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Abstract
Scheduling complex applications as task graphs on finite computational resources assuring task interdependencies is a well-

known NP-complete optimization problem. This problem is well-addressed for microprocessor systems but for Dynami-

cally Reconfigurable Hardware (DRHW) systems in which, in addition to tasks, the reconfiguration time and complexity

also have to be scheduled; this problem is more complicated. DRHW reconfiguration overhead is considerable and can be

crucial for real-world applications. To deal with this overhead, in this paper, a meta-heuristic method named Graph-

Oriented Simulated Annealing (GOSA) is proposed. By introducing an innovative graph and solution structures called

schedule graphs, and also some controlling functions which are inherited from the nature of the problem, the proposed

method adapts itself to the characteristics of the problem. This helps the algorithm to adjust its exploration and exploitation

speed and accuracy according to the requirements of the given problem and consequently find high-quality solutions

quickly. To demonstrate the performance of the proposed method, it was tested on several synthetic and real-world

benchmark task graphs, and the results were compared with a selection of classic and state-of-the-art algorithms. The

method is comprehensively evaluated by performing numerous experiments in terms of execution time, makespan, scal-

ability, and reliability. The results of the experiments on benchmarks show that in terms of the quality of the solutions,

GOSA outperforms BGA, HPSO-GA, and FATS by 17%, 13%, and 5%, respectively, and its execution time is consid-

erably less than all competing algorithms. Moreover, according to the experiments done on synthetic graphs, the makespan

of the solutions generated by GOSA, Genetic Algorithm (GA), and the Gxhaustive Search over the List Scheduler are

improved on average by 7.2%, 8.1%, and 19.1%, respectively. The most significant achievement of the proposed method is

its execution time which is 31 times faster than GA. Finally, the results confirm that the proposed method is scalable for

large task graphs, and its reliability is superior.

Keywords Dynamically reconfigurable hardware � Genetic algorithm � Graph-oriented � Makespan � Simulated annealing �
Task scheduling

1 Introduction

Dynamic reconfiguration is an intelligent technology since

its computation speed is similar to that of custom hardware,

and its flexibility is comparable to that of a general-purpose

processor [1, 2]. Dynamically Reconfigurable Hardware

(DRHW) systems, which are now realistic and commer-

cially available, are died in which embedded micropro-

cessors, on-chip memory, and reconfigurable logic blocks

are integrated. Such systems assure the flexibility of tra-

ditional general-purpose processors and provide the effi-

ciency and high performance of Application-Specific

Integrated Circuits (ASICs). To well benefit from the

advantages of these systems, employing a proper schedul-

ing algorithm is necessary. Hence, in this paper, we try to

develop an efficient scheduling algorithm for DRHW

systems.
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The objective of DRHWs scheduling problem is com-

parable to that of the classic multiprocessor scheduling

since both are trying to assign some processors to a set of

tasks so that they minimize the overall makespan. How-

ever, due to the existence of run-time reconfiguration,

which is a prerequisite for executing a task in a hardware

form, the DRHW task scheduling is more complicated.

Here, in contrast with multiprocessor scheduling; besides

the task scheduling, the task allocation in configuration

SRAM must be taken into consideration. If the configura-

tion schedule is not done correctly in coordination with

task schedules, the resulting latencies will also affect the

execution of the scheduled tasks. This can vastly decrease

the efficiency of the system. It has been proven that this

procedure, called DRHW task scheduling, is an NP-com-

plete problem [3, 4]. On the other hand, if we want the

algorithm to be practicable for real large applications, its

execution time must be short enough and has a low order of

complexity.

To tackle the mentioned challenges, some fast task

scheduling algorithms must be developed to minimize the

latencies incurred by task configuration procedures and

fully utilize the periods during task executions for config-

uring subsequent tasks. To solve the task scheduling

problem for parallel computing systems like reconfigurable

hardware systems, plenty of work has been carried out

[5–9]. Among these works, nature-inspired and evolution-

ary algorithms are at the center of attention. The reason

behind this is that according to the above complexities, the

search space of this problem becomes multi-dimensional

and huge. Hence, solutions based on Exhaustive Search are

not feasible as the operating cost of generating schedules is

very high. Therefore, there are no heuristics that may

produce an optimal solution within the polynomial time for

such kinds of problems. Generally, two optimization

approaches can be exploited to solve this problem: deter-

ministic and stochastic. Deterministic methods in both

gradient-based and non-gradient-based groups are effective

in linear, convex, uncomplicated, low-dimensional, and

differentiable problems, but lose their effectiveness in

dealing with optimization problems like ours that have

features such as complex, high-dimensional, and discrete

search space. These reasons lead us to use stochastic

approaches, i.e., meta-heuristic optimization algorithms

that apply random operators, random search, and trial-and-

error processes. In the problems like task scheduling onto

Dynamically Reconfigurable Hardware, it is preferable to

find a suboptimal solution (rather than optimum points) in a

short time. Meta-heuristic-based techniques have been

proven to achieve near-optimal solutions within a reason-

able time for such problems [10]. This is the main reason to

use these techniques for our problem. Moreover, develop-

ing a heuristic that is customized for the problem could

efficiently solve the scheduling problem in a reasonable

amount of time which is not trivial. However, the meta-

heuristic methods can address different forms of the

problem. Therefore, to solve the scheduling problem effi-

ciently, a meta-heuristic approach must be adopted and

adapted which is efficient, lightweight, fast, scalable, and

applicable.

The nature of random search in meta-heuristic algo-

rithms leads to the fact that there is no guarantee that this

best candidate solution is the best solution (known as the

global optimal) to a problem. Therefore, the best candidate

solution is known as a quasi-optimal solution, which is an

acceptable solution and close to the global optimal.

According to the No Free Lunch (NFL) theorem [11], any

two optimization algorithms are equivalent when their

performance is averaged across all possible problems; and

it also states that an algorithm may have a successful

implementation on some optimization issues but fail to

address others. Therefore, no one can claim which algo-

rithm is generally more suitable for finding the quasi-op-

timal solution for a specific problem. Instead, an algorithm

should be selected which is more compatible with the

nature and the search space of the problem. Moreover,

efforts should be made to fit and customize the algorithm

based on the characteristics and requirements of the prob-

lem. There are too many meta-heuristic methods that can

be exploited to solve the problem of task scheduling in

parallel computing systems [12]. Among, those will be

successful on a problem, which can provide a balance

between the exploration (that is well investigating the

whole search space) and the exploitation (that is identifying

those parts of the solution space with high-quality solutions

and intensify to search them) in the problem solution space.

Most of these algorithms have two main weaknesses:

having multiple parameters which interact with each other

and, in turn, make their optimal tuning a tedious task and

having high-time complexity which makes them less

practicable for real and time-critical applications [13].

Moreover, by increasing the application size, these algo-

rithms miss their consistency, and hence, the quality of

their solutions would be significantly reduced [12]. In other

words, the algorithms are not scalable as the problem gets

bigger. Another essential factor of the algorithms is their

applicability which means maintaining efficiency despite

varying the characteristics of the target system. Although

some algorithms provide remarkable solutions for the

problem, since they are designed and adapted for a par-

ticular type of target system, by changing the system

specifications, they probably miss their performance.

To produce high-quality solutions while strongly

decreasing the algorithm run-time, and simultaneously

filling the mentioned gaps, in this paper, the Simulated

Annealing (SA) algorithm is adopted and adapted based on
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the nature and requirements of the reconfigurable hardware

task scheduling problem. As far as known to the author, up

to the present time, no study has been carried out on the

application of SA to solving task scheduling problems on

generic DRHW systems, even in its general and basic form.

To solve the problem, we developed a modified and cus-

tomized SA called Graph-Oriented Simulated Annealing

(GOSA), in which some novel controlling functions

inherited from the nature of the problem are introduced to

the algorithm. These functions control neighborhood zone

selection and the algorithm’s step lengths based on a new

parameter named height value. Moreover, an innovative

graph and solution structure called schedule graph (S-

graph), which is fitted to the profiles of the reconfigurable

system’s task scheduling problem, is introduced. This

graph guarantees the precedence constraints and system

limitations so that the algorithm will be practicable for

multiple target systems with different types and features as

well as for various applications with different graph

structures.

The main contributions of the paper can be summarized

as follows:

• Application of the SA algorithm to solving task graph

(DAG-type) scheduling problem on a generic parallel

reconfiguration model of DRHWs for the first time.

• Presenting a novel solution representation scheme that

is based on two-dimensional strings.

• Introducing a new graph called S-graph which implic-

itly guarantees the precedence constraints and the target

system limitations.

• Proposing a new neighborhood selection mechanism

adapted to the characteristics of the S-graph.

• Presenting an innovative cooling function customized

to the problem search space size.

• Applying three inventive mutation-based operators for

generating new solutions in each stage.

In the following, the literature which addressed solving

the DRHW task scheduling problem is reviewed with a

focus on the evolutionary-based meta-heuristic ones

[14–19]. The advantages and disadvantages of each work

are determined, and their gaps for future works are

discussed.

GA is one of the popular, efficient, and well-known

tools for solving our problem [19–22]. Correa et al. have

improved GA for solving the problem by using the List

heuristic in GA operators, so that it improves the quality of

the solutions and slows down the run-time of the algorithm

in comparison with those of standard GA and List Sched-

uler. In another work [23], the authors tried to combine two

evolutionary algorithms (GA and Particle Swarm Opti-

mization (PSO)), to solve the multiprocessor scheduling

problem. Although the obtained quality is much better than

the individual algorithms, it is clear that its convergence

time is too much longer than those of others due to the

existence of two consecutive population-based algorithms

in their approach.

In [24], Bonyadi et al. proposed a scheduling algorithm

for RC systems called Bipartite GA (BGA), which uses

different genetic operators and chromosome representa-

tions for each part of the algorithm. In the first phase of this

two-phase algorithm, the proper order of tasks is found by a

GA, and in the next phase, another GA finds the most

suitable processors for executing each task. The results of

simulation results show that their approach needs 10%

fewer iterations compared to its competitor algorithms on

average. However, the volume of computations required

for a generation might vary from one algorithm to another,

and it means that the algorithm with more iteration num-

bers has much less execution time in comparison with

another algorithm.

In [25], an Ant Colony Optimization (ACO) algorithm-

based method known as Feasibility Assured TSP-likened

Scheduling (FATS) is presented. This work adapts the

ACO to the specifications of the scheduling problem by

converting the task and resource graphs into a construction

graph. Then, an ACO is used to solve it, similar to the

Travelling Sales Person (TSP) problem. The main feature

of this graph is that it preserves the tasks’ precedence

constraints and target system restrictions in its structure.

Although the solutions provided by the ACO are always

feasible and have high qualities, its run-time is too much

due to its population nature.

A discreet Invasive Weed Optimization (IWO) algo-

rithm combined with the Earliest Finish Time (EFT)

approach is used in [26]. The latter method assigns a pri-

ority to each task while the former performs the task to

processing resources mapping. Although the results show

high-quality solutions of this algorithm, it still suffers from

the last longing execution time due to its two-step nature.

Moreover, it may lose its performance when the configu-

ration time overhead is added to the problem.

Some efforts also have been done exploiting SA. In [27],

an SA method is presented, which decreases the opti-

mization procedure run-time and makes the algorithm

scalable to the application size. In [28, 29], the authors

investigated the usage of SA for solving task mapping and

scheduling problems. Several experiments on SoCs con-

firm that the solutions generated by SA have accept-

able and considerable high-quality makespan, while the

run-time is remarkably much less.

In another work, a hybrid modified SA and List heuristic

is presented [30], which has two stages. In the first stage,

the List heuristic provides some early solutions, and then in

the next stage, these solutions are improved by using a

modified SA. By performing some simulations, they
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showed that their approach overtakes the List-based

scheduling algorithm regarding the quality of the solutions.

The authors in [31] presented a modified ACO

scheduling algorithm that applies special constraints for

generating new solutions and designing particular pher-

omone tables. From the quality point of view, their results

demonstrate that the solutions produced by their proposed

ACO are 11% better than those of SA and TS on average

[6, 32].

As can be inferred from the above survey, GA is a

popular and successful technique that offers short make-

span solutions but with more algorithm run-time. Many

pieces of the literature have addressed the usage of GA for

solving this problem, each has considered only one or two

of the mentioned metrics in the previous section, and none

carried out experiments to investigate all of them. In this

regard, we tried to enrich the SA by customizing it to our

problem.

The rest of the paper is organized as follows: Sect. 2

presents the task and device models used in this study and

the details of the proposed method. The results of the

experiments are presented in Sect. 3. In Sect. 4, a discus-

sion of the proposed method is provided. Finally, the paper

is concluded in Sect. 5.

2 The proposed method

By the scheduling problem in this paper, one means to

minimize the overall makespan of a set of dependent tasks

on a given DRHW system by providing a feasible and

effective task schedule. Here, in contrast with multipro-

cessor scheduling, besides task scheduling, task allocation

is taken into consideration. In addition, we must carefully

treat the configuration prefetching due to the existence of

run-time reconfiguration.

2.1 Device model

Among different types of DRHW, in this work, a parallel

reconfiguration model is used as the target model. The key

reason for using this model is its high degree of generality,

which allows describing different types of reconfigurable

systems by intruding different values for the model’s

parameters.

The parallel reconfiguration model, which is a part of

SoC platforms, consists of several continuously connected

identical tiles. As depicted in Fig. 1, each tile consists of

two elements, a logic circuit and its configuration con-

troller. Any set of m consecutive connected tiles can

accommodate a task requiring m resources. The crossbar

connection is provided to connect the configuration

SRAMs of the processing resources to parallel configura-

tion controllers [33].

2.2 Task model

Typically parallel programs are composed of some

dependent tasks, which are usually modeled by directed

acyclic graph (DAG), G V ;Eð Þ, where V ¼ j1; j2; . . .; jnf g is

a finite set of nodes or tasks, and E is a set of directed edges

between the tasks that denote the task dependencies in the

form ji; jkð Þ 2 E, where ji is the parent of jk, and the data

produced by ji will be used by jk. A child task cannot be

executed until all of its predecessors are accomplished. The

number of requisite tiles, Ri, and execution time, RTi, are

two attributes assigned to each task i. Since configurations

of each task are explicit processes but do not being pre-

sented in the task graph, ordinary DAG representation is

not sufficient. For this study, an extended graph named

Gþ Vþ;Eþð Þ is used instead. Additional nodes are added by

the symbol V
0
, which are representative of the configura-

tion nodes, and each node of this type represents the con-

figuration of one tile. Also, additional links named E
0
are

added from V
0
to V since configurations must be done prior

to execution. In short, to describe a mathematical rela-

tionship between the original and the comprehensive DAG,

one can notate it as Vþ ¼ V [ V
0
and Nþ ¼ N [ N

0
. In this

regard, an original DAG with five nodes or tasks and its

associated extended DAG with 16 nodes are shown in

Fig. 2a and b, respectively. The configuration node repre-

senting the configuration of the j th segment of task i is

represented by C i; jð Þ [35].

2.3 Problem formulation

The problem in this study is providing solutions for

scheduling the DAG tasks on hardware tiles beside their

configurations so that the time of running the tasks is

minimized. Each DAG which denotes by G V ;Eð Þ consists
of two attributes, V ¼ j1; j2; . . .; jnf g, a finite set of nodes or
tasks, and E, a set of directed edges between the tasks.

Therefore, there are n tasks in a DAG which are shown by

the set V . To calculate the makespan of running a DAG on

a DRHW, two attributes must be considered for each task;

the number of requisite tiles, Ri, and execution time, RTi,

for the task Ti. If the task Ti is mapped on m tiles or Rj

resources (Mapi;j � Ti ! Rj

� �
Þ, the time of occupation of

the Ti on the DRHW includes the time of its configuration

(CtTi) on the system and its running time on the allocated

tile(s). This parameter can be calculated by Eq. (1).

OTTijMapi;j ¼
Ri � RTi

nRj

ð1Þ

18038 Neural Computing and Applications (2023) 35:18035–18057

123



ETTijMapi;j
¼ INTi

SpeedRj

where nRj
indicates the number of

assigned tiles for executing the task Rj, and OTTijMapi;j

denotes the occupation time of task Ti on the DRHW

according to the assigned nRj
tiles. Equation (1) gives the

occupation time of each task individually but not its

completion time from the beginning of the execution of the

whole DAG. To compute the completion time of a task Ti,

the overall time needed to complete the execution of a task

Ti, and all its serially executed predecessors are required.

According to Eq. (1), the completion time of the task Ti
from the moment of beginning the first task in the DAG can

be calculated as Eq. (2).

CTTi ¼
OTTijMapi;j if Pred Tið Þ ¼ ;;
max

Tk2Pred Tið Þ
OTTijMapi;j þ CTTk

n o
otherwise;

8
<

:

ð2Þ

where Pred Tið Þ denotes the predecessor tasks of Ti, which

means that those tasks exist before Ti in the task graph.

Therefore, the total time of the DAG execution on a given

DRHW (i.e., the makespan of the DAG), W , is the maxi-

mum value resulting from the above equation computed for

all DAG tasks. This makespan can be calculated as Eq. (3).

ETW ¼ max
1� i� n;Ti2V

CTTi ð3Þ

Equation (3) denotes that the execution time or make-

span of a DAG equals the completion time of its most time-

consuming task according to all its predecessor tasks.

Therefore, to calculate the ETW , the CTTi of all the graph’s

tasks must be computed first, and then, the largest will be

picked.

2.4 The proposed algorithm

In the proposed method, SA is used as the core algorithm.

SA is a probabilistic non-greedy algorithm, which is

inspired by the process of melting and cooling materials. It

searches the solution space of a problem by annealing from

a high to a low temperature. The annealing process, which
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is controlled by a cooling function, must be designed so

that in high temperatures, the algorithm explores the

solution space to escape from local minimums and reach

into the global valley. Then, by decreasing the temperature

gradually, it intensifies its investigations to find the sub-

optimal solution.

SA has many advantages, some of which are: Any

arbitrary objective function or system can be handled by

this algorithm; theoretically or to some extent assures

reaching into the global minimum solution and usually

provides high-quality and near-optimal solutions; it is

reasonably not hard to implement; finally, it deals with a

single result or individual and requires a little computation

to go from a stage to another. Because of working on a

single solution and its concise steps from one iteration into

another, the main drawback of this meta-heuristic algo-

rithm is its slow convergence. One can tackle this issue by

adjusting the steps’ lengths according to the problem and

iteration number so that, on the one hand, the mentioned

balance would not be disrupted. On the other hand, the

algorithm reaches the global minimum in a guided random

search manner. In this regard, we have made the algo-

rithm’s exploration intelligent by proposing a customized

neighborhood selection mechanism and a problem-depen-

dent cooling function. Moreover, we have exploited inno-

vative mutation operators to intensify the algorithm’s

exploitation in promising areas.

To use SA for solving the DRHW scheduling problem,

first, it is necessary to modify and adapt the algorithm’s

controlling parameters and operators. These should be done

to cover its weaknesses resulting from its single-solution

searching nature while exploiting its light-computational

complexity as well. In other words, one must customize it

to the reconfigurable hardware scheduling problem to well

explore its huge multi-dimensional search space in a rea-

sonable time. This requires some mechanisms for adjusting

the search steps, including the search speed and zone based

on the problem size and specifications. To achieve the

mentioned goals, we developed innovative problem-de-

pendent controlling functions. First, the cooling function

has been customized for the DRHW problem size. In this

regard, the cooling steps must differ for problems with

different sizes. The rationale behind it is that problems with

small sizes need fewer steps to search the whole solution

space. However, the large ones require much more itera-

tions to fully explore different search space zones. To

realize such a dynamic cooling function, we calculate the

temperature of every iteration based on the number of task

graph nodes, Vj j, and a coefficient that will be further tuned
to find the optimal relation. Another function that is

adapted to the problem specifications is neighborhood

selection. To this end, we introduced some mutation

operators as well as a new parameter named height value

which shrinks the searching neighborhood of the current

potential solution gradually and according to the current

temperature. In the following, the details of these functions

are presented. The flowchart of the GOSA is shown in

Fig. 3. At first, the algorithm’s parameters and the neces-

sary functions are set and defined. Before starting the

algorithm, we must define a representation scheme for the

potential solutions.

In our method, solutions are represented using pairs of

two-dimensional strings. The first two-dimensional string,

called task string (T-string), represents the scheduling

Define Cost Function

and Set SA Parameters(T0, Iterations,...)

Generate Initial Solution(S0)

Find Cost of Initial Solution

Calculate the New 

Temperature 

Producing a New Solution 

By Using Mutation 

Find Cost of New Solution

The New Solution 

Substitutes the Previous One

Convergence Check

The New Solution 

is Better Than the 

Previous 

No

Yes

Begin

End

Fig. 3 Flowchart of the GOSA
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results of tasks on tiles Tile1; Tile2; . . .;Tilenf g. Each tile

includes a set of tasks that are scheduled in it, and the

execution order of the tasks is denoted by their positions in

the tile. If a task needs more than one tile, it appears in all

tiles assigned to it.

The second two-dimensional string, controller string (C-

string), represents the configuration scheduling results

Ctrl1;Ctrl2; . . .;Ctrlnf g. Each controller includes a set of

configurations that are scheduled on it. The position of

each controller in the string shows the order of using that

controller. Figure 4 depicts an example of two-dimensional

strings and their scheduling for the extended graph in

Fig. 2.

Now, we can generate an initial scheduling solution, S0.

This solution is produced through a resource-constraint list

scheduling approach in which the resources are selected

accidentally. The basic procedure for creating the S0 is as

follows:

Pace (1): A ready task node is selected. A task node is

ready when all of its preceding task nodes, if any, are

scheduled.

1 2 3 4 5 6 7 8 9 10 11 12

Tile 3

Tile 2

Tile 0

Tile 1

Scheduling Step

1 2 3 4 5 6 7 8 9 10 11 12

Ctrl 2

Ctrl 1

Task Strings
Tile 0: (task1,task3,task5,task4)

Tile 1: (task1,task2,task5,task4)
Tile 2: (task2,task5,task4)

Tile 3: (task2,task4)

 Controller Strings
Ctrl1: (C<1,0>,C<2,2>,C<3,0>,C<5,0>,C<4,2>,C<4,1>)

Ctrl2: (C<1,1>,C<2,3>,C<2,1>,C<5,1>,C<4,0>)

C<1,1>

C<1,0>

Task1

C<2,3>

C<2,2>

C<2,1>

C<3,0>

Task 2

Task 3 C<5,0>

C<4,2>

C<5,1>

Task5
C<4,1>

C<4,0>

Task 4

C<1,1>

C<1,0>

C<2,3>

C<2,2>

C<2,1>

C<3,0>

Scheduling Step

C<5,0>

C<4,2>

C<5,1>

C<4,1>

C<4,0>

Fig. 4 Results of task and configuration scheduling
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Pace (2): Controllers for the task node configuration

node(s) and tile(s) for the task node are randomly selected.

If more than one tile is needed, consecutive joint tiles are

randomly selected.

Pace (3): If any task nodes are left unscheduled, go back to

pace (1); otherwise, the initial solution is already produced,

and the procedure is completed.

After the initial solution is produced, its cost is calcu-

lated using an objective function computing the makespan

of the scheduling solution as in [36]. Then, the cooling

function calculates the new temperature as a function of

some parameters, which will be discussed later.

Now, the algorithm starts to search the solution space

iteratively based on the current solution. For generating

new solutions, a new graph called a scheduling graph (S-

graph) originated from the strings’ pairs of the current

solution by realizing additional links of the scheduling

dependencies in the comprehensive graph. On each tile of

T-strings, the extra edge(s) is raised from the node at the

position Pth to the configuration node(s) of the node at

position Pþ 1ð Þth to ensure the correct order of execution.

For example, edges are inserted from task 3 to configura-

tion nodes C 5;1h i and C 5;2h i of Fig. 2. On each controller of

C-strings, the extra edge(s) from the configuration node(s)

at position Nth to the configuration node(s) of the node at

position Pþ 1ð Þth are inserted into the extended DAG. For

example, since C 2;3h i should precede C 4;2h i, an extra edge is

inserted from C 2;3h i to C 4;2h i. Therefore, it is guaranteed

that every phase of generating new solutions does not break

priority rules. By modifying the current solution’s elements

randomly, new solutions are achieved. To this end, the

mutation operator of GA is employed. As the task and

configuration nodes are two different types of nodes, they

can be mutated independently. We used three kinds of

mutations in our method. In the first one, only T-strings are

mutated by randomly selecting a task node and taking it to

a new place. This changing of a task node location should

meet the condition of Eq. (4) so that the precedence con-

ditions are preserved:

height the node before Við Þ
\heightðViÞ� height the node after Við Þ

ð4Þ

where heightðViÞ is the height value of the node Vi. The

heightðViÞ is gained according to the S-graph as relation

(5):

heightðViÞ ¼
1; if Vi is a root node
1þmax height predecessorsð Þð Þ; else

�

ð5Þ

In the second mutation, only C-strings are changed by

accidentally selecting a configuration node and taking it to

a new controller’s corresponding C-string. The conditions

of the new location are like that of task mutation, but the

height value of each configuration here is the same height

value of the task node it configures.

The third mutation rotates the assignment of controllers

to the configuration nodes of a task. This mutation ran-

domly selects a task node, Ti and applies only to tasks that

need more than one tile. If L tiles are required for the task,

i.e., it has L configuration nodes; node C i;1h i is substituted

by C i;2h i, C i;2h i by C i;3h i, until C i;1h i substitutes C i;Nh i.

There is a certain probability for each of these mutations

to run while generating a new solution. This way, the task

nodes in T-strings are ensured to keep the correct order

according to their height values, but the C-strings might

disturb the order and invert the height values. This inver-

sion may make a cycle in the S-graph after the random

modification of scheduling dependencies done in mutation.

Therefore, to guarantee the feasibility of new solutions, the

C-strings must be sorted at the end of the mutation oper-

ation, according to the height values.

The run probability of each mutation mentioned is

determined by:

Random 0; 1ð Þ\T ð6Þ

where Random 0; 1ð Þ is a random number generator

between 0 and 1, and T is the temperature of the current

iteration. This function runs in every phase independently

Fig. 5 The proposed algorithm’s procedure scheme for selecting

mutant nodes as the algorithm progresses for the example DAG
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for each of the three kinds of mutation; if the mentioned

condition is met, the mutation applies to the solution string.

It should be noted that all three kinds of mutation may

apply in one iteration.

During the algorithm’s progress, the temperature

decreases (falls from 1 to 0). This is called a cooling plan.

Various cooling plans exist, such as linearly decreasing,

geometrically decreasing, Hayjek optimal, etc. The cooling

schedule in this study, as mentioned before, depends on the

size of the problem and is as follows:

T ¼ MI � CI

MI
ð7Þ

where MI is the maximum number of iterations, and CI is

the current iteration number. The number of iterations to

reach a suboptimal solution is directly proportional to the

number of tasks, MI / Ntask (Ntask is the number of tasks).

A coefficient, k, converts the proportion to Eq. (8):

Maximum Iterations ¼ k � Ntask ð8Þ

So, Eq. (7) becomes as relation (9):

T ¼ k � Ntask � CI

k � Ntask
ð9Þ

In the beginning, when the temperature is high, the

algorithm is not much greedy and may generate a solution

different from the current solution. But as time passes, the

temperature falls, and the algorithm gradually becomes

greedier. Therefore, the new solutions do not differ much

from previous ones, and the solutions with less fitness are

less likely to be accepted. In our proposed method, in the

early stages of the algorithm, when the temperature is high,

the mutation can be applied to more nodes of the solution

string. As a result, the solution space is explored thor-

oughly, and the algorithm does not get stuck in a local

minimum. As the temperature decreases, the number of

nodes of the solution string mutated decreases so that new

solutions occur in the neighboring of the previous one.

Gradually, by exploring the global minimum valley, the

global minimum can be reached in the final stages. Two out

of three mutations discussed before are dependent on

height values. The height value of the selected node for

mutation should satisfy the following condition:

height 2 1þ 1� Tð Þ � heightmax � 1ð Þ; heightmaxð Þ ð10Þ

where heightmax is the maximum height value of nodes.

Therefore, as time passes and T decreases, the limits of the

neighborhood range in which nodes are selected decrease

from 1; heightmaxð Þ to only heightmax. The proposed algo-

rithm’s procedure scheme for selecting mutant nodes as the

algorithm progresses for the example DAG is presented in

Fig. 5.

In each iteration, the fitness of each new solution is

measured as in [36], in inverse proportion to the scheduling

length. If this fitness is better than the previous, the new

solution will be substituted; otherwise, it will be accepted

with the following probability:

Paccept ¼
1; DCost� 0

e�
DCost
T ; DCost� 0

�
ð11Þ

where DCost denotes the difference between the cost of the

generated solution and the previous one, and T is the

temperature of the current iteration.

At the end of each iteration, the stopping criteria of the

algorithm are checked, and the algorithm exits if one of

them is met. Otherwise, it iterates from the first stage. As

an example, the results of scheduling the DAG of Fig. 2 on

a DRHW system with NT ¼ 3 and NC ¼ 2 by using the

proposed algorithm are shown in Fig. 4. The steps of

GOSA are presented in detail in Algorithm 1.
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3 Experimental results

To evaluate the performance of the proposed method,

GOSA is applied on various benchmarks and synthetic

graphs considering several target systems types and

architectures. The real-life task graph benchmarks include

LU decomposition and Gauss–Jordan Elimination (GJE)

[37] with various task numbers as two well-known standard

test problems. Moreover, we produced randomly generated

task graphs with 20–100 task nodes as synthetic test cases.

We compared the GOSA with three successful methods in

terms of both the quality andexploration time of them and

also with three recent algorithms in terms of performance.

In the following subsection, an experimental design is

presented to state the specifications and objectives of the

experiments clearly.

3.1 Experimental design

To evaluate the proposed method, a total of ten different

experiments were performed whose design specifications

and objectives are presented in Table 1. It should be noted

that due to the randomness of the algorithms’ process, and

the elimination of the role of chance and probabilities in

the results and their interpretations, all experiments were

performed with multiple repetitions and on different sce-

narios in terms of the graph and system size, which is

clearly stated for each experiment.‘‘ Moreover, in each

experiment, this issue was emphasized, and the number of

repetitions and consideration of different conditions of the

graph or system were highlighted.

In the following, each of these tests is presented along

with the details and results obtained and their

interpretations.
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3.2 Results and discussion

3.2.1 Experiment 1

In the first experiment, the objective was to determine the

value of the parameter, k, in the cooling function. To obtain

a suitable value for this parameter, a reconfigurable system

having four tiles and two controllers is supposed, and the

diagram of makespan versus GOSA iterations for four

graphs with a different number of tasks is shown in Fig. 6.

As shown in the figure, by increasing the number of iter-

ations, the makespan of the scheduling solutions decreases.

To minimize the role of chance, the simulation was repe-

ated 30 times for each graph, and the results were averaged.

This diagram shows that the best value for the k parameter

is located on the knee of the curves. This fact implies that

the value of k should be considered in the following range:

2\k� 3 ð12Þ
Fig. 6 Diagrams of makespan versus iterations for four different

graphs

Table 1 Specifications and objectives of the experiments

Exp.

number

The experiment objective and the

evaluation criteria

Target system

configuration

Task graph types and characteristics Number

of

repetitions

The algorithms

1 Tuning the value of the parameter

k in the cooling function

NT ¼ 4, NC ¼ 2 Four random DAGS with 20–80 nodes 30 GOSA

2 Makespan, scheduling error [NT , NC] in the

range: [1, 4]

and [1, 5]

20, 40, and 60 nodes graphs, each

including ten types in terms of

execution time and the required

configuration nodes

10 Exhaustive Search,

List-based heuristic,

GA, and GOSA

3 The run-time and makespan

improvement over the List

Scheduler

NT ¼ 4, NC ¼ 2 Five various random graphs with

20–60 nodes

20 Exhaustive Search, GA,

and GOSA

4 Convergence rate, average, worst,

and best makespan

NT ¼ 4, NC ¼ 2 Five various random graphs with

20–60 nodes

50 The best, the worst, and

average solutions of

GA and GOSA

5 Relative error and the stopping

iteration number

NT ¼ 4, NC ¼ 2 Five various random graphs with

20–60 nodes

5 Exhaustive Search,

List-based heuristic,

GA, and GOSA

6 Time scalability NT ¼ 4, NC ¼ 2 Five various random graphs with

20–60 nodes

20 GA and GOSA

7 Confidence level, average,

maximum, and minimum of the

makespan and execution time

[NT , NC] in the

range: [3, 6]

and [1, 3]

25 random task graphs with 20–60

nodes

100 Exhaustive search, GA,

and GOSA

8 Reliability of the results NT ¼ 3, NC ¼ 1 20-node random DAGs 1000 List-based heuristic,

GA, and GOSA

9 Makespan and execution time

comparison to state-of-the-art

and successful algorithms in the

literature

NT ¼ 4, NC ¼ 2 GJE and LU decomposition graphs 30 DRNN-BWO, DCHG-

TS, GAACO, FATS,

BGA, HPSO-GA, and

GOSA

10 Investigate the impact of various

system sizes on the

performance

NT in the range:

[4, 12] and NC
in the range [2,

6]

GJE graph with 645 and 820 nodes,

and LU decomposition graph with

464 and 819 tasks

5 FATS, BGA, HPSO-

GA, and GOSA
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Another point that should be noted about this graph is its

slow convergence. The main reason is the lack of move-

ment and action to improve the solutions, which returns to

the essence and nature of the problem of scheduling

dependent tasks on Dynamically Reconfigurable Hardware.

Most of the makespan of the solutions to such a scheduling

problem include the critical path tasks arranged sequen-

tially on tiles. The length of the critical path determines and

limits the optimal makespan. The scheduling algorithms try

to accommodate other tasks (non-critical path tasks) in the

empty spaces parallel to the critical path tasks, to make

maximum use of the idle times of other tiles. Therefore,

despite the existence of many permutations to move the

arrangement of tasks of each potential response time, many

of which are infeasible, and minimal modes can lead to

improvement of the solutions, which requires a lot of

searching and time to find a feasible and better solution.

Hence, the convergence rate toward the optimal solution

slows down.

3.2.2 Experiment 2

Since GA has been demonstrated as a successful algorithm

for this problem in the literature and provides high-quality

solutions [20, 34]. In this set of experiments, the results of

the proposed method, GOSA, were compared with those of

a standard GA with optimized parameters’ values. The

List-based heuristic is another comparison method because

it produces feasible scheduling solutions in a very short

time. In fact, in comparison with other well-known

scheduling algorithms, it has much lower-time complexity.

To obtain the results of the three mentioned algorithms,

optimal scheduling results are also needed, which are

generated using Exhaustive Search. The Exhaustive Search

was adopted as a criterion to calculate the scheduling error

of the three other algorithms. The scheduling error of a

scheduling algorithm concerning the optimal solutions

generated by an Exhaustive Search can be computed using

the following relation:

Scheduling Error ¼ Algorithm
0
sMs� ES

0
sMs

ES0sMs
� 100

ð13Þ

where ES and Ms stand for Exhaustive Search and make-

span, respectively. In this set of experiments, the proposed

method is evaluated by testing on various random task

graphs and compared by GA, List Scheduler, and the

Exhaustive Search results. Since GA parameters, i.e.,

crossover and mutation rates, considerably affect the

results [26, 31, 32], various simulation scenarios were

examined to tune the GA parameters. This procedure is

lengthy, and hence, only the final obtained optimal values

are presented for the algorithm’s parameters as below:

• Population size: 32.

• The number of generations: 100.

• Selection rate: 0.30.

• Mutation probability: 0.10.

These values are obtained after numerous runs of the

GA with different parameter values, and the optimum ones

were used in the experiments. By this, we are sure that the

results returned by GA are its bests.

The number of tiles of each task and their execution

time are randomly generated with uniform distribution in

the ranges of [1, 4] and [1, 5], respectively. In all experi-

ments, if stated else, the number of controllers, NC, was

considered 2, and the number of tiles, NT , was taken 4.

To compare the methods in terms of makespan, the

proposed method is evaluated by exploiting three various

DAGs, including 20, 40, and 60 task nodes, each of which

contains ten different graphs in terms of execution time and

the required configuration nodes (i.e., width and depth).

Table 2 The proposed method

(GOSA), GA, List Scheduler,

and Exhaustive Search

makespan solutions

Graph number Num. of tasks = 20 Num. of tasks = 40 Num. of tasks = 60

List GA GOSA E.S List GA GOSA E.S List GA GOSA E.S

1 75 69 67 63 194 176 176 157 264 249 246 226

2 70 63 59 55 182 168 161 148 291 271 271 243

3 84 79 76 74 168 155 154 136 254 241 237 221

4 84 77 72 68 175 164 161 148 278 263 261 243

5 74 68 63 60 170 155 154 140 272 256 254 230

6 86 80 76 75 182 166 165 152 259 241 240 220

7 83 76 73 70 191 174 174 158 289 271 274 250

8 69 66 62 60 172 161 161 146 295 275 272 249

9 92 87 83 79 183 172 171 162 269 251 250 233

10 94 83 80 71 187 173 172 157 282 266 270 247
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The experiment is repeated ten times, and the results

obtained by each method were averaged. The makespan

provided by each method is reported in Table 2. The results

show that the List Scheduler, GOSA, and GA average error

over the Exhausting Search is 12.3%, 7%, and 8%,

respectively.

3.2.3 Experiment 3

In the next set of experiments, we ran the algorithms for a

constant number of iterations and computed the results of

each method to find out which one performs better. These

experiments were done for different iteration numbers on

three sets of multiple graphs with 20–60 tasks, including

Table 4 The run-time and makespan improvements over the List Scheduler for 100 iteration numbers

Graph number Number of tasks ES GA GOSA

Time (min) Improvements (%) Time (min) Improvements (%) Time (s) Improvements (%)

1 20 22.2 31 2.5 13 4.6 12

40 56.4 22 7.1 7 13.5 8

60 81.5 20 11.8 8 23 7

2 20 22.8 24 2.6 9 4.8 12

40 52.3 18 6.8 7 12.4 9

60 86.5 19 12.3 7 25.2 7

3 20 22.5 29 2.4 15 4.5 17

40 52.9 14 6.7 5 12.1 5

60 85.1 20 12.1 8 24 9

4 20 27.1 18 2.8 7 5.1 9

40 52.2 16 6.6 6 11.6 9

60 92.6 18 12.6 6 27 5

5 20 25.3 23 2.7 10 4.9 14

40 55.5 19 7 8 13.7 9

60 92.6 13 12.7 4 27.3 5

Table 3 The run-time and makespan improvements over the List Scheduler for 30 iteration numbers

Graph number Number of tasks E.S. GA GOSA

Time (min) Improvements (%) Time (min) Improvements (%) Time (s) Improvements (%)

1 20 7.3 24 0.8 10 1.3 10

40 17.2 13 2.4 4 4.3 5

60 26.8 16 3.9 6 7.4 7

2 20 9.3 12 1.3 4 2.5 4

40 17.6 16 2.2 5 4.1 6

60 27.4 12 3.9 4 7.2 4

3 20 7.6 23 1 9 1.8 10

40 16 19 2.1 5 3.9 7

60 25.9 18 3.7 7 6.8 9

4 20 8.2 14 1 5 1.7 12

40 17.4 22 2.5 9 4.7 9

60 26.2 20 3.7 7 6.6 5

5 20 7.9 19 0.8 6 1.2 9

40 16.4 20 2.2 7 4.1 10

60 26.7 22 4 6 7.6 7
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five various graphs. The experiments for 30 and 100 iter-

ation numbers were repeated 20 times for each algorithm,

and their run-time, besides the averaged makespan results

in the form of improvements compared to those of List

Scheduler, are presented in Tables 3 and 4.

As can be inferred from these results, the quality of the

solutions provided by GA, GOSA, and ES is average 7.2%,

8.1%, and 19.1% higher than that of the List Scheduler,

respectively. Moreover, GOSA is 31 times faster than GA

on average in terms of the algorithm execution time. The

reason behind the fact that the quality of the solutions

generated by GA is lower than those of GOSA is that the

GA is not tuned and optimized for the problem. This means

that it might include all unrelated cases so that all tasks

would be arranged consecutively on a single tile in extreme

cases. In return, our proposed algorithm tries to fill unoc-

cupied tiles to produce a higher-quality population in the

early stages of the algorithm and thus results in a quicker

convergence speed.

3.2.4 Experiment 4

To verify the results of the previous experiment, another

test was carried out on five various graphs five times, and

all algorithms were allowed to resume for 20 s. The results

of this experiment are shown as the population mean plots

of the average, worst, and best makespan obtained by

GOSA and GA over time in Fig. 7.

As can be seen from the figure, the quality of the GOSA-

Avg-Mean is improved, unlike those of GA, which became

worse over time. There are some reasons behind this

Table 5 The algorithms’ relative error and their stopping iteration number for five different DAGs

Task set Number of tasks GOSAerror% GOSA stop iteration num GAerror% GA stop iteration num Listerror%

1 20 3.57 96 5.26 41 15.14

2 30 7.32 125 6.75 47 15.84

3 40 9.91 116 9.14 59 16.02

4 50 10.17 139 11.69 67 18.17

5 60 13.12% 147 13.10 72 18.79
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Fig. 8 Time scalability of the algorithms

Fig. 7 Population mean plots of

average, worst, and best

makespan produced by GOSA

and GA over time

18048 Neural Computing and Applications (2023) 35:18035–18057

123



observation. First, the dominant effect of the mutation

operator for evolving the algorithm in every generation.

Second, is that the crossover operator, due to its need for

the repair phase, has little impact on enhancing and con-

verging the population. This issue can be relaxed and

tackled by adapting the GA for scheduling problems by

exploiting some techniques, such as Genotype-to-Pheno-

type Mapping (GPM) [17]. In addition to the single-solu-

tion nature of GOSA, another reason that GOSA is much

faster than population-based GA is the necessity of

repairing steps to repair violated precedence constraints

resulting from gene ordering disturbances during crossover

and mutation operations. However, GOSA, by exploiting

the S-graph and the nodes’ height value, always preservers

the precedence constraints and produces valid solutions.

Therefore, there is no need for any extra repairing phases.

Moreover, the non-optimality of direct use of GA for the

problem, which resulted in the presence of many incon-

sistent solutions in the population, is another reason for the

deterioration of the quality of the solutions over time.

3.2.5 Experiment 5

In the subsequent two experiments, we investigated the

impact of increasing the size of the problem on both the

algorithms’ execution time and the quality of the solutions

they generate. In the first experiment, the algorithms were

run five times on five different graphs, and the stopping

criterion was the fitness not changing over 30 successive

generations. The target was to log the makespans of

scheduling each DAG. The results of this experiment are

Fig. 9 The confidence level of the solutions generated by a GA in terms of the quality, b GOSA in terms of the quality, c GA in terms of the

execution time, and d GOSA in terms of the execution time, for different scenarios
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presented in Table 5 as the algorithms’ relative error

compared to the solutions acquired by the ES.

The results show that the quality of the solutions pro-

vided by GOSA is comparable to or sometimes better than

those of GA. As the graph sizes get larger, both algorithms

require more iterations to be converged, but in an unscal-

able pattern. One may note that GOSA needs more itera-

tion numbers to be converged in comparison with GA.

Still, one should also note that more generation numbers do

not necessarily mean greater execution time, and this

parameter value must be calculated separately.

3.2.6 Experiment 6

Next is dedicated to measuring that value, and to do so, the

algorithms were run to reach 95% of the optimum solutions

found by ES for five different graphs. The average exe-

cution time of the algorithms by performing the test 20

times on each graph is presented as a diagram in Fig. 8.

The results show that GOSA can reach the specified

quality for the solutions in a much shorter time in com-

parison with GA. For every ten additional nodes, it needs

about 3.5 s more time which shows its relative linearity in

the execution time. However, GA exhibits different

behaviors in which its run-time is approximately linear, for

graphs smaller than 40 nodes.

3.2.7 Experiment 7

In the next series of experiments which were done for five

different system configurations, by considering NT ranging

from 3 to 6 and NC varying from 1 to 3, we evaluated the

confidence level of the simulations. In the first experiment,

five different graphs with various numbers of tasks and five

different system types are considered. The stopping con-

dition was taken as fitness, not changing for 30 successive

iterations. The tests are repeated 100 times on each DAG,

and the average, maximum, and minimum of the algo-

rithms’ makespan are logged. In the second experiment, the

previous scenario was repeated with the difference that the

target was reaching 95% of the optimum values obtained

by Exhaustive Search. Finally, the results of both experi-

ments are presented as diagrams in Fig. 9.

As inferred from the diagrams, the gap between the best

and the worst solutions for every scenario is not significant

in both experiments. Quantitatively, the average makespan

and execution time error for GA are 3.35% and 3.89%,

respectively, and those of GOSA are 2.79% and 1.33%,

respectively. This verifies the validity of the results of the

previous experiments and shows that both algorithms are

implemented well, and the simulations have an accept-

able confidence level.

3.2.8 Experiment 8

To clarify the effect of chance on the results of both GA

and GOSA, we investigated the reliability of the algo-

rithms. In this regard, we repeated both methods on a

random DAG 1000 times, and the average, maximum,

minimum, and standard deviation values of all results are

recorded for their makespan. The results are shown as a

candle diagram in Fig. 10.

3.2.9 Experiment 9

To evaluate the performance of the proposed algorithm, we

have done some experiments on the graphs of real bench-

mark problems, i.e., GJE and LU decomposition according

to Table 6. Then, the results are compared with those of

some state-of-the-art algorithms in the field. The selected

and compared algorithms are FATS [22], HPSO-GA [23],

and BGA [24], which are reviewed in the Related Work

section. To have a just comparison, all the competitive

algorithms are used based on their optimized parameter

Fig. 10 Comparison of the

reliability of GOSA, GA, and

the List Scheduler by applying

them on a random DAG 1000

times
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values according to Table 7, which are obtained from their

references, and the maximum iteration number is consid-

ered as 100.

The values of the parameters used for these standard

graphs, such as the number of tasks, computation, and

communication time, are presented in Table 7.

In the first experiment, our algorithm, besides the other

mentioned three algorithms, was run to schedule the

benchmark graphs on an RC system with NC ¼ 2 and

NT ¼ 4. The results of this experiment which are the

average of running each algorithm 30 times are presented

in Fig. 11.

The results show that GOSA and FATS are superior to

other algorithms in all cases.

However, the former performs better for larger problem

sizes. Numerically, for different GJE graph sizes, ours is,

on average, 5%, 13%, and 17% outperformed FATS, BGA,

and HPSO-GA, respectively. For the different LU

decomposition graph sizes, GOSA surpasses FATS, BGA,

and HPSO-GA, by 3%, 12%, and 16%, respectively. As

can be inferred from the results, FATS also generated high-

quality solutions due to its customized graph translation

mechanism, which shrinks the search space, including only

the promising parts of the space. There is an important

observation in the results; the quality of the solutions

provided by GOSA and FATS gets better by increasing the

size of the problems. This is because by increasing the

graph sizes, the search space would be expanded. Still,

these algorithms remove the infeasible defective solutions

from the solution space and only search the most promising

zones. On the contrary, the other algorithms, due to the

lack of such mechanisms and also due to their consecutive

population-based algorithms, require more time to be

converged. Therefore, they fail to compete with ours in a

fixed number of generations.

Fig. 11 Makespan of the algorithms for different sizes of a GJE graph and b LU decomposition graph

Table 6 Parameters’ values of the standard task graphs in the experiments

Problem Number of tasks Computation time Communication time

GJE 15, 21, 28, and 36 40 s/task 100 s

LU decomposition 14, 20, 27, and 35 20 s for bottom layer tasks, plus 10 s for all other layers’ tasks 80 s

Table 7 Optimized parameters’ values for all compared algorithms

FATS BGA HPSO-GA

Num. of ants: 16

a: 0.02

Q: 3

GNS and GNP: 40

SGNS and SGNP: 10

PsS and PsP: 20

PmS: 0.32, PmP: 0.2

PcS: 0.74, PcP: 0.8

C1: 2

C2: 2

x: 0.9

Crossover rate: 0.7

Mutation rate: 0.15
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To clarify this point, another experiment is done in

which the execution time of the algorithms for finding an

assumed makespan is measured and reported in the graph

of Fig. 12.

The results show that the run-time of GOSA is signifi-

cantly lower than the others. The reason is that the pro-

posed algorithm explores the search space according to its

graph specifications which guarantee the feasibility of the

solutions while speeds-up the search process. This results

in a high convergence rate and also a low-time complexity.

Among the other algorithms, FATS also has a considerably

low execution time which is the result of its TSP-likened

construction graph generation mechanism. It allows those

solutions to be generated that preserve the system limita-

tions and DAG precedence constraints. The other two

methods are very time-consuming due to their successive

and independent population-based algorithms. BGA uses

two consecutive GAs, with parameters to be adjusted, and

includes too many individuals in each generation which

require cost evaluation calculations. Moreover, it exploits

particular types of operators to evolve the generation

members while requiring extra repair phases and proce-

dures to correct the infeasible chromosomes. Similarly,

HPSO-GA also faces challenges and drawbacks, leading to

high-time complexity.

The most important reason for the high quality of the

solutions provided by GOSA is its ability to access the

entire search space, as opposed to other methods that limit

the search space or remove some of its zones. Those

population-based algorithms divide the problem into sub-

problems or split the search process into distinct consecu-

tive phases to reduce the volume of calculations and the

execution time of the algorithms. By this, the tasks of

exploration and exploitation of the search algorithm are

separated from each other. This prevents the algorithms

from accessing some promising parts of the search space

and consequently degrades the quality of the generated

solutions. However, in GOSA, the search space is not

restricted or excluded, and the whole search space is

available for the algorithm. But still, two main challenges

should be tackled to achieve such competency. First, the

SA is inherently a single-solution algorithm, and its steps

from one iteration into another are very short. Second, a

considerable part of the search space lies in the infeasible

region due to the presence of solutions that violate the

precedence constraints, and entering those search areas

wastes the algorithm’s execution time. To tackle the

mentioned challenges, two innovative mechanisms are

presented. First, the step lengths of the algorithm are

adjusted by proposing a customized neighborhood selec-

tion mechanism and a problem-dependent cooling function.

By the progress of the algorithm, these functions control

neighborhood zone selection and also the algorithm’s step

lengths based on the introduced parameters. Second, an

innovative graph and solution structure called schedule

graph (S-graph), which is fitted to the profiles of the

reconfigurable system’s task scheduling problem, is intro-

duced. It guarantees the precedence constraints and the

system limitations so that the algorithm will be practicable

for various target systems. Moreover, it is compatible with

applications with different graph structures.

Another set of experiments is performed in which the

performance of the proposed algorithm is compared with

those of some state-of-the-art algorithms. The evolution-

ary-based competitor algorithms are DRNN-BWO [38],

DCHG-TS [39], and GAACO [40]. This set of experiments

Fig. 12 Algorithms’ run-time to find final scheduling for different a GJE graph sizes and b LU decomposition graphs
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is designed so that the effect of increasing the system size,

i.e., increasing the number of NT and NC, on the efficiency

of the algorithms is investigated. NT was ranging from 45

to 90 and NC was varying from 12 to 40. The system

configuration is considered as [NT , NC] as [6–9, 11, 12, 14,

14–17, 17, 20, 24, 28, 30, 33, 35] in each experiment. The

performance parameter measured in these experiments is

makespan, a 465-task node GJE graph and an 820-task

node LU decomposition graph are considered target

applications, and the number of tiles and controllers are

adjustable parameters. The results of these experiments are

shown in Fig. 13.

As shown in Fig. 13, the algorithms’ efficiency

improves with an increasing number of tiles and controllers

due to increased processing parallelism. However, by

increasing the number of tiles and controllers, efficiency

improvement is limited to a certain number of processors.

This is due to the serial nature of the task graphs, as well as

the amount of overhead imposed on the system. The main

reason for the superiority of our proposed algorithm is the

introduction of innovative graph and solution structures,

S-graphs. As said before in the previous section, such a

structure is fitted to the profiles of the reconfigurable sys-

tem’s task scheduling problem and guarantees the prece-

dence constraints and system limitations. Therefore, the

algorithm will be practicable for various target systems

with different types and features as well as for various

applications with different graph structures. However,

other algorithms’ potential solutions are entirely generated

randomly, and there are no customized mechanisms for

(a)

(b)

Fig. 13 Performance

comparison of the algorithms

for different sizes of a GJE task

graph with 465-task nodes and

b LU decomposition task graph

with 820 nodes
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distributing tasks among tiles while considering their

configuration prefetching.

In Fig. 13a and b, when the system size is minimum, i.e.

[6, 12], in terms of average performance, our proposed

algorithm outperformed DRNN-BWO, DCHG-TS, and

GAACO by almost 15%, 34%, and 35%, respectively.

However, as the number of tiles and controllers increases,

the efficiency rate increases dramatically. When the num-

ber of processors equals [14, 27], experimental results

show that the proposed method effectively improves

average performance by at least 14%, 31%, and 39%

compared to DRNN-BWO, DCHG-TS, and GAACO,

respectively. In the case of the maximum system size, i.e.

[16, 34], GOSA improves the performance by 11%, 28%,

and 39%, compared with DRNN-BWO, DCHG-TS, and

GAACO, respectively.

3.2.10 Experiment 10

To investigate the impact of various system sizes on the

performance of the proposed method, we have done

another experiment using very large GJE and LU decom-

position graphs. In other words, we tried to evaluate the

scalability of the algorithms by measuring the makespan

reduction by increasing the target system size. The make-

span results on target systems with 2–6 controllers and

4–12 tiles for GJE task graphs of 645 and 820 tasks, and the

LU decomposition task graphs of 464 and 819 tasks are

shown in Fig. 14, respectively.

Fig. 14 Scheduling makespan for a GJE task graph with 465-task nodes, b GJE task graph with 820-task nodes, c LU decomposition task graph

with 464-task nodes, and d LU decomposition task graph with 819-task nodes on different target system sizes
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The descending pattern of all diagrams was already

apparent. Still, the critical point is the greater slope of the

GOSAs makespan results according to the growth of the

system size compared with those of others. It means that

our proposed method offers cheaper solutions to dealing

with large problems. Another observation is the reasonably

uniform reduction in all algorithms’ makespan, but the

emergence of saturation in the proposed method’s results in

the system with four tiles and two controllers is notable.

Furthermore, for extra-large problems, GOSA generates

better solutions in comparison with others, while exhibiting

a linear behavior as the target system size increases. The

improvement of the quality of the solutions provided by

GOSA compared to the FATS method was limited to 6%

on average. However, the noteworthy point is that the

proposed method, despite being a single-solution approach,

thanks to its innovative graph-oriented solution structure

could reach such quality against a successful population-

based approach. The quality improvement rate compared to

the other two methods, i.e., BGA and HPSO_GA, is very

promising due to the confined search space that is resulting

from the nature of these two-stage algorithms.

As can be seen from these candle diagrams, the stability

of both GA and GOSA is acceptable so that the differences

between their best and the worst results are narrow.

However, since the proposed method uses its special graph-

oriented searching and pruning mechanism, its reliability is

somehow better.

4 Discussion

As can be inferred from the results, the proposed method

provides some useful advantages. The most important

strengths of the proposed method are its low-time com-

plexity and its fast convergence rate despite being based on

a single-solution search method. The other strength is its

dynamic change of the search steps in terms of neighbor-

hood size in each iteration based on the problem structure.

By the problem structure, we mean the topology and the

number of graph nodes and also the size of the reconfig-

urable hardware system. Moreover, it ensures that infea-

sible answers are not produced in each iteration by using an

innovative mechanism including S-graph, T-strings, and

C-strings which preserve the precedence constraints in both

DAG tasks and configurations. Therefore, it makes us

unnecessary to repair the invalid potential solutions in each

iteration. Although the proposed method has many

advantages and strengths, in some special cases, its effi-

ciency decreases. Since one of the control operators of the

proposed method in each iteration is based on the node

height; if the structure and topology of a given DAG are

such that the number of nodes of one level of the graph is

very large and also the nodes of that level are the same in

terms of size, the possibility of changing the arrangement

of a large percentage of them in the scheduling string in the

final iterations is reduced. Moreover, we emphasize that the

proposed method is designed for reconfigurable systems

with identical homogeneous tiles. If the system is hetero-

geneous, it is necessary to make modifications to its

structure and algorithm.

Moreover, the analytical comparison of the computa-

tional complexity of the proposed method with other

methods can be useful too. To this end, we examined the

time complexity of the algorithms in the following. In the

FATS algorithm [24], assuming that n is the number of a

finite set of interconnected tasks, m is the number of ants, t

is the number of available tiles for executing each node,

and Imax is the maximum iterations, the overall time com-

plexity of the algorithm is O mn2tImaxð Þ. In the other

method, the BGA [24], assuming that the population sizes

of the first and second phases are p and p0, respectively, the
number of task graph tasks is denoted by n, which are

connected by e edges, and gmax is the maximum number of

generations, the number of processors is considered as t,

and the overall time complexity of the algorithm is

O gmaxpp
0n3tð Þ. The other competitor algorithm, HPSO-GA

[23], is very similar to the previous one in its second phase

but uses a PSO algorithm in its first phase. PSO has the

time complexity of O pntð Þ, where p denotes the number of

particles, n is the number of tasks, and t is the number of

processors. However, in the second phase, GA imposes the

time complexity in the order of O gmaxpn
2tð Þ. In the pro-

posed method, which is based on a single-solution SA

algorithm, the first step aims to initialize the solution of the

first iteration, S0. This step has a time complexity of

O nþ tð Þ, assuming that n is the number of tasks in the task

graph, and t is the number of processors or tiles. Then, the

cost of the generated solution will be evaluated by order of

O 1ð Þ. Developing the S-graph in the next step requires

investigating the dependency links between nodes of the

graph, which has a time complexity of O eð Þ. Now, the
algorithm should evolve the current solution by mutating

some of its elements based on the height value parameter.

Such a parameter is a priority queue that contains all ready

tasks in the neighborhood of the nodes at any given instant.

To implement this queue, a binary stack is used, which has

a time complexity of O log nð Þ. Computing the cooling plan

as a temperature parameter has O 1ð Þ time complexity. By

repeating the algorithm for the Imax number of iterations,

the overall time complexity of the algorithm can be defined

as O Imaxn log nð Þ. Therefore, while the time complexities of

BGA, HPSO-GA, and FATS are proportional to n3, n2, and

n2, respectively. The time complexity of the proposed
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algorithm is proportional to n log n, which verifies its speed

and lower execution time in comparison with others.

5 Conclusions

In this paper, an adapted and customized Simulated

Annealing (SA) algorithm is presented to efficiently solve

the Dynamically Reconfigurable Hardware (DRHW) task

scheduling problem. The search space of this problem is

multi-dimensional and extremely large due to the existence

of configurations besides tasks that need to be scheduled.

At the same time, their precedence constraints must be

satisfied, and the overall makespan should be minimized.

To consider both tasks and configurations simultaneously,

a new graph called an extended graph is first generated.

Then, two-dimensional strings are coded as potential

solution schemes. In the proposed algorithm, GOSA, to

obtain the optimal solution with the least execution time, a

graph-oriented approach is developed, which selects a

dynamic neighborhood for picking the next node according

to the graph topology and task sizes. By using an adaptive

problem-dependent cooling function, the neighborhood

range is gradually shrunk as the algorithm progress. Then,

the node selection mechanism in each iteration is done by

exploiting three innovative inventive genetic operators.

This neighborhood selection mechanism and the multi-fold

operators cover the vast and complex problem space and

increase the proposed algorithm’s performance. Simulation

experiments on different benchmarks and randomly gen-

erated datasets with different sizes proved the efficiency

and scalability of GOSA. Comparison results with the basic

and also state-of-the-art algorithms indicate that GOSA

outperforms other algorithms in terms of execution time.

At the same time, its scheduling quality is better in most

cases, and in some others, it is comparable to the best

competitor. Quantitatively, the average improvements of

GOSA, GA, and the Exhaustive Search over the List

Scheduler for task graphs with 20–60 nodes are 7.2%,

8.1%, and 19.1%, respectively. Moreover, the proposed

method is on average 31 times faster than GA. In other sets

of experiments, we have done numerous tests on real

benchmark task graphs and compared the results with those

of some state-of-the-art algorithms. The results of these

experiments show that the solutions provided by our pro-

posed method outperform FATS, HPSO-GA, and BGA on

average by 5%, 13%, and 17% in terms of the quality of the

solutions. Also, its run-time is extremely lower than those.

Moreover, the performance of the GOSA is on average,

11%, 28%, and 36% better than those of DRNN-BWO,

DCHG, and GAACO, respectively. In the future, we intend

to improve the method to be able to perform run-time

scheduling. We also plan to consider other parameters

involved in reducing bottlenecks and increasing the overall

efficiency of the system, including task data locality and

running task preemption.
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