
ORIGINAL ARTICLE

A dynamic multiobjective optimization algorithm based on decision
variable relationship

Ziyu Hu1,2 • Zihan Li1,2 • Lixin Wei1,2 • Hao Sun1,2 • Xuemin Ma1,2

Received: 3 August 2022 / Accepted: 2 May 2023 / Published online: 21 May 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
Dynamic multiobjective optimization problems exist in daily life and industrial practice. The objectives of dynamic

multiobjective optimization problems conflict with each other. In most dynamic multiobjective optimization algorithms,

the decision variables are optimized in the same way, without considering the different characteristics of the decision

variables. To better track Pareto-optimal front and Pareto-optimal set at different times, a dynamic multiobjective opti-

mization algorithm based on decision variable relationship (DVR) is proposed. Firstly, the decision variables are divided

into two categories based on the detection mechanism of the contribution of decision variables to diversity and conver-

gence. Secondly, different optimization methods are used for different types of decision variables. And a diversity

maintenance mechanism is proposed. Finally, the individuals generated by these two parts and the perturbed individuals are

combined. The combination individuals are nondominated sorted to form a population in the new environment. To verify

the performance of the proposed algorithm, DVR is compared with five state-of-the-art dynamic multiobjective opti-

mization evolutionary algorithms on 15 benchmark instances. The experimental results show that the DVR algorithm

obtains 24 inverse generation distance optimal values in 45 groups of test data.

Keywords Dynamic multiobjective optimization � Decision variable relationship � Guide individual � Classification
prediction

1 Introduction

Dynamic multiobjective optimization problems (DMOPs)

[1, 2] have gotten extensive attention in theoretical

research and engineering fields, such as production

scheduling [3], machine learning [4, 5] and so on. DMOPs

are time (environment)-dependent optimization problems

in which the objective function and decision variables are

time (environment)-dependent, and the optimal individual

changes dynamically with time. Pareto-optimal front (PF)

and Pareto-optimal set (PS) are dynamic or fixed with the

change of environment. Due to the dynamic change of the

environment, it is difficult to solve the dynamic multiob-

jective optimization problems [6].

At present, there are many optimization algorithms.

Optimization algorithms include evolution algorithms

(EA), swarm intelligence algorithms, human-based algo-

rithms, and physic-based and chemistry-based algorithms.

Evolutionary algorithm mainly simulates the evolution rule

of survival of the fittest in nature to achieve the overall

progress of the population and finally complete the solution

of the optimal solution. Among them, genetic algorithm

(GA) [7] and differential evolution (DE) [8] are the main

representatives. The swarm intelligence optimization

algorithm simulates the wisdom of the group to achieve the

global optimal solution. In this algorithm, each population

is a biological population. It mainly includes particle

swarm optimization (PSO) [9], ant colony optimization

(ACO) [10], etc. Human-based algorithms mainly include

teaching learning-based optimization (TLBO) [11], har-

mony search (HS) [12], etc. The algorithms based on

physics and chemistry mainly come from the physical rules
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and chemical reactions in the universe. It mainly includes:

simulated annealing (SA) [13], gravitational search algo-

rithm (GSA) [14], etc. Among many optimization algo-

rithms, EA and PSO algorithm have been the consistent

pursuit of researchers because of their high development

efficiency, strong robustness and other advantages.

In order to solve DMOPs, many dynamic multiobjective

evolutionary algorithms (DMOEAs) have been proposed in

recent years. The majority of DMOEAs are divided into

one of two categories: prediction method [15–17] or

diversity method [18, 19]. The prediction-based approach

makes use of a prediction mechanism to give the popula-

tion evolution a direction after every environmental

change, enabling the algorithm to react quickly to the new

change. The main drawback of the prediction-based algo-

rithms is that they completely depend on the training

model, and the training data cannot accurately represent the

real situation. The population’s diversity can be preserved

or increased using the diversity-based approach, but if

diversity is merely increased randomly, the speed of con-

vergence will be slow. Therefore, the design using a mix of

diversity introduction and prediction methods can further

make up for the above-mentioned defects. Nowadays, the

majority of DMOEAs evolve decision variables in the

same way without taking into account their various char-

acteristics, and they struggle to strike a good balance

between population diversity and convergence [20].

Recently, there have been related article based on decision

variable analysis (DVA), which the decision variables are

divided into different types by determining the dominant

relationship between perturbed individuals [21]. However,

mixed decision variables are simply treated as diversity-

related variables by DVA, and variable classification

strategy cannot further distinguish them. Because some

mixed decision variables contribute more to diversity than

convergence while others do the opposite, it is still possible

to further categorize them. Based on the above problem, a

mechanism to detect the magnitude of contribution of

decision variables to diversity and convergence is pro-

posed. There are currently two drawbacks to the angle-

based classification method for decision variables [22].

First, when calculating the angle, it uses only the normal of

the hyperplane f1 þ f2 þ � � � þ fm ¼ 1 as the direction of

convergence, which cannot accurately distinguish the

mixed decision variables with complex shape frontier.

Therefore, it is essential to take weight vector guidance

into account when examining the relationship between

decision variables. Second, it is impossible to further dis-

tinguish the magnitude of contribution to convergence

when various dimensional decision variables have the same

projection length or angle. By combining the angle and

projection length between the fitting line and the weight

vector, the decision variables are further categorized.

In this study, a dynamic multiobjective evolutionary

algorithm based on decision variable relationship (DVR) is

proposed. The algorithm classifies decision variables using

the detection mechanism of the contribution of decision

variables to diversity and convergence in combination with

the guidance of reference vector, and uses various evolu-

tionary strategies for various types of decision variables to

better balance diversity and convergence. The decision

variable classification, prediction methods, and diversity

introduction methods are all combined in the DVR

algorithm.

The main contributions of this study are stated below:

• DVR approach uses the detection mechanism of the

contribution to diversity and convergence, and divides

the decision variables into two categories: convergence-

related variables (CV) and diversity-related variables

(DV). Combined with historical information, different

types of decision variables adopt different evolutionary

strategies to improve the convergence and diversity of

the population.

• For convergence-related variables, a multi-region pre-

diction strategy that divides subregions based on guide

individuals is proposed. New solutions are generated

based on the evolutionary direction of the guide

individuals.

• To increase the diversity of individuals, a multi-

regional diversity maintenance strategy is proposed.

The ratio of the distance from the guide individuals to

the upper and lower boundaries is calculated in the

subregion to explore new individuals nearby.

Each section of this paper is described as follows. Some

related work is introduced in Sect. 2. Section 3 describes

the content of the proposed DVR algorithm. In Sect. 4, the

test examples and performance metrics we used are

described. Section 5 analyzed the experimental results of

the proposed algorithm and the comparison algorithm. In

Sect. 6, we summarize the whole article and give the next

work.

2 Related work

In general, the minimization dynamic multiobjective opti-

mization problems [23] are considered, which is defined as

follows:

min Fðx; tÞ ¼ f1ðx; tÞ; f2ðx; tÞ; � � � ; fmðx; tÞf g
s.t. giðx; tÞ� 0 ði ¼ 1; 2; . . .pÞ
hjðx; tÞ ¼ 0 ðj ¼ 1; 2; . . .; qÞ

8
<

:
ð1Þ

where x ¼ x1; x2; . . .; xnf g is the decision variable in deci-

sion space X and n is the dimension of decision space;

Fðx; tÞ ¼ f1; f2; � � � ; fmð Þ represents the objective function to
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be minimized and m is the dimension of objective space.

gðx; tÞ 6 0 and hðx; tÞ ¼ 0 are inequality constraints and

equality constraints. The time or environment variable t is

defined as: t ¼ ð1=ntÞ s=stb c, where s is iteration counter, nt
is intensity of environmental change, and st is change

frequency. There are some definitions of DMOPs as

follows:

Definition 1 Pareto dominance, let p and q be any two

solutions in decision space X, where solution p dominates

solution q, if and only if fiðpÞ 6 fiðqÞ, 8i 2 1; 2; . . .;mf g
and 9fjðpÞ\fjðqÞ, j 2 1; 2; . . .;mf g, written as fiðpÞ � fiðqÞ.

Definition 2 The Pareto-optimal solution (PS), x is the

decision vector; X is the decision space. A solution x� 2 X
is Pareto-optimal solution if and only if there is no other

x 2 X, x � x�. At time t, the PS is the set of all Pareto-

optimal solutions and can be defined as:

PS ¼ x� 2 X j :9x 2 X; x � x�f g.

Definition 3 The Pareto-optimal front (PF), the set of the

objective vectors at time t, is denoted by

PF ¼ fFðxÞ j x 2 PSg.

The key to solving DMOPs is to achieve fast conver-

gence and uniform distribution. Most of the existing

DMOEA are built by combining the classic multiobjective

evolutionary algorithm (MOEA) [24–26] with efficient

dynamic technology, which can be roughly divided into the

following three types.

(A) Diversity strategy Depending on the potential for

diversity enhancement, diversity-based methods can

be divided into two categories [27]: diversity

protection [28] and diversity introduction [29]. The

diversity protection method only depends on the

static evolution to generate a collection of optimal

solutions, it lacks the convergence ability. The latter

method takes into account the population’s potential

diversity loss in a dynamic environment. Once a

change in the environment has been detected,

random or specific individuals are introduced. Based

on a fast and elitist multiobjective genetic algorithm

(NSGA-II) [24], Deb and Karthik [30] proposed two

DMOEAs (Dynamic multiobjective optimization and

decision-making using modified NSGA-II:DNSGA-

II-A and DNSGA-II-B). When environmental

changes are detected, some randomly reinitialized

individuals will be generated in DNSGA-II-A, while

a portion of the existing population will be replaced

with mutants in DNSGA-II-B. Ruan et al. [31]

proposed a hybrid method for maintaining diversity.

Using the gradual search method between the

minimum and maximum points, evenly distributed

solutions are produced to increase the population’s

diversity.

(B) Memory strategy The memory-based method

[32, 33] responds to the dynamic environment by

recording the historical information and directly

reusing the optimal solution in the historical infor-

mation [34]. Chen et al. [35] proposed a dynamic

double archive evolutionary algorithm, which main-

tains two coevolutionary populations at the same

time. The two groups are complementary: one pays

more attention to convergence and the other pays

more attention to diversity. Once the environment

changes, the composition of the two populations will

be reconstructed adaptively. In addition, the two

populations interact through mating selection mech-

anism. Zhang et al. [36] decomposed a dynamic

multiobjective optimization problem into multiple

dynamic scalar optimization subproblems and opti-

mized these subproblems at the same time. Since

neighboring subproblems have similar optimal solu-

tions, each subproblem is optimized by using the

current information of its neighboring subproblems.

The strategy based on memory can transfer the

information from the historical environment to the

new environment, which can deal with the problem

of periodic change; When the environment changes

dramatically, the strategy will lead to inaccurate

prediction results [37].

(C) Prediction strategy After the environment changes,

the prediction-based method is used to guide the

population evolution [38, 39], and the history

information is used to initialize the population in

the new environments [5, 40, 41]. Zhou et al. [42]

proposed a population-based prediction strategy

(PPS) in 2014 that divides the Pareto solution set

into two parts: central point and manifold. Through

the autoregression (AR) model, the center point of

the continuous time series is used to predict the

center of the next time, and the manifold of the

previous time is used to estimate the manifold of the

next time. Therefore, when the environment changes,

PPS obtains the population at the next time by

combining the prediction center and estimation

manifold. The quality of the prediction is not high

as there is insufficient historical information about

previous environmental changes. However, with the

operation of the algorithm and the accumulation of
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historical information, the prediction accuracy will

continue to improve. Rong et al. [43] proposed a

multi-directional prediction strategy. This method

selects representative individuals through clustering

method, and determines the number of representative

individuals depending on the severity of PF and PS

changing with the environment. And it predicts new

location of PS through the evolutionary direction of

multiple representative individuals in decision space,

so as to reinitialize the population. Ma et al. [44]

proposed a multi-region prediction strategy. The

number of decompositions of the objective space

according to the severity of the changes in adjacent

moments, and multiple evolutionary directions are

determined according to the center point of the

subregion. In the above references, the prediction

method shows the ability to improve the convergence

speed.

From the above three studies of dynamic multiobjective

evolutionary optimization, we can see that all three

approaches have their own advantages in solving DMOPs.

In this paper, the decision variables are classified into

different types and different optimization methods are used

for the two decision variables. The combination of pre-

diction-based and diversity-based methods further

improves the quality of the solution. A specific description

of the proposed algorithm will be given in Sect. 3.

3 Proposed DVR algorithm

A dynamic multiobjective optimization algorithm based on

decision variable relationship is proposed to generate

solution close to PF in a changing environment. The

algorithm mainly analyzes the influence of each decision

variable according to the magnitude of its contribution to

convergence and diversity. The decision variables are

divided into two categories: convergence-related variables

and diversity-related variables, and adopts different pre-

diction strategies for each of the two types of decision

variables. In addition, a diversity maintenance approach is

presented to further uniformize the individual distribution.

The algorithm primarily consists of the following steps,

which are described below: decision variable relationship,

classification prediction strategy, and diversity mainte-

nance strategy.

3.1 Decision variable relationship method

The convergence relevance degree (CRD) value is used to

measure the contribution of each decision variable to

convergence and diversity. The CRD value for each deci-

sion variable contains two factors: the angle h and pro-

jection length LN. First, the population P is re-initialized

with N individuals, and n weight vectors k ¼
k1; k2; . . .; knf g are generated uniformly in the objective

space [45]. Weight vectors ki indicate the direction of

convergence. Next, the Euclidean distances between indi-

viduals in the population and the n weight vectors are

calculated separately. And the nSel candidate individuals

xij; i 2 1; 2; . . .; nf g; j 2 1; 2; . . .; nSelf g with the smallest

distance from each weight vector ki are selected. There-

fore, the total number of candidate individuals is n � nSel.
Finally, perturbations are performed on the ith dimension

of nSel candidate individuals respectively. The perturbation

value is taken as a random value within the upper and

lower boundaries, and the other dimensions remain

unchanged. The perturbed individuals are normalized, as

shown in Eq. 2, where Ynew
ij represents the normalized

objective function value, Yij represents the current objec-

tive function value, Ymin represents the minimum objective

function value of this dimension, Ymax represents the

maximum, and Ymean represents the average. As shown in

Eq. 3, using the singular value decomposition method to

calculate the direction vector of fitting line Lij. As shown in

Eqs. 4 and 5, the angle hij and projection length LNij

between the fitting line Lij and the weight vector ki are
calculated. CRDij corresponding to each dimensional

decision variable is calculated. The number of CRDij is the

same as the number of candidates. To calculate the con-

tribution of each variable to convergence and diversity, the

CRD contains two parts: the angle h and projection length

LN. Specifically, the calculation of CRD value is shown in

Eq. 6. Where, hij and LNij represent the angle and projec-

tion length between the fitted line LNij and weight vectors

ki. hmax and hmin represent the maximum and minimum

values of the current generation.

Ynew ¼ Y � Ymin

Ymax � Ymin

� Ymean ð2Þ

Ynew
ij ¼ Uij � Sij � Vij

Lij ¼
VT
ij

VT
ij

�
�
�

�
�
�

ð3Þ
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hij ¼ arccos
Lij � kij
Lij
�
�
�
� kij
�
�
�
�

 !

ð4Þ

LNij ¼ Lij � cos hij ð5Þ

CRDij ¼ 1þ hij � hmin

hmax � hmin

� �

� e�LNij ð6Þ

As shown in Fig. 1a, in this example, for each weight

vector, two nearest candidate individuals xnear1i and xnear2i

are selected. As shown in Fig. 1b, the i-th dimension of two

candidate individuals xnear1i and xnear2i are perturbed six

times, and the perturbed individuals are normalized to

produce the fitted straight lines Li1 and Li2. The angle hi1,
the projection length Li1 and the angle hi2, the projection

length Li2 between the fitted lines Li1 and Li2 and the

weight vector ki are calculated, respectively. The CRD

values of the two candidates (CRDi1 and CRDi2) are cal-

culated by Eq. 6.

A smaller CRD value represents a larger contribution to

convergence than to diversity. The ‘‘smaller CRD value’’

refers to the cluster where the average CRD value of the

two clusters is closer to the origin. This is because the

angle reflects the search bias for the direction of conver-

gence, and a smaller angle indicates a greater contribution

of the decision variable to the direction of convergence.

The projection length LN indicates the search intensity

along the convergence direction, and a larger projection

length means a larger perturbation in the convergence

direction. Figure 1c presents the calculated CRD values

when the dimension of the decision variable is five and two

candidate individuals are selected for perturbation in each

dimension. The CRD values are divided into two categories

using the k-means clustering method: the category with the

smaller CRD value, which decision variables contributes

less to diversity than convergence, is classified as conver-

gence-related variables, and the rest ones are classified as

diversity-related variables. The perturbed individuals are

stored in C. The number of individuals in C is

n � nSel � nPer. The pseudo-code of decision variable

relationship method is given in Algorithm 1.

3.2 Classification prediction strategy

When an environmental change is noticed, the proposed

prediction strategy finds solutions that approximate the true

Pareto solution set. The difference with other prediction

strategies is that the proposed prediction strategy is

Fig. 1 Illustrates the classification results of five decision variables
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classified according to the type of decision variables in

each dimension at the previous moment (t) and the current

moment (t þ 1). If the ith dimensional decision variable is

convergence decision variable at moment t and diversity

decision variable at moment t þ 1, or diversity decision

variable at moment t and convergence decision variable at

moment t þ 1, the historical information is not useful for

optimizing the population. Therefore, the ith dimensional

decision variable uses a random initialization strategy.

When both the t moment and the t þ 1 moment are

diversity decision variables, an adjustable precision muta-

tion operator strategy [46, 47] is used. When both the t

moment and the t þ 1 moment are convergence decision

variables, a multi-region-guided individual prediction

strategy is proposed.

3.2.1 Adjustable precision mutation operator Strategy

When the decision variable xi is a diversity decision vari-

able at both the previous and current moments, an

adjustable precision mutation operator prediction strategy

is used to obtain new individuals with the required search

precision for exploiting and exploring the decision space.

For a population of an individual x ¼ x1; x2; . . .; xN½ �T , xi is
the ith decision variable of x. It is necessary to exploit

individuals near x and explore individuals far from x.

x
0

i ¼ xi þ a

x
0

i ¼ xi � a

a ¼ 1

10p
� randomð9Þ

ð7Þ

where the regulation accuracy of the individuals around the

exploit x is controlled by the parameter p. And when p is

set to 1, the 1
10p

equals 0.1. The value of random (9) func-

tion can generate a random integral number between 1 and

9, the difference between x
0
i and xi ranges from 0.1 to 0.9.

From Eq. 7, it can be concluded that this mutation operator

can generate a little mutation in the initial value, in order to

exploit the individuals near x.

x
0

i ¼ xi þ b

x
0

i ¼ xi � b

b ¼ 10q � randomð9Þ

ð8Þ

where the regulation accuracy of the individuals around the

explore x is controlled by the parameter q. When q is set to

1, the 10q equals 10, The value of random(9) function can

generate a random integral number between 1 and 9, the

difference between x
0

i and xi ranges from 10 to 90. From

Eq. 8, the mutation operator can produce a large mutation

on the initial value, which is helpful for global search to

jump out of the local optimum and increase the diversity of

the population.

Equations 7 and 8 can generate individuals with values

less than xi as well as individuals with values greater than

xi. To make the local search and global exploration ran-

dom, a random number r from 1 to 4 is generated. Qdv is

equal to the population number of P, so the size of Qdv is

N. The pseudo-code is given in Algorithm 2.

3.2.2 Multi-regional prediction strategy

The multi-region prediction method is used when the

decision variable xi is a convergence decision variable at

both the current and the previous moment. Qdv is equal to

the population number of P, so the size of Qdv is N. The

pseudo-code of multi-region prediction strategy is given in

Algorithm 3.

(A) Identify the guide individuals

Guide individuals to divide all individuals in the population

into different groups can better represent the shape and

distribution of PF. The extreme point of a dimension is the

farthest in decision space, so it can well describe the

position of PS; The sampling points combine the PS center

point with the corresponding PF extreme points and

equally spaced sampling points as the guide individual.

Therefore, the guiding individual is composed of boundary
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point [48], center point [49] and sampling point. The fol-

lowing three parts are introduced in detail.

(1) Boundary point

For the minimum problems, the boundary points are the

individuals with the minimum value in a certain dimension

of the objective space. If the dimension of the objective

space is three or more, the number of boundary points will

be three or more. As shown in Fig. 2, the blue individual

represents the boundary individuals.

(2) Center point

The following is the Eq. 9 for calculating the center point

at time t:

Ct
i ¼

1

PStj j
X

x2PSt
xti ð9Þ

where PSt is the Pareto set at time t, PStj j is the number of

intermediate solutions and xti is the ith solution in PSt. The

purple individual in Fig. 2 is the center point.

(3) Sampling point

All sample values are sorted by the system sampling

method in equal intervals from small to large. The ratio of

the total number of individuals to the number of sampling

points is rounded down to be equal to k, and the segmen-

tation interval is determined to be k. In the first segment (1,

k), the first sampling point is selected by simple random

sampling, and then the samples are taken according to the

step k for equal interval sampling. As shown in Fig. 2a, a

dimension of the objective function is randomly selected,

the objective function values are ranked from smallest to

largest, and sampling points are selected among nondom-

inated individuals using the systematic sampling method.

In Fig. 2, the green points represent the sampling individ-

uals. As the sampling point randomly selects a dimension

in the objective space for sampling, the principle of bi-

objective and tri-objective instance is the same.

(B) Subregional division

As shown in Fig. 2b, the Euclidean distance between the

nondominant individuals and the guide individuals is cal-

culated, and the individuals are divided into the region

where the guide individual is nearest. Due to the fact that

guide individuals can represent the general distribution of

PF in the subregion, they provide a better indication of the

distribution of the data than the mean.

(C) Determine the evolutionary steps

Using multiple guide individuals instead of just centroid

for prediction is called multi-region prediction. The evo-

lutionary direction of each individual represents the evo-

lutionary direction of all individuals in the region.

Considering both prediction accuracy and computational

cost, multiple time-series models are constructed to predict

the evolutionary direction of multiple subregions Dcti
according to the previous data supplied by the guided

individuals in the first two moments. As shown in Fig. 3,

the set of individual solutions Ct ¼ ct1; c
t
2; � � � ; ctk

� �
and

Ct�1 ¼ ct�1
1 ; ct�1

2 ; � � � ; ct�1
l

� �
, cti is any individual in Ct and

ct�1
j is any individual in Ct�1. First, we select individual

ct�1
j from all nondominated individuals at time t � 1, which

is closest to the ith guide individual cti at time t, and ct�1
j is

the parent of ctj. Therefore, the evolutionary step size of

each region guide individual is shown in Eq. 10.

Dcti ¼ cti � ct�1
j i ¼ 1; 2; . . .; kf g; j ¼ 1; 2; . . .; lf g

ð10Þ

where k denotes the number of guided individuals and the

number of subregions. l denotes the number of nondomi-

nated solutions at moment t � 1.

(D) Generation of the prediction individuals

As shown in Fig. 3, the positions of other individuals in the

region at moment t þ 1 are predicted by guiding the evo-

lutionary step of individual Ct by Eq. 11.

xtþ1
i ¼ xti þ Dcti þ et ð11Þ

where i ¼ 1; 2; . . .; k, et 	Nð0; rtÞ, et is a normal

Fig. 2 a Identify the guide individuals. b Subregional division Fig. 3 Multi-region prediction strategy
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distribution random number with mean value of 0 and

variance of rt. The calculation of rt is shown in Eq. 12:

rt ¼ 1

k

Xr

i¼1

Dcti
�
�

�
� ð12Þ

where xti is the ith guide individual at time t and xtþ1
i

denotes the predicted individual for the t þ 1-th environ-

mental change. The individuals in each subregion at

moment t þ 1 are generated according to the evolutionary

direction of the guiding individuals in their subregion.

3.3 Multi-regional diversity maintenance
strategy

Diversity maintenance strategy plays an important role in

dynamic optimization. In a dynamic environment, the

environment keeps changing over time. And at each period

of environmental change, the population evolves toward

adapting to the environment, which tends to lead to a local

optimum. Therefore, a variety of individuals need to added

to boost the diversity of the population. When the envi-

ronment changes, the diversity maintenance strategy serves

the role of introducing varied individuals. Therefore, we

propose a multi-regional diversity maintenance strategy.

Dividing the objective space into k subregions according to

the guide individuals. As shown in Fig. 4, in the decision

space, the distances to the upper and lower boundaries are

calculated for each dimension of the guide individuals in

each subregion by Eqs. 13, 14, where the ratio of the rel-

atively smaller distance to the larger distance is calculated

according to Eq. 15. The new individuals are generated by

calculating each subregion individual by Eq. 16. The

population number of R is N. The pseudo-code is given in

Algorithm 4.

dijmin ¼ min xij � lij
�
�

�
�; xij � uij
�
�

�
�

� �
ð13Þ

dijmax ¼ max xij � lij
�
�

�
�; xij � uij
�
�

�
�

� �
ð14Þ

dij ¼ dijmin=dijmax ð15Þ

xtþ1
ij ¼ xtij þ N 0; dij

� 	
ð16Þ

where xtij is the jth dimensional decision variable of the ith

individual at time t, xtþ1
ij denotes the predicted solution of

the jth dimensional decision variable of the ith solution at

time t þ 1. N 0; dij
� 	

is a normal distribution random

number with mean value of 0 and variance of dij.

3.4 Framework of DVR

The MOEA/D framework is included into the classification

prediction method and multi-regional diversity mainte-

nance strategy, which are provided for Algorithm 5. Che-

byshev [36] is the decomposition method. Each weight

vector has equal weights to guarantee that they are

spreading uniformly.

First, step 1 randomly initializes the individuals in the

population. Second, when an environmental change is

recognized and t is larger than 1, the population is reini-

tialized using the change response method of the DVR

(steps 5–10). Step 5 is the classification of decisionFig. 4 Multi-regional diversity maintenance strategy
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variables according to Algorithm 1. Step 6 represents the

prediction of diversity-related decision variables. Step 7 is

to generate a new solution Q using a multi-region predic-

tion method for convergent decision variables. Step 8 is to

generate new populations R using a multi-regional diver-

sity maintenance strategy. For step 9, combined with the

prediction strategy, the diversity method obtains the pop-

ulation and perturbed individuals, and sets the combined

population as Par. For step 10, generated individuals are

mixed with the individuals, and the nondominated sort [24]

is used to select N individuals with superior convergence

and diversity to improve the prediction accuracy. Step 14

shows that the population is optimized using MOEA/D-DE

if the environment has not changed. Step 16 is to check if

the maximum number of iterations is reached, if not then

continue the loop, if it is reached then stop the iteration and

output the final population Pnew.

3.5 Complexity of the DVR framework

DVR algorithm is made up of two parts: static optimization

and dynamic response. The computational complexity of

static optimization of DVR algorithm is OðMN2Þ, where M
is the number of objectives space and N is the population

size. The computational cost of the change response is

mainly involved in decision variable relationship, classifi-

cation prediction approach, and diversity maintenance

mechanism. In Algorithm 5, the computational complexity

of decision variable relationship (line5) is O(nN), where n

is the dimension of decision space. It takes O(nN) to cal-

culate the distance from the individual to the weight vector.

The computational complexity of calculating the angle and

projection length between the weight vector and the fitting

line is Oðn � nSelÞ. The computational complexity of the

computational complexity adjustable precision mutation

operator strategy (line6) is O(N) and multi-regional pre-

diction strategy (line7) is Oðk � ncvÞ. The diversity main-

tenance strategy requires O(kn) computations. As a result,

the computational complexity of dynamic response is

O(nN). To sum up, the overall computational complexity of

DVR algorithm is OðMN2Þ.

4 Benchmark instances and test indicators

4.1 Benchmark instances

15 typical test functions are used for experimental simu-

lations to demonstrate the performance of the proposed

algorithm. The test problems include F test set [49] (F1–

F10) and DF test set [50] (DF1–DF5). F test set, which

characterizes more complex real-world optimization

problems that include linear and nonlinear correlation

problems with decision variables. Among them, the deci-

sion variables of F1–F4 are linearly correlated and those of

F5–F10 are nonlinearly correlated. F4 and F8 are three-

dimensional objective functions, and the other F test

problems are two-dimensional objective functions. In terms

of environmental changes, F1–F8 are affected by contin-

uously changing environments, and F9 and F10 are affec-

ted by sharp environmental changes. DF1–DF5 are test

problems with two objectives. DF1 is a variant of dMOP2.

The PS of DF1 undergoes a simple change, with the PF

changing from concave to convex. The ability of the

algorithm to follow concave and convex variations is

evaluated using this test problem. DF1 is a variant of

dMOP3. DF2 changes over PS, while PF does not change

with time. DF3 is a variant of ZJZ. The concavity–con-

vexity of DF3 varies over time, and the variables are cor-

related. The PS length and position of DF4 change with

time, and the length and curvature of PF also change with

time. The PS structure of DF5 is simple, but the shape of

PF changes with time. As shown in Table 1, the above

DMOPs can be classified into three types [51].

Neural Computing and Applications (2023) 35:17749–17775 17757

123



4.2 Test indicators

To determine whether an algorithm can solve DMOPs

efficiently and assess the diversity and convergence of

individuals, the performance of algorithm needs to be

quantified with a performance metric function [52]. We use

the mean inverse generation distance (MIGD) [42, 53], the

mean hypervolume difference (MHVD) [54] and the

Schott’s mean spacing metric (MSP) [41]. The details of

these three performance indicators are as follows:

(1) In addition to reflecting the convergence of MOEA,

the inverse generation distance (IGD) indicator is

also a good reflection of the uniformity and breadth

of the distribution of MOEA. Let Pt� represent a set

of uniformly distributed Pareto-optimal points in the

PFt. Let Pt be an approximate set of PFt. The

definition of IGD metric is shown in Eq. 17:

IGD Pt� ;Pt
� 	

¼
P

j2Pt� dðjÞ
Pt�j j

ð17Þ

where P�j j is the cardinality of Pt� ; dð�jÞ ¼
mini2P0 k�j� �ik represents the minimum Euclidean

distance from the point on approximate PF to the

individual in the true PF. If the IGD value is small, it

means that the solution set is well converged and

uniformly distributed. Since IGD is mostly used to

evaluate the static algorithm performance, the mean

inverse generation distance is proposed by Zhou

et al. [42]. MIGD is defined as follows:

MIGD Pt� ;Pt
� 	

¼ 1

jT j
X

t2T
IGD Pt� ;Pt

� 	
ð18Þ

where t 2 T ;T ¼ 1; 2; . . .f g is a set of discrete time

points in a run, and Tj j is the cardinality of T.

(2) The hypervolume difference (HVD) metric calcu-

lates the hypervolume difference in the objective

space from the true PS to the approximate PS

provided by the algorithm. The expressions are as

follows:

HVD Pt
�;P

t
� 	

¼ HV Pt
�

� 	
� HV Ptð Þ

�
�

�
� ð19Þ

where HVðPt
�Þ is a constant. A smaller HVD value

indicates a better approximation. MHVD metric is

the average value of the HVD at each generation in a

certain run.

MHVD Pt
�;P

t
� 	

¼ 1

jT j
X

t2T
HVD Pt

�;P
t

� 	
ð20Þ

where HV(S) is the hypervolume of the set S. z� ¼
z�1; � � � ; z�m
� 	

is the reference point, m is the dimen-

sion of objective space. The reference point is set to

yt1 þ 0:5; � � � ; ytm þ 0:5
� 	

to calculate the hypervol-

ume. Herein, yti is the maximum value of the ith

objective function value of the true PF at time t.

(3) The spacing metric (SP) metric is used to measure

the distributivity of the approximate Pareto solution

set obtained by the algorithm. SP is calculated as

follows:

SP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Pt � 1j j
XP

0j j

i¼1

Di � Dð Þ2
v
u
u
t ð21Þ

where the Euclidean distance between the ith person in Pt

is denoted by Di and the closest solution to it. �D is the

average of Di. Di is calculated as shown below.

Di ¼ min
u;v2P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

j¼1

fjðvÞ � fjðuÞ
� 	2

v
u
u
t ð22Þ

When SP = 0, the individuals in Pt are uniformly dis-

tributed on the Pareto front. The average of SP over a time

period T is defined as MSP. MSP is calculated as shown

below.

MSP ¼ 1

jTj
X

t2T
SP ð23Þ

Just like the SP, a smaller MSP metric value means that the

solution obtained by the algorithm is more uniformly dis-

tributed and the algorithm is better distributed.

5 Experiment setting and result analysis

5.1 Compared algorithm

The proposed algorithm DVR is compared to four existing

state-of-the-art algorithms in this section.

(1) PPS [42]: A population-based prediction strategy

that divide a PS into two parts: center point and a

manifold. Through the autoregression (AR) model,

Table 1 Different types of

DMOPs classification in this

paper

Type PS PF Instance

Type1 Change Fixed DF2, F1, F4

Type2 Change Change DF1, DF3, DF4, DF5, F5, F6, F7, F8, F9, F10

Type3 Fixed Change F2, F3
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the center point of the continuous time series is used

to predict the center of the next time, and the

manifold of the previous time is used to estimate the

manifold of the next time.

(2) SVR [55]: Evolutionary dynamic multiobjective

optimization assisted by a support vector is a

nonlinear mapping of historical individuals to a

high-dimensional feature space and linear regression

in that space.

(3) MDP [43]: Multidirectional prediction approach

clusters populations into a number of representative

groups, where the number of clusters is adapted

depends on the intensity of the environmental

change.

(4) DMOES [47]: Multiobjective evolution strategy uses

the simulated isotropic magnetic particles niching to

guide individuals to maintain uniform distance and

range, thus automatically approximating the entire

Pareto front.

(5) DVA [21]: The prediction strategy based on decision

variable analysis divides decision variables into two

categories. The decision variables are divided into

convergence-related variables and diversity-related

variables according to the dominance relationship

between the perturbed individuals. But the mixed

decision variables are simply classified as diversity

convergence variables.

5.2 Parameter setting

In the experimental part, all algorithms use MOEA/D-DE

as their optimizer, allowing us to compare their dynamic

performance objectively. The decomposition method is

Chebyshev decomposition method. Chebyshev method is a

nonlinear multiobjective aggregation method. The method

generates a group of weight vectors and reference points

uniformly in the objective space, and divides the multi-

objective optimization problem into multiple single

objective subproblems, each of which is assigned an indi-

vidual. The individuals in the neighborhood are updated by

the size of the aggregation function value, and all Pareto-

optimal solutions are saved. This method can not only

ensure the convergence of the population, but also ensure

the good diversity of the population. The number of indi-

viduals for test problems is N ¼ 100. The dimensions of

decision variables are n ¼ 10. In addition, the crossover

probability CR ¼ 1 and mutation probability F ¼ 0.5 are

differential evolution parameters. The intensity of envi-

ronmental change is nt ¼ 10. The change frequency is st ¼
5,10,20 in each test instances. The maximum number of

generations in each run is set to be 100 � st, ensuring that

each experiment sees 100 environmental changes. To

generate statistically significant results, we execute each

algorithm runs 20 times on each test problem. The fol-

lowing are the detailed parameter settings for five

algorithms.

(1) PPS [42]: It uses AR (p) model and the order is p ¼ 3

and the length of history mean point series is M = 23.

(2) SVR [55]: Settings for the SVR-based predictor: the

dimension of the input samples q ¼ 4; regularization

constant C ¼ 1000; precision parameter representing

the radius of the tube located around the regression

function e ¼ 0.05.

(3) MDP [43]: The number of subregions is K, the lower

bound is M?1, and the upper bound is 3M. Where

M is the dimension of the objective function.

(4) DMOES [47]: The parameter p ¼ 3 that controls the

accuracy of the mining search and the parameter q ¼
1 that controls the exploration search accuracy.

(5) DVA [21]: The number of solutions generated by

Latin hypercube sampling method combined with

central point prediction method N1 ¼ 0.8 and the

number of solutions generated by combined random

sampling method and central point prediction

method N2 ¼ 0.2. Threshold value r ¼ 0.9998.

(6) DVR: The number of perturbed individuals nSel for

each dimension of the decision variable is set to 2

and the number of perturbations nPer is set to 4. The

number of subregions is k ¼ 6. The parameter

settings of adjustment accuracy p ¼ 3 and q ¼ 1 are

the same as those in DMOES [47].

5.3 Comparison of different parameter settings

The number of candidate individuals nSel, the number of

perturbations nPer, and the number of subregions k, are

determined from the following experimental results.

(1) Setting different candidate numbers nSel result

comparison: in order to determine whether the

number of perturbed candidate individuals (nSel)

has an impact on the classification of CRD calculated

by the algorithm, F1 and F5 test functions are

Fig. 5 Classification results of decision variables of two perturbed

candidate individuals when st ¼ 30
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selected for experimental analysis when st ¼ 30.

Figures 5 and 6 show the classification results of two

candidates (nSel ¼ 2) and three candidates (nSel ¼
3), respectively. The specific classification results are

as follows. It can be seen from Figs. 5 and 6 that in

F1, the convergence decision variables are all

x1; x2; x3; x7; x8; x9, and the diversity decision vari-

ables are all x4; x5; x6; x10; In F5, the convergence

decision variables are all x5; x6, and the diversity

decision variables are all x1; x2; x3; x4; x7; x8; x9; x10.

It can be concluded that the number of perturbed

candidate individuals has no effect on the classifica-

tion of calculated CRD. Therefore, since the com-

putational complexity of selecting two candidates is

lower than that of three candidates, this paper selects

two candidates.

(2) Comparison of nPer results with different disturbance

times: in order to judge the influence of the disturbance

number nPer on the performance of DVR algorithm,

nPer is set to 2, 3, 4, 5, 6, 7, when st ¼ 10, nSel ¼ 2,

k ¼ 6, respectively. The settings of other parameters

are the same as those in Sect. 5.2. Table 2 shows the

MIGD values of DVR algorithm on test functions F1,

F5,DF1 andDF2when the disturbance number nPer is

setwith different parameters. Table 2 shows thatwhen

nPer ¼ 4, theMIGD values of the DVR algorithm run

20 times on the test functions F1, F5 and DF2 are the

minimum. The best results in the Table 2 are

shown in bold. The smaller the MIGD value, the

better the convergence and diversity of the algorithm.

In DF1, the DVR algorithm performs best when the

number of perturbations nPer ¼ 3. Therefore, in order

to achieve better convergence and diversity of the

algorithm, the number of perturbations nPer is set to 4.

(3) Set the number of different subregions k result

comparison: the comparisons of different the number

of subregions k has been discussed. we consider four

problems F1, F5, DF1, and DF2. k is set to 4, 5, 6, 7,

8 and 9, when st ¼ 10, nSel ¼ 2, nPer ¼ 4,

respectively. The settings of other parameters are

the same as those in Sect. 5.2. Table 3 shows the

MIGD values of DVR algorithm on these test

functions F1, F5, DF1 and DF2 when the number

of subregions k is set with different parameters.

Table 3 shows that when k ¼ 6, the MIGD values of

the DVR algorithm run 20 times on the test functions

F1, F5 and DF2 are the minimum. The best results in

the Table 3 are shown in bold. In DF1, the DVR

algorithm performs best when the number of subre-

gions k ¼ 7. Therefore, in order to achieve better

convergence and diversity of the algorithm, the

number of different subregions k is set to 6.

5.4 Experimental results and analysis

The DVR is compared to four other state-of-the-art

DMOEAs on F and DF test problems. Each algorithm is

subjected to 100 environmental changes, with each test

instances being executed 20 times separately. Tables 4, 5

and 6 show the statistical values of MHVD, MSP and

MIGD indicators for the six algorithms on the 15 test

instances, comparing the performance of the six algorithms

in terms of convergence, diversity, respectively. The best

results in terms of mean and standard deviation are marked

in bold. Herein, the experimental results are subjected to

the Wilcoxon rank sum test [56] at a significance level of

5%. (?) denotes a significant difference compared with the

best result, (�) indicates no significant difference. The

following is a detailed analysis of the experimental find-

ings. The last row of the table indicates the total number of

indicators ranked first, second and third.

(1) MHVD performance metrics from Table 4: The

MHVD metric is used to evaluate the convergence

of the algorithm. As far as the MHVD metric is

concerned, DVR obtained the best results in the

majority of the test problems, which denotes that

DVR has better convergence relative to the solutions

implemented by the compared algorithms. Except for

F4 and DF3 test instances, DVR algorithm has better

MHVD value than other algorithms at st ¼ 5, which

indicates that DVR can better deal with the drastic

changes of the environment. However, when st ¼ 20,

the effect of DVR is worse than other algorithms

except F7 and F10. For DF4 and DF5 test instances

with complex PF variations at st ¼ 5; 10, DVR gets

the best MHVD value. Because DVR adopts the

method of classifying decision variables and adopts

multi-region prediction strategy for convergence-

related variables, the convergence of the algorithm is

further improved.

(2) MSP performance metrics from Table 5: MSP is

used to evaluate the diversity of algorithms in

different environments. The DVR obtained the best

Fig. 6 Classification results of decision variables of three perturbed

candidate individuals when st ¼ 30
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results on the most of the benchmark instances,

indicating a more uniform distribution compared to

other algorithms. This is due to the fact that the DVR

adopts a diversity maintenance mechanism, which

further increases the diversity of the algorithm. For

F5-F10 and DF2, the DVR obtains the best distribu-

tion regardless of the frequency of environmental

changes. For F1, F2, F3 and DF4, the MSP of DVR

are the best when st ¼ 5, but when st increased to 10

and 20, other algorithms are better than DVR. For

F1, MDP is only a little better than DVR when st ¼
10,20, which indicates that the distributions of the

individuals of two algorithms do not differ much.

When compared with PPS, DVR performed worse on

DF3 and DF5. For triple objective test instances F4

and F8, the DVR obtained the best results except for

st ¼ 10 on F4.

(3) MIGD performance metrics from Table 6: MIGD is

used to evaluate the diversity and convergence of the

algorithms in different environments. We use MIGD

in combination with MSP and MHVD to demon-

strate the performance of the algorithm in depth and

extensively on test instances. DVR outperforms the

other five algorithms in most of the tested problems

with MIGD, which is due to the use of different

optimization strategies for convergence and diversity

decision variables. However, for the F2, DF3 and

DF4 test instances, it performs worse than the PPS

algorithm. This is mainly because of the reuse of

historical solutions by PPS algorithm. For DF4 at

st ¼ 5 and DF5 st ¼ 5; 10, the DVR is second only

to the PPS algorithm. It can be concluded that DVR

is suitable for solving test problems with drastic

changes. For F4 and F8 at st ¼ 5; 10 and F9 at

st ¼ 10; 20, the DVR algorithm is no better than

other algorithm. Although the DVR achieves good

MHVD values of DF5 at st ¼ 5, its MIGD values are

slightly higher than the PPS because of its poor

performance in the diversity metric MSP. However,

DVR achieves the best values at st ¼ 20. It shows

that for triple objective functions, DVR performs

better without drastic environmental changes. For

DF1, the MDP performs best regardless of the

frequency of environmental changes, with the DVR

in second place. Of note is the comparison between

the DVR and the MDP, which use different subre-

gional methods, with the DVR losing out to the MDP

only on F4 and DF1.

The IGD plots of the six algorithms on the test instances

F1, F3, F6, F7, DF2, DF5 at st ¼ 10; 20 are given in Figs. 7

and 8, respectively. In these six test instances, DVR obtains

lower IGD values than the other comparative algorithms in
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most of the generations, indicating that the solution set

produced by the DVR algorithm is closer to the true Pareto

front. This is mainly due to the fact that DVR combines

decision variable classification, multi-region prediction and

diversity introduction strategies, which can lead to better

convergence of populations to the Pareto frontier.

The analysis of the above three performance metrics

shows the superiority of the proposed algorithm DVR. As

shown in Figs. 9, 10, 11 and 12, four test problems F1,

DF2, F5 and F7 are chosen to better show the distribution

of Pareto solutions over PF generated by the six algorithms

at different moments when st ¼ 30. As shown in Figs. 9

and 10, the overall distribution of the final PF of the five

algorithms for F1 and DF2 at t ¼ 10, 20, 30, 40, 50. The PF

of F1and DF2 do not change with time. For a more intu-

itive change of the optimal frontier and the true front, the

fronts at different moments are shown in the same subplot,

and both f1 and f2 take values in the range [0,1]. As shown

in Figs. 11 and 12, the PF distributions of the other three

test problems F5, and F7 at different moments. The PFs of

these test problems change with time. The PF distributions

of the solutions of test function F5 at moments t = 11, 15,

25, 32, 49 and test function F7 at moments t = 13, 22, 34,

41, 52 are selected. As can be seen from Figs. 11 and 12,

due to the combination of decision variable classification,

subregional prediction and diversity maintenance, the DVR

algorithm ensures the convergence of the solution set along

with good distribution, and the convergence and distribu-

tion of the other three algorithms are slightly worse than

that of algorithm DVR.

5.5 Further discussion

This section mainly discusses the impact of decision vari-

able relationship strategies, multi-regional prediction

methods, and multi-regional diversity maintenance strate-

gies on DVR. To investigate the effect of each component

on the experimental results, we modified the DVR into

three variants, where variant 1 did not classify the decision

variables and all dimensional decision variables were pre-

dicted using a multi-regional approach. Variant 2 replaces

the multi-regional prediction technique with a single center

prediction strategy. Variant 3 does not use a multi-regional

diversity maintenance strategy. The three variants are

named DVR-V1, DVR-V2, and DVR-V3. MHVD, MSP,

and MIGD metrics of the three variants are compared with

those of DVR when nt ¼ 10; st ¼ 10, and the correspond-

ing results are presented in Tables 7, 8 and 9. The best

results in the Tables 7, 8 and 9 are shown in bold. The

impact of each component is detailed below.

(1) Decision variable classification strategy It is clear

that DVR outperforms DVR-V1 on complex testTa
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instances. DVR applies different change response

strategies to decision variables to increase the pop-

ulation diversity and convergence.

(2) Multi-regional prediction strategy It is easy to see

that the DVR outperforms the DVR-V2 on most of

the test problems. The reason is that using a multi-

region prediction strategy is more accurate than

using a single centroid prediction strategy.

(3) Multi-regional diversity maintenance strategy From

the three tables, it can be concluded that the diversity

maintenance strategy plays a significant role in the

performance of the algorithm. The diversity mainte-

nance strategy explores nearby individuals in deci-

sion space to enhance the diversity of population.

As can be seen from the three metrics, all three variants do

not perform as well as the DVR algorithm in most test

instances. It proves that all three strategies are effective and

indispensable.

5.6 Running time

The computation time can be used to measure the com-

putational complexity of the algorithm. Table 10 shows the

running time of all algorithm test functions F1, F2, F4, F5,

DF1 and DF5 to track 100 times of environment changes

when st ¼ 10. All algorithms run independently under the

same configuration conditions. F1, F2, F5, DF1 and DF5

are bi-objective test functions, and F4 is tri-objective test

functions. Table 10 shows that the running time of PPS and

SVR is shorter than that of other algorithms. However,

considering MIGD, MHVD and MSP, the performance of

PPS and SVR algorithms is far worse than that of DVR

algorithms. The running time of MDP and DVR algorithms

is similar. DMOES algorithm takes the longest calculation

time, probably because it is time-consuming to re-evaluate

population individuals. The classification strategy of deci-

sion variables in DVR algorithm increases the computa-

tional complexity of the algorithm. The running time of

DVR algorithm is medium among the five algorithms and

has achieved good convergence and diversity.

5.7 Application of DVR algorithm in rolling load
distribution

Dynamic multiobjective optimization algorithms exist in a

large number of industrial fields and are applied to many

practical problems. For example, rolling load distribution.

The author proposes a multiobjective rolling optimization

method, which is supported by multiobjective evolutionary

algorithm [40]. In the rolling process, the quality of the

load distribution scheme directly affects the product qual-

ity. In the past engineering calculations, more attention was

Ta
bl
e
6
(c
o
n
ti
n
u
ed
)

In
st
an
ce

s t
P
P
S

S
V
R

M
D
P

D
M
O
E
S

D
V
A

D
V
R

D
F
4

5
2
.4
6
6
9
E
2
0
1
(8
.9
2
5
0
E
2
0
2
)

4
.6
8
8
4
E
?
0
0
(1
.6
9
1
4
E
?
0
0
)(
?
)

2
.1
9
7
7
E
?
0
0
(1
.9
6
5
2
E
-
0
1
)(
?
)

5
.9
0
6
8
E
-
0
1
(4
.1
5
7
3
E
-
0
2
)(
?
)

9
.1
7
1
0
E
-
0
1
(3
.2
5
0
6
E
-
0
3
)(
?
)

3
.6
8
1
7
E
-
0
1
(9
.8
2
2
5
E
-
0
3
)(
?
)

1
0

1
.2
1
6
5
E
2
0
1
(2
.5
3
6
0
E
2
0
3
)

1
.4
7
3
9
E
-
0
1
(1
.3
1
7
1
E
-
0
2
)(
?
)

1
.8
5
4
7
E
-
0
1
(4
.5
8
2
7
E
-
0
3
)(
?
)

1
.5
9
7
7
E
-
0
1
(5
.5
4
4
6
E
-
0
3
)(
?
)

2
.6
7
9
7
E
-
0
1
(4
.2
6
5
3
E
-
0
3
)(
?
)

1
.8
3
2
4
E
-
0
1
(3
.4
5
6
5
E
-
0
3
)(
?
)

2
0

1
.1
4
9
1
E
2
0
1
(8
.8
4
4
6
E
2
0
4
)

1
.1
6
0
1
E
-
0
1
(1
.1
1
1
0
E
-
0
3
)(
-
)

1
.4
3
5
1
E
-
0
1
(9
.3
7
4
8
E
-
0
4
)(
?
)

1
.3
4
5
0
E
-
0
1
(1
.3
1
6
3
E
-
0
3
)(
?
)

1
.4
8
0
3
E
-
0
1
(5
.4
6
4
8
E
-
0
4
)(
?
)

1
.4
2
5
8
E
-
0
1
(8
.2
2
8
9
E
-
0
4
)(
?
)

D
F
5

5
1
.2
8
2
0
E
-
0
1
(3
.7
7
8
4
E
-
0
2
)(
?
)

1
.0
1
4
6
E
?
0
0
(3
.8
0
7
8
E
-
0
1
)(
?
)

1
.4
5
7
2
E
-
0
1
(4
.1
4
4
3
E
-
0
3
)(
?
)

3
.5
2
1
8
E
-
0
1
(1
.6
2
1
0
E
-
0
2
)(
?
)

4
.3
4
3
2
E
-
0
1
(3
.6
9
3
8
E
-
0
2
)(
?
)

1
.0
5
4
2
E
2
0
1
(2
.7
5
1
2
E
2
0
3
)

1
0

3
.3
7
3
2
E
2
0
2
(1
.2
4
3
3
E
2
0
2
)

1
.0
6
4
9
E
-
0
1
(2
.7
1
5
4
E
-
0
2
)(
?
)

3
.7
3
1
9
E
-
0
2
(1
.6
4
2
5
E
-
0
3
)(
?
)

1
.2
6
2
0
E
-
0
1
(8
.0
8
6
0
E
-
0
3
)(
?
)

9
.2
4
9
5
E
-
0
2
(1
.6
6
8
2
E
-
0
2
)(
?
)

3
.5
7
2
4
E
-
0
2
(1
.4
2
9
5
E
-
0
3
)(
?
)

2
0

7
.5
6
1
1
E
2
0
3
(9
.6
3
1
0
E
2
0
4
)

1
.3
2
1
9
E
-
0
2
(4
.3
7
4
8
E
-
0
4
)(
?
)

1
.3
2
0
6
E
-
0
2
(1
.3
4
6
8
E
-
0
4
)(
?
)

2
.6
5
5
3
E
-
0
2
(1
.7
8
0
5
E
-
0
3
)(
?
)

1
.8
1
1
7
E
-
0
2
(4
.8
8
6
3
E
-
0
4
)(
?
)

1
.3
0
6
4
E
-
0
2
(1
.5
3
3
9
E
-
0
4
)(
?
)

1
st
/2
n
d
/3
rd

1
3
/4
/5

1
/5
/6

5
/9
/9

0
/1
1
/8

2
/2
/1
4

2
4
/1
4
/3

Neural Computing and Applications (2023) 35:17749–17775 17767

123



usually paid to the optimization of the rolling constant

speed stage, while the variable speed stage used the lin-

earization of the optimization results of the adjacent con-

stant speed stage. In order to improve the quality and

control accuracy of rolled products, DVR algorithm and

five comparison algorithms are used to solve the dynamic

load distribution problem in the process of rolling speed

change.

The continuous rolling device is composed of five

stands. The objective function is to establish the compre-

hensive slip factor, equal power margin and minimum

rolling force, the rolling speed is the environmental change

Fig. 7 IGD trend comparison of six algorithms over number of changes on six test instances with st ¼ 10

Fig. 8 IGD trend comparison of six algorithms over number of changes on six test instances with st ¼ 20
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factor, and the stand reduction rate, the inlet and outlet

tension of each stand are the decision variables.

(1) Objective function establishment

In order to maximize the ability of the motor, equal power

margin is selected as the objective function. The expression

of the objective function is as follows:

c ¼
P4

i¼1 Ni
P4

i¼1 NHi

ð24Þ

min g1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X4

i¼1

Ni � cNHið Þ2
v
u
u
t ð25Þ

where NHi represents the rated power of i rack; Ni repre-

sents the power of rack i.

Fig. 9 Final population distribution at different time of six algorithms on F1 with st ¼ 30

Fig. 10 Final population distribution at different time of six algorithms on DF2 with st ¼ 30
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In order to achieve the goal of energy saving and

emission reduction in the rolling process, the minimum

rolling energy consumption is selected as the objective

function. The expression of the objective function is as

follows:

min g2 ¼
X5

i¼1

Ni ð26Þ

In order to reduce the number of objective functions, five

slip factor functions are integrated into one objective

Fig. 11 Final population distribution at different time of six algorithms on F5 with st ¼ 30

Fig. 12 Final population distribution at different time of six algorithms on F7 with st ¼ 30
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function to evaluate the slip of five racks. The expression

of the objective function is as follows:

Wi ¼
1

4li

ffiffiffiffiffiffiffi
Dhi
R0
i

s

� Tfi � Tbi
Pi

�
�
�
�
�

�
�
�
�
�

ð27Þ

V1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X5

i¼1

Wi � �Wð Þ2
v
u
u
t ð28Þ

V2 ¼ �W ¼ 1

5

X5

i¼1

Wi ð29Þ

g3 ¼ aV1 þ ð1� aÞV2 ð30Þ

where Wi represents the slip factor of the ith rack, V1

represents the evenness of the slip factor; li is the friction

coefficient of the ith rack; V2 represents the overall situa-

tion of the slip factor in all racks; Tfi represents the front

tension of the ith rack; Tbi represents the rear tension of the

Table 7 Mean and standard deviation values of MHVD obtained by DVR and its variants

Instance DVR-V1 DVR-V2 DVR-V3 DVR

F1 9.9975E-02(3.7260E-03)(-) 9.4057E-02(4.1127E-03)(-) 9.3998E202(6.5437E203) 9.7151E-02(2.8059E-03)(-)

F2 3.4668E-01(3.7384E-02)(?) 1.2232E-01(1.6159E-02)(-) 1.0443E201(1.2238E202) 1.2580E-01(1.0734E-02)(-)

F3 6.6413E-02(4.5801E-03)(-) 5.5508E-02(5.2081E-03)(-) 8.3100E-02(7.8312E-03)(?) 5.0614E202(5.9297E203)

F4 4.1301E?01(1.1576E?00)(-) 3.6985E101(5.8559E201) 7.5615E?01(6.1497E?00)(?) 3.9960E?01(7.4258E-01)(-)

F5 1.5701E?00(1.9872E-01)(-) 8.4276E?00(2.6486E?00)(?) 2.6339E?00(4.2153E-01)(?) 1.3597E100(1.2957E201)

F6 1.7172E?00(2.2471E-01)(-) 2.0295E?00(4.2166E-01)(?) 1.5947E?00(3.1007E-01)(-) 1.3442E100(3.8687E201)

F7 1.2292E?00(1.9319E-01)(-) 1.3212E?00(2.5526E-01)(-) 1.6178E?00(1.9694E-01)(-) 1.0678E100(2.2916E201)

F8 1.5819E?00(6.8999E-02)(-) 1.3070E100(5.0661E202) 1.5925E?00(4.3684E-02)(-) 1.3590E?00(6.8448E-02)(-)

F9 5.4105E?00(1.0880E?00)(-) 9.7814E?00(2.1302E?00)(?) 4.6604E?00(9.9423E-01)(-) 3.8533E100(6.1176E201)

F10 2.9897E?00(8.4995E-01)(-) 1.6701E?01(3.8431E?00)(-) 4.7968E?00(7.5083E-01)(?) 1.9268E100(2.9439E201)

DF1 4.2498E-02(3.6918E-03)(-) 4.4765E-02(2.7411E-03)(-) 5.2907E-02(5.7063E-03)(-) 4.0711E202(2.4843E203)

DF2 1.1405E-01(5.1313E-03)(-) 9.7844E202(4.5048E203) 9.9205E-02(6.0984E-03)(-) 1.0223E-01(3.8334E-03)(-)

DF3 1.5799E201(1.2929E202) 1.9589E-01(8.0408E-03)(-) 3.2297E-01(2.6442E-02)(?) 2.0534E-01(1.3329E-02)(-)

DF4 2.9351E?00(2.4047E-01)(?) 2.5912E100(1.1746E201) 2.6224E?00(1.3585E-01)(-) 2.7042E?00(1.8951E-01)(-)

DF5 2.1204E-01(1.3732E-02)(-) 1.8565E-01(2.3897E-02)(-) 2.5218E-01(1.4367E-02)(?) 1.5860E201(1.3737E202)

Table 8 Mean and standard deviation values of MMSP obtained by DVR and its variants

Instance DVR-V1 DVR-V2 DVR-V3 DVR

F1 1.1532E-02(3.3887E-04)(-) 1.0814E-02(2.9505E-04)(-) 1.1834E-02(4.1582E-04)(-) 1.0507E202(3.8933E204)

F2 3.0292E-02(4.7598E-03)(?) 1.7297E-02(5.9682E-04)(-) 1.6353E202(4.6687E204) 1.7625E-02(4.7201E-04)(-)

F3 1.0903E-02(2.1211E-04)(-) 1.0206E-02(1.5287E-04)(-) 1.1294E-02(2.9579E-04)(?) 9.9536E203(1.9995E204)

F4 7.5441E-02(7.5522E-04)(?) 6.8747E202(6.0546E204) 8.5010E-02(8.9798E-04)(?) 7.2599E-02(4.8407E-04)(-)

F5 4.5001E-02(1.4516E-03)(-) 7.7340E-02(7.4909E-03)(?) 5.7619E-02(3.9464E-03)(?) 4.2161E202(1.8999E203)

F6 4.7084E-02(3.3999E-03)(?) 4.7920E-02(3.0095E-03)(?) 4.4647E-02(2.8250E-03)(-) 4.0712E202(3.6094E203)

F7 4.1188E-02(2.7670E-03)(?) 3.9068E-02(3.7447E-03)(-) 4.0926E-02(3.0249E-03)(?) 3.3039E202(2.1217E203)

F8 4.1516E-02(6.4769E-04)(?) 3.9193E202(3.8972E204) 4.2224E-02(7.3627E-04)(?) 3.9390E-02(6.5827E-04)(?)

F9 6.5391E-02(4.8171E-03)(-) 8.6437E-02(6.5068E-03)(-) 6.8871E-02(5.4176E-03)(-) 5.8293E202(4.8564E203)

F10 5.3324E-02(4.4001E-03)(-) 9.4601E-02(5.8303E-03)(?) 6.8983E-02(4.9504E-03)(?) 4.6336E202(2.1260E203)

DF1 9.0161E-03(1.8025E-04)(-) 9.3432E-03(1.5441E-04)(?) 9.5386E-03(2.2993E-04)(?) 8.9915E203(2.2825E204)

DF2 1.1601E-02(4.3109E-04)(-) 1.0461E-02(2.5749E-04)(-) 1.0624E-02(2.7038E-04)(-) 1.0042E202(2.7611E204)

DF3 1.7096E-02(2.2139E-04)(?) 1.5257E202(3.7733E204) 1.8917E-02(6.3465E-04)(?) 1.5749E-02(4.0977E-04)(-)

DF4 4.9598E-02(2.6241E-03)(?) 3.5386E-02(1.4222E-03)(?) 3.4558E-02(1.2476E-03)(?) 3.3515E202(1.1325E203)

DF5 1.3315E-02(3.8162E-04)(?) 1.2646E-02(4.2033E-04)(-) 1.3740E-02(2.4334E-04)(?) 1.2236E202(3.0876E204)
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ith rack; R0
i stands for the flattening radius of the working

roll of the ith rack; Dhi is the absolute reduction of the ith

rack, Pi represents the rolling force of the ith stand; a is the

weighting coefficient, a = 0.4.

(2) Experimental result

Figure 13 shows the front graph of power margin and

comprehensive slip factor. Figure 14 shows the Pareto

front of minimum energy consumption and comprehensive

slip factor, where the individuals on the Pareto front are

nondominated individuals. For ROCA1, the DVR algo-

rithm has good distributivity, but poor convergence. For

ROCA2, DVR algorithm has better distribution and con-

vergence than other five algorithms.

6 Conclusion

To quickly respond to environmental changes and better

adapt the population to the new environment, a dynamic

multiobjective optimization algorithm based on the

relationship of decision variables is proposed. The algo-

rithm classifies decision variables into two categories based

Table 9 Mean and standard deviation values of MIGD obtained by DVR and its variants

Instance DVR-V1 DVR-V2 DVR-V3 DVR

F1 2.9336E-02(1.6668E-03)(-) 2.7750E-02(1.1335E-03)(-) 3.6036E-02(1.3190E-03)(?) 2.5320E202(1.1737E203)

F2 3.5640E-01(1.3722E-02)(?) 8.0908E-02(3.6553E-03)(-) 8.0166E202(2.7044E203) 8.4855E-02(2.7269E-03)(-)

F3 3.9521E-02(1.5763E-03)(-) 3.8671E-02(1.5226E-03)(-) 4.4803E-02(1.5309E-03)(?) 3.2510E202(1.5215E203)

F4 1.6654E?00(2.6992E-03)(-) 1.6508E100(1.5576E203) 1.6966E?00(3.8035E-03)(-) 1.6551E?00(1.4018E-03)(-)

F5 3.2233E-01(2.1312E-02)(?) 7.4055E-01(8.2518E-02)(?) 4.2729E-01(2.9790E-02)(?) 2.8694E201(1.9376E202)

F6 2.5658E-01(1.2126E-02)(-) 3.4417E-01(2.5942E-02)(?) 2.9403E-01(2.9083E-02)(?) 2.5023E201(2.2975E202)

F7 2.0601E-01(1.0708E-02)(?) 2.4361E-01(1.7124E-02)(?) 2.7317E-01(2.3523E-02)(?) 1.8987E201(1.6262E202)

F8 1.0872E-01(1.4546E-03)(?) 9.4009E202(1.1099E203) 1.0727E-01(1.6700E-03)(?) 9.7405E-02(1.6587E-03)(-)

F9 6.6750E-01(8.0993E-02)(-) 9.0256E-01(1.0952E-01)(?) 7.2831E-01(8.5328E-02)(?) 6.1678E201(7.3345E202)

F10 3.6372E-01(4.3597E-02)(?) 9.5875E-01(9.2956E-02)(?) 5.1716E-01(5.9103E-02)(?) 2.6325E201(1.7696E202)

DF1 2.9551E202(1.8870E203) 3.9344E-02(2.4821E-03)(?) 3.8117E-02(2.6748E-03)(?) 3.1936E-02(2.1651E-03)(-)

DF2 3.7194E-02(2.4138E-03)(?) 3.1489E-02(2.2846E-03)(-) 3.7337E-02(2.1321E-03)(?) 2.9179E202(9.5889E204)

DF3 9.6700E-02(4.3768E-03)(?) 7.1923E202(1.9521E203) 8.7576E-02(4.9929E-03)(?) 7.7878E-02(3.7954E-03)(-)

DF4 2.4134E-01(7.9112E-03)(?) 1.8296E201(4.3972E203) 1.8442E-01(5.1592E-03)(-) 1.8324E-01(3.4565E-03)(-)

DF5 4.2879E-02(1.6526E-03)(-) 4.2478E-02(1.9389E-03)(-) 4.8134E-02(2.0929E-03)(?) 3.5724E202(1.4295E203)

Table 10 Runtime comparison when st ¼ 10 (seconds)

Instance PPS SVR MDP DMOES DVA DVR

F1 77.65 82.44 105.63 120.83 258.43 100.83

F2 79.51 83.67 93.11 102.15 205.46 95.40

F4 248.48 404.12 348.89 543.42 602.06 470.42

F5 62.02 71.57 88.43 89.22 165.52 91.06

DF1 75.27 78.77 100.72 116.97 233.45 94.33

DF5 76.87 79.96 103.35 118.79 245.98 93.69

Fig. 13 Relationship between power margin and comprehensive slip

factor when speed is 5
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on the magnitude of their contribution to convergence and

diversity, and adopts different evolutionary optimization

strategies for different categories of decision variables. The

systematic sampling method is used to determine the guide

individuals, divide the population individuals into different

subregions. By the evolution direction of guide individuals

and guiding the evolution of individuals in this subregion,

the convergence and distribution diversity of Pareto front

are ensured. Based on the comparison experiment of 15 test

instances with four state-of-the-art algorithms in different

environments, the results reveal that the proposed DVR

algorithm can better track the changing PF or PS with good

distributivity when the environment changes.

However, the algorithm adopts perturbation strategy,

which wastes computing resources and leads to slow

computing speed. Therefore, it is required to devise

appropriate methods to speed up the calculation. We will

be devoted to using DVR to address the problem of vari-

able number of objectives or many objective. In addition,

we will use DVR to solve practical applications.
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