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Abstract
In this paper, offer a new framework for skin disease image recognition using deep learning techniques and local descriptor

encoding approaches. For the purpose of detecting melanoma early, skin lesions must be accurately classified. In this

research, an automatic image preprocessing approach is proposed for the removal of noise artefacts in photographs,

including thin and thick hair objects, surgical ink markings, dark halo effects, and ebony frames. Due to hazy contrasts and

distortions at the border margins, segmenting images are quite challenging. So, this research suggests a partitioning

technique based on a fuzzy gray-level co-occurrence matrix (GLCM) that is both effective and adaptive. An alternative to

convolutional neural networks (CNN) is proposed: the capsule-based network. An object’s existence and the relationship

between its functions are represented by a group of neurons (in logical units) that make up a vector called a capsule. While

synthetic product neural networks use max-pooling layers to define capsule coupling between subsequent layers, capsule

networks repeatedly utilise a dynamic routing technique to do so. Alternatively said, the routing-by-agreement approach

offers learning between capsule layers. To assess the efficacy of the F-CapsNet technique, three widely used datasets—the

ISIC 2017 Challenge, the 2019 Challenge, and the PH2 datasets—are employed. The suggested technique has an average

accuracy of 99.16% for the ISBI 2017 test dataset and 99.45% accuracy for the ISBI 2019 test dataset. Additionally, the

PH2 test dataset shows that the suggested approach has an average accuracy of 98.42%.

Keywords Skin lesion detection � Automated image preprocessing � Fuzzy-GLCM (gray-level co-occurrence matrix) �
Convolutional neural networks (CNN)

1 Introduction

Body temperature regulation and infection and injury

protection are two crucial functions of the skin. Melanoma

can develop from malignant skin cells and impact body

areas that typically receive little to no exposure to sunlight

[1]. A total of 5.4 million distinct nations report cases of

skin cancer each year [2]. Some studies project that from

95,360 cases in 2017 to 207,390 cases in 2021, skin cancer

cases in the USA will rise [3].

The mortality rate of skin cancer is decreased by early

detection and prevention [3]. Dermatologists with the

necessary education and expertise can diagnose skin can-

cer. In order to choose skin lesions, it is necessary to have

clinical information about the patient because similar
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pixels and textures call for the visibility of aspects that are

undetectable to the unaided eye [4].

Using conventional techniques like colour, diameter,

and asymmetry, dermatologists can identify skin cancer.

Imaging methods save time and money while enabling

manual image inspection that is more precise than with

conventional models [5].

Fuzzy logic often deals with data coming from recog-

nition and computational recognition, such as uncertainty,

partial truth, inaccuracy, or ambiguity. One of the many

well-known reasons why realistic estimations of a factor

are all integers in the range of zero and one, both inclusive,

is fuzzy logic [6, 7]. It is used to cope with imperfect real

notions whose true value can range from being completely

clear to being completely incorrect. The numerical quality

0 or 1 is the factor that is really estimated from the basic

Boolean operations by differentiation. Systems based on

decision-making, pattern recognition, control, and opti-

mization can be developed using fuzzy logic [8]. The

fundamental idea comes from the visual analysis per-

formed by dermoscopy. The infection or lesion site is

distinct from normal or healthy skin. Better segmentation

techniques are possible because of this disparity. For many

computational issues, fuzzy logic enables inaccurate

human intervention [9]. By resolving conflicts and evalu-

ating prospective improvements, it also has beneficial

consequences for a number of criteria. There were 8,441

fatalities from skin lesions in the USA in 2009, according

to statistics [8]. Skin imaging is possible using der-

moscopy, a non-invasive method. For the diagnosis of skin

lesions, it has evolved into a standardisation tool in recent

years. An optically-based magnification has been applied to

the area of interest. As a result, the surface’s underside

appears significantly more in these photos than in typical

microscopic ones [9]. It is an issue that dermoscopy lowers

diagnosis accuracy in dermatologists who are inexperi-

enced [10]. Require new computerised tools to understand

images rather than methods to correct these diagnostic

flaws. These mistakes result from the subjectivity of visual

interpretation and the intricacy of the occurrences [11].

Future technology will allow for the central detection of

many lesion items.

For AI modelling, there are two methods. Built around

learning and norms. According to some rules that were

coded by humans, the first rule-based technique creates

outputs that are specified. The second model makes use of

artificial intelligence, a notion employed in a variety of

fields, including mining, ecology, and urban planning.

Machine learning and deep learning are the two types of

artificial intelligence that are now available [12]. Data

identification and prediction are made possible through

machine learning. In general, the accuracy of the repre-

sentation of the input data has a significant impact on how

effective ML algorithms are. Performance is improved by a

good data representation over a bad one. Traditional neural

networks are where deep learning (DL) is derived from,

although it outperforms earlier models. In addition, DL

constructs multilayer learning models using both graph and

transformation techniques. These methods use a multilayer

architecture for their data representation, with the first layer

extracting low-level features and the last layer extracting

high-level features. In large data research, deep learning

also offers a number of benefits [13]. The convolutional

neural network (CNN) is one of the DL prototypes that has

proven to perform very well in developing video and image

processing for GPU (graphics processing unit) computing

systems [14]. Performance and execution time are

improved on training and test datasets by using quicker

region of interest (ROI) selection and CNN-based classi-

fication techniques [15]. Melanoma is thus classed as

having a high probability [16].

The following is an overview of the main contributions

of this work:

• Fuzzy-based capsule neural network (fuzzy CapsNet)

model is a technique suggested by Bayseian, which has

better loss performance.

• This work assesses the generative model’s precision

and evaluates the findings of the enhanced fuzzy-

CapsNet method against those of the current lesion

classification methods.

• In addition, this study sought to comprehend the

model’s efficiency in categorising lesion segments with

higher accuracy and faster processing times than other

models.

2 Literature survey

When applying CNN transfer learning, the associated

image size influences the accuracy of skin lesion classifi-

cation. Furthermore demonstrated is the superior perfor-

mance of image cropping over image scaling. A

straightforward ensemble technique that combines the

output of three fine-tuned CNNs and six scale-cropped

images yields the best classification performance, which is

shown in the final section [17]. Results of an upgraded use

of the whale optimization technique on a CNN in terms of

efficiency. With this method, one can lessen the difference

between a network’s output and desired output by deter-

mining the best weights and biases for the network [18].

In suggested DSNet, a network for skin lesions that

automatically segments semantic information. Here,

employ separable depth wise convolutions to lower the

network’s weight and parameter count [19]. The original

model’s parameters serve as the beginning values for
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pretrained AlexNet with transition learning. The final three

layers’ weights start off at random. We utilised the recently

released dataset ISIC 2018 [20] to evaluate the suggested

method.

Current computer-assisted diagnosis using thermal

imaging often involves a number of steps, including picture

segmentation, feature extraction, and classification

[18–20]. Based on a feature-based image matching pipe-

line, we first discuss feature detection, interpretation, and

matching strategies, ranging from manual to trainable

methods, and provide an overview of the theoretical and

practical development of these techniques. Pattern analysis

can frequently be used to explain how skin lesions develop

their horn-like appearance [21]. Lesion segmentation util-

ising clearing histogram thresholding is proposed for a skin

lesion detection system. Using the use of the ABCD rule,

we create a model that can segment and categories skin

images [22].

It has been suggested to employ the histogram-based

cluster estimate (HBCE) algorithm to predict the number of

clusters needed in the NCM technique (NCM) [21] in a

new skin lesion detection approach dubbed HBCENCM. A

number of computer algorithms have been created to cat-

egorise different forms of skin lesions utilising image

processing, feature descriptors, and pattern analysis. These

algorithms are based on existing machine learning

techniques.

An approach to segmenting and classifying data based

on deep learning has been suggested [22]. A Resnet50

feature pyramid network (FPN)-based MASK R-CNN

architecture with Resnet50 is used to segment skin lesions.

After that, the final mask is created by mapping the linked

layer-based characteristics. Activations in the classification

stage are based on higher feature representations and are

constructed as a 24-layer convolutional neural network

architecture. A softmax classifier is then used to finalise the

classification after receiving the best CNN features [23].

The CAD system functions in an experimental scenario,

but from their study [24] states that it needs rigorous val-

idation in a real clinical setting. This is due to the fact that

there are numerous tiers of hyperparameters that require

human tuning and configuration. A strategy for classifying

tumours as malignant or benign was put out and analysing

digital dermoscopy images. A three-step process is used in

this. An autonomous neural network was used to extract the

lesions initially by using similarity-based graph neural

network (SGNN). Then, compile border, colour, and tex-

ture features. Classifying the lesion items is done by the

network ensemble classifier. To analyse dermoscopy ima-

ges, we recommend combining Fisher vectors (FV), deep

convolutional neural networks (CNN), and linear support

vector machines [25].

3 Dataset

In this investigation, we made use of the ISIC dataset from

the ‘‘2017 ISBI Challenge on Skin lesion Analysis into

Melanoma Detection.’’ Over 2000 usable dermoscopy

images are included in the dataset. The images in this

dataset have a variety of noise abnormalities, including low

contrast, hair, black boxes, vignetting surrounding the

image, and noise that makes it difficult to distinguish lesion

boundaries. The effectiveness of automatic image prepa-

ration models can be thoroughly tested using these photos

as a platform. Various noise artefacts are present in a

dermatological map, as shown in Fig. 1.

The International Skin Imaging Collaboration’s

2018–2019 Archives and PH2 (accessed 18 March 2022)

are two skin imaging datasets that were used to identify

skin melanoma. The ISIC 2018 comprises 10,015 training

photos, 1512 test images, and lesion classifications for

melanoma, melanoma nevus, basal cell carcinoma, actinic

keratosis, benign keratosis, dermatofibroma, and vascular

areas. The ISIC 2019 dataset, which consists of 25,531

images, is divided into nine categories: melanoma, mela-

nocytic nevi, basal cell carcinoma, actinic keratosis, benign

keratosis, dermatofibroma, vascular region, caudate

nucleus and none of the others. 8238 test and practise

photos are included.

There are 25,331 dermoscopy-labelled images in the

2019 ISIC library, and they are divided into 8 different

categories (i.e. types of skin lesions) as shown in Fig. 2. At

various locations over time, images have been gathered

using a range of tools. 450 9 600 to 1024 9 1024 pixels,

then, make up the resolution range.

The PH2 benchmark dataset is used to assess how well

the suggested system performs. It consists of 200 8-bit

RGB digital pictures with a total resolution of 768 9 560

pixels. There were 80 common spots, 80 atypical spots, and

40 melanomas among the different skin lesions visible in

the photos as shown in Fig. 3. Melanocytic lesions are

more prevalent in the datasets for PH2 and ISIC used to

diagnose melanomas. The two overlook double-me-

lanocytic lesions in favour of melanocytic lesions. The

training photos are not a good representation of the actual

data because the images in the dataset are clinical skin

scans rather than dermoscopic images.

4 Preprocessing: automated image
preprocessing model

To support efficient lesion identification, our proposed

methodology consist of three parts: removal of dark frames

and vignette effect model, removal of thin and thick hair
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Fig. 1 Sample images of ISIC 2017 skin cancer dataset

Fig. 2 Sample images of ISIC 2019 skin cancer dataset

Fig. 3 Collection of images

from PH2 dermoscopic dataset

with various noise artefacts
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artefacts model, and removal of surgical ink artefacts

model.

4.1 Removal of dark frames and vignette effect
artefacts model

Dark frames and vignette effects are often observed in

dermoscopy images. Vignette is darkening effect caused by

reduction of brightness and saturation around the periphery

(corners) of the image. It is important to remove these

noise artefacts because often they are considered as part of

lesion region and affect the performance of lesion edge

estimation. In our proposed methodology, we first deter-

mine the height and width of original image and then crop

the original image by performing image slicing over rect-

angular bounding box.

This helps to remove the unwanted vignette effect and

dark frames from dermoscopy images. After the cropping,

images obtained may vary in size. Also images obtained

from the dataset may not be in standard sizes. It is always

better to rescale images before it is fed to any computer

aided classification model. We resize the image to the

expected size of 255 9 255 pixels. Figure 4 shows input

image cropped and resized to required 255 9 255 pixels.

4.2 Removal of thin and thick hair artefacts
model

In recent years many techniques such as Dull Razor,

mathematical morphology operations, inpainting method,

and thresholding methods have been evolved to eliminate

hair artefacts from dermoscopy images [26]. In this phase

of our proposed methodology, we develop a model utilising

various imaging techniques to successfully eliminate both

thin and thick hair noise from dermoscopy image without

affecting quality of image. Further this model can be uti-

lised by researchers to aid in proper segmentation of lesion

region and accurate melanoma classification.

A colour image in RGB colour space is transformed to

greyscale in this step of the suggested procedure. Derma-

tologists can more easily distinguish lesion margins and

other crucial details by converting colour photos to grey-

scale. The inherent complexity of greyscale images is also

lower than that of colour images. This is merely a result of

the fact that each pixel requires less data because they are

various tones of grey. The weighting approach, which

distributes the red, green, and blue channels according to

each wavelength, is the most popular way to turn an RGB

colour image into a greyscale image.

Fig. 4 a Original image,

b Cropped image, and c Pixel

resized image
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Using the black-hat technique, a lighter background is

used to draw attention to darker things (hair) (skin tone).

It’s crucial to pick the shape and size characteristics of the

structural parts properly in order to tell hair structures apart

from greyscale photos. The rest of the image’s exploration

of the hair structure makes effective use of elliptical

structural elements. Empirically, it has been found that the

effectiveness of hair removal is greatly influenced by the

proper choice of the structural elements’ core (size)

diameter (Figs. 5).

4.3 Removal of surgical ink markers artefacts
model

Purple blots are the most common way dermatologists

identify worrisome skin lesions. Ink markers were found to

be more distinct in the malignant lesion dataset as com-

pared to the benign lesions, which also had an impact on

accurate segmentation, when we examined a dataset of

dermoscopic images accessible for melanoma identifica-

tion. It is crucial to realise that these ink marks may con-

nect the marks incorrectly as being a part of a skin lesion,

raising false positive results and preventing accurate

diagnosis, before adopting a machine learning system. To

suggest an automated marker ink removal model to effec-

tively remove purple ink traces from dermoscopic images.

In the suggested technique, we first transform RGB photos

into a hue-saturation value colour space that facilitates

colour-based image segmentation for purple or blue ink

indications. You may extract colour (hue) independently of

saturation and pseudo-illumination using the HSV colour

representation. The majority of the blue or purple ink

markers in the dataset fell into the lower and higher purple

bands because of how the bands were placed. To create a

final image free of ink smudges, repeat the inpaint proce-

dure to recover the original image from the masked image.

In Fig. 6, an image before and after using the automated

model is compared.

5 Adaptive fuzzy Gray-Level Co-Occurrence
Matrix (GLCM) segmentation

In most cases, the gray-level co-occurrence matrix

(GLCM) technique effectively eliminates artefacts using

arithmetic. Images also allow for the easy differentiation of

Fig. 5 a Original image with hair, b Greyscale image, c Black-hat filtered image, d Binary thresholding applied on image, and e Image without

hair objects
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textures. To facilitate analysis, images can be divided.

Hence, by combining cleanup methods for segmentation,

we employ GLCMs to extract features [9]. A given precise

differential zone can be used to precisely measure the

frequency of pixels using GLCMs. Here the single pixel

value is considered to ask, and another pixel value is

considered as l and the neighbourhood detachment of m in

the # direction. Regularly m acquires a single value, and #

can gain the directional benefit. Then the directional value

obtained can remove the attributes of the images which will

be used for the process of the segmentation.

According to the following Eq. (1), the GLCM proce-

dure is:

R k; lð Þ ¼ G k:l:m; #ð Þ
PH

k¼1

PH
l¼1G k; l;m; #ð Þ

ð1Þ

where Gðk; l;m; #Þ is the frequency of the specific com-

ponent having the pixel values of l and m, and r (k, l) was

the component of the k and l.

Algorithm Here consider A ¼ a1; a2; . . .amf g are the input

of the attributes given.

Step 1 Choose the inputs randomly. Hence, the number

of the clusters here is considered four means,

A ¼ a1; a2; a3; a4f g.

Step 2 Finding any irregularities.

Step 3 Calculate the fuzzy grouped area organisation.

kFC ¼ 1=
XN¼1

L¼1

rfc
rfl

� �2

=y� 1

where R by calculating the similarities between any two

pixels, rfc represents the set of pixels belonging to the ith

region found by the proposed algorithm and rfl represents

the set of pixels belonging to the ith region in the seg-

mented ground truth image.

Step 4 Segmentation process begins

6 Dice coefficient

Dice coefficient:

It is usual to use the dice coefficient as a statistic to

assess how well split outcomes were produced. To deter-

mine how similar two intervals are to one another, it is

mostly used to compute the dice distance between them.

Dice coefficient shouldn’t be greater than 1. A dice coef-

ficient usually ranges from 0 to 1. The issue that the

foreground ratio is too low is addressed by the use of dice

loss. This metric, which assesses the degree of overlap

between two samples, has values ranging from 0 to 1

(where 1 denotes complete overlap), and is described as

follows:

Dice ¼ 2TP

FNþ 2TPþ FP
ð2Þ

Intersection over Union (IoU):

Intersection over Union (IoU) is the task of generating

the prediction range. We must display the range of dis-

covered objects in the training set photos and assess the

connection between ground truth and predictions in order

to detect objects of varied sizes and shapes using IoU.

IoU ¼ TP

TPþ FPþ FN
ð3Þ

7 Fuzzy-based capsule neural network (F-
CapsNet) classification

7.1 Proposed system

For map-linear classification tasks where the hyperplane

must be adjusted to the training dataset, perceptrons are

frequently utilised. It can classify brand-new, unknown

samples using this updated hyperplane. This is accom-

plished by applying the training dataset to minimise the

error function and the error in the hyperplane.

2 wð Þ ¼ �
P

i2M tiw
Txi, M is the collection of incorrectly

Fig. 6 a Images with ink markers and b Preprocessed image without

markers
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categorised samples, and 2 f�1; 1g is the sample’s class.

The classes are entirely separated by the hyperplane if 2
(w) = 0. In the following each iteration, this minimization

procedure is typically repeated in order to reach the min-

imum value 2 (w). In order to update the weights, get the w

vector that repeats k ? 1. wkþ1 ¼ wk þ Dw (update

weights). The learning rule that was used to determine how

valuable it was to update the weights each increment is

shown in Eq. (4).

Dwi ¼ g truej � predj

� �
x j
i ð4Þ

If truej denotes the class label that was actually assigned,

predj denotes the anticipated class label, and g denotes the

learning rate. Initialising the weights to small random

integers [or 0] is the first step in the perceptron learning

process. The weights are modified until the smallest error is

attained after calculating the output values for each training

input sample (i.e. backpropagation).

The network has links to the layer above it at each level

going forward. For map learning, networks with feedfor-

ward neural networks are frequently utilised. It is possible

to learn complex tasks because to the architecture of

multilayer perceptrons, which pulls more significant char-

acteristics from input patterns. In order to improve model

predictions (i.e. minimise network error), gradient descent

can be used to locate local minima of a function. The

Eq. (5) is shown below,

wnew ¼ wold � g� d

dw
FðwÞ ð5Þ

where the gradient is represented by d/dw F(w) is the

derivative of the objective function F(w), and w is the

weight and g denotes the learning rate.

The fuzzy set A [ U is defined as a collection of

ordered pairs (xi, A (xi)), where U = x1, x2, x3,…, Xn

specifies the discourse universe. Wherever xi = U, A: A’s

membership function U ? [0, 1] and A’s degree of

membership to x and lA [ (x) [0, 1] are both defined.

These fuzzy sets are unable to model a wide range of

uncertainty because of their clearly defined properties. The

fuzzy set member functions of the second generation, on

the other hand, are likewise ambiguous and may display

various degrees of uncertainty. The type-II fuzzy set A0 is
described by the type-II membership function x, y. The

definition of x [ U, l [ [0, 1] is in Eq. (6):

A0 ¼ x; lð Þ; lA0 x; lð Þj8x�U; l� 0; 1½ �f g ð6Þ

where 0 B lA’(x, l) B 1, before determining the degree,

define the type-I fuzzy set using the Sort-II fuzzy set

footprint of uncertainty (FOU), which is the separation

between the child element and the parent element. It cre-

ated via assignment; the child and parent components of

each element. Simply setting it up allows for easy setup. A

type-II fuzzy set has the following Eq. (7).

A0 ¼ f x; lð Þ [ xð Þ; x; lL xð ÞÞjlL xð Þ� l xð Þ� l
[ xð Þ; l�½0; 1�g ð7Þ

where lL and lU denote the lower and higher degrees of

membership, respectively, of the initial membership func-

tion (x), which is defined as in Eqs. (8) and (9):

lL xð Þ ¼ l xð Þ½ �a ð8Þ

lU xð Þ ¼ l xð Þ½ �1=a ð9Þ

where a [ (1, !). Considering that the image data 42 in

this instance has no significance, � 2 equals 2.

X ¼ x1; x2; . . .xi; . . .:xn is made up of n pixels, and has

the following properties:

f x1; y1ð Þ; . . .. . .; f xi; yj
� �

: i 1; . . .N½ �; j½1; . . .N�, where

V = v1, dimension,….., Vc is the p-dimensional feature

space, which has a set c centre.

An objective function J is minimised by X and divided

into c clusters via the statistical approach known as ‘‘fuz-

zling.’’ The Eq. (10) is shown below:

J ¼
Xn

j¼1

Xc

i¼1

uij
� �m

xj � vi
�
�

�
�

�
�

�
�2 ð10Þ

where 1 B m B ! is the fuzzifier as set to 2, and vi is the

ith centroid corresponding to cluster Ci, uij 2 [0, 1] is the

fuzzy membership of xj to cluster ci, and m�m is the dis-

tance norm, such that in Eq. (11):

vi ¼
1

ni

Xn

j¼1

uij
� �m

xj where ni ¼
Xn

j¼1

uij
� �m ð11Þ

The method starts with a random selection of a sample

of c items that represent the mean (central) of the c clusters.

The affiliation value, or uij, is calculated using the relative

distance (also known as the Euclidean distance), between

the item xj and the centre. To compute cluster centres,

locate all object members. Sixth, the procedure is finished

if the centre of the current iteration and the previous iter-

ation is identical.

The multilayer perceptron that this work proposes

incorporates members of each input sample from the class

of interest (normal and abnormal) throughout the learning

process. By minimising the impact of confusing features,

member values are also beneficial for sloping descent

during weight updating (learning) (i.e. features with 0.5

members).

7.2 Capsule network classifier

Networks for capsules put forth the capsule idea. Vectors

made out of clusters of neurons are called capsules. Each

22140 Neural Computing and Applications (2023) 35:22133–22149
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neuron represents a parameter that has been instantiated in

the capsule. The amount of neurons determines the cap-

sule’s size. The probability that a specific object will

appear is represented by the capsule’s length.

In order to create hierarchical representations, CapsNet

transmits images to layers, just as CNN. The primary and

secondary capsule layers, however, are the only layers in

the original form of CapsNet, as opposed to the many

levels in deep CNNs. Low-level features can be found in

the base hierarchy. The ability to forecast the existence and

pose information of objects in the image is possessed by

the second layer. An introduction: a capsule is a collection

of neurons whose results are interpreted as several char-

acteristics of a single object. Both the posture matrix and

the activation probability are present in each capsule. An

ordinary neural network would perform the same tasks as

this one. The likelihood that the entity the capsule repre-

sents is present in the current input can be calculated from

the length of the output vector of the capsule. Layers of

capsules are possible. In our architecture, the standard

capsule (appearance change, compressed output of the last

convolutional layer) layer and the CancerCaps layer were

used (i.e. capsules representing 4 types of images). The

default wrapping layer can be followed by a large number

of convolutional layers. Max-pooling layer, however, does

not exist. Instead, in order to lessen the dimensionality, I

employ convolutions with a stride bigger than 1. (if the

stride is 2, the dimensionality is reduced by a factor of 2).

To identify the input image’s class, one uses the Cancer-

Caps output.

Multilayer networking is what CapsNet is. Convolutions

or elementary capsules are used to refer to the lowest layer

capsules. A fragment of an image is used as its input (you

can think of it as a receptive field). The subsequent

detection process finds particular patterns (circles, trian-

gles, ellipses, etc.). Convolutional layers are used in place

of these capsules. These layers contain vectors that serve as

storage for feature information. The instantiation parame-

ters of an entity are, in other words, represented by a

neuron’s activation (pose, size, position, orientation, etc.).

A routing capsule is the upper capsule, which uses dynamic

routing to find larger and more complicated items.

The convolutional layer extracts the essential elements

of the image using a conventional convolutional network

with a ReLU activation function. After applying an initial

preprocessing step, the input picture given to the input

layer is shrunk to 28 9 28. The xi value of every pixel is 1.

The input layer is 28*28*1 pixels in size. Convolutional

and encapsulation layers are the next layers in CapsNet,

used mostly for entity detection needed for classification.

Typically, a completely connected layer with softmax

activation makes up the last layer in the suggested manner.

The likelihood that the softmax activation function

returned for each input is now categorised into one of the

two classes that are mutually exclusive. Dermoscopy

analysis and inspection can be improved by automatically

classifying skin cancer from photographs of the target

lesions, as skin lesions may have small changes in

appearance as shown in Figs. 7 and 8.

In Fig. 9, a simple capsule network with two convolu-

tional layers and one capsule layer is depicted. Low-level

features from the initial input image are extracted by the

first convolutional layer. Total channel count is 256.

28*28*1. ISIC images are processed by each channel using

a 9*9 convolution kernel. Convolutional capsules, which

have a total of 6*6*32 capsules, make up the second

layer’s design. A vector of 8 dimensions is produced by

each capsule. The primary capsule is the 32-capsule col-

lection. There are eight convolutional units for each basic

group of capsules.

The third layer of the digital capsule layer is a fully

connected layer with a total of 10 capsules; each capsule is

a 16-dimensional vector that accepts input from the layer

below and executes classification operations. The proba-

bility of the object being present, or the likelihood that the

classification would produce a result, is calculated in the

final layer by measuring the length of each capsule.

A reconstruction loss is applied at the network’s con-

clusion to motivate the digit capsule to encode the

instantiated input digits’ parameters. Only the successfully

predicted digit capsules are utilised to recreate the input

image, with all other vectors being set to zero if they failed

to predict the correct digit capsules during training. In

order to reduce the sum of squared deviations between the

pixels in the reconstructed image and their counterparts in

the original image, the output of the digital capsule is given

to a decoder with three fully linked layers.

7.3 Fuzzy-based CapsNet (F-CapsNet)

The sigmoid function is suitable for binary classification

and provides continuous values in the range [0, 1] that

represent the probability of a class in the binary classifi-

cation problem. As the sigmoid function introduces non-

linearity in the hidden layers, it allows the neural network

to learn more complex features.

sig xð Þ ¼ 1

1þ e�x
ð12Þ

Assuming that / is the fuzzy sigmoid activation func-

tion, the type-II fuzzy sigmoid activation function can be

represented in Eq. (13 and 14).

uL xð Þ ¼ 1

1þ e�x

	 
a
ð13Þ
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uU xð Þ ¼ 1

1þ e�x

	 
1=a
ð14Þ

where uL and uU are the lower and upper sigmoid acti-

vation functions, respectively.

The proposed fuzzy gradient descent is defined as

Eq. (15),

w ¼ w�meanð u1 � u2j j2Þ � g� d

dw
u ð15Þ

where w denotes the weight and u1 and u2 denote the class1

and class2 memberships of the neurons, respectively. It

employs the squared difference of memberships as a fuzzy

parameter, which is represented by a single number in the

Fig. 7 Segmentation results.

a Input image, b Masked image,

c Segmented image, and d Hair

removed Image

Fig. 8 Type-II fuzzy set
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mean, and u is a type-II fuzzy sigmoid function. Because

|u1 - u2|
2 evaluates to 0 for fuzzy nodes, this has no effect

on the weighted update. By using member evaluations that

are a part of the optimization, one can access the learning

process’ contributions in the input samples. Only the

variations between the actual and anticipated values are

used to represent actions. Incorporating degrees of mem-

bership in optimization will determine how input samples

contribute to the learning process based on their ambiguity,

such that more ambiguous features will have less effect on

learning, and will rather be based on more non-ambiguous

features The cost function used in our work is simply

represented as the difference between the actual values and

the predicted value.

After applying a linear mapping to the feature vector to

calculate the feature score, the CNN then uses that infor-

mation to calculate the loss. Losses should be kept to a

minimum for accuracy. The classification of lesion seg-

ments based on intensity and score vectors performs better

with improved loss functions of the existing CNN

algorithms.

In order to analyse images, CNNs are extremely pow-

erful since they can recognise patterns in images. It takes

labelled data to learn a CNN. Consequently, this is known

as teaching learning. A concealed layer and a fully con-

nected layer are the two parts of CNN. When classifying,

employ fully connected layers rather than concealed layers

to extract characteristics. CNNs are not entirely connected

like other neural networks. Because of this, the model

becomes simpler to train and less complex.

Capsule layers are the names given to a CNN’s hidden

layers. There are other layers in addition to capsules. As

with any hidden layer, the capsule layer modifies the input

and sends the result to the following layer. Each capsule

layer’s number of pattern-detection filters must be speci-

fied. Many edges, shapes, textures, and objects in an image

can all be patterns that are picked up by filters. Edge

detection is the process through which a filter recognises an

edge. Filters can recognise rectangles, circles, edges, and

other shapes. Filter complexity increases with network

depth. Specific things can be found through more advanced

filtering. A tiny matrix with random integer values serves

as the representation for the filter. When the capsule layer

receives an input the filter slides over each pair of pixels

with the filter’s pixel size until it covers the entire image’s

pixel blocks with the filter’s pixel size. The term ‘‘encap-

sulations’’ refers to such slides. This layer produces a new

representation of the complete filter matrix along with the

initial input inside the input after enclosing the entire

image. This will be input to the subsequent layer. The

network’s deeper layers have more sophisticated filters.

Fig. 9 A basic CapsNet architecture

Fig. 10 The proposed F-CapsNet model for classification

Table 1 PH2 dataset distribu-

tion for validation
Dataset Test data Total

Label B M AT

PH2 80 40 80 200

Benign, M melanoma, AT atyp-

ical nevus
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8 Experimental results

8.1 Training and testing PH2, ISBI 2017 and ISIC
2019 dataset

In this part, the performance metrics for the melanoma

detector are presented together with the experimental

findings. The classifier was tested using 20,250 photos of

lesions that were either melanoma or non-melanoma. The

control dataset serves as the classifier’s training ground,

and the PH2, ISBI 2017, and ISIC 2019 datasets serve as its

testing grounds. Approximately 2530 photos are taken up

by the test data for melanoma and non-melanoma images.

The three datasets used for training, validation, and testing

illustrate the proposed feature distributions in the table for

certain malicious and non-malicious images. For 24-bit

RGB skins, the resolution spans from 540 9 722 to

4499 9 6748 as shown in Fig. 10.

Table 1 lists 80 atypical moles, 80 normal moles, and 40

melanoma cases from the dataset PH2, which contains 200

pictures in total. 2750 images total 2000 instructional, 2000

test, 600 instructional, and 150 instructional make up ISBI

2017. In Table 2, the verification values are displayed. The

ISIC 2019 dataset initially comprises of 25,331 photos,

which are broadly split into 4522 melanoma and 20,809

non-melanoma image categories, as shown in Table 3. The

12,778 non-melanoma photos and the 4522 melanoma

images were divided into three parts: training, testing, and

validation. Of each portion, 10% were used for testing.

Select black and non-black photos from the three datasets

used for training, validation, and testing are plotted in

Table 4 using the suggested working distributions.

8.2 System requirements

A computer with an i7 processor, the simulation pro-

gramme MATLAB 2018a, 32 GB of RAM, and a 4 GB

GPU is used for all work and calculations.

The improved technique is the automated image in the

direction of the hair. The proposed method can be divided

into two stages. In the first step, we analysed the skin lesion

data set and implemented a method to classify skin width

images into high and low contrast images based on auto-

mated intelligent histograms. In the second stage, only low

contrast recognition images were preprocessed. Next, to

improve the low contrast of the lesion area by using

Laplacian filtering (FlLpF) along HSV colour transforma-

tion and contrast stretching and log transformation as

shown in Fig. 11.

After examining the lesion location, we analysed the

separation technology based on accuracy, JAC and DIC

indicators into two data sets in Table 5 and Fig. 12.

It has been found that utilising the PH-2 data set for

simulations led to the highest average classification accu-

racy, which was 98.45%. With the JAC and DIC data sets,

the accuracy was 90.15% and 94.77%, respectively.

The average accuracy, JAC, and DIC are 98.79%,

92.57%, and 95.144%, respectively, for simulations using

the ISIB2017 dataset in Table 6. The PH-2 dataset and

ISIC-2019 dataset are both surpassed by these collections.

To assess the results, we contrast them with deep

learning systems already in use and tested on the ISIC-

2019 database are in Table 6. Rules JI (0.716) and DC

(0.796) were both reached using AD-GLCM segmentation.

Table 2 ISBI 2017 dataset

distribution for validation
Dataset Training data Validation data Test data Total

Label B M SK B M SK B M SK

ISIB 2017 1372 374 254 78 30 42 393 117 90 2750

B benign, M melanoma, SK—seborrheic keratosis

Table 3 ISIC 2019 dataset

distribution for validation
Dataset NV M BKL BCC SCC VL DF AK Total

ISIC 2019 12,875 4522 2624 3323 628 253 239 867 25,331

NV melanocytic nevus, M melanoma, BKL benign keratosis, BCC basal cell carcinoma, SCC squamous cell

carcinoma, VL vascular lesion, DF dermatofibroma, AK actinic keratosis

Table 4 PH2, ISBI 2017, and ISIC 2019 datasets distribution for

validation

Datasets Training data Validation data Test data Total

Label M NM M NM M NM

PH2 – – – – 40 160 200

ISBI 2017 374 1626 30 120 117 483 2750

ISIC 2019 3622 10,218 450 1280 450 1280 17,300

Total 3996 11,844 480 1400 607 1923 20,250

M melanoma, NM non-melanoma, – there are no data in this field
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Compared to the framework below, our suggested

approach is more in depth, but we also get better results by

including balance data and lowering additional variance.

8.3 Classification result

The proposed F-CapsNet classifier and other classification

techniques, including tree, SVM, KNN, and others, are

compared with the proposed recognition results. The

accuracy, sensitivity, specificity, and AUC were compared,

along with the programme performance, using the execu-

tion time (msec) as a benchmark. In the table, patent photos

from the datasets PH2, ISBI 2017, and ISIC 2019 are

compared to the classifier mentioned in Table 7.

Prior to applying the F-CapsNet classifier, all

512 9 512 images across three distinct datasets are clas-

sified. The settings for which F-CapsNet has been trained

are: group size = 64, subsection = 16, increment = 0.6,

distribution = 0.0008, and learning rate = 0.002. The

number of epochs for simulation was 50 epochs.

Tables 8, 9 and 10 offer an in-depth evaluation of the

state of the art using the PH2, ISBI-2017, and ISIC 2019

datasets. For all presented datasets, the suggested method

produces the highest level of classification accuracy. Using

colour and texture features, the PH2 dataset could only be

classified with a maximum accuracy of 97.51%; whereas,

the suggested method can achieve a classification accuracy

of 98.42%. This shows that proposed F-CapsNet classifiers

model results are much better than existing algorithm and

the outcomes conclude the robustness and higher efficiency

of F-CapsNet classification method.

The tabular data demonstrates how the aforementioned

studies have enhanced the practises and produced more

accurate lesion classification outcomes. The findings of the

suggested method demonstrate that electronic performance

beats all conventional deep learning techniques when

compared to these contemporary classification methods.

With an accuracy score of 98.42% and a specificity score

of 97.79% on the PH2 dataset, the method outperformed

the leading contribution. Jac and Dice fared substantially

better than the rest with scores of 90.15% and 94.77%, but

only Xie’s stimulating work managed to obtain an accuracy

percentage of 96.56%. The proposed task’s average com-

putation time is 4.68 ms.

As demonstrated in the tabular data, the suggested

method beats all conventional deep learning methods when

results are compared to those of current contemporary

classification methods. A 99.16% accuracy score and a

97.58% sensitivity score were used to evaluate the meth-

od’s performance on the ISIB 2017 dataset, which showed

that it performed better than the best contribution. The

proposed work takes 9.81 ms on average to compute.

Also, compared to other methods, the maximum accu-

racy achieved by the proposed F-CapsNet method in the

ISBI-2017 data set is 99.16% and the accuracy achieved

with ISIC 2019 is 99.45% and the accuracy of PH2 dataset

is 99.42%. The findings show that the technique not only

successfully distinguishes benign moles from malignant

Fig. 11 Results of skin lesion automated image preprocessing: first row: dermoscopic images. second row: contrast stretched output image

Table 5 Results of modified AD-GLCM segmentation metrics (%) on

PH2 dataset

References Year Dataset Accuracy JAC DIC

Pal et al. [9] 2019 PH2 92.98 79.45 88.12

Roy et al. [10] 2019 PH2 95.30 85.91 92.15

Tiwari et al. [13] 2020 PH2 96.56 89.44 94.26

CDNN 2020 PH2 97.51 88.63 93.96

Proposed 2021 PH2 98.45 90.15 94.77
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melanoma on autopilot, but also consistently outperforms

other cutting-edge standards. The comparison demonstrates

unequivocally that the suggested classification approach

beats all already used techniques for other classifiers. In

comparison to previous effective classifiers, this one not

only produces outstanding results for all parameters, but

also reduces the amount of time needed to find melanoma

using the suggested strategy. Skin lesion identification

takes less time and is more effective when F-CapsNet is

used as the classifier. The accuracy of the suggested

method is increased by using a pretreatment model for

picture refining following automatic hair removal and an

appropriate segmentation technique.

8.4 Discussion

It is suggested in this paper to use F-CapsNet to automate

the detection of skin lesions. In order to segment lesions,

we apply adaptive fuzzy GLCM and fuzzy logic for border

Fig. 12 The results of the proposed segmentation with the basic truth image: a Original image, b Separate view, c The segmented image drawn in

the original image, and d An image of the basic truth

Table 6 Results of modified AD-GLCM segmentation metrics (%) on

ISIB2017 dataset

References Year Dataset Accuracy JAC DIC

Pustokhina et al. [16] 2017 ISIB2017 92.4 76.03 84.42

Shankar et al. [18] 2018 ISIB2017 95.32 77.15 87.19

Sikkandar et al. [20] 2019 ISIB2017 94.59 78.93 88.17

Elhoseny et al. [21] 2020 ISIB2017 94.71 80.14 87.82

CDNN segment 2020 ISIB2017 97.32 86.98 93.10

Proposed 2021 ISIB2017 98.79 92.57 95.14

Table 7 Results of modified AD-GLCM segmentation metrics (%) on

ISIC 2019 dataset

References Year Dataset Accuracy JAC DIC

CDNN 2020 ISIC 2019 93.97 79.83 88.75

Proposed 2021 ISIC 2019 96.82 84.35 93.46
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detection and segmentation. At several points during the

lesion categorization process, we compare the upgraded

F-CapsNet with the best available technology. It turns out

that the suggested model is superior to other models in

terms of classification accuracy and speed, with fewer false

positives and false negatives.

Choosing discriminative features has a significant

impact on the accuracy of skin lesion identification and

classification [27]. There isn’t much information on this

subject in the literature yet, and lesion boundary detection

uncertainties aren’t covered in detail. For instance, the

authors classified, segmented, and refined demographic

Table 8 State of art comparison of the F-CapsNet classifiers on PH2 dataset

Classifier Method Accuracy (%) Sensitivity (%) Specificity (%) AUC Time (in ms)

TREE CT 75.11 75.23 73.03 0.84 17.14

ST 76.52 77.51 76.24 0.88 4.62

SVM LSVM 97.07 95.07 97.56 0.97 7.25

CSVM 96.52 90.05 95.14 0.97 9.44

QSVM 97.51 95.08 92.64 0.99 5.82

MGSVM 92.03 90.04 92.57 0.97 5.14

KNN FKNN 98.05 95.09 98.71 0.98 4.92

MKNN 96.51 92.51 97.58 0.97 3.94

WKNN 94.06 97.54 93.17 0.97 4.16

F-CapsNet (proposed) 98.42 98.15 97.79 0.99 4.68

Table 9 State of art comparison of the F-CapsNet classifiers on ISIB 2017 dataset

Classifier Method Accuracy (%) Sensitivity (%) Specificity (%) AUC Time (in ms)

TREE CT 92.82 90.62 93.37 0.97 8.13

ST 88.04 88.88 87.79 0.93 12.66

SVM LSVM 96.66 93.15 97.55 0.96 11.44

CSVM 86.84 85.48 87.17 0.93 140.44

QSVM 97.51 94.85 98.17 0.98 21.48

MGSVM 96.64 94.83 97.11 0.98 13.42

KNN FKNN 94.06 92.33 94.42 0.91 9.08

MKNN 97.81 94.12 98.77 0.95 10.05

WKNN 98.84 96.59 98.95 0.97 12.78

F-CapsNet (proposed) 99.16 97.58 98.79 0.99 9.81

Table 10 State of art comparison of the F-CapsNet classifiers on ISIC 2019 dataset

Classifier Method Accuracy (%) Sensitivity (%) Specificity (%) AUC Time (in ms)

TREE CT 91.66 90.68 92.04 0.96 15.22

ST 86.95 89.12 86.18 0.94 21.86

SVM LSVM 93.45 92.02 93.99 0.93 19.38

CSVM 88.12 88.49 87.98 0.94 246.97

QSVM 93.07 91.53 93.61 0.97 37.07

MGSVM 94.82 91.79 95.92 0.98 26.35

KNN FKNN 93.87 83.13 97.59 0.94 18.16

MKNN 90.68 86.02 92.31 0.95 17.48

WKNN 95.87 93.57 96.69 0.98 22.29

F-CapsNet (proposed) 99.45 98.68 98.17 0.99 11.65
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photos with an accuracy of 91.82% using a fixed wavelet

grid network and orthogonal matching. We achieve

93.83% accuracy in colour texture extraction from dynamic

photos by combining SVM, SMOTE, and an ensemble

classifier. The GLCM (grey level co-occurrence matrix)

approach can also be used to extract colour, texture, and

SVM features.

By using threshold-based segmentation, ABCD feature

extraction, and multiscale lesion deflection approaches,

numerous research have increased the accuracy of skin

malignancy prediction. The skin lesion categorization

problem is resolved using a multitrack CNN model. For

classes 5 and 10, the model had accuracy rates of 85.8%

and 79.15%, respectively [28]. On the other hand, ensem-

ble-based deep learning has enhanced performance in the

classification of skin lesions with an accuracy of about

90%. The fact that a single model was used in all of the

aforementioned investigations may have impacted the

models’ accuracy. Stacking many models helps to increase

accuracy.

We used two simultaneous methods in our investigation,

based on Delaunay triangulation, to find skin lesions.

Melanoma is detected and classified using a backpropa-

gation multilayer neural network employing three-dimen-

sional colour-textured properties of dermoscopic pictures.

For the ImageNet dataset, the transition learning approach

utilising CNN models produced an accuracy of 88.33%

thanks to pretrained models like Resnet-101, BASNet big,

and Google Net. The drawback of all these approaches is

that accurate medical diagnosis necessitates long-term real-

time analysis. These restrictions are removed by our

method of lesion boundary detection via blurred image

processing. With no data pretreatment or human feature

selection, they deployed the Resnet50 model, which dras-

tically decreased model accuracy and lengthened process-

ing times. Using the ISBI-2017 dataset, 99.45% accuracy

was attained, 99.42% accuracy was attained on the PH2

dataset, and 99.16% accuracy was attained on the ISIC

2019 dataset using the method described by F-CapsNet. To

enhance classification performance, we reduce overfitting

on the SVM classifier training dataset and use the same

dataset for both new and old models. Lesion categorization

was enhanced, processing time was cut by 20–30 ms,

accuracy rose by 2–3%, and accuracy was improved.

9 Conclusion

The effectiveness of a melanoma detection system is

examined in this research in relation to the effect of noise

artefacts. The three-step automatic picture preprocessing

method, adaptive blur-GLCM partitioning, and classifica-

tion using a blur-based capsule network are the guiding

concepts of the suggested model. We provide an automatic

image preprocessing approach that can successfully elim-

inate impediments including vignetting effects, hair, and

writing traces in damaged photos. In this study, we

examine the performance of adaptive fuzzy GLCM in

detecting lung cancer using skin tilt, and we evaluate its

effectiveness and efficiency. The experimental findings

demonstrate how highly efficient the hypothesised mech-

anism is. Extensive simulation study was carried out, and

the outcomes were assessed at several times in order to

ensure improved results for the F-CapsNet approach. For

the classification of medical images, this research suggests

an enhanced capsule network. The F-CapsNet technique’s

effectiveness is assessed using the ISIC 2017 Challenge,

2019 Challenge, and PH2 datasets. The suggested tech-

nique has an average accuracy of 99.16 per cent for the

ISBI 2017 test dataset and a 99.45 per cent accuracy for the

ISBI 2019 test dataset. Additionally, the PH2 test dataset

shows that the suggested approach has an average accuracy

of 98.42%.
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