ahmadighohandizi F, Systä K (2016) Application development

and deployment for IoT devices. In: Proc. 4th Int’l workshop

cloud for IoT (CL IoT 16). https://doi.org/10.1007/978-3-319-

72125-5_6

18. Chen BL, Huang SC, Luo YC, Chung YC, Chou J (2017) A

dynamic module deployment framework for M2M platforms. In:

IEEE 7th international symposium on cloud and service com-

puting (SC2). IEEE, pp 194–200. https://doi.org/10.1109/SC2.

2017.37

19. Li F, Vögler M, Claeßens M, Dustdar S (2013) Towards auto-

mated iot application deployment by a cloud-based approach. In:

6th international conference on service-oriented computing and

applications. IEEE, pp 61–68. https://doi.org/10.1109/SOCA.

2013.12

20. Saurez E, Hong K, Lillethun D, Ramachandran U, Ottenwalder B

(2016) Incremental deployment and migration of geo-distributed

situation awareness applications in the fog. In: DEBS 2016,

pp 258–269. https://doi.org/10.1145/2933267.2933317

21. Vögler M, Schleicher JM, Inzinger C, Dustdar S (2015)

DIANE—dynamic IoT application deployment. In: IEEE Inter-

national conference on mobile services, pp 298–305. https://doi.

org/10.1109/MobServ.2015.49

22. Akyildiz IF, Wang X, Wang W (2005) Wireless mesh networks: a

survey. Comput Netw 47(4):445–487. https://doi.org/10.1016/j.

comnet.2004.12.001

23. Blaglazov A, Buyya R (2011) Optimal online deterministic and

adaptive heuristics for energy and performance efficient dynamic

consolidation of virtual machine in cloud data centers. Concurr

Comput Pract Exp 24(13):1397–1420. https://doi.org/10.1002/

cpe.1867

24. Arcangeli JP, Boujbel R, Leriche S (2015) Automatic deployment

of distributed software systems: definitions and state of the art.

J Syst Softw 3:198–218. https://doi.org/10.1016/j.jss.2015.01.040

25. Luo J, Song W, Yin L (2018) Reliable virtual machine placement

based on multi-objective optimization with traffic-aware algo-

rithm in industrial cloud. IEEE Access 6:23043–23052. https://

doi.org/10.1109/ACCESS.2018.2816983

26. Hosseini Shirvani M, Gorji AB (2020) Optimization of automatic

web services composition using genetic algorithm. Int J Cloud

Comput 9(4):397–411. https://doi.org/10.1109/IC4.2015.7375538

27. Li H, Zhu G, Zhao Y, Dai Y, Tian W (2017) Energy-efficient and

QoS-aware model based resource consolidation in cloud data

centers. Clust Comput 20:2793–2803. https://doi.org/10.1007/

s10586-017-0893-5

28. Saeedi P, Hosseini Shirvani M (2021) An improved thermody-

namic simulated annealing-based approach for resource-skew-

ness-aware and power efficient virtual machine consolidation in

cloud data centers. Soft Comput 25:5233–5260. https://doi.org/

10.1007/s00500-020-05523-1

29. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and

elitist multi objective genetic algorithm: Nsga-II. IEEE Trans

Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

30. Hosseini Shirvani M (2021) Bi-objective web service composi-

tion problem in multi-cloud environment: a bi-objective time-

varying particle swarm optimisation algorithm. J Exp Theor Artif

Intell 33(2):179–202. https://doi.org/10.1080/0952813X.2020.

1725652

31. Hosseini Shirvani M (2018) Web service composition in multi-

cloud environment: a bi-objective genetic optimization algorithm.

In: 2018 IEEE (SMC) International conference on innovations in

Neural Computing and Applications (2023) 35:19581–19626 19625

123

https://doi.org/10.5220/0009391203280337
https://doi.org/10.5220/0009391203280337
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1007/978-3-319-42304-3_11
https://doi.org/10.1109/Ubi-HealthTech.2015.7203325
https://doi.org/10.1109/Ubi-HealthTech.2015.7203325
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://doi.org/10.1016/j.suscom.2020.100374
https://doi.org/10.1016/j.engappai.2020.103501
https://doi.org/10.1016/j.engappai.2020.103501
https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.1007/s12652-018-0785-4
https://doi.org/10.1109/APNOMS.2016.7737202
https://doi.org/10.1007/s40747-021-00368-z
https://doi.org/10.1007/s40747-021-00368-z
https://doi.org/10.1016/j.future.2022.01.012
https://doi.org/10.1016/j.future.2022.01.012
https://doi.org/10.1109/JIOT.2020.3014970
https://doi.org/10.1109/JIOT.2020.3014970
https://doi.org/10.1145/3186592
https://doi.org/10.1145/3186592
https://doi.org/10.1109/JIOT.2017.2701408
https://doi.org/10.1109/LANMAN.2016.7548853
https://doi.org/10.1007/978-3-319-72125-5_6
https://doi.org/10.1007/978-3-319-72125-5_6
https://doi.org/10.1109/SC2.2017.37
https://doi.org/10.1109/SC2.2017.37
https://doi.org/10.1109/SOCA.2013.12
https://doi.org/10.1109/SOCA.2013.12
https://doi.org/10.1145/2933267.2933317
https://doi.org/10.1109/MobServ.2015.49
https://doi.org/10.1109/MobServ.2015.49
https://doi.org/10.1016/j.comnet.2004.12.001
https://doi.org/10.1016/j.comnet.2004.12.001
https://doi.org/10.1002/cpe.1867
https://doi.org/10.1002/cpe.1867
https://doi.org/10.1016/j.jss.2015.01.040
https://doi.org/10.1109/ACCESS.2018.2816983
https://doi.org/10.1109/ACCESS.2018.2816983
https://doi.org/10.1109/IC4.2015.7375538
https://doi.org/10.1007/s10586-017-0893-5
https://doi.org/10.1007/s10586-017-0893-5
https://doi.org/10.1007/s00500-020-05523-1
https://doi.org/10.1007/s00500-020-05523-1
https://doi.org/10.1109/4235.996017
https://doi.org/10.1080/0952813X.2020.1725652
https://doi.org/10.1080/0952813X.2020.1725652

intelligent systems and applications (INISTA). https://doi.org/10.

1109/INISTA.2018.8466267

32. Hosseini Shirvani M, Rahmani AM, Sahafi A (2018) An iterative

mathematical decision model for cloud migration: a cost and

security risk approach. Softw Pract Exp 48(3):449–485. https://

doi.org/10.1002/spe.2528

33. Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-

objective grey wolf optimizer: a novel algorithm for multi-cri-

terion optimization. J Expert Syst Appl. https://doi.org/10.1016/j.

eswa.2015.10.039

34. Yang XS, Deb S (2013) Multiobjective cuckoo search for design

optimization. J Comput Oper Res. https://doi.org/10.1016/j.cor.

2011.09.026

35. Coello CAC, Lechuga MS (2002) MOPSO: a proposal for mul-

tiple objective particle swarm optimization. In: Proceedings of

the 2002 congress on evolutionary computation (CEC’02). IEEE

Publications, USA. https://doi.org/10.1109/CEC.2002.1004388

36. Asghari Alaie Y, Hosseini Shirvani M, Rahmani AM (2023) A

hybrid bi-objective scheduling algorithm for execution of scien-

tific workflows on cloud platforms with execution time and

reliability approach. J Supercomput 79:1451–1503. https://doi.

org/10.1007/s11227-022-04703-0

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

19626 Neural Computing and Applications (2023) 35:19581–19626

123

https://doi.org/10.1109/INISTA.2018.8466267
https://doi.org/10.1109/INISTA.2018.8466267
https://doi.org/10.1002/spe.2528
https://doi.org/10.1002/spe.2528
https://doi.org/10.1016/j.eswa.2015.10.039
https://doi.org/10.1016/j.eswa.2015.10.039
https://doi.org/10.1016/j.cor.2011.09.026
https://doi.org/10.1016/j.cor.2011.09.026
https://doi.org/10.1109/CEC.2002.1004388
https://doi.org/10.1007/s11227-022-04703-0
https://doi.org/10.1007/s11227-022-04703-0

	Multi-objective QoS-aware optimization for deployment of IoT applications on cloud and fog computing infrastructure
	Abstract
	Introduction
	Related works
	System models
	System framework
	Fog and communication network models
	Application model
	Reliability model
	Deployment model

	Problem statement
	Link wastage model
	Power consumption model
	Multi-objective QoS-aware optimization deployment model

	Proposed MOGA for module deployment
	Encoding schema
	Preprocessing
	Initialization step
	Selection strategy
	Crossover Operator
	Mutation Operator
	Fitness function
	Non-dominated sorting
	Crowding distance
	Description of proposed MOGA

	Simulation and evaluation
	Experimental settings, datasets, and scenarios
	Experimental results
	First category: the number of fog nodes is variable and the number of modules is fixed
	Second category: the number of fog nodes is fixed and the number of modules is variable
	Third category: the number of fog nodes is variable and the number of modules is variable

	Discussion
	Conclusion and future direction
	Data availability
	References

