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Abstract
Salient object detection (SOD) has achieved remarkable performance in natural scene images (NSIs). However, current

SOD methods still face serious challenges in processing optical remote sensing images (RSIs) due to cluttered back-

grounds, diverse scales, and different views, which are distinguished from NSIs. In this paper, a transformer guidance dual-

stream network (TGDNet) is proposed for SOD in optical RSIs. The key insight is to extract multi-scale features by global

receptive fields and separately refine them according to the characteristics of feature hierarchies. Specifically, inspired by

the long-range dependencies of transformer, a transformer guidance dual-stream strategy is proposed to compensate the

extracted details such as boundaries and edges using global information. To overcome the issue of diverse scales of salient

objects in optical RSIs, a sequence inheritance channel attention module is built to focus more on high-level semantic

features at different scales. In addition, a pyramid spatial attention module is elaborately designed to refine low-level

features as well as to suppress background interference for accurate SOD in optical RSIs. At last, a coarse-to-fine decoder

is utilized to progressively predict salient objects. In the experiment, the EORSSD dataset is employed to train and evaluate

the proposed TGDNet. It achieves performance of 0.0049, 0.8964, and 0.9286 in terms of MAE, F-measure, and

S-measure, respectively. Furthermore, ORSSD dataset is also utilized to evaluate the generality. Experimental results

demonstrate the advantages of TGDNet over the state-of-the-art SOD methods.
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1 Introduction

Salient object detection (SOD) aims to locate the most

visually attractive objects or regions in a scene [1, 2]. In the

past few years, SOD has attracted increasing attention in

computer vision community and shown the efficacy in

visual tracking [3], semantic segmentation [4, 5], image

captioning [6, 7], manipulation [8], and image retrieval [9].

Optical remote sensing images (RSIs) are widely used in

many fields, such as agriculture and military [10, 11],

showing the promising applications. As one of the typical

computer vision tasks, SOD in optical RSIs appeals to

increasing research interests in recent years. Similar to

natural scene images (NSIs), SOD in optical RSIs is

decomposed into detecting and segmenting regions and

objects of interest. However, due to the enormous disparity

between NSIs and optical RSIs, SOD methods for NSIs are

hardly directly applied in optical RSIs. As shown in Fig. 1,

optical RSIs have three prominent characteristics: (1) since

optical RSIs are acquired automatically by remote sensors

at high altitudes, the scale of salient objects varies greatly;

(2) optical RSIs are vertical views collected from an

overhead perspective, containing objects with various

rotational orientations; (3) optical RSIs have more com-

plicated background patterns, more illumination variation,
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more diverse texture structures, and more fragmented dis-

tribution. Therefore, SOD for optical RSIs faces huge

challenges in achieving accurate detection: (1) the need for

larger receptive fields due to the scale diversity; (2) the

conflict between achieving large receptive fields and

remaining rich local details.

For the first challenge, many existing CNN-based

methods are dedicated to expand receptive fields [12, 13].

They mainly benefit from increasing network depth,

designing effective fusion strategies across layer hierar-

chies, and constructing specific convolutional operations.

However, few of them essentially consider the fact that the

limited receptive field of convolution still constrain the

performance of CNNs. Besides, the actual receptive field is

much smaller than the theoretical one [14, 15]. Recent

flourishing transformers are well suited for this challenge.

Transformers exploit multi-head self-attention (MHSA) to

model long-term dependencies [16, 17]. Unlike convolu-

tion that keeps a limited receptive field, the MHSA of

transformers has dynamic weights and a global receptive

field. Inspired by this, we make the first attempt to exploit

transformer to SOD in optical RSIs.

For the second challenge, the trade-off between the size

of receptive fields and the richness of local details is to be

weighed. A larger receptive field is attained at the expense

of details, and vice versa. Existing efforts mainly focus on

developing sophisticated decoder structures [18, 19] and

effective interaction strategies between high-level and low-

level information [20–22] to achieve better balance.

However, they usually ignore the decisive role played by

the encoder. Considering the outstanding capability of

convolution in preserving details, we make full use of such

a characteristic to upgrade the encoder, which helps to

obtain the feature representations with both global infor-

mation and good local details.

To deal with the above-mentioned two challenges, we

propose a novel transformer guidance dual-stream network

(TGDNet). Firstly, to generate salient predictions with

uniformly highlighted regions, we develop a transformer

guidance dual-stream strategy for encoding. It focuses on

the complementarity between the global features from

transformer and the detail information from convolution.

Specifically, the transformer guidance dual-stream encoder

(TGDE) consists of a transformer stream and a local

aggregation stream. Global contextual information is effi-

ciently modeled through the transformer stream, and then is

integrated into the local aggregation stream to provide

global knowledge guidance on local details. Secondly, to

extract the salient objects of different scales, we propose a

sequence inheritance channel attention module (SICAM),

which adaptively extracts multi-scale information from

high-level features. Thirdly, a pyramid spatial attention

module (PSAM) is designed to eliminate redundant infor-

mation from low-level features and suppress background

interference. Our contributions are summarized as follows:

• We propose a transformer guidance dual-stream net-

work (TGDNet) for SOD in optical RSIs. The proposed

transformer guidance dual-stream strategy endows

accurate global feature representation by explicitly

aggregating global information from transformer with

local details from convolution. Such designs enable our

method to detect complete and sharp salient objects in

optical RSIs.

• A novel sequence inheritance channel attention module

(SICAM) is proposed to extract task-specific multi-

scale high-level features. Meanwhile, a pyramid spatial

attention modul (PSAM) is deployed to refine the detail

Fig. 1 Samples of optical RSIs. Top row shows the optical RSIs, and bottom row shows the corresponding salient regions
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information of low-level features. The proposed

SICAM coupled with the PSAM effectively extracts

high-level and low-level features that boost the SOD

performance.

• Extensive experiments on two benchmark datasets

validate the effectiveness of our proposed TGDNet

and also demonstrate that our method outperforms 17

state-of-the-art methods.

The rest of this paper is organized as follows. Related

works to SOD and vision transformer are introduced in

Sect. 2. In Sect. 3, we detail each component of our

method. The results of ablation study and comparison

experiments are shown in Sect. 4. Finally, the conclusion is

drawn in Sect. 5.

2 Related work

In this section, we introduce the existing SOD methods in

NSIs and optical RSIs. Besides, we briefly introduce the

recent progress of transformer in computer vision.

2.1 Salient object detection for NSIs

Benefiting from the rapid development of deep learning,

SOD in NSIs [18, 20, 23] has made a significant break-

through in recent years, especially after the FCN-based

method [24] was proposed. For example, Hou et al. [25]

used the short connection on the foundation of holistically-

nested edge detection [26]. The high-level features are

integrated with low-level features so that the semantic

information in deep layers can guide the detailed infor-

mation in shallow layers. Liu et al. [27] applied the

U-shape architecture to SOD, allowing the attention

mechanism to selectively focus on global contextual

information at high levels and integrating local information

at low levels at the same time. Zhao et al. [20] integrated

the high-level features and low-level features to investigate

the complementarity between salient edge information and

salient object information. Qin et al. [28] focused on

boundary quality and presented a residual refinement

module to further refine the edge of the salient map after an

encoder-decoder network. Su et al. [23] designed a

boundary localization stream and an interior perception

stream to detect the object interiors and boundaries,

respectively, producing uniformly highlighted interiors and

clear edges. Liu et al. [21] deployed a global guidance

module and a feature aggregation module on the top-down

path. Zhao et al. [29] utilized the spatial attention mecha-

nism in shallow layers and channel attention mechanism in

deep layers to achieve subtle attention on the salient

boundary and salient semantic regions, respectively. Pang

et al. [18] proposed the aggregate interaction modules,

which integrates the features from adjacent levels. Siris

et al. [30] proposed a context-aware learning approach to

explicitly learn and enhance the contextual relationships

between salient objects and scene contexts. Wu et al. [31]

decomposed salient objects into edge, skeleton, and sal-

iency maps, then designed a completion network, utilizing

the obtained edge and skeleton maps to refine saliency

maps. Nevertheless, due to the gap between optical RSIs

and NSIs, directly adopting SOD methods for NSIs to

optical RSIs is unlikely to yield effective SOD.

2.2 Salient object detection for optical RSIs

Despite the significant progress of SOD in NSIs, SOD in

optical RSIs still falls behind. Zhao et al. [32] proposed a

sparsity-guided saliency detection model for optical RSIs,

which uses a sparse representation to acquire the high-level

global information and background cues. Zhang et al. [33]

developed a self-adaptively multiple feature fusion model

to take advantage of the intrinsic relationship among dif-

ferent cues. Later, Li et al. [34] introduced deep learning

into SOD in optical RSIs and constructed an end-to-end

deep network. Li et al. [35] designed a parallel down-up

fusion network, taking full care of the in-path low-level

and high-level features and cross-path multi-resolution

features. Zhang et al. [12] proposed a dense attention fluid

network to adaptively capture long-range semantic context

relationships and to generate high-level attention maps by

introducing shallow attention into deep layers. Zhou et al.

[36] adopted an edge-aware multi-scale feature integration

network that emphasizes the boundary by applying edge

information of salient objects. Tu et al. [37] designed a

joint boundary and region learning scheme based on a

bidirectional feature transformation to optimize both fea-

tures. For multiple features that affect optical RSIs, Li et al.

[38] exploited attraction mechanism to achieve content

complementarity among these features, which highlights

the salient objects at different scales. Cong et al. [39]

proposed a relational reasoning module for high-level

features to extract semantic information and designed a

parallel multi-scale attention module for low-level features

to efficiently recover details. Tu et al. [37] proposed a

multi-scale joint boundary and region model to obtain

robust multi-scale region features by simultaneously

embedding the boundary features. These methods strive to

extract multi-scale features of optical RSIs, but barely

escape from the limited receptive field of convolution.

2.3 Transformer in computer vision

Transformer is a self-attention mechanism that dominates in

Natural Language Processing (NLP) because of its ability of
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capturing long-range dependencies among sequence ele-

ments. Its outstanding performance of has dramatically

attracted the enthusiasm of researchers and been introduced

into many fields of computer vision, such as object detection

[40, 41], semantic segmentation [42–44], panoramic seg-

mentation [45], salient object detection [14, 15], and image

generation [46]. As a pioneering work, Dosovitskiy et al.

[41] proposed the vision transformer (ViT) and applied it to

image classification. Many downstream tasks applied ViT as

the backbone of their models. Liu et al. [47] proposed a Swin

Transformer, which limits self-attention to non-overlapping

local windows but allows cross-window connection by

shifted windows for effectively extracting features with a

hierarchical structure. Carion et al. [40] proposed an end-to-

end object detection with transformers (DETR), regarding

object detection as a direct set prediction problem and

modeling the relationship between them. Zheng et al. [44]

treated semantic segmentation as a sequence-to-sequence

prediction task, where transformer is employed as the

encoder that learns more semantic information under large

receptive fields by transform the image into a sequence of

patches without downsampling. Wang et al. [45] proposed

the first end-to-end panoramic segmentation model with a

mask transformer to predict class-labeled masks. Liu et al.

[15] designed a visual saliency transformer for RGB-D SOD

in NSIs. Observing that the transformer backbone can pro-

vide accurate structure modeling, Mao et al. [14] adopted a

dense transformer backbone for fully supervised and weakly

supervised salient object detection in optical NSIs. From a

convolution-free sequence-to-sequence perspective, Liu

et al. [48] developed a pure transformer architecture model

for SOD, in which a token upsampling method is proposed to

get high-resolution detection results. In SOD, transformer

methods capture salient features under the global view and

can thus give a satisfactory prediction on the location of

salient objects. However, since the detailed information is

underutilized in transformer methods, rough edges and

unevenly highlighted salient regions are typical when

transformer-only backbone SOD methods for NSIs are

applied to optical RSIs. In this study, we exploit the large

receptive field of transformer and the small one of convo-

lution to sufficiently extract and effectively integrate global

and local features that could produce the final high-quality

salient results.

3 Proposed method

3.1 Motivation

As described in Sect. 1, the key challenge of SOD for

optical RSIs lies in balancing the need for accommodating

large receptive fields to encompass scale diversity with

retaining local information. Transformers leverage MHSA

to establish long-term dependencies, while convolutions

excel in extracting details. Inspired by this, we propose a

transformer guidance dual-stream strategy that comple-

ments global features and detail information to boost SOD

performance, as detailed in Sect. 3.3. For the issue of scale

diversity and redundant information, we consider that

processing features separately at high and low levels

facilitate further extraction and refinement. To this end, we

design the SICAM and PSAM modules using channel

attention and spatial attention mechanisms, respectively,

which we will elaborate on in Sect. 3.4 and Sect. 3.5.

3.2 Overview

The proposed TGDNet is mainly composed of four com-

ponents, a transformer guidance dual-stream encoder

(TGDE), two sequence inheritance channel attention

modules (SICAMs), a pyramid spatial attention module

(PSAM), and a decoder. The overall architecture is shown

in Fig. 2.

Specifically, an input optical RSI is fed into both the

transformer stream and the local aggregation stream of

TGDE. Transformer stream extracts global features, then

these features are forwarded to the semantic guidance

module (SGM) to be combined with the detailed features

from local aggregation stream. In this way, the comple-

mentary feature representations are achieved in the SGM.

Note that, the SGM also integrates the deepest features

from transformer stream and local aggregation stream to

further extract semantic information on the top of encoder.

Then, the SICAM and PSAM eliminate the redundant

information and reassign feature weights to ensure that the

features are refined and highly related to salient regions.

The semantic information is enhanced by the SICAM that

receives features from the 4th and 5th layers of encoder. In

contrast, the detail information is distinguished by the

PSAM for the remaining shallow layer features. Subse-

quently, the decoder consists of five convolutional blocks,

each block fuses the features from its previous block, its

corresponding encoder stage, and the deep layer guidance

features from the SGM. Thus, the salieny maps are pro-

gressively refined from top to down with the supervision.

At last, the salient prediction is obtained with precise edges

and complete structure. In what follows, we will detail each

component.

3.3 Transformer guidance dual-stream strategy

For any two pixels of a salient object in an image, the

learned features should be consistent theoretically. But the

feature extracted by convolution is essentially local, which

leads to the corrupted consistency of the feature when
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internal features of the object are discontinuous and the

background is diverse. To alleviate this problem, a com-

monly used method is to continuously downsample the

feature map so that its scale approaches that of the con-

volution receptive field. However, such a method may still

lead to inconsistent features for large-scale salient objects

or large-size input images, where the features obtained on

the deepest remain local and cannot cover the complete

salient object. In addition, successive downsampling could

be severely and irreversibly destructive to the information

of the salient object with small scales, raising the difficulty

of detecting such objects. In optical RSIs, such issues

become more severe due to the diverse scales of salient

objects. To cope with this challenging issue, we propose a

transformer guidance dual-stream strategy. A transformer

guidance dual-stream encoder exploits the long-range

dependencies to preserve useful information of small-scale

salient objects while maintaining the feature consistency of

large-scale ones.

The transformer guidance dual-stream encoder consists

of a transformer stream and a local aggregation stream, the

former is implemented by Swin-S [47], and the latter is

constructed based on the commonly ResNet-50, in which

we removed the last average pool and fully connected

layers. In addition, the input of the convolutional block in

local aggregation stream, Conv i; i ¼ 3; 4; 5, derives from

the SGM rather than from the previous convolutional block

Conv i� 1.

For an input image I 2 R3�H�W , transformer stream

generates four level features from shallow to deep as

Ft ¼ fFt
i ; i ¼ 1; 2; 3; 4g. Similarly, five scale features are

captured by the local aggregation stream as

Fc ¼ Fc
i ; i ¼ 1; 2; 3; 4; 5

� �
. We integrate Ft

i with the same

level of Fc
i by a simple SGM, as shown in Fig. 2, which

incorporates the perception of the global context to guide

the next convolution block. This process can be formulated

as:

Fi ¼
ConvðCatðFt

i ;F
c
i Þ;WiÞ; i ¼ 2; 3; 4

Fc
i ; i ¼ 1; 5

�
ð1Þ

where each convolution operator Conv is followed by a

batch normalization (BN) and a ReLU, W denotes trainable

parameters, and Cat indicates the channel concatenation.

Stage1 Stage2 Stage3 Stage4

Conv1 Conv2 Conv3 Conv4 Conv5

DeB1 DeB2 DeB3 DeB4 DeB5

S
G

M

S
G

M

S
G

M

S
G

M

PSAM

S
IC

A
M

S
IC

A
M

+++ +++ +++ +++

Local Aggregation Stream

Transformer Stream

Transformer Guidance 
Dual-stream Encoder

Decoder

2

cF 4

cF 5

cF

t
2F 3

tF

1

cF

1F 2F 3F 4F 5F

4

tF

3

cF

1

tF

Convolution 

Layer

Convolution 

Layer
Supervision

Conv
Convolution 

Block
Conv

Convolution 

Block
Stage

Transformer 

Block
Stage

Transformer 

Block
DeB

Decoder

Block
DeB

Decoder

Block

CC ConcatenationC Concatenation++
Element-wise

Additions
+

Element-wise

Additions
SGM CSGM C

Fig. 2 Overview of the proposed TGDNet. TGDNet consists of four

main components: Transformer Gudiance Dual-stream Encoder

(TGDE), Sequence Inheritance Channel Attention Module (SICAM),

Pyramid Spatial Attention Module (PSAM), and Decoder. TGDE

consists of 1) Transformer Stream extracts global features

fFt
i ; i ¼ 1; 2; 3; 4g; 2) Local Aggregation Stream captures local

features fFc
i ; i ¼ 1; 2; 3; 4; 5g, and four simple semantic guidance

modules (SGMs) integrate the global and local features as the encoder

feature representations fFi; i ¼ 1; 2; 3; 4; 5g. SICAM and PSAM

exploit multi-scale semantic features and refine detail information

for high-level and low-level features, respectively. After the progres-

sive incorporation by decoder on the top-down path and the

supervision of each decoder block, an accurate salienct map of the

input image can be achieved
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Considering the large size of the feature ðC � H
4
� W

4
Þ

extracted via Stage1 of the transformer stream would

undoubtedly increase the computational complexity of

SGM, and the feature still lacks information with actual

values for global guidance, we discard the exploitation of

Ft
1 to the local aggregation stream. When i ¼ 2; 3; 4, Ft

i and

Fc
i are incorporated into SGM to obtain Fi, resulting in the

global information of Ft
i selectively flowing into local

aggregation stream. Under the guidance of global infor-

mation, local aggregation stream discards the way of

indiscriminate extraction on features, thereby suppressing

the interference of local non-salient features. That is, local

aggregation stream could extract local information under

implicitly delineating the target domain. Moreover, the

deepest features (Ft
4 and Fc

5) of both streams are also

integrated into SGM to further extract the global semantic

information, and then the obtained deep features are fed

into each decoder block as a reference during decoding.

Figure 3 suggests the effectiveness of our transformer

guidance dual-stream strategy, where transformer and

convolution are superior in global and detail extraction,

respectively, and SGM preserves both advantages to pro-

duce feature maps by aggregating global and detail infor-

mation together.

3.4 Sequence inheritance channel attention
module

For the diverse scales of optical RSIs, Zhou et al. [36] and

Li et al. [34] downsampled the input image with different

degrees to extract multi-scale information in parallel paths.

Zhang et al. [12] employed dense attention to bridge the

information between high-levels and low-levels. But these

methods only take into account the interactions of the scale

information between ‘‘inter-features,’’ ignoring the poten-

tial multi-scale features in ‘‘intra-feature.’’ In addition,

channel attention is regarded as a commonly used mecha-

nism for refining deep features [29, 49]. However, when

the current channel attention mechanism is applied to the

hierarchical feature maps, the generated attention map is

only responsible for its source feature map, but fails to

reflect the joint focus of the series of feature maps. This is

due to the transfer of high-response channels among hier-

archical features caused by the convolution procedure, as

shown in Fig. 4a. Because the attention map is dominated

by a single feature map, the incidence of the channel

attention mechanism gets weakened, and the risk of

attending to the non-focus is increased. Therefore, we

propose a SICAM as shown in Fig. 5, which extracts multi-

scale hierarchical information in ‘‘intra-feature’’ and

assigns joint channel weights to them.

Specifically, in the process of multi-scale feature

extraction, as shown in Fig. 4b, the attributes of the ele-

ments within the channel sequence are guaranteed to

remain independent of each other by depth-wise separable

convolution, avoiding the transfer of high-response chan-

nels owing to channel communication. Therefore, the ele-

ment response attributes of each feature are fully inherited

from the corresponding elements of its previous map. For

high-level features Fi; i ¼ 4; 5, the hierarchical ‘‘intra-fea-

tures’’ are generated by:

Fm
i1 ¼DepthConvðFi;Wi1Þ; ð2Þ

Fm
i2 ¼DepthConvðFm

i1;Wi2Þ; ð3Þ

Fig. 3 Visualizing feature maps

of SGM. a Input image; b GT;

c–e show the visualizations of

feature maps Ft
2, Fc

2, and F2,

respectively. After SGM, the

global semantic information

from transformer and the

detailed information from

convolution are successfully

integrated
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Fm
i3 ¼DepthConvðDownðFm

i2Þ;Wi3Þ; ð4Þ

Fm
i4 ¼DepthConvðDownðFm

i3Þ;Wi4Þ; ð5Þ

where DepthConv denotes a depth-wise separable convo-

lution with a kernel size of 3 � 3, followed by a BN and a

ReLU. Down represents the downsample pooling with the

scales of 2. Fm
ij ; j ¼ 1; 2; 3; 4 denote the different scale

features corresponding to Fi. For the minimized scale

feature Fm
i4, we squeeze it to d � 1 � 1, where d represents

the channel number of the ith-level encoder feature. Then,

two consecutive fully connected layers and a Sigmoid

operation are followed to generate the attention weights:

Cai ¼ rðfc2ðreluðfc1ðPoolðFm
i4Þ;Wi5 1ÞÞ;Wi5 2ÞÞ; ð6Þ

where Cai is denoted as the channel response weights

corresponding to the ith-encoder level. Pool means global

average pooling, and r represents Sigmoid operation.

Wi5 1 and Wi5 2 denote the trainable weights of fully

connected layers. Subsequently, the channel attention is

performed on the generated multi-scale features mentioned
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Fig. 4 Two kinds of methods of computing attention weights.

a Traditional multi-scale feature and channel attention weight

extraction. b Multi-scale feature and channel attention of the proposed

SICAM. The coordinates with the blue line represent the activation of

different channels for salient objects, and the coordinates with the

gold line represent the response weights of different channels for

salient objects. It can be seen that the response weight line is only

matched to the activation line of final feature map in (a), while the

response weight line keeps consistent with the activation line of all its

previous features in (b). The depth-wise separable convolution keeps

the independence between feature channels, guaranteeing no transfer

of channel responses. Thus the attention weights generated by

SICAM could match the feature maps of any level
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Fig. 5 Illustration of the

proposed SICAM. The feature

map is first fed to the stacked

depth-wise separable

convolution to extract multi-

scale features without disrupting

the order of feature channel

sequence, after which the

channel weights obtained are

assigned to each multi-scale

feature map. Then the feature

maps are interpolated to the

same size and summed to

generate the refined features
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above. We perform element-wise multiplication of Cai
with each Fm

ij , upsample the feature maps to the same size

and add up them by:

Fm
i ¼ Cai � Fm

i1 þ Cai � Fm
i2 þ Up2ðCai � Fm

i3Þ

þ Up4ðCai � Fm
i4Þ;

ð7Þ

where Up2 and Up4 represent upsample with scale of 2 and

4, respectively. Fm
i is the salient feature map after refine-

ment of SICAM, which will be sent to the ith-level of

decoder.

3.5 Pyramid spatial attention module

For the complicated background of optical RSIs, we pro-

pose a pyramid spatial attention module (PSAM) to refine

low-level features. It alleviates the obstruction of back-

ground noise and highlights foreground information, pro-

ducing more distinguishable feature representations with

sharp edges. As shown in Fig. 6, this module first pro-

gressively refines the inputs from deeper to shallower with

a stacked pyramid structure. With the involvement of

semantic information from deeper layers, the redundant

features of shallower layers are suppressed. The process

can be expressed as:

Fs
3 ¼ convðF3;W3Þ; ð8Þ

Fs
2 1 ¼ convðCatðF2;Up2ðFs

3ÞÞ;W2 1Þ; ð9Þ

Fs
2 ¼ convðFs

2 1;W2 2Þ; ð10Þ

Fs
1 ¼ convðconvðCatðconvðCatðF1;Up2ðFs

2 1ÞÞ;

W1 1Þ;Up2ðFs
2ÞÞ;W1 2Þ;W1 3Þ;

ð11Þ

where Fs
i ; i ¼ 1; 2; 3 are the refined feature maps in the ith-

layer. Then, the spatial attention mechanism [50] is applied

on them. Moreover, the generated spatial attention maps

are also cascaded from deeper to shallower so as to make

them more representative. Lastly, the attention maps gen-

erated by each layer are multiplied with corresponding

encoder features to obtain the refined feature maps:

Fm
3 ¼ SaðFs

3;Wm3Þ � F3; ð12Þ

Fm
2 ¼ conv 7ðCatðUp2ðFm

3 Þ; SaðFs
2ÞÞ;Wm2ÞÞ � F2; ð13Þ

Fm
1 ¼ conv 7ðCatðUp2ðFm

2 Þ; SaðFs
1ÞÞ;Wm1ÞÞ � F1; ð14Þ

where conv 7 denotes the convolution operation with a

7 � 7 kernel followed by a BN and a ReLU. Sa represents

the spatial attention module, which is achieved by con-

catenating the outputs of a global average pooling and a

global max pooling, followed by a 7 � 7 convolution and a

Sigmoid layer.

3.6 Loss

The loss is defined as the sum of the losses of all outputs:

L ¼
XK

k¼1

aklk; ð15Þ

where K ¼ 5 indicates the total number of outputs, ak
denotes the weight of each loss, and lk is the loss at the

output of the k-th block of decoder. Similar to most SOD

experiments, we choose the binary cross entropy (BCE)

loss as the loss function, which is formulated as:

lk ¼ �ðy logðpkÞ þ ð1 � yÞ logð1 � pkÞÞ; ð16Þ

where pk and y represent the salient prediction and the

ground truth (GT), respectively.

4 Experiments

In this section, we first introduce the experimental settings,

including the benchmark datasets, the evaluation metrics,

and the implementation details. Then, we perform a series
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Fig. 6 Illustration of the

proposed PSAM. The features

F1;F2, and F3 from encoder are

first progressively elaborated

through a pyramid structure,

followed by the spatial attention

operation. Then the attention

maps obtained are further

detailed from deeper to

shallower, eventually multiplied

with corresponding inputs to

obtain the refined results
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of ablation studies to verify the effectiveness of each

module of the proposed method. Finally, we compare the

proposed approach with state-of-the-art methods.

4.1 Experiment setups

4.1.1 Datasets

We conduct experiments on two benchmark optical RSI

datasets: ORSSD1 and EORSSD.2 ORSSD consists of 600

training images and 200 testing images. EORSSD contains

1400 pairs of images for training and 600 images for

testing. Both datasets contain cluttered backgrounds,

objects with wide-scale variation, and rich object types, so

they could fairly represent the properties of optical RSIs.

We train our network on EORSSD dataset and test on the

testing subset of ORSSD and EORSSD.

4.1.2 Evaluation metrics

We utilize four measures to evaluate the performance of

our method: precision-recall (PR) curves, F-measure score,

S-measure score, and mean absolute error (MAE). PR

curve is a standard metric for evaluating the predicted

saliency probability maps [51]. Precision score and recall

score are both obtained by comparing the binary salient

map under the threshold from 0 to 255 with GT. F-measure

[52] is denoted as Fb, which is a comprehensive evaluation

measure calculated by the weighted harmonic mean of

precision and recall scores:

Fb ¼ ð1 þ b2Þ � Precision � Recall

b2 � Precision þ Recall
; ð17Þ

where b2 is set to 0.3 to weight precision more than recall.

A larger F-measure means greater effectiveness of method.

The maximum Fb (maxFb) is reported in this paper. MAE

[18, 39] directly compares the difference between the

salient map S and the paired ground truth G, which can be

denoted as:

MAE ¼ 1

W � H

XW

r¼1

XH

c¼1

jSðr; cÞ � Gðr; cÞj; ð18Þ

where W and H represent the width and height of image

and (r, c) denotes the pixel coordinates. The superior per-

formance of the method is reflected in the small value of

MAE. S-measure [36, 53] compares the structural simi-

larity of the salient map and GT. The larger value of the S-

measure means the better performance. It is defined as:

S ¼ a� So þ ð1 � aÞ � Sr; ð19Þ

where a is set to 0.5 as suggested in [53], So and Sr denote

the object similarity and the region similarity, respectively.

4.1.3 Implementation details

The proposed TGDNet is implemented by PyTorch with an

NVIDIA GeForce RTX 3090 GPU. During training, each

input image is resized to 256 � 256, and data augmentation

is utilized to improve the generalizability and robustness of

the model. We employ the Adamw [54] optimizer to train

our network with a weights decay of 0.01 and an initial rate

of 1e-6, and utilize the poly learning rate policy [55] with

the power of 5.0. The transformer stream parameters are

initialized from Swin-S [47]. The model converges after

90k iterations with the batch size of 24. During testing,

input images are resized to 256 � 256 before being fed into

the network, and the outputs are resized to the original size.

4.2 Ablation study

To demonstrate the effectiveness of each key component in

the proposed TGDNet (i.e., TGDE, SICAM, and PSAM),

we conduct ablation experiments. The baseline model

keeps the identical decoder structure with the full TGDNet,

but removes the transformer stream, PSAM, and SICAM.

For the fairness of comparison, the experimental settings

keep constant except for the ablated parts.

The above model variants are quantitatively analyzed by

MAE, F-measure, and S-measure on ORSSD and

EORSSD, respectively, as shown in Table 1. The proposed

TGDNet achieves the state-of-the-art performance on two

datasets compared to other four variants. Compared to the

baseline network (first row), by simply introducing the

transformer (second row), the performance in terms of

MAE, F-measure and S-measure reached 60.8%, 11.2%

and 6.8% gain percentage on ORSSD, and 59.4%, 14.4%

and 10.5% on EORSSD, respectively. It confirms the

superiority of the extracted global information by trans-

former stream. Then, in order to evaluate the role of

SICAM and PSAM separately, we insert SICAM and

PSAM over the network structure in the second row,

respectively. After adding SICAM, as shown in the third

row, the percentage gain reaches 20:0%, 0:6%, and 1:4% in

terms of MAE, F-measure, and S-measure on ORSSD. And

it reaches 9:2%, 1:5%, and 1:4% on EORSSD, illustrating

that SICAM improves the metrics in a balanced way. On

the other hand, the network with embedded PSAM, as

shown in the fourth row, the percentage gain reaches

32:0% and 1:7% in terms of MAE and S-measure on

ORSSD, and reaches 27:6% and 1:9% on EORSSD. This

1 https://li-chongyi.github.io/proj_optical_saliency.html.
2 https://github.com/rmcong/EORSSD-dataset.
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verifies the effectiveness of PSAM in enhancing detail

accuracy. The last row is the TGDNet with complete

structure, which has the best performance among three

metrics in all variants. It outperforms the baseline network

in terms of MAE, F-measure, S-measure by 74:5%, 12:9%,

9:2% on ORSSD, and 73:8%, 17:6%, 13:3% on EORSSD,

respectively.

The visual comparison is shown in Fig. 7. As can be

seen, compared to the baseline model shown in Fig. 7c, the

model with the transformer stream shown in Fig. 7d cap-

tures the more accurate object location. It reveals the

advantage of transformer in capturing global information.

as shown in Fig. 7e, by introducing SICAM, semantic

information is further extracted, salient objects get more

accurately located. In addition, the edge information is

enhanced after embedding PSAM, as illustrated in Fig. 7f.

Finally, as shown in Fig. 7g, the full TGDNet provides

complete regions and detail structure for multi-scale

objects. Therefore, PSAM and SICAM designed separately

for the low-level and high-level features could allow our

method to possess the robustness to accurately discover

salient objects, sharply segment the object edges, and

effectively suppress background noise. At this point, the

effectiveness of each key component is demonstrated by

both quantitative and qualitative results.

4.3 Comparison with state-of-the-art methods

We compare our method with 17 state-of-the-art SOD

models on the testing subset of ORSSD and EORSSD in

terms of qualitative and quantitative comparisons. These

compared models include five traditional methods for NSIs

(i.e., SO [56], RCRR [57], MR [58], GS [59], and SF [60]),

six CNN-based methods for NSIs (i.e., DSS [25], EGNet

[20], PoolNet [21], SCRN [61], BASNet [28], and MINet

[18]), two transformer-based methods for NSIs (i.e., VST

[48] and TransformerSOD [14]), and four CNN-based

methods for optical RSIs (i.e., LVNet [34], MJRBM [37],

DAFNet [12], and EMFINet [36]). Considering the fairness

of the comparison, the experiment results are generated

directly from the source code released by the authors, and

the deep learning-based methods are retrained using the

same training dataset (i.e., EORSSD) as ours.

4.3.1 Qualitative comparison

Some visual results of different methods are illustrated in

Fig. 8. From the visual comparison, our method has sig-

nificant advantages in multiple aspects. Firstly, our method

performs better than traditional and CNN-based methods in

terms of completeness and accuracy of locating salient

objects (e.g., the 1� 3-rd rows), where our model achieves

clear and complete detection in scenarios such as detecting

rivers and playgrounds. Secondly, in detecting multiple and

small objects (e.g., the 4� 6-th rows), our method out-

performs traditional and CNN-based methods as well as

transformer-based methods, where our model could rec-

ognize the quantity of salient objects, provides complete

shape and clear edges. Finally, in suppressing cluttered

background interference(e.g., the 7-th and 8-th rows), our

method is more effective than other methods, where our

model successfully suppresses the obstruction of back-

ground and detects salient objects without false detection

of the background.

4.3.2 Quantitative comparison

To further evaluate the performance of these methods in a

fair and comprehensive manner, all results are measured

by: PR curves, F-measure curves, MAE, F-measure, and

S-measure. We show the PR curves and F-measure curves

of different methods on ORSSD and EORSSD datasets in

Fig. 9. Our TGDNet is at the outermost (solid red line) in

Fig. 9a–d, demonstrating the superior performance in both

datasets.

For visual representation, we report the metrics in terms

of MAE, F-measure, and S-measure in Table 2. Our

method achieves best performance ranked the first at least

in terms of two metrics on ORSSD and EORSSD, which is

consistent with the results shown in Fig. 9. It is evident that

the traditional methods lag far behind the deep learning-

based methods on all three metrics. Methods designed

Table 1 Ablation experiments

for the proposed TGDNet on

ORSSD and EORSSD

Baseline Transformer SICAM PSAM ORSSD EORSSD

MAE # maxFb " Sm " MAE # maxFb " Sm "

U 0.0255 0.8296 0.8644 0.0187 0.7622 0.8198

U U 0.0100 0.9228 0.9236 0.0076 0.8698 0.9058

U U U 0.0080 0.9282 0.9361 0.0069 0.8830 0.9189

U U U 0.0068 0.9220 0.9395 0.0055 0.8816 0.9229

U U U U 0.0065 0.9365 0.9437 0.0049 0.8964 0.9286

Bold indicates the top scores
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Fig. 7 Qualitative visual comparison of ablation study. a Optical RSIs. b GT. c Baseline. d Baseline?Transformer. e Baseline?Trans-

former?SICAM. f Baseline?Transformer?PSAM. g Baseline?Transformer?SICAM?PSAM (the full TGDNet)

Fig. 8 Visual comparison of the proposed method with the other eight methods. a Optical RSIs. b GT. c Ours. d SO [56]. e RCRR [57].

f BASNet [28]. g MINet [18]. h VST [48]. i TransformerSOD [14]. j DAFNet [12]. k EMFINet [36]
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specifically for optical RSIs (LVNet [34], MJRBM [37],

DAFNet [12], and EMFINet [36]) generally outperform

CNN-based methods for NSIs retrained by optical RSIs,

which illustrates the necessity of designing specific meth-

ods to address the unique properties of optical RSIs.

Moreover, our method is better than the transformer-based

methods (VST [48] and TransformerSOD [14]), especially

in terms of MAE.

This illustrates that our method is brilliant in predicting

the value of the single pixel. Compared with the second

best method, in terms of MAE, our method achieves a

percentage gain of 18:8% on ORSSD and 18:3% on

EORSSD. In terms of F-measure, our method reaches a

percentage gain of 1:8% on ORSSD and 0:5% on

EORSSD. And in terms of S-measure, our method also

achieves competitive performance. All these metrics

demonstrate the effectiveness of our method.

4.4 Limitation

Our proposed SOD method achieves high accuracy.

However, its dual-branch structure results in high compu-

tational complexity and time costs, as shown in Table 3.

Compared with state-of-the-art methods, our method

requires a higher running time and FLOPs, which could

limit its practicality for real-time applications and resource-

constrained devices. Future work will focus on developing

lightweight models to stride a balance between perfor-

mance and practicality.

5 Conclusion

This paper presents a transformer guidance dual-stream

network (TGDNet) for SOD in optical RSIs. Guided by the

long-range dependence property of transformer, the pro-

posed TGDNet could capture fantastic encoding features

Fig. 9 Illustration of PR curves and F-measure curves on the testing subset of ORSSD and EORSSD of different methods. a PR curves on

ORSSD. b F-measure curves on ORSSD. c PR curves on EORSSD. d F-measure curves on EORSSD. Better viewed in color
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that aggregates global semantic features and local detail

information. In addition, we investigate the sequence

inheritance channel attention module (SICAM), which

allows the obtained attention weights to match multiple

feature maps simultaneously, thereby extracting and

refining the multi-scale information of high-level features.

Meanwhile, we design a pyramid spatial attention module

(PSAM) to enhance the detail information of low-level

features. Extensive experiments on two benchmark datasets

validate that the proposed model outperforms other state-

of-the-art methods under different evaluation metrics.
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