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Abstract
Weirs are hydraulic structures mostly used to measure the flow discharge and control the flow level in artificial or natural

open channels. The ratio of the actual discharge to the theoretical discharge (discharge coefficient—Cd) must be known, in

order to calculate the discharge of the channel having the weir. In this study, 91 experimental measurements are taken on

seven trapezoidal broad-crested weirs with different upstream and downstream slopes. Experimentally measured flow

properties are used to validate numerical models based on the computational fluid dynamics (CFD) methods. Two new weir

geometries, not experimentally measured, are added in the numerical modeling, and 270 Cd values are calculated for nine

weir geometries using numerical modeling. Theoretical Cd values are estimated using the artificial neural network (ANN),

support vector machine (SVM), and M5Tree methods. In the models, the Froude number in the upstream region and

dimensionless parameters of the flow are used as inputs. The performance of these methods has been examined to estimate

the Cd values for eight cases. The performances of the methods are evaluated by the coefficient of determination (R2), root-

mean-square error, mean absolute percentage error, and Nash–Sutcliffe model efficiency coefficient. The study results

show that the Froude number significantly increases the performance of the models in estimating Cd values, and the ANN

method is more successful in determining Cd than other methods.
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1 Introduction

Hydraulic structures such as dams and weirs are built to

benefit the most efficiently from water resources. Weirs are

the oldest structures in hydraulic engineering. They are

commonly used to control and regulate the flow, increase

the water level, and measure discharge in the open chan-

nels (artificial or natural). Weirs can be classified according

to their geometric shapes, such as ogee, piano, broad-

crested and sharp-edged. Broad-crested weirs are mostly

preferred to calculate the flow discharge and to determine

the amount of water used in agricultural activities.

Although it is possible to determine the flow discharge

theoretically, conditions caused by the interaction of the

flow with the structure are not considered in the calcula-

tion. The physical characteristics of the weir structure and

flow conditions can cause separations in the weir crest,

upstream, and downstream regions. In addition, a new

boundary layer development begins when the flow field

changes from the weir structure. In this case, the curvi-

linear flow can occur in the crest and upstream region of

the weir, and the pressure distribution deviates from the

hydrostatic pressure. Due to these reasons, the theoretical

discharge is calculated as greater than the actual one. The

theoretical discharge must be multiplied by a coefficient

(discharge coefficient—Cd) to determine the actual

discharge.

There are many studies in the literature to calculate the

Cd for different weir types with empirical formulas using
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flow properties the experimentally measured [1–5]. In these

studies, empirical formulas are suggested to determine the

Cd based on the experiments performed for various weir

types. In addition to empirical approach, advanced machine

learning methods are frequently preferred to estimate the

Cd in recent years. In the estimation, the parameters

affecting the Cd are nondimensionalized and evaluated as

input parameters. For instance, Salmasi, Yıldırım,

Masoodi, Parsamehr [6] determined Cd values of the

compound broad-crested rectangular weir with 39 experi-

mental measurements. The effect of crest length and weir

height on the Cd was investigated. In the study, the

experimentally obtained the Cd results were calculated by

using multiple regression equations based on dimensional

analysis. The results of the regression were compared with

genetic programming (GP) and artificial neural network

(ANN) method results. According to the coefficient of

determination (R2) and root-mean-square error (RMSE)

parameters, it was seen that the GP was slightly more

successful than the ANN method in determining the dis-

charge coefficient. Hoseini and Afshar [7] evaluated the Cd

of the rectangular broad-crested weir with the rounded

upstream face for different flow conditions. They deter-

mined that the discharge coefficient was related to the

water depth over the weir crest (h) in the upstream region,

weir crest length (L), and channel width (b). Equa-

tions calculating Cd values were obtained by applying the

multiple regression method. As a result, it was seen that the

compatibility between the theoretical Cd and the Cd cal-

culated with the proposed equation was high. Roushangar

et al. [8] estimated the Cd of stepped spillways using the

gene expression programming (GEP) and support vector

machine (SVM) methods. Dimensionless geometric and

hydraulic parameters of the spillway were used as inputs.

As a result of the study, it was suggested that the GEP

method can be used to determine the discharge coefficient

of the spillway. Salmasi, Sattari [9] estimated the flow

coefficient of broad-crested weirs, which they measured

experimentally, with the M5Tree method. As a result of the

study, they reported that the correlation between the

M5Tree method and the experimental data was 0.95, and

the RMSE value was 0.036. Li et al. [4] used ANN, SVM,

and extreme learning machine (ELM) methods to estimate

the Cd of the rectangular sharp-edged weir. Four statistical

criteria were used to evaluate the success of the models,

and Cd value was tried to be estimated in three different

input combinations. Comparing the results of the estima-

tion methods shows that the SVM method performed better

than the other methods. Besides these works, there are

many studies that used machine learning methods suc-

cessfully in estimating the discharge coefficient [10–14].

Most of these studies estimated the Cd with a limited

number of data due to the limitations caused by the

experimental equipment. In addition, when these studies

were examined, it was seen that the M5Tree, SVM, and

ANN methods were frequently used, but there was no study

in which they were used together to determine the Cd. For

this purpose, it will also be investigated the performance of

these methods in the same experimental set.

Moreover, the Cd estimation models, made for a single

weir geometry, can be quite limited in using different

geometries. However, this study aims to determine the Cd

for the trapezoidal broad-crested weir, which has nine

different upstream and downstream geometries. For this

purpose, 91 Cd values are experimentally obtained from 13

discharges for the seven different weir geometries. Since

the number of experimental measurements is insufficient to

predict the Cd with artificial intelligence methods, numer-

ical modeling based on computational fluid dynamics

(CFD) methods has been carried out to increase the dataset.

Due to the developments in computer technology, the use

of CFD in the design and analysis of water structures has

become widespread. Numerical modeling has given suc-

cessful results in studies about the different flow-structure

interactions, including weir flows [15–21]. However,

numerical models need to be validated with experimental

models before analyzing water structures. The main reason

is that turbulence is defined by different approaches when

solving the basic equations governing the flow. The pre-

vious studies show that turbulence kinetic energy and tur-

bulent kinetic energy dissipation rate-based turbulence

models give successful results in numerical modeling

broad-crested weir flow [22–27].

Furthermore, there are also studies in which the Cd is

determined using numerical simulations in the literature.

For example, Kulkarni, Hinge [21] investigated Cd of the

compound broad-crested weir with experimental and

numerical models. The numerical model results were val-

idated using the experimental results. In numerical models,

the volume of fluids (VOF) method was used to determine

the water–air interface, and the renormalization group

(RNG) model was preferred to define turbulence in the

basic equations. It was determined that the Cd values

obtained experimentally and numerically were quite com-

patible. Thus, it is possible to evaluate a wider range of

flow properties by increasing the experimentally obtained

Cd using numerical models.

For this purpose, 91 experimental Cd values with a

limited range due to the restrictions of the laboratory

conditions are reproduced using the CFD techniques. Then,

it was investigated how to determine these Cd values in

cases of limited knowledge with the help of machine

learning methods. Thus, practitioners will be able to easily

calculate Cd values and, accordingly, flow discharge values

using the results we have given in this present study for

different weir and flow types.
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The main motivation of this study is to solve the prob-

lems caused by the determination of the Cd coefficient,

which is used for flow measurement in open channels in the

laboratory environment over wide ranges. For this purpose,

numerical models are created using the RNG turbulence

model validated with 91 experimental measurements taken.

Then, using the numerical model, two new weir geometries

are added, and the number of weir geometries is raised to

nine. In total, 270 Cd values are calculated according to 30

different discharges of each weir geometry. Thus, enough

data could be obtained to estimate the Cd for a wide range.

Finally, Cd values of the trapezoidal broad-crested weir are

estimated using the ANN, SVM, and M5Tree methods

with different input combinations. The estimation methods

employed in this study use input combinations of dimen-

sionless parameters of the weir and the flow properties

because they are easily obtained in practice. In addition,

how to estimate Cd values in the case of a limited number

of inputs is also investigated within the scope of this study.

2 Data collection

2.1 Physical experiments

Experiments are carried out to determine the Cd for the

trapezoidal broad-crested weir with different upstream and

downstream slopes. These measurements are taken in the

rectangular open channel, all surfaces of the channel are

glass (Fig. 1). This open channel model has a length of

4 m, and width (b) and height of 0.35 m. The flow depth

interacting with the trapezoidal broad-crested weir is

measured with a 0.1 mm sensitivity digital limnimeter, and

the flow discharge is obtained using an ultrasonic flow

meter with a sensitivity of 0.01 m3/h. The trapezoidal

broad-crested weir is placed in the open channel model at

1.40 m from the beginning of the model, and the mea-

surements are taken when the open channel flow is ensured

to be regular. The geometric properties of trapezoidal weirs

with different slopes used in experimental and numerical

modeling are given in Fig. 2. In the figure, L is the length

of the weir crest, P is the weir height, a is the upstream

slope, b is the downstream slope, and h is the water depth

over the weir crest in the upstream region. The total weir

head is defined as H0 = h ? V2/2 g, where V is the average

velocity in the upstream region and g is gravity accelera-

tion. In the experiments, L, P, and b are taken constant as

0.3 m, 0.1 m, and 0.35 m, respectively.

2.2 Numerical modeling

Numerical models based on the CFD method have many

advantages compared to physical model studies, such as

being economical, having the ability to be repeated, and

requiring fewer human resources. In addition, numerical

modeling does not require special measurement systems

and equipment to obtain details about the flow properties or

structure in physical experiments. To the reliability of the

results of numerical modeling studies, which have many

advantages, they should be validated with the results of

physical model studies [21]. After the validation, numerical

modeling studies can be used as an alternative to the

physical model.

In this study, the basic equations (continuity and

momentum) governing the motion of the two-dimensional,

steady, turbulent, and incompressible open channel flow

interacting with the trapezoidal broad-crested weir are

solved with the ANSYS-Fluent software, which provides

solutions based on the finite volume method. The water–air

interface is determined by the VOF method. Additionally,

the RNG turbulence model [28], based on the Boussinesq

approach, is used in turbulence modeling. In this model,

Fig. 1 Experimental setup
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the turbulence stresses are solved by using turbulent kinetic

energy and turbulent kinetic energy dissipation rate equa-

tions. It is stated that the RNG model is successful in

modeling the open channel flows where boundary layer

separations and secondary flows present [28]. Many

researchers have reported that turbulence models (standard,

realizable, and RNG) based on the solution of turbulent

kinetic energy and turbulent kinetic energy dissipation rate

are also successful in the numerical modeling of broad-

crested weir flow [23, 25, 29].

2.3 Calculation of discharge coefficient (Cd)

The formulation of the discharge coefficient (Cd) is given

in Eq. 1. Cd value is calculated by dividing the actual

discharge by the theoretical [30].

Cd ¼
Qactual

b
ffiffiffiffiffiffiffiffiffiffiffi

2gH3
o

p ð1Þ

In Eq. 1, Qactual is the experimentally measured dis-

charge, b is the channel width, g is the gravitational

acceleration, and Ho is the total weir head.

3 Artificial intelligence methods

3.1 Support vector machine (SVM)

The support vector machine (SVM) method is a machine

learning model that can be used for both classification and

regression [31, 32]. It is accepted as a successful method

for solving different learning problems such as classifica-

tion, regression, transformation, and novelty detection [33].

The SVM theory is originally developed for classification

purposes. Then it has acquired the ability to estimate

quantitative output based on input values [34]. The

regression with the SVM method first maps the input data

to a high-dimensional feature space defined by the kernel

function and obtains the optimum hyperplane that separates

the training data with the maximum margin [35]. On the

other hand, the method determines coefficients to minimize

the effect of outliers on the regression equations; however,

only residuals in absolute value greater than some positive

constant are considered in the loss function [34, 36]. The

SVM method uses e, insensitive loss functions, as shown in

Eq. 2 (e C 0) [37]. Thus, if the difference between the

predicted and observed values given in Fig. 3 is less than e,

the loss is zero, and only data points with an absolute

difference greater than e are considered lost.

y� f xð Þj je¼
0; if y� f ðxÞj j � e
y� f ðxÞj j � e; if not

� �

ð2Þ

For multidimensional data (x1, y1),.….,(xn, yn) (xi-
[ X ( Rm, yi [ Y ( R), n is the number of samples in

the training process. The approached multivariate regres-

sion function can be written as Eq. 3 [38].

f xð Þ ¼ w � / xð Þ þ b ð3Þ

where /(x) is the transformation from core to kernel space.

The SVM method minimizes the e value while minimizing

the difference between the predicted and desired outputs.

The function approximation problem is transformed into an

optimization problem shown in Eq. 4:

Fig. 2 Geometric properties of trapezoidal broad-crested weir

Fig. 3 Model parameters of support vector machines method
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min
1

2
wj jj j2þC

X

n

i¼1

ni þ n�i
� �

ð4Þ

yi � w � / xið Þ � b� eþ n�i i ¼ 1; . . .; n

w � / xið Þ þ b� yi � eþ ni i ¼ 1; . . .n

ni; n
�
i � 0 i ¼ 1; . . .; n

Here ni and n�i are the resulting values to protect against

outliers and smooth transition (ni; n
�
i � 0). C is a variable

weight parameter that minimizes error. The quadratic

optimization problem in Eq. 4 is solved with the Lagran-

gian equation shown in Eq. 5, where k, k*, a, and a* are

positive real numbers.

L ðw; b; ni; n�i ; k; k�; a; a�Þ ¼
1

2
wj jj j2þC

X

n

i¼1

ni þ n�i
� �

þ
X

n

i¼1

a�1 yi � w:/ðxÞ � b� e� n�i
� �

þ
X

n

i¼1

ai �yi þ w:/ðxÞ þ b� e� nið Þ

�
X

n

i¼1

kini þ k�i n
�
i

� �

ð5Þ

For nonlinear regression, kernel functions k (…) are

used to map the raw data to a higher-dimensional space to

linearize it for higher accuracy (Eq. 6). The function

approach is shown in Eq. 7.

k xi; xð Þ ¼ / ðxiÞ � / ðxÞ ð6Þ

f xð Þ ¼
X

NSV

i¼1

a�i � ai
� �

k xi; xð Þ þ b ð7Þ

Gaussian kernel function (Eq. 8) is used to define the

kernel function term in Eq. 7 [39].

k xi; xð Þ ¼ exp �r xi � xj jj j2
� �

ð8Þ

Kernel function parameters given in Eq. 8 are deter-

mined by the Bayesian optimization algorithm [40].

3.2 Artificial Neural Network (ANN)

The artificial neural network (ANN) method is a concep-

tual technique widely used in different branches of science.

Researchers frequently prefer the method because of its

convenience in modeling problems without including

analytical relationships [41–43]. The ANN models try to

match the intrinsic nonlinear relationship between param-

eters to a complex problem. Figure 4 shows a typical ANN

model with n neurons in the input layer (i), m neurons in

the hidden layer (j), and one neuron in the output layer (k).

The terms wij and Wjk given in Fig. 4 are the connection

weights between the cell layers, and these values take

random values during the model setup. However, they are

constantly changed due to comparing the output values

calculated during the training process with the desired

output. Finally, the errors propagate backward until they

converge to the link weight values, which will minimize

the errors. In this study, the Levenberg–Marquardt algo-

rithm is used to adjust the weights [44]. Levenberg–Mar-

quardt (LM) algorithm requires less training time [45] and

can converge even in highly complex optimization prob-

lems [46].

Connection weights are used to connect the neurons of

each layer to the neurons of the next layer. The sum of the

weighted inputs and deviation as net inputs to the activa-

tion function in the hidden layer and the output layer is

calculated according to Eqs. 9 and 10.

oj ¼ f ðnetjÞ ¼ f
X

n

i¼1

wjiini þ bi

 !

ð9Þ

Out ¼ f ðnetoutÞ ¼ f
X

m

i¼1

wjiioj þ bj

 !

ð10Þ

where oj is the output of the hidden layer, Out is the output

of the hidden layer, wji is the link weights between the

input layer and the hidden layer, Wji is the link weights

between the hidden layer and the input layer, bi and bj are
the bias values in the output layer and the hidden layer, f is

the activation function (Sigmoid). The sigmoid activation

function is shown in Eq. 11. In this study, n values are

determined using the trial–error method. For this purpose,

n is changed from 1 to 10, and the root-mean-square error

(RMSE) is computed in every calculation. Then, the n

value, which gives the minimum RMSE, is selected as the

hidden layer neurons number of the ANN model, and in

every case, this procedure is repeated. Besides, the maxi-

mum number of epochs, performance goal, and minimum

performance gradient in training are selected as 1000,

10–10, and 10–100, respectively.

Fig. 4 Structure of artificial neural network method
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f netj orð Þnetout
� �

¼ 1

1þ e�netj orð Þnetout
ð11Þ

3.3 M5Tree

The M5Tree model, proposed by Quinlan [47], is based on

the tree classification approach to show the relationship

between dependent and independent variables. The

M5Tree model, unlike the decision tree model for cate-

gorical data, may be utilized for both categorical and

quantitative data. Contrary to standard regression models,

which use just one equation to represent all data, the

M5Tree regression tree model divides the data into sub-

regions before assigning leaf labels. A linear regression

equation is used to identify the nodes in the M5 model,

allowing it to expect or forecast continuous numerical data

[47]. The structure of a decision tree is like a tree with

roots, branches, nodes, and leaves. The root is at the top

level as the first node and is a chain of branches and nodes

extending to the leaves. Each node belongs to a predictor

variable, and a split occurs in the node. A numerical range

leaves a parent node to reach a child node in a branch. Two

branches branch off from each parent node in the M5Tree

method.

The decision tree model is generated in two phases. The

model is created in the first stage by separating the open

data definition. Then, the M5Tree model’s division crite-

rion is optimized for the decrease in the data substandard

node’s deviation. The primary node is not divided, and the

final node or leaf is attained when the standard deviation

cannot be further decreased [48]. The corresponding

equations are shown in Eqs. 12 and 13.

rr ¼ rðtÞ �
X

n

i¼1

ti
t

� �

r tið Þ ð12Þ

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

Y2
i �

1

n

X

n

i¼1

Y2
i

 !" #

v

u

u

t ð13Þ

where rr is the reduction of the standard deviation at the

sub-node, t is the input dataset to the parent node, ti is a

subset of the input data to the parent node, n is the number

of datasets used, and r is the standard deviation. Due to the

division operation, the standard deviation at the sub-node is

less than at the main node, leading to greater homogeneity

[49].

3.4 Performance criteria

The coefficient of determination (R2), root-mean-square

error (RMSE), mean absolute percentage error (MAPE),

and Nash–Sutcliffe model efficiency coefficient (NSE)

parameters are used to evaluate the performance of the

models in estimating the Cd values. The equations of the

R2, RMSE, MAPE, and NSE parameters are given in

Eqs. 14, 15, 16, and 17, respectively.

R2 ¼

P

n

i¼1

Ti � Ti
� �

Pi � Pi

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

Ti � Ti
� �2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

Pi � Pi

� �2

s

0

B

B

B

B

@

1

C

C

C

C

A

2

ð14Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

Ti � Pið Þ2
s

ð15Þ

MAPE ¼ 100

n

X

n

i

Ti � Pij j
Pij j ð16Þ

NSE ¼ 1�

P

n

i¼1

Ti � Pið Þ2

P

n

i¼1

Ti � Ti

� �2
ð17Þ

In the equations, Ti is the theoretical Cd, Ti is the mean

theoretical Cd, Pi is the predicted Cd, Pi is the mean of the

predicted Cd, and n is the total data number. The conver-

gence of R2 and NSE to 1 and RMSE and MAPE to 0

means that the forecasting model is successful.

4 Results

4.1 Experimental and numerical data collection

The determinate number of flow rates used in laboratory

discharge coefficient studies also caused the obtained Cd

values to be limited. The CFD methods mentioned in

Sect. 2.2 were used to overcome this problem. This process

was done in three stages. Firstly, seven different weir

geometries (Models 1–7) and 13 Cd values for each weir

geometry were measured in the laboratory. Upstream (a)
and downstream (b) slopes of the weirs, water depth over

the weir crest (h), total weir load (Ho), and e (Ho/(Ho ? L))

values obtained from the experimental are given in Table 1.

Secondly, the numerical model is validated by means of all

experimentally measured weir and flow conditions (13

discharges for each weir geometry). Flow conditions with

the same characteristics as the experiments are modeled

numerically, and the Cd values are determined depending

on the numerical results. The mean absolute percentage

error (MAPE) is used to determine the agreement between

the experimental and numerical Cd values. The box plot of

the MAPE values obtained in each weir geometry (called

as model) is given in Fig. 5. The MAPE of Cd values

calculated based on experimental and numerical model
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results are generally less than 10%. The mean MAPE

values of each model are below 5%, except for Model 3.

The fact that the mean MAPE values of the numerical and

experimental Cd values are mostly less than 5% for dif-

ferent weir and discharge conditions means that the

numerical model results are compatible with the experi-

mental results.

Finally, using CFD models validated with experimental

data, 17 new analyses were carried out for each model,

increasing the Cd number to 30. Moreover, a dataset was

created by calculating 30 Cd values for two new weir

geometries (Models 8 and 9), which could not be measured

experimentally. Thus, the range of variation of the con-

sidered input parameters is quite wide. The calculated 270

Cd values for nine weir geometries with six upstream

angles (a = 11.3�, 14.0�, 18.4�, 26.6�, 45�, and 90.0�) and
five downstream angles (b = 11.3�, 14.0�, 18.4�, 26.6�, and
45�) vary between 0.35 and 0.43. Approximately 34% of

the total 270 Cd values used in the study were obtained

entirely from experiments, and the remaining part was

obtained from the numerical models.

The variation of Cd value according to h/L, e, and Fr

values is given in Fig. 6. In the figure, the colors and

shapes of the symbols represent the upstream slope (a) and
the downstream slope (b) of the weir, respectively. The

smallest Cd value is obtained in Model 4 (a = 90� and

b = 18.4�), and the largest Cd value is obtained in Model 6

(a = 26.6� and b = 14.0�). As the h/L, Fr, and e parameters

increase, Cd value decreases in Models 3, 6, and 7, and

increases in Models 1, 2, 4, 5, 8, and 9. In case the

downstream slope remained the same, there is an increase

in the Cd with the decrease in the upstream slope. In

addition, Model 1 has larger Cd values when the h/L value,

which increases with the rise of the discharge, varies

between 0.3 and 0.35. A similar situation occurs when the

Froude number varies between 0.20 and 0.25 and the e
value changes between 0.23 and 0.28. These results are

consistent with those of Hager, Schwalt [30], Sargison,

Percy [1], and Madadi, Hosseinzadeh Dalir, Farsadizadeh

[50] are also compatible with the experimental results.

Fig. 5 MAPE values of experimental and numerical models

Table 1 Geometric parameters and flow characteristics of the trapezoidal broad-crested weir

h Ho e Cd

Exp/Num Model a (�) b (�) Min. (cm) Max. (cm) Min. (cm) Max. (cm) Min Max Min Max

Exp. and

Num.

Model 1 26.6 26.6

2.57

10.67 2.58 11.19

0.38

0.42

Model 2 18.4 18.4

2.67

10.93 2.69 11.46

0.38

0.40

Model 3 14.0 14.0

2.47

10.98 2.49 11.51

0.39

0.43

Model 4 90.0 18.4

2.93

11.76 2.95 12.25

0.35

0.36

Model 5 26.6 18.4

2.80

11.06 2.82 11.58 0.08 0.27

0.37

0.39

Model 6 26.6 14.0

2.73

11.59 2.75 12.09

0.36

0.41

Model 7 18.4 14.0

2.80

11.46 2.78 10.94

0.39

0.42

Num. Model 8 45.0 45.0

2.78

10.95 2.79 11.46

0.36

0.39

Model 9 11.3 11.3

2.61

11.32 2.60 10.80

0.39

0.40
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These results reveal that numerically obtained Cd values

can be evaluated like Cd values obtained by physical

experiments. In this way, more discharge characteristics

and different weir geometries can be also considered in

numerical modeling. For this purpose, two new weir

geometries are added to the seven weir geometries that are

first physically measured. Moreover, the number of Cd,

which is calculated experimentally, from 13 for each weir

geometry has been increased to 30 with numerical mod-

eling. Thus, after adding numerical experiments to the

number of physical the number of Cd evaluated in the study

becomes 270.

4.2 Estimating Cd values

A dataset is created to estimate the Cd values from the

physical and numerical data obtained for different weir

models with the ANN, SVM, and M5Tree methods.

Experimentally and numerically, a total of 270 Cd values

are obtained for nine weir geometries. 70% of this dataset

is in training, and 30% is used in the testing. The same

number of data is randomly taken from each model for

training and testing. Thus, the total data used in the training

process are 189, 9 (Number of models)*21 (70% of each

experimental set).

The distributions of the input (h/L, Fr, e) and output (Cd)

parameters used in the estimation models for training and

testing are given in Fig. 7. Observations that are more than

1.5 interquartile range (IQR) below Q1 or more than 1.5

IQR above Q3 are considered outliers. The IQR describes

the middle 50% of values when they are ranked from

lowest to highest. As clearly shown in Fig. 7, although the

distributions are different, there are no outliers in any input

parameters. However, there are outliers in Cd values in

both the training and testing processes. Cd values are

generally within a specific range (0.380–0.390), but Cd

values increase or decrease significantly, especially at very

high and very low flow rates. Since this is hydraulically

significant, these outliers have been preserved. In addition,

the descriptive statistics values for the training and testing

processes are given in Table 2. Here, Q1, Q2, and Q3 denote

the 1st, 2nd, and 3rd quartiles, respectively. As the 2nd

quartile gives the median value, the max values also rep-

resent the 4th quartile. As given in Table 2, statistics in

training and testing are generally close to each other.

Although the value ranges of the variables in training are

Fig. 6 Variation of the discharge coefficient with (a) h/L, (b) e, and (c) Fr
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similar to those in testing, the most important difference is

the Cd values. The maximum Cd values in training were

higher than in testing.

The input and output data distributions are especially

important to be close to each other when creating the

training and testing data. For example, the mean of h/L, e,
Fr, and Cd parameters in the training are 0.239, 0.149,

0.189, and 0.384, respectively. The mean of the h/L, e, Fr,
and Cd parameters in the testing are obtained as 0.246,

0.153, 0.193, and 0.384, respectively. A similar situation

exists for the median, maximum, and minimum values.

Thus, it is seen that the h/L, Fr, e, and Cd parameters show a

homogeneous distribution in the training and testing pro-

cess. The input and output parameters of the cases created

to be used in estimation methods are given in Table 3. In all

cases, the h/L parameter is used as input. In the models,

besides the h/L parameter, the weir’s upstream (a) and

downstream slopes (b) are added to examine the effect of

the geometric features. In the first four cases, different

combinations of h/L, a, b, and e are used as input. On the

other hand, in the last four cases, along with the h/L, a, b,
and e, the Froude number in the upstream region of the

weir is used as the input.

The R2, MAPE, RMSE, and NSE values obtained from

ANN, SVM, and M5Tree methods for the training and

testing of eight input combinations are given in Table 4. It

is expected that the model success evaluated according to

the performance criteria obtained in the training and testing

processes will be consistent with each other, and the results

will be supported according to all criteria. In addition, the

success of the estimation methods is evaluated regarding

these criteria obtained in the testing. The results presented

in Table 4 show that Case 1 and Case 2 give low R2 and

NSE values in all methods. It is meaning that these cases

are not suitable to be used to estimate Cd values. Besides,

Case 2 with the M5Tree method has the worst performance

in predicting Cd. In Case 3, where the upstream slope is

used as an input, the highest NSE and R2 values and the

lowest RMSE and MAPE values are obtained with the

ANN method. The SVM and M5Tree methods have similar

results for Case 3. In Case 4, especially in the ANN and

h/L Fr Cd

0.0

0.1

0.2

0.3

0.4

0.5
25%~75% Range within 1.5IQR Median Line Mean Outliers

Training Testing

V
al
u
e

Fig. 7 Amount of change of

model parameters in the training

and testing

Table 2 Basic statistics of input

variables for training and testing
Training Testing

h/L e a b Fr Cd h/L e a b Fr Cd

Mean 0.238 0.188 31.0 20.3 0.148 0.384 0.248 0.195 29.6 19.4 0.155 0.386

Std. Dev 0.074 0.048 22.9 10.1 0.043 0.019 0.077 0.050 22.4 9.1 0.044 0.018

Min 0.101 0.092 11.3 11.3 0.060 0.347 0.111 0.100 11.3 11.3 0.068 0.347

Max 0.396 0.276 90.0 45.0 0.220 0.524 0.386 0.279 90.0 45.0 0.225 0.447

Q1 (25%) 0.180 0.153 18.4 14.0 0.115 0.377 0.189 0.159 18.4 14.0 0.123 0.380

Q2 (50%) 0.236 0.190 26.6 18.4 0.149 0.388 0.247 0.198 26.6 18.4 0.157 0.389

Q3 (75%) 0.300 0.230 26.6 18.4 0.183 0.392 0.307 0.231 26.6 18.4 0.187 0.392

Table 3 Input combinations used in forecasting models

Case Input Output

Case 1 h/L, b Cd

Case 2 h/L, b, e

Case 3 h/L, a

Case 4 h/L, b, a

Case 5 h/L, Fr

Case 6 h/L, Fr, e

Case 7 h/L, Fr, e, a

Case 8 h/L, Fr, e, a, b
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SVM methods, the R2 and NSE values are above 0.9 and

the MAPE value is below 1%. The M5Tree method is

worse compared to the other two methods in Case 4. The

results of the estimation methods are remarkable when the

cases in which the Fr number is included (Cases from 5 to

8). In all estimation methods, Case 5, where only Fr and h/

L values are input, gives very good results compared to the

first four cases (From Case 1 to 4) in which Fr is not as

input. For Case 5, the highest NSE and R2 values are

obtained as 0.9816 and 0.9811 with the ANN method,

respectively. Although the SVM method gives slightly

lower values, its results are similar to the ANN method.

However, the NSE and R2 values are obtained as a result of

the estimation modeling for Case 5 with the M5Tree

method are below 0.9 (about 0.87). In Case 6, prepared by

adding the e as a new input parameter to h/L and Fr, the

most successful method is the SVM. Although there is little

difference between the ANN and SVM methods and the R2

and NSE values, they are very successful with a value of

0.999 in both training and testing. It is observed that the

performance of the SVM method decreased, but the

performance of the ANN and M5Tree methods increased in

Case 7. It estimated the Cd values best among all models

and cases with the ANN method in Case 8. The ANN

method with Case 8 predicts almost perfectly the Cd values

according to all performance criteria.

Figure 8 shows the distribution of the MAPE values

calculated between the theoretical Cd values and the Cd

values obtained with the ANN, SVM, and M5Tree methods

for different cases in the testing. It is clearly seen that the

MAPE values are high in all methods in cases not using the

Fr number, but in cases using the Fr the mean MAPE

values are low in ANN and SVM methods, and the dis-

tribution occurs in a very limited range. In particular, the

maximum MAPE values are determined below 0.5% in

Case 6 for the SVM method and in Case 7 and Case 8 for

the ANN method.

The Taylor diagram is a graphical representation that

provides a comparative evaluation of different models

according to a reference point. This diagram presents the

predictive value and its statistical relationship to the ref-

erence value. Three different statistical parameters,

Table 4 R2, RMSE, MAPE, and

NSE values obtained with

different methods and models

Method Models R2 RMSE MAPE (%) NSE

Training Testing Training Testing

Training Testing Training Testing

ANN Case 1 0.5169 0.5449 0.0135 0.0118 2.1369 2.3865 0.5169 0.5444

Case 2 0.6456 0.6352 0.0116 0.0106 1.7292 2.1131 0.6454 0.6322

Case 3 0.7601 0.7118 0.0095 0.0094 1.2775 1.6086 0.7601 0.7108

Case 4 0.8306 0.9273 0.0080 0.0047 0.7858 0.7552 0.8306 0.9270

Case 5 0.9866 0.9816 0.0023 0.0024 0.3882 0.4304 0.9865 0.9811

Case 6 0.9997 0.9992 0.0003 0.0005 0.0434 0.0547 0.9997 0.9991

Case 7 0.9999 0.9998 0.0002 0.0003 0.0340 0.0408 0.9999 0.9998

Case 8 0.9999 0.9999 0.0002 0.0002 0.0270 0.0298 0.9999 0.9999

SVM Case 1 0.4527 0.4899 0.0147 0.0130 1.9717 2.1562 0.4251 0.4479

Case 2 0.5318 0.5264 0.0134 0.0121 2.1075 2.3883 0.5241 0.5216

Case 3 0.6067 0.6713 0.0123 0.0101 1.2763 1.4607 0.6002 0.6662

Case 4 0.7384 0.9084 0.0100 0.0055 0.6067 0.6557 0.7356 0.9022

Case 5 0.9806 0.9729 0.0027 0.0029 0.4271 0.4682 0.9800 0.9721

Case 6 0.9997 0.9995 0.0003 0.0004 0.0751 0.0877 0.9997 0.9995

Case 7 0.9705 0.9550 0.0035 0.0038 0.8009 0.8393 0.9669 0.9521

Case 8 0.9975 0.9807 0.0010 0.0025 0.2290 0.3090 0.9974 0.9800

M5Tree Case 1 0.5517 0.4830 0.0130 0.0126 2.0142 2.4365 0.5517 0.4785

Case 2 0.6272 0.3827 0.0119 0.0143 1.6521 2.6392 0.6272 0.3282

Case 3 0.6346 0.6432 0.0117 0.0105 1.3261 1.6231 0.6346 0.6424

Case 4 0.7033 0.7822 0.0106 0.0082 0.7937 1.0160 0.7033 0.7815

Case 5 0.9771 0.8757 0.0029 0.0063 0.5179 0.9567 0.9771 0.8717

Case 6 0.9852 0.9432 0.0024 0.0043 0.3607 0.4762 0.9852 0.9406

Case 7 0.9931 0.9788 0.0016 0.0026 0.2721 0.3951 0.9931 0.9779

Case 8 0.7128 0.7961 0.0104 0.0079 0.7074 0.9131 0.7128 0.7959

The most successful cases for Cases 1 to 4 and Cases 5 to 8 for each method are highlighted in bold

according to the test
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correlation coefficient, standard deviation, and root mean

difference error (RMDE), can be seen simultaneously in

the diagram. The most successful predicted model is

coinciding with or closest to the reference point. Figure 9

shows Taylor diagrams of Cd values obtained in the dif-

ferent cases by the ANN, SVM, and M5Tree methods.

Fig. 8 Change of MAPE values

obtained in the testing for the

different cases

Fig. 9 Taylor diagrams of Cd values obtained with different cases and methods
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Figure 9a shows that Cd values estimated using Cases 6, 7,

and 8 from the Taylor diagram of the ANN method are

quite close to the theoretical Cd values, also Case 8 almost

coincides with the reference values. From the results of the

SVM method, Case 6 is estimated quite close to the the-

oretical Cd value compared to the other cases (Fig. 9b).

Case 7 is determined as the most successful case with the

M5Tree method (Fig. 9c).

The scatter plots of the theoretical and estimated Cd

values of the testing for all cases are given for the ANN,

SVM, and M5Tree methods in Figs. 10, 11, and 12,

respectively. According to Fig. 10, the ANN method is

insufficient to predict low Cd values (\ 0.36) in Cases 1

and 2 and Cd values greater than 0.40 in Case 3. Although

the ANN methods predict relatively better in Case 4 than

the first three cases, it has been determined that the Cd

values around 0.40 do not give very satisfactory results. In

Case 5, it is seen that the estimated values converge to the

theoretical Cd except for a few values, while in Cases 6, 7,

and 8 almost all Cd values are estimated quite close. The

SVM results given in Fig. 11 are generally similar to the

ANN method results. Nevertheless, the SVM method,

which predicted Cd values successfully, especially with

Case 6, decreases estimation performance with Case 7. In

Case 7, it is observed that the upstream slope (a) parameter

added reduced the prediction success for the SVM method.

The scatter plots obtained with M5Tree are in line with the

performance criteria values in Table 4 and the Taylor

diagram results. The M5Tree method with Case 7 is the

most successful prediction among all cases. However, this

method determined the Cd values are mostly above the

theoretical Cd value. In general, it has been determined that

using the upstream slope as an input in the estimation of Cd

increases the model’s success. Additionally, it is observed

that the downstream slope does not contribute to the suc-

cess of the model as much as the upstream slope.

The results of the estimation methods show that if it is

not possible to calculate the Fr number, it would be more

appropriate to use the ANN method with Case 4. If it is

possible, the ANN method with Case 8 would be more

appropriate to calculate Cd values. The ANN is a black-box

method, but it can be applied if the weight and bias values

are known. For this purpose, the weight and bias values of

Case 4 and Case 8 for the ANN method are given in

Tables 5 and 6, respectively. In the tables, j is the number

of hidden layers, and the values of wij,Wji, and bij represent
the terms in Eqs. 10 and 11.

5 Conclusions

In this study, the discharge coefficient of trapezoidal broad-

crested weirs is investigated experimentally and numeri-

cally. The numerical model study is validated by using 91

experimental results in 13 different discharges in seven

different weir geometries. Then, two new different weir

geometries that do not investigate experimentally are added

and 270 numerical models are carried out for nine different

weir geometries. The Cd values obtained theoretically by

using experimental and numerical model results are esti-

mated with the ANN, SVM, and M5Tree methods with

eight different input combinations. R2, RMSE, MAPE, and

Fig. 10 Scatter plots of Cd values theoretical and estimated with the ANN method in the testing
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NSE performance criteria are preferred in determining the

success of the methods. The following main results are

obtained,

• Among the models in which the Fr number is not used

as an input, Case 4 (inputs: h/L, a, b, and e) is the most

successful in all methods according to all performance

criteria.

• The models that used the Fr number give better results

according to the models without the Fr number. The

ANN method with Case 8 (inputs: h/L, a, b, e, and Fr),

the SVM method with Case 6 (inputs: h/L, e, and Fr),

and the M5Tree method with Case 7 (inputs: h/L, a, e,
and Fr) are most successful.

• Using the weir’s upstream slope (a) as the input

increases the success of the models more than using the

downstream slope (b).

Fig. 11 Scatter plots of Cd values theoretical and estimated with the SVM method in the testing

Fig. 12 Scatter plots of Cd values theoretical and estimated with the M5Tree method in the testing
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• The ANN method is most successfully determined to

estimate Cd values than the SVM and M5Tree methods

according to the performance criteria.

As a result of the study, it has been determined that if

the upstream Froude number cannot be obtained, h/L, b,
and a can be used as input parameters. However, if the

Froude number can be acquired, the Cd values can be

calculated by using the Fr, h/L, b, a, and e parameters as

inputs in the ANN method.

With the study results, it is possible to determine the Cd

values in limited or full data cases by using the model

parameters given in this article for the broad-crested weir

and different flow types with different geometric proper-

ties. However, since the success of the estimation results

obtained with limited inputs (Cases 1–4) is significantly

lower than that obtained with the addition of other

hydraulic parameters, new studies are required to increase

the success of Cd estimation. It is evaluated that increasing

the number of weir geometry and the Cd range will

improve the performance of the Cd prediction models that

would be developed.
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