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Abstract
Massive open online courses (MOOCs) are open online courses designed on the basis of the teaching progress. Videos and

learning exercises are used as learning materials in these courses, which are open to numerous users. However, determining

the prerequisite knowledge and learning progress of learners is difficult. On the basis of learners’ online learning trajectory,

we designed a set of practice questions for a recommendation system for MOOCs, provided suitable practice questions to

students through the LINE chatbot (a type of social media software), and used mobile devices to encourage participation in

MOOCs. Reinforcement learning, which involves reward function design and iterative solution improvement, was used to

set task goals, including those related to course learning and practice question difficulty. The proposed system encouraged

certain learning behaviors among students. Students who used the system exhibited an exercise completion rate of 89.97%,

which was higher than that of students who did not use the system (47.23%). The system also increased the students’

overall learning effectiveness. Students who used and did not use the proposed system exhibited average midterm scores of

64.73 and 58.21, respectively. We also collected 227 online questionnaires from students. The results of the questionnaires

indicated that 90% of the students were satisfied with the system and hoped to continue using it.

Keywords Massive open online course (MOOC) � Deep reinforcement learning (RL) � Recommendation system �
Learning analysis � Learning assistant

1 Introduction

Massive open online courses (MOOCs; e.g., Coursera,

Udemy, and edX), which are flexible open-access learning

resources, have gained popularity among learners. Learners

can participate in these courses at their convenience

through the Internet. The number of students enrolled in
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MOOCs is increasing every year. MOOCs enable large-

scale interactive participation, and they provide various

learning materials, such as videos, text, and exercises. The

consistent increase in the number of MOOC users has

enabled data on users to be collected [1]. Thus, the appli-

cation of artificial intelligence to MOOCs to analyze a

large quantity of learning data has drawn considerable

attention. Researchers have described various problems

associated with MOOCs. For example, although the self-

regulated learning structures of MOOCs provide consid-

erable flexibility, many learners still cannot complete the

course because of their stress-free learning environment

[2]. Several studies have developed recommendation sys-

tems for MOOCs. Many MOOC providers have attempted

to encourage MOOC use among students by using rec-

ommendation systems. A recommendation system recom-

mends customized resources to help students learn from

various learning materials at their own pace [3, 4]. Con-

sequently, research has increasingly focused on the inte-

gration of recommendation systems into MOOCs to

provide personalized recommendations to learners [5].

Various methods, such as collaborative filtering (CF),

have been proposed for constructing recommendation

systems. In classical recommendation methods, learning

exercises are recommended on the basis of similarities

between students and their learning behaviors. Most studies

have used strategies that involve recommending learning

exercises in which students have previously provided

wrong answers. Such strategies have several limitations.

For example, they cannot be used to recommend exercises

with the appropriate difficulty level. Whether students

answer exercises correctly affects their level of engage-

ment and satisfaction with a recommendation system.

In this study, we developed a recommendation system

with a LINE bot (LINE is a social media tool commonly

used in Taiwan). We proposed a learning exercise recom-

mendation system based on a reinforcement learning (RL)

algorithm. Our system accounts for ‘‘review’’ and ‘‘diffi-

culty’’ objectives. Students generally follow in-class les-

sons and then complete exercises. The proposed system

recommends exercises that students have not completed or

have completed incorrectly. Because students learn

knowledge gradually, the difficulty of the exercises cannot

vary considerably [3]. Therefore, the system recommends

personalized exercises with suitable difficulty levels and

concepts. We selected ‘‘NTHU MOOCs,’’ which was

developed by National Tsing Hua University in Taiwan, as

the research platform. The contributions of this study are as

follows:

1. To the best of our knowledge, the system is the first to

use the actor–critic framework of RL to recommend

personalized exercises.

2. The system can encourage certain learning behaviors in

students and increase learning effectiveness.

2 Related work

2.1 Deep Q learning-based recommendation
systems

Deep Q learning is a type of RL in which the deep learning

is used to learn actions in an environment. Two types of

deep Q learning network (DQN) architectures are used. In

one architecture, only the state space is used as the input,

and the Q values of all actions are the output. This archi-

tecture cannot handle a large action space. In the other

architecture, the state and action are fed as inputs; there-

fore, this architecture does not need to store all Q values in

the memory and can handle a large action space. However,

because this architecture must compute the Q values of all

actions, it has high computational complexity. To utilize

the advantages of both architectures, Peters proposed the

actor–critic framework [6]. Artificial intelligence (AI)

systems can use this framework to learn how to delay the

fall of a pole on a cart in the Cart–Pole challenge. Such

systems can also use this framework to learn how to swing

a baseball perfectly. RL has been used in various fields,

such as gaming [7] and robotics [8]. It has also been used in

recommendation systems to account for users’ feedback

[9]. Peng employed a comparative method to analyze the

correlation between recurrent neural networks and infer the

coupling between recurrent neural networks, and they also

used continuous attractors to evaluate the effectiveness of

smart learning [10]. Nima and Ahmad [11] proposed a Q

learning-based framework that uses Web data for recom-

mendations. Hasan et al. developed a parking recommen-

dation system based on Q learning that recommends nearby

parking spots. DQNs are widely used in recommendation

systems, and the actor–critic framework outperforms the

other two architectures; therefore, we selected the actor–

critic framework as the agent of our recommendation

system.

2.2 Recommendation systems for online
learning

Recommendation systems developed into an independent

research field in the 1990s [12]. With increase in the

number of options available to users, the importance of

recommendation systems that facilitate decision-making

has increased. Several methods have been proposed for the

recommendation of learning exercises. Recommendation

systems for MOOCs intelligently provide actions to
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learners [13]. Collaborating filtering (CF) is a traditional

technique used in recommendation systems. It involves

filtering out items that a user (student) might require on the

basis of the learning processes of similar users. A common

method of learning exercise recommendation involves

identifying users with similar answering processes. Imran

et al. [14] developed a framework for recommending

learning materials on the basis of content similarity. To

design their recommendation system, Rama et al. used the

deep autocoder of feature learning; specifically, they

embedded the features of the autocoder into a novel dis-

criminative model of a deep neural network [15].

In content-based filtering (CBF), previously used con-

tent is analyzed, and a mechanism of the features based on

these items is constructed. Sivaramakrishnan et al. pro-

posed a hybrid Bayesian stacked auto-denoising encoder,

which used interest analysis and matrix factorization to

achieve collaborative filtering and provided high-quality

recommendations through a personalized method [16].

Huang et al. [17] used CBF and natural language pro-

cessing to filter out similar courses.

DQNs are used in MOOC recommendation systems.

Huang et al. [18] proposed a DQN-based system for rec-

ommending learning exercises to students. In this system,

states and actions are used as inputs. States are learning

exercises that students have solved previously, and actions

are the exercises recommended to students. RL models

learn from feedback; however, obtaining feedback from the

real world or a simulated environment is difficult. There-

fore, Huang et al. used students’ exercise logs as feedback.

They tested their model on a math course and Java course

and compared it with other models. The DQN-based model

outperformed the other models. In the math course, the

model of Qi et al. achieved NDCG@10 and NDCG@15

values of 0.6114 and 0.7813, respectively. Moreover, in the

Java course, this model achieved NDCG@10 and

NDCG@15 values of 0.4538 and 0.5907, respectively.

However, when states and actions are used as inputs, a

considerable amount of time is required to compute the Q

values of all actions. Therefore, we used the actor–critic

architecture to construct a recommendation model based on

course logs from prior years. The model sends recom-

mendations through a LINE chatbot to new students so that

feedback can be collected.

3 System architecture

This section introduces the architecture of the MOOC

exercise recommendation system (MOOCERS) and

describes the problem statement of this system. Figure 1

illustrates the architecture of the MOOCERS, which con-

tains an exercise module and a recommendation module.

3.1 NTHU MOOCs platform

The NTHU MOOCs platform [19] has been the main

MOOC platform of National Tsing Hua University since

2019. This platform provides not only an efficient learning

and teaching environment for online lecturers and learners

but also valuable supplementary resources, such as self-

study resources, a performance visualization function, and

knowledge maps.

3.2 Exercise module

The exercise module determines the knowledge concept

encoding, exercise type, and exercise difficulty and then

concatenates these three vectors. Exercises can be single,

multiple, or filling exercises and are transformed into

vectors through one-hot encoding [20]. The knowledge

concept encoding is also transformed using this method.

With regard to exercise difficulty, students are divided into

a high- and low-scoring group on the basis of their accu-

racy during exercises. The accuracy in the exercise is then

calculated using the accuracy from the two groups. Finally,

the exercise difficulty is computed using the final accuracy.

The accuracy for an exercise is calculated as Formula (1):

Rcorrect ¼
PN

i¼1 Ci
PN

i¼1 Ai

ð1Þ

where Rcorrect is the accuracy of an exercise, C is the

number of correct answers provided by student i in an

exercise, and A is the total number of answers provided by

student i in the exercise. For example, if a student that

provides five correct answers out of a total of 13 answers

has an accuracy of 5/13 = 0.38 (i.e., 38%). If the difficulty

level is directly calculated using each student’s accuracy,

problems can emerge. When the percentages of correct

answers for two questions are the same, the group of stu-

dents with the higher number of correct answers cannot be

determined.

Thus, high- and low-scoring groups are considered to

calculate the degree of difficulty instead of the percentage

of correct answers. The high-scoring group, low-scoring

group, and exercise difficulty are defined as follows:

• High-scoring group: students with the top 27%

accuracy.

• Low-scoring group: students with the bottom 27%

accuracy.

• Exercise difficulty: (average accuracy of the high-

scoring group ? average accuracy of the low-scoring

group)/2.

On the basis of Kelley’s derivation for a normal distri-

bution, the top and bottom 27% of accuracies are used for
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categorizing students [21]. The total accuracy in an exer-

cise represents the overall accuracy when the average

accuracies of the high- and low-scoring students are con-

sidered. After exercise difficulty is determined, the exercise

difficulty is concatenated with the exercise type and exer-

cise knowledge concept.

3.3 Recommendation module

3.3.1 Problem statement

In a MOOC environment, several students (U) and exer-

cises (N) exist. Information on students’ exercise-answer-

ing process is obtained using the data collection application

programming interface (API) introduced in Sect. 3.2. The

exercise-answering process of a student is given by

u = {(e1, p1), (e2, p2), …, (eS, pS)}, where u 2 U and en 2
N. Parameter Pt represents a student’s answer in exercise t.

If the student provides the correct answer, then Pt is equal

to 1; otherwise, Pt is equal to 0. A course has a total of

N exercises, and each exercise is described using the tuple

e = {d, k, t}, where d denotes to the exercise difficulty,

k denotes the corresponding knowledge concept of the

exercise, and t denotes the exercise type.

The Markov decision process (MDP) is used in the

recommendation process. The MDP involves states,

actions, and rewards and represented using the tuple (S, A,

R, P), which is described as follows [20]:

• State Space S: Parameter S represents the exercise-

answering process of a student. State St = {S1t ,… SPt } 2
S represents the exercise-answering process at time t.

Each element in St is the concatenation of e = {d, k, t}

and Pt.

• Action Space A: Parameter A represents all the

exercises of the course. Action At = {A1
t ,… AN

t } 2 A

contains all the exercises. Making an exercise recom-

mendation at time t is equivalent to taking an action A1
t .

• Reward R: When the recommender agent takes action

A1
t at time t, the student answers or clicks. The

recommender agent then receives reward (St, At) on

the basis of the student’s feedback.

• Transition P: Parameter P (Stþ1St, At) refers to the

probability of transitioning from state St to state Stþ1

after taking action At.

Rewards can be maximized by using recommendation

policy p: S A.

Fig. 1 Architecture of the MOOCERS
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3.4 Reward function design

This section describes the design of the reward function,

which plays a crucial role in the training of the proposed

framework. Traditional recommendation systems follow a

single rule, such as CF [17] or CBF [18], to recommend

learning exercises. However, such systems cannot recom-

mend suitable exercises for students, and students are not

fully satisfied with them. Difficulty and knowledge concept

coverage are crucial attributes of exercises [22]. Therefore,

we combined three objectives, namely the review, diffi-

culty, and learning objectives, in our reward function

design [20].

(1) Design for the review objective. In Eq. (2), c1 is for
review. If a student provides the wrong answer in an

exercise at a certain time but the recommender agent rec-

ommends an exercise with a completely different knowl-

edge concept, it is assigned a negative reward.

R1 ¼
c1; if Pt ¼ 0 and Ktþ1 \ Kt ¼ ;
c2; otherwise

�

ð2Þ

Parameter c1 denotes a negative reward, and we set c1
to - 2 in our training scenario. Parameter c2 denotes a

positive reward, and we set c2 to 1 in our training scenario.

(2) Design for the difficulty objective. If a student only

learns the definition of a limit in a calculus course but the

recommender agent recommends the student an exercise

about integration by parts, the student would find the

exercise difficult. Therefore, the following squared loss

function shown in formula (3) is used to meet the difficulty

objective []:

R2 ¼ � dt � dtþ1ð Þ2 ð3Þ

where dt is the difficulty of exercise A at time t and dtþ1 is

the difficulty of exercise B at time t ? 1.

(3) Design for the learning objective: The recommender

agent recommends exercises to students through LINE. In

formula (4), if a student clicks on an exercise, a positive

reward is generated; otherwise, a negative reward is

generated.

R3 ¼
c3; if user clicks and answers

c4; otherwise

�

ð4Þ

Parameter c3 denotes a positive reward, whereas c4 denotes
a negative reward.

The rewards merge into total rewards with balance

coefficients a1, a2, and a3 as follows:

R ¼ a1 � R1 þ a2 � R2 þ a3 � R3;
a1; a2; a3 2 0; 1½ � ð5Þ

In Eq. (5), the values of a1, a2, and a3 are between 0 and 1.

This equation provides a flexible method for adjusting our

recommendation system. Thus, different balance

coefficients can be used to achieve different goals. For

instance, to focus on difficulty, R1 and R3 can be set to 0.

Alternatively, to focus on knowledge concepts, R2 and R3

can be set to 0.

3.5 LINE platform (API)

An API can provide a series of functions, such as APP and

WEB. LINE is a popular instant messaging application

with a comprehensive public API [23]. It can be installed

on various platforms, such as smartphones, iPads, and

personal computers. LINE provides a messaging API,

which enabled us to develop a two-way communication

service between a LINE chatbot and LINE users.

3.6 Actor–critic framework

The actor–critic framework combines the advantages of the

critic- and actor-only methods [24]. The framework can

produce continuous actions. The input of the actor is the

current state, and the framework outputs the parameters of

a state-specific scoring function. Next, the recommender

agent scores these items and selects them. The critic then

learns the value function (Q value) to determine whether

the selected action matches the current state. Finally, the

actor updates the policy parameters in the following iter-

ations on the basis of the critic’s judgment. The actor–critic

framework is appropriate for large action spaces, such as

those in our exercise recommendation system. The critic

method is used to learn the value function approximation

[25]. Q (St, At), the function is a judgment if the action at

well matches the St. The critic method is used to obtain an

approximate solution to the Bellman equation [26] as

Formula (6):

Q�ðSt;AtÞ ¼ EStþ1
½rt þ cmax

Atþ1

Q�ðStþ1;Atþ1ÞSt;At� ð6Þ

In a real-world scenario, the state and action spaces are

large, and computing the state–action pairs is highly dif-

ficult. In addition, not all state–action pairs appear in real-

world scenarios. The MOOC environment considered in

this study contains numerous students. However, some

students might only complete a few exercises. Therefore,

updating the relevant state–action pairs and calculating the

transition probability for when students do not complete

corresponding exercises are difficult. The action-value

function is nonlinear, and deep neural networks provide

accurate approximations of nonlinear functions. In accor-

dance with the method in [27], we used a deep neural

network to address this problem. The approximate function

Q (S, A) Q (S, A; h). Our training procedure minimizes loss

function (L (hl)) as formula (7):
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LðhlÞ ¼ ESt ;At ;Rt ;Stþ1
½ðYt � QðSt;At; hlÞÞ2�;

where Yt ¼ EStþ1
½ðRt þ cQ0ðStþ1;Atþ1; hlÞÞ;At�

ð7Þ

4 Implementation

This section describes the algorithms of the proposed

MOOCERS.

4.1 Data collection

By developing RESTful APIs, a connection was estab-

lished between the databases and the course website. We

conducted experiments with a dataset collected from a real

MOOC environment to evaluate the performance of the

proposed deep RL framework. The experimental dataset

was collected from the NTHU MOOCs platform (Table 1).

We collected data on a calculus course implemented in

2020 as training data to construct a recommendation

model. We then used the trained recommendation model to

send recommendations to students in a calculus course

taught in 2021. To send these recommendations to the

students, we asked them to connect with our LINE bot;

approximately 700 students (approximately 60% of all the

students) chose to connect with our bot. This course lasts

for 12 weeks, and its topics range from limits to L’Hopi-

tal’s rule and improper integrals. The course comprises 143

exercises, each of which corresponds to a specific concept.

The total number of concepts is 108.

The exercise logs were randomly split into a training set

and testing set at a ratio of 8:2, as expressed in Eq. (8).

Dtraining : Dtesting ¼ 0:8 : 0:2 ð8Þ

Dtraining represents the data used for model training, and

Dtesting represents the data used for model testing.

Each student in the calculus course can use the exercise

recommender agent, but its use is optional. The binding

ratio for the ‘‘2021 Calculus (I)’’ course was approximately

60%.

Table 2 presents the data recorded for each exercise.

Every user, course, chapter, and exercise were assigned a

unique ID (i.e., ‘‘userId,’’ ‘‘courseId,’’ ‘‘chapterId,’’ and

‘‘exerId,’’ respectively). When a user completed a question,

we recorded their answer, the correct answer, and their

score, using ‘‘True’’ and ‘‘False’’ to denote correct and

incorrect answers, respectively. The time spent answering

each question was also recorded.

4.2 Personalized recommendations

In RL methods, data are collected by constructing an agent

in the environment. For example, classical applications,

such as robotics, might be time consuming and costly [28].

Therefore, simulation is a suitable alternative for RL.

However, simulated data cannot be used to obtain accurate

recommendations in our system because it is more complex

than robotics and gaming systems. Data for the system can

only be obtained from real-world environments, such as

MOOC platforms. In addition, the system can obtain

rewards only from an explored state space. To obtain a

reward from an unexplored space, the system must rec-

ommend an exercise to a student and obtain their feedback.

To solve this problem, we used students’ exercise logs. The

procedure is presented in Algorithm 1.

(1) First, memory space M = {M1, M2…} is constructed

to store a student’s state–action–reward pair ((St, At), Rt).

(2) The current state (line 4), current actions (exercises),

and rewards are observed and stored in the memory (line

7).

(3) The state space is updated by adding the action to the

end of the state space. For instance, if the recommender

agent recommends {A1, A2, A3} to a student, when the

student clicks the A1 exercise, the state space is then

updated to {S1,S2,…,A1} (Fig. 2).

4.2.1 Training procedure

This section describes the training procedures of the

algorithm and the parameter update process. The deep

deterministic policy gradient algorithm was used for model

training. This algorithm is presented in Algorithm 2 [20].

In every iteration (line 4), the recommender agent rec-

ommends a list of actions (exercises) At = {A1
t ,… AK

t }

based on the current state St (line 5). The recommender

agent then observes reward list Rt = {R1
t ,… RK

t } (line 6)

Table 1 Courses
Course Name 2020 Calculus (I) 2021 Calculus (I)

Duration 2020/05/01–2020/08/31 2021/05/01–2021/08/31

Number of students 1167 1200

Number of exercises 143 143

Number of knowledge concepts 108 108

Number of records of exercise answering 122,040 25,428 (2021/05/01–06/30)

Avg. records per student 104 21
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and obtains new state Stþ1 (line 7) by using Algorithm 1.

The transition probability is stored in memory M (line 8),

and state St is updated to Stþ1 (line 9). Next, the recom-

mender agent executes the parameter update procedure by

sampling a minibatch of transitions (S, A, R, S0) from M (-

line 10) and updating the parameters of the actor–critic

network (lines 11–17). The network sizes of the actor and

critic are presented in Table 3. For the actor, because the

state of a student at time t comprises a series of exercise-

answering processes, a GRU is used to process the series

and predict the exercise that should be recommended;

specifically, 105 nodes are used to represent each exercise,

and the node with the highest score represents the exercise

that should be recommended. For the critic, a final dense

layer with a single node is used to predict the reward. The

learning rate of the actor is 0.0001, and the learning rate of

the critic is 0.001. When updating the network, only 0.1%

of the actor and critic are updated (Fig. 3).

4.2.2 Offline evaluation

A successful recommendation can be made in two situa-

tions depending on the reward setting: one in which the

correct answer is obtained for et and the other in which an

incorrect answer is obtained for et [20].

(1) Correct answer for et.

When a student answers correctly in an exercise that

covers a certain knowledge concept, the recommender

agent can recommend more difficult questions with similar

knowledge concepts. If the overlapping knowledge

Fig. 2 Online memory

algorithm

Table 3 Network sizes of the actor and critic

Actor Critic

Layer Size (cells) Activation Layer Size (cells) Activation

GRU 6 Relu Dense 32 Relu

Dense 105 None Dense 16 Relu

Dense 1 None

Table 2 Exercise data
Key Value Example

userId The ID of the user 3002

courseId The ID of the course 10900MATH0001

chapterId The ID of the chapter 10900MATH0001ch80

exerId The ID of the exercise 10900MATH0001ch80e1

score The student gets right answer or not False

timeCost The time cost the student spends on the exercise 5

userAns The answer of the student [1,2,3]

correctAns The correct answer of the exercise [1,4]

update at Time when the log was established 2021-05-10T12:45:08
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concepts between et and etþ1 are at least half and the dif-

ficulty of etþ1 is higher than that of et, the recommendation

is successful.

(2) Incorrect answer for et.

When a student answers incorrectly in an exercise, the

student must continue with exercises on similar concepts

and levels of difficulty. If the difference in difficulty

between recommended exercises (etþ1) and et is lower than

0.2 and the number of overlapping concepts is at least half

et, the recommendation is successful.

4.2.3 Exercise completion rate

The exercise completion rate (ECR) represents the ratio of

exercises solved by a student to the total number of exer-

cises. The ECR of each student is as formula (9):

Completion Ratee ¼
Number of solved exercises

Total number of exercises
ð9Þ

4.2.4 Hit rate

In typical settings for a recommender, the hit rate is the

proportion of users for which the correct answer is included

in the recommendation list. The hit rate is as Formula (10):

Hit Rateexercise ¼
Number of clicks

Total pushed messages
ð10Þ

Number of clicks represent the total number of students

clicking on the recommended exercise, and total pushed

messages represent the total number of exercises pushed by

the recommender agent.

4.2.5 Recommendation through LINE

We examined the hit rate, the ECR, and students’ satis-

faction with the system. Students were divided into a

control group and an experimental group. The recom-

mender agent recommended exercises to the experimental

group, and the control group was recommended exercises

randomly. Screenshots of pushed messages on LINE are

presented in Fig. 4. For example, the recommender agent

determined that exercises W1 Ex01 Q1 and W2 Ex23 25

Fig. 3 Deep deterministic

policy gradient algorithm
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Q1 were the most suitable exercises for students A and B,

respectively. Students were recommended exercises

through LINE, and they completed them after clicking on

the links. After the exercises, they received their results.

5 Results and discussion

5.1 Accuracy of the proposed model

A recommendation system usually outputs a series of lists.

Therefore, instead of proxy metrics such as the mean

squared error, other suitable evaluation metrics should be

used to determine the ranking quality. For recommendation

systems, the commonly used evaluation metric is top@K

ranking metrics [29, 30], including NDCG@k [31] and Hit

Rate@K. The order of recommendations is crucial in the

evaluation of a recommendation series, and DCG can be

used to assign a penalty for recommendations that appear

later in a list, as expressed in Eq. (11). Although DCG

considers the order of a recommendation series, it does not

indicate whether the series is appropriate. Therefore,

NDCG, which is the ratio of the actual DCG to the ideal

DCG, is calculated [Eq. (12)]. If the recommendation

series is closer to the ideal series, NDCG is closer to 100%.

Huang et al. [18] used a normal DQN framework to rec-

ommend exercises to students and achieved NDCG@10

scores of 0.6114 and 0.4538 in a math course and Java

course, respectively, in offline testing. Because we con-

sidered offline training as a ranking task, we used

NDCG@K for offline performance evaluation and hit rate

for online performance evaluation. In Table 4, the

NDCG@5 value of the deep RL model was 0.65; its

NDCG@8 value was 0.665; and its NDCG@10 value was

0.684. NDCG@k indicated that the model selects the top

k exercises on the basis of their Q values. It then calculates

the scores with different reward settings. When the correct

answer is obtained, if the number of overlapping concepts

between et and et ? 1 is at least half and the difficulty of

et ? 1 is higher than that of et, the recommendation is

considered successful. When an incorrect answer is

obtained, if the difference in exercise difficulty between et
and et ? 1 is lower than 0.2, the recommendation is con-

sidered successful.

We will continue to collect feedback from users on the

chatbot and hope to encourage students to continue com-

pleting the exercises.

DCGk ¼
Xk

i¼1

ri
log2 iþ 1ð Þ ð11Þ

NDCGk ¼
DCGk

IDCKk
ð12Þ

5.2 ECR

Exercises are a crucial learning resource in MOOCs.

Learning using MOOCs is flexible, and few students

proactively complete exercises. For this reason, one goal of

developing the system was to increase ECR. The ECR of

the students who used our system (89.97%) was higher

than that of the students who did not use our system

(47.23%; Table 4; Fig. 5). We divided the students who

Fig. 4 Recommendation message received through a chatbot
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used our system into the following four groups on the basis

of their ECRs:

1. Very low group: ECR\ 1%

2. Low group: 1% B ECR\ 25%

3. Middle group: 25% B ECR\ 50%

4. High group: 50% B ECR.

The ECR of students in the high group increased from

68.69% to 94.72% (Fig. 6). The ECRs of the very low

group and low group increased from 0.1% to 90.07% and

from 17.46% to 87.07%, respectively. The ECRs of the

students in the middle group increased from 56.7% to

89.26%. Therefore, our system considerably increased

ECR, especially that of the very low group, low group, and

middle group.

5.3 Hit rate

In our experiment, we distributed messages four times, and

520, 640, 694, and 738 students accessed them through

LINE each time, respectively. For the fourth message

(Table 5), 40 (5.4%), 69 (9.3%), 88 (11.9%), and 105

(14.2%) students completed the recommended exercises

within 4 h of receiving the message, on the day of

receiving the message, on the day after receiving the

message, and 2 days after receiving the message.

5.4 Midterm score

When the students exhibited higher learning effectiveness,

they spent more time on the NTHU MOOCs platform to

complete exercises. Therefore, learning behavior is corre-

lated with learning effectiveness, and students with a

higher ECR tended to receive higher midterm scores

(Fig. 7). The students who used and did not use the system

exhibited average midterm scores of 64.7 and 58.2,

respectively.

5.5 Students’ assessment of the system

We distributed an online questionnaire to the students who

used the system to obtain their feedback. A total of 227

valid questionnaires were collected. The questionnaire was

based on the self-adjusting learning strategy proposed by

Zimmerman [32, 33]. The students responded to the

questions by using a Likert scale [34], which is the most

widely used scale in survey research. The scale ranges from

1 to 5, with 1 representing ‘‘strongly disagree’’ and 5

representing ‘‘strongly agree.’’ The questionnaire contained

20 questions on usability, usefulness, attitude toward

learning, perceived value, and metacognition.

Approximately 85% of the students provided a score of

more than 4 points for usability, which indicates that they

found the system easy to use and clear. Approximately

50% of the students provided a score of more than 4 points

for usefulness, which indicates that the system recom-

mended helpful exercises and increased the students’

willingness to complete exercises. Approximately 76% of

the students provided a score of more than 4 points for

attitude toward learning, which indicates that the system

motivated the students to learn and enabled them to answer

exercises more efficiently. Approximately 90% of the

students provided a score of more than 4 points for per-

ceived value, which indicates that they were satisfied with

the system. Approximately 82% of the students provided a

scored of more than 4 points for metacognition, which

indicates that the system helped them understand key

concepts and consider feasible learning methods.

6 Conclusion

To the best of our knowledge, the system is the first to use

the actor–critic framework to provide personalized exercise

recommendations on a MOOC platform. Our system rec-

ommends exercises with suitable difficulty levels and

concepts for each student. The NDCG@10 value of the

proposed model is 0.684. In contrast to other systems, our

system was integrated into LINE to provide personalized

exercise recommendations to each student; thus, the stu-

dents did not need to log in to the system and could receive

recommendations from LINE in the form of text messages.

Evaluating the effectiveness of recommendations in the

real world is difficult. We examined the hit rate of each
Fig. 5 ECRs of students who used and did not use the system by

number of uses

Table 4 NDCG values obtained in this study

NDCG@5 NDCG@8 NDCG@10

0.65 0.665 0.684
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recommendation provided by our system and found that

40% of the participating students answered the exercises in

the final recommendation. The system can encourage cer-

tain learning behaviors in students. Students who used and

did not use the system exhibited ECRs of 89.97% and

47.23%, respectively. The system can also increase learn-

ing effectiveness for students. The students who used and

did not use the system exhibited average midterm scores of

64.73 and 58.21, respectively. The questionnaire revealed

that 88.2% of the students who used the system intended to

use it again and that 89.5% of the students were satisfied

with it. In the future, we intend to combine our system with

the natural language processing method to make our LINE

bot fully interactive.
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Number of students answered on the day after tomorrow 54 (10.4%) 118 (18.4%) 109 (15.7%) 105 (14.2%)
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