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Abstract
This study proposes a two-stage screening system to predict the most suitable EOR method for a candidate reservoir using

artificial neural networks (ANN) trained with more than 1000 worldwide experiences of EOR projects. In the first stage, an

ANN is trained to classify the projects into three main categories including water-based, gas and thermal EOR. The

prediction accuracy of the trained model in this stage is around 90% over non-observed projects. More specifically, for

thermal category, 99 out of 108, for gas category, 96 out of 104 and for water-based category, 47 out of 55 projects in the

test data (non-observed data) were assigned to the right category by the model. In the second stage, for each of three

categories, a separate ANN is trained with the corresponding datasets to classify the projects into their main sub-categories.

The three models developed for classifying water-based, gas and thermal EOR projects into their main sub-categories,

delivered a very well performance with average accuracies of 96, 90 and 94%, respectively. The proposed screening system

in this work introduces two main opportunities over the previous works in this field. First, the two-stage structure allows for

a more accurate EOR selection since the model is less probable to be biased by larger EOR classes, and second, it allows

for using additional input features for specific methods which are not available for all types of EOR methods. Finally, we

demonstrated the applicability of the proposed system, by considering 12 Iranian candidate reservoirs, for which the

primary EOR screening processes was performed in a study established by Mashayekhizadeh et al. in 2014. Screening

results in both works are in a full agreement which demonstrates the efficiency and quickness of the proposed system.
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1 Introduction

In the recent years, a great deal of effort has been made by

different industries toward digitalization transformation.

The clear long-term efficiency and benefits of this trans-

formation have made it a requirement for all industries. Oil

and gas industry is not an exception of this revolution, and

in recent years, there has been a growing appeal for

developing effective digitalization processes in this indus-

try [1, 2]. Applying artificial intelligence (AI) and data

analysis methods for creating effective solutions in various

fields of this industry in recent years is a proof of this fact

and has met with great success in many problems up to

now [3–10].

One of challenging topics in oil and gas industry is

decision making in enhanced oil recovery (EOR) pro-

cesses. EOR methods are specific procedures during which

external agents are injected into the oil reservoir; aiming at

modifying original properties of reservoir rock and fluid in

such way that more oil would be produced than the con-

ventional recovery methods [11]. Existence of more than

twenty alternatives for EOR techniques has made it a

challenging task for reservoir engineers when deciding on

the most suitable EOR technique for implementing in a

candidate reservoir.

Considering the general roadmap of EOR selection to

implementation, as shown in Fig. 1, prior to pilot and field

implementation of an EOR method, some exclusive, costly
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and time-consuming studies such as full-filed simulation

and various experimental studies need to be conducted for

investigating the applicability of different EOR methods

[12]. Conducting such studies for all available methods

would naturally require a huge amount of costs and a long

period of time to be completed. Consequently, focusing on

some specific methods would be of a great profit in terms

of costs and time and will make the future path more

concentrated. Primary EOR screening is an extremely

important step in each EOR roadmap which main function

and purpose is to determine the most appropriate methods

in order to make the future roadmap narrower and more

concentrated on some specific EOR methods [13]. Primary

screening of EOR methods is usually associated with a

large amount of uncertainty, which is mainly due to lack of

sufficient data and precise description of the candidate

reservoir at early stages of development.

The most convenient and widely applied method for

primary screening of EOR methods involves utilizing some

pre-defined screening criteria to evaluate the applicability

of various EOR methods. These criteria are usually in

terms of acceptable ranges for some key reservoir and fluid

properties. One of the earliest screening criteria have been

proposed by Taber et al. in 1997 which are widely adopted

in early stages of EOR screening [14]. However, with

increasing the number of worldwide EOR projects and

simultaneous progress in computer science in last years, an

alternative approach has been gradually broadened as

advanced EOR screening. This approach involves appli-

cation of machine learning (ML) techniques with the past

experiences of EOR projects to find the hidden patterns in

the past data and then to apply these patterns to predict the

suitable output for new data. In this well-known approach,

ML algorithms are applied to discover the valuable

screening rules from the past successful EOR projects.

These rules are in terms of relationships between the

reservoir rock and fluid properties and the successfully

implemented EOR method.

Up to now, many studies have been the subject of this

field, and various ML algorithms have been developed to

create intelligent predictive models to identify the most

suitable EOR method for a candidate reservoir. All of these

studies have applied past experiences of EOR projects to

train predictive ML algorithms. A summary on previously

conducted research in this field is provided in Table 1.

Since both the type (field data, simulation data, extracted

from criteria, etc.) and the number of EOR projects used in

the cited studies in Table 1 were not the same, any

comparison between classification rates and obtained

accuracy is highly biased, and hence, we merely mentioned

their methods and number of used projects to avoid any

faulty comparison.

Lack of sufficient amount of data in the literature of the

past EOR projects and insufficient input features have

caused many problems in the advanced approach of EOR

screening through ML methods. For example, the number

of gathered chemical EOR projects in previous works is

noticeably lower than that of other EOR categories. The

reason is that the worldwide implementation of chemical

projects is much less than thermal and gas projects. In all

previous works, due to this issue, not all of the sub-cate-

gories of EOR methods were included in the screening

process. Another problem was that the most dominant and

key properties in some EOR techniques were not available

for all EOR methods. Hence, these key parameters could

not help in the selection process. Our previous study in this

area, presented a step-by-step procedure through applica-

tion of ML techniques in primary EOR screening and

compared the performance of different ML algorithms in

classifying EOR methods [15]. Also, in this study, the most

important challenges, and limitations of ML approach in

primary EOR screening have been identified and explained

in detail.

In our previous study, EOR selection process with sev-

eral ML techniques was performed to select the most

suitable EOR category out of three major categories of

water-based, gas and thermal EOR. The purpose was to

compare the performance of different ML algorithms and

identify potential challenges in this process. Now, in the

current study, we selected ANNs as a proper ML algorithm

which performance was demonstrated in our previous

study; then the EOR selection process is continued to a

more detailed stage. In the other word, current study could

be considered as a continuation of our previous work

around applying ML algorithms in primary EOR screening.

In this work, we target the existing limitations and

challenges by designing a two-stage screening system

which improves the EOR selection accuracy in the

advanced approach. This two-stage screening system

allows for considering almost all EOR sub-categories and

using specific input features which are not available for all

EOR categories. At first, we studied available sources of

data and gathered a large database of worldwide experi-

ences of EOR projects. Particularly, in case of chemical

EOR projects, we performed a further step and gathered

one of the richest datasets for chemical projects in
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Fig. 1 General roadmap of EOR
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comparison with previous works. All gathered projects are

first classified into three main categories including water-

based, gas and thermal methods. Then, based on the

recovery mechanisms similarities, the projects of each

category are grouped as some unique sub-categories of the

more general category.

According to this classification, a two-stage screening

model is developed by applying artificial neural networks

(ANN). In the first stage of screening, a deep ANN is

trained to predict the suitable category out of the three

main categories including water-based, gas and thermal

EOR. Then, in the second stage, for each of three cate-

gories, a separate ANN is trained with the corresponding

data to predict the suitable sub-category out of the main

sub-categories. All of the developed models in two stages

delivered a very well performance in predicting the output

of non-observed projects with average accuracies up to

90% in two stages. The process of developing such system

and how it will improve screening results using ML and

tackle the discussed problems is explained in detail in

following sections.

2 Methodology

2.1 EOR database, data gathering

The data used in this work are real-world EOR projects,

which were carefully gathered from various sources. The

main sources used for data gathering are as follows:

Oil and Gas Journal (OGJ) biannual EOR surveys served

as the main source for collection of gas and thermal EOR

projects [23–30]. A variety of worldwide EOR projects

from these categories are well-aggregated in these surveys.

For water-based EOR projects, however, these surveys

contain a much lower amount of data in comparison with

other categories. In case of water-based EOR, we per-

formed an additional data collection step through which

various sources were carefully studied to gather more

projects. The main sources used in this step include a

chemical EOR book established by James. J. Sheng

[31, 32] and some review papers containing the informa-

tion of past projects [33]. Finally, we achieved one of the

richest datasets for chemical projects in comparison with

previous works. The initially gathered dataset contained

1445 samples of EOR projects. Each sample in this dataset

is a real-world EOR project implemented in a reservoir and

is characterized by some rock and fluid properties. The

common variables between the gathered data include

average porosity (a), average permeability (K), formation

lithology type (sandstone index (SI), carbonate index (CI),

tripolite index (TI)), reservoir depth (D), API degree (A),

in situ oil viscosity (l) and reservoir temperature (T). The

implemented EOR method is considered as the output. In

case of chemical projects, three more key parameters

including formation water salinity (FWS), initial hydro-

carbon saturation before project (Soi) and Dykstra–Parsons

coefficient of formation heterogeneity (DP Coeff.) were

also added to the input features.

To clean the gathered data and prepare them for

screening modeling, some preprocessing operations were

also performed on the dataset. The summary of all opera-

tions performed step by step from data gathering to data

preparation and preprocessing is shown in Fig. 2.

After data preprocessing, the dataset reached a total

number of 1120 EOR projects, and it was ready to be used

for ML modeling. Distribution of the gathered projects and

the corresponding worldwide map are shown in Fig. 3 and

4, respectively.

There are definitely some degrees of uncertainty in the

data sources; however, the mentioned sources were almost

the only option for gathering a reasonable number of EOR

projects for ML modeling. In our previous paper [15], we

identified and explained in details the potential challenges

and uncertainties in ML modeling of EOR screening which

arise from our datasets.

Table 1 A summary on previous studies in the field of advanced EOR selection with ML

References No. of EOR projects Applied method

[16] 290 Dimension reduction, clustering

[17] 230 Artificial neural networks (ANN)

[18] 1098 Bayesian belief network

[19] Simulation data Artificial neural networks (ANN)

[20] 422 Artificial neural networks (ANN)

[21] 744 ANN, K-nearest-neighbor classifier, Bayes classifier, …
[22] 548 Fuzzy decision tree

[15] 1120 ANN, random forest, decision tree, Naı̈ve Bayes, PCA (visual method)
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2.2 Data analysis

A detailed statistical analysis is performed on the gathered

data and as a summary the boxplots of reservoir rock and

fluid properties in different EOR projects are shown in

Fig. 5 through 12. These boxplots represent the variation

ranges of some specific parameters and provide a visual

tool for comparing these ranges between different methods.

Analyzing the boxplots and comparing variation ranges

of reservoir properties in different EOR methods highlights

some findings which are all in agreement of what is

believed in the literature regarding the physical effect of

various properties on each EOR process. These observa-

tions are summarized as follows:

• The porosity of reservoir rock in thermal projects

especially in steam flooding projects is sensibly higher

than that in non-thermal methods. According to Figs. 5

and 6, a majority of steam flooding, CSS and SAGD

projects have been implemented in reservoirs with

porosities and permeabilities larger than 30% and 1000

md, respectively. High permeability and porosity are

needed so that steam can transport fast enough to beat

heat loss [34]. In chemical projects, permeability values

range between 100 and 1000 md. Despite of chemical

and thermal projects, the permeability in gas injection

projects accepts a wide range of values varying from

0.1 to 1000 md.

• Reservoir depth is another important parameter in EOR

selecting processes. As widely accepted, in order to
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Fig. 2 Summary of all operations performed from data gathering to data preparation

Fig. 3 Distribution of the gathered EOR projects, in the final dataset
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prevent extra heat loss in thermal projects, shallower

reservoirs are more preferable. While in miscible gas

flooding projects, in order to achieve miscibility

conditions more easily, deep reservoirs with higher

pressure are more preferable [32]. Figure 7 confirms

these facts and reservoir depth ranges in thermal

projects are obviously smaller than those in other type

of projects. The median of reservoir depth in N2

miscible flooding, HC miscible flooding and CO2

miscible flooding projects is 10000 ft, 8000 ft and

5000 ft, respectively. These values well-match the fact

that normally, the required depth and thus pressure, to

achieve miscibility conditions in Nitrogen injection is

higher than that in hydrocarbon injection, and in

hydrocarbon injection is higher than that for CO2

injection [35].
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Trinidad 
32

China 88

Russia 4

Oman 4

India 12

Australia 1

Indonesia 5
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Fig. 4 Worldwide map of the gathered EOR projects in the final dataset

Fig. 5 Boxplots of porosity values in different EOR projects
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• From Fig. 8, it can be observed that high viscosity oil

reservoirs are more favorable for thermal projects. On

the other hand, gas miscible flooding projects have been

mainly applied in low viscosity oil reservoirs with

viscosities ranging from 0.01 to 10 cp. N2 miscible

projects have been applied in reservoirs with the lowest

oil viscosities, and after that, HC miscible flooding and

CO2 miscible flooding, respectively. These results are

in agreement with the fact that under the same

conditions, N2 gas is more difficult to achieve misci-

bility than the other gases [35]. Chemical flooding

projects have been applied in moderate oil reservoirs

with viscosities ranging from 1 to 100 cp.

• Reservoir temperature is an important parameter which

plays a key role in the success of chemical EOR

processes. Reservoir temperature should be low to

guarantee the success of a chemical flooding project

[31]. According to Fig. 9, most chemical projects have

been conducted in low-temperature reservoirs with

temperatures ranging from 100 to 150 �F.
• As shown in Fig. 10, most of the thermal and gas

projects have been implemented in reservoirs with

initial oil saturations ranging from 40 up to 80% and

more. However, chemical projects especially ASP

projects have been implemented in reservoirs with

initial saturations ranging from 30 to 40%. In contrast,

Fig. 6 Boxplots of permeability values in different EOR projects

Fig. 7 Boxplots of depths values in different EOR projects

17082 Neural Computing and Applications (2023) 35:17077–17094

123



polymer flooding projects have been implemented in

reservoirs with high initial saturation of 60–70%.

• Formation water salinity (FWS) is a key parameter in

the success of chemical projects [31]. As shown in

Fig. 11, most of the chemical projects have been

implemented in reservoirs with very low FWS, less

than 50,000 ppm of total dissolved solids. The median

of FWS in polymer flooding, ASP flooding and

microbial EOR is around 7000, 6800 and 19,000 ppm,

respectively.

• Dykstra–Parsons coefficient (DPC) of permeability

variation in the gathered chemical projects was also

considered as an additional feature for this category of

EOR methods. Based on Fig. 12, the value of this

parameter in polymer flooding projects varies from 0.65

to 0.75, and the median is 0.71. These results confirm

the experimental studies conducted by Qi from which it

was concluded that the optimum value for DPC in

polymer flooding projects is 0.72. In case of other

categories of chemical flooding methods such as in ASP

Fig. 8 Boxplots of viscosity values in different EOR projects

Fig. 9 Boxplots of temperature values in different EOR projects
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projects, this parameter varies widely from 0.4 to 0.8.

This difference between the acceptable range for

polymer and ASP projects shows that this parameter

could be applied as an input feature for classifying these

categories.

• And finally, formation lithologies of the projects as one

of the most important properties for EOR applications

were analyzed. According to the analyses, most thermal

and chemical EOR projects were conducted in sand-

stone formation, while gas injection projects have been

widely applied in both sandstone and carbonate

reservoirs.

2.3 Two-stage EOR screening modeling

In this work, we designed a two-stage screening system to

predict the suitable EOR method more efficiently. In the

first stage, one of the three main categories including

water-based, gas and thermal EOR will be selected for a

candidate reservoir. Following the first stage, in the second

stage of screening, the most suitable sub-category of the

previously selected EOR group will be selected. The reason

behind designing a two-stage selection process is to tackle

two important challenges in EOR screening using ML

methods.

The first problem is the unbalanced data which are used

to train the ML models. The number of thermal, gas and

Fig. 10 Boxplots of initial oil saturation in different EOR projects

Fig. 11 Boxplots of FWS values in water-based EOR projects
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water-based EOR projects not only in the gathered data-

base in this work, but also in all EOR databases is not

equal. The reason is that the worldwide implementation of

chemical projects is much less than thermal and gas pro-

jects. Unbalanced data is a very common but important

problem in ML modeling. In a classification problem with

unbalanced data, ML models usually are biased by the

category with larger number, and the classification accu-

racy for small categories is decreased. The large imbalance

in the number of EOR projects is shown in Fig. 3. Consider

the EOR selection process occurs in one stage; in this case,

small classes of EOR methods such as microbial EOR or

ASP with 32 and 48 projects in the gathered database

cannot be distinguished from other large classes such as

steam flooding with 288 projects. The two-stage system

developed in this work mitigates this problem by consid-

ering some similar projects as a unique category and lim-

iting the competition of selecting the suitable method, to

several distinct model. For example, in the gathered data-

base, some chemical EOR techniques including Alkaline,

Surfactant, Micellar, AS, AP, SP and ASP flooding with a

small number of projects in the dataset are considered as a

unique sub-category of chemical EOR. Because these

methods follow a similar recovery mechanism during EOR

process. Then, this sub-category with polymer flooding

projects as another sub-category will be considered in the

selection process of chemical EOR screening. With the

help of this two-stage screening, the different sub-cate-

gories will be involved in the selection process only when

the more general category is selected. Hence, the prediction

accuracy will be improved, and the effect of unbalanced

data will be lowered.

Another problem which we tried to tackle by this two-

stage screening model was the availability of some reser-

voir properties as the input features for the ML modeling.

For example, as will be discussed in the following sections,

the common input features including a, K, D, A, l, T and

formation lithology failed in classifying water-based EOR

methods with an acceptable accuracy into sub-categories of

polymer flooding and ASP flooding. Hence, three addi-

tional and key features such as FWS, Soi and DPC were

gathered to be used for training the model. These additional

features were not available for all projects since they were

gathered from various sources. The two-stage screening

allows for considering these features only for water-based

EOR classification and hence, increasing the EOR selection

accuracy.

All gathered projects in the dataset were analyzed and

grouped based on similarities of recovery mechanisms.

Then, a suitable output classed was assigned to each of

them. The schematic representation of the two-stage

screening system is shown in Fig. 13. This figure also

shows which projects are assigned to each sub-category.

2.4 Artificial neural networks (ANN)

Most of the previous efforts in the field of advanced EOR

screening have applied supervised learning processes to

train intelligent tools for predicting the suitable EOR

method. Various ML algorithms have been applied so far

which are summarized in Table 1. There exist a variety of

ML methods which could be applied here to develop pre-

dictive models in EOR selection process. According to our

previous work, in which the performance of various ML

methods in EOR selection process was compared, a deep

ANN with five representation layers and a random forest

model delivered the best performance in classifying the

three main EOR categories [15]. In this work, ANNs with

different architectures are applied to develop predictive

models in first and second stage of EOR selection. It should

Fig. 12 Boxplots of Dykstra–Parson coefficient values in water-based EOR projects
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be mentioned that instead of ANNs, other ML algorithms

which are expected to perform well in a classification

problem, also, could be applied in this two-stage screening

system.

ANNs are a sub-group of ML methods which are bio-

logically inspired models and have been applied for solving

a wide variety of problems including classification, clus-

tering, pattern recognition, function approximation, etc.

[36].

2.5 Training and testing data selection

The training and testing data required for developing the

two-stage screening model were selected randomly from

the gathered data using the ‘‘train-test-split’’ function from

Scikit-learn package in Python [37]. Additionally, both

training and testing data are selected in such way that

represent the original dataset. In the other words, relations

between the number of different categories are kept in both

datasets. Details of the distribution of output classes in the

first and second stage of screening are shown in Table 2.

For example, as shown in this table, the number of thermal

and gas EOR projects is about two times of the number of

water-based EOR projects, and this imbalance is kept in

both training and testing data. It should be mentioned that

due to insufficient number of some specific projects, not all

the projects present in the first stage of screening are

considered in the second stage of screening. Hence, the

total numbers of EOR categories may be different in the

first and second stages of screening.

2.6 Model structure

In every ML modeling, it is necessary to optimize the

model structure in order to gain the best performance of the

model in the given task. The structure of every ML model

is defined by its hyper-parameters, thus the suitable value

for these parameters should be found in training process. In

this work, we apply ANN to develop predictive models in

first and second stage of EOR selection. For the first stage,

a deep neural network was designed and trained using

python Keras library. Keras is a deep learning framework

developed for Python and provides an easy way to design

and train almost any kind of deep learning model [38]. The

structure of the model was optimized step by step, starting

from simple structure and two hidden layers and gradually

adding more layers and neurons in each layer. The opti-

mized hyper-parameters include number of representation

layers, number of neurons in each layer, activation function

of each layer and type of optimizer. For example, the

Fig. 13 Illustration of two-stage screening of EOR projects in this work
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schematic representation of the ANN model developed for

the first stage of EOR selection is shown in Fig. 14.

To tackle the overfitting problem in this model, two

dropout layers were added after the first and the second

representation layers. Overfitting is an issue which occurs

in every ML problem. When the network tries to learn

misleading and irrelevant patterns of training data, the loss

of trained data decreases (optimization). However, what is

important for us is the model performance on the test data

which never have been seen by the model (generalization).

These misleading and irrelevant patterns will cause the

model not to work well on the test data. In this situation,

the network is said to overfit. To prevent a model from

overfitting, the most effective way is to decrease the size of

the model (number of hidden layers and neurons per layer).

When the size of the model is reduced, the memorizing

capacity will be reduced as well, and only necessary pat-

terns will be learnt. Adding dropout is the most commonly

Table 2 Distribution of output

classes in training and testing

datasets in the first and second

stages of screening

EOR class Number Training data Test data

First-stage screening Water-based EOR 246 191 55

Gas EOR 429 325 104

Thermal EOR 445 337 108

Total 1120 853 267

Second-stage (Water-based EOR) Polymer 95 72 23

ASP 119 90 29

Total 214 162 52

Second-stage (Gas EOR) CO2 Miscible 254 199 55

HC Miscible 117 88 29

N2 Miscible 10 6 4

Total 381 293 88

Second-stage (Thermal EOR) Steam 348 269 79

Combustion 80 58 22

Total 428 327 101

Fig. 14 Schematic representation of the ANN model developed for the first stage of EOR selection
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used techniques for preventing overfitting. When dropout is

applied to a layer, a number of output features of the layer

will be randomly dropped out, and their values will be set

to zero [39].

Like the first stage, for the second stage of EOR selec-

tion, three separate ANNs were developed and trained with

corresponding data for selecting the most suitable sub-

category of the major category previously selected through

the first stage. The optimized values for each hyper-pa-

rameter in the developed models for the first and second

stages of screening are shown in Table 3.

3 Results and discussion

To evaluate performance of the trained models in EOR

selection, one single value as the prediction accuracy over

the testing data could never be a good measure on how

accurate the model classifies non-observed samples.

Instead, it is required to report the model performance on

classifying each distinguished class in the problem. To

investigate this statistically, an established technique,

namely confusion matrix, was used to interpret the results.

Having n output categories in the given classification

problem, the confusion matrix would be a n*n matrix.

Diagonal arguments in this matrix show how many samples

out of each specific category in the test data were correctly

predicted as the right category. Non-diagonal arguments,

however, show how many samples out of this number,

were assigned to the wrong categories. Additionally, three

different metrics other than the classification accuracy are

measured to evaluate the performance of the models in

classifying samples in the testing dataset. These metrics

include Precision, Recall and F1-score and are defined by

four terms True Positive (TP), True Negative (TN), False

Positive (FP) and False Negative (FN). The definition of

these terms is shown in Fig. 15, and the four used metrics

are defined as Eq. 1 through 4 as follows:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð1Þ

Precision ¼ TP

TPþ FP
ð2Þ

Recall ¼ TP

TPþ FN
ð3Þ

F1Score ¼ 2� Precision � Recall
Precisionþ Recall

ð4Þ

All mentioned metrics range from 0 to 1. The closer the

value to 1, the better the model performance. There is no

priority between these metrics. All of them should be

considered as a supplement to each other. The most

important thing to note when interpreting these metrics is

that the requirement to interpret a model as successful (in a

given task) is to obtain a high score in all of metrics. For

example, a high precision with a very low recall or vice

versa indicates a weak performance of the model.

Table 3 Optimized hyper-parameters of the ANN models developed for the first- and second-stage EOR selection

Model No. of hidden

layers

Optimizer Layer

number

No. of neurons in each

layer

Activation Function of each

layer

First-stage screening model 6 Adam L1 36 Sigmoid

L2 20 Relu

L3 17 Sigmoid

L4 12 Sigmoid

L5 8 Relu

L6 3 SoftMax

Second-stage screening model (Water-

based EOR)

2 Adam L1 10 Sigmoid

L2 2 SoftMax

Second-stage screening (Gas EOR) 5 Adam L1 35 Relu

L2 20 Relu

L3 15 Relu

L4 10 Relu

L5 3 SoftMax

Second-stage screening (Thermal EOR) 4 Adam L1 25 Relu

L2 15 Relu

L3 10 Tanh

L4 2 SoftMax
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According to the screening strategy developed in this

work, as shown in Fig. 13, selection of the proper EOR

method proceeds in two stages. In the first stage of

screening, one of the three major EOR classes including

water-based EOR, gas EOR and thermal EOR is selected.

Then, in the second stage of screening, the most suit-

able sub-category will be selected. In the following parts,

performance of each model developed for the first and

second stage of EOR screening will be analyzed by pro-

viding triple tables of the results (Tables 4 through 8). The

first part of these tables shows the contribution of each

class in the training and testing data, the next three columns

show the confusion matrix of the classification perfor-

mance over the test data, and the last four columns are the

measures of four metrics.

3.1 First-stage EOR screening

The performance of the ANN model trained for the first

stage of EOR screening is shown in Table 4. The input

features of the samples used for training this model were

the most common features between all projects including

porosity (a), permeability (K), formation lithology (SI, CI,

TI), reservoir depth (D), API degree (A), oil viscosity (l)
and temperature (T). The schematic diagram of the opti-

mized structure of this model is also shown in Fig. 14.

According to the confusion matrix and the classification

metrics, all three categories of EOR methods are well-

classified by this model. In this and following tables, true

positive predictions for each class are highlighted in

bold. The model performs very well in recognizing Gas

and Thermal EOR projects with an average score up to

0.90 in all metrics. In case of water-based projects, out of

55 projects in the test data, 47 projects were correctly

assigned to the right category. Although the model per-

forms well in this category too, but the average score is

about 0.81 and is much less than the other categories.

These results are in close relation with the fact that in a

classification problem with unbalanced dataset, the model

performance is biased by the larger categories (here

Thermal and Gas EOR) and the model performance is

relatively low in classifying the smaller class (here Water-

based EOR). However, the overall performance of the

model in predicting the suitable EOR category is quite

acceptable with a total accuracy of 0.91 (the number of

correctly predicted samples to the total number of samples

in the test dataset). The overall scores demonstrate the

robustness of the trained model in predicting the most

suitable EOR category for a candidate reservoir.

3.2 Second-stage screening

The second-stage screening following the first stage

(Fig. 13) focuses on selecting the most appropriate sub-

category of each EOR category, previously selected

through the first-stage screening. Three models at this stage

are trained to classify the three major EOR categories into

their main sub-categories.

3.2.1 Water-based EOR

According to Fig. 13, two major sub-categories including

polymer and ASP flooding were considered for water-

based EOR category. Based on recovery mechanisms of

chemical EOR processes, the existing water-based projects

in the dataset were divided between these two sub-cate-

gories as specified in Fig. 13. Because of a low number of

microbial EOR projects, this method was not considered in

the second stage of classification. Instead, as one of the

most challenging parts, we only focused on classifying

chemical projects into two main sub-categories of polymer

and ASP flooding. The number of gathered chemical pro-

jects in this work is noticeably larger than that in other
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Fig. 15 Illustration of a confusion matrix

Table 4 Confusion matrix and classification metrics of the ANN model developed for the first-stage screening

Train data Test data Water-based EOR Gas EOR Thermal EOR Precision Recall F1 Accuracy

Water-based EOR 191 55 47 8 0 0.76 0.85 0.80 0.85

Gas EOR 325 104 7 96 1 0.91 0.92 0.92 0.92

Thermal EOR 337 108 8 1 99 0.99 0.92 0.95 0.91

Total 853 267 – – – 0.91

Confusion Matrix Classification Metrics
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works, hence, a much better performance is delivered in

case of chemical projects classification which always has

been a challenging task in this area due to a low number of

available projects.

The ANN developed for classifying chemical EOR

projects which structure is specified in Table 3 was trained

by two different sets of input features. First, the model was

trained with common features used for the first-stage

screening, then it was trained with three additional features

including FWS, Soi and D–P Coeff other than the common

features. Classification performance of the model, with two

different series of input features, is shown in Tables 5 and

6. Comparing the results suggests that the common input

features as mentioned above fail to classify chemical pro-

jects with an acceptable accuracy and that providing three

more key properties as input features made a dramatically

improvement in the classification results, raising the aver-

age classification score from 75 to 96%. This is an

important finding in understanding the importance of pro-

viding relevant input features to get the maximum benefit

of ML algorithms in a given task.

3.2.2 Gas EOR

Injection of different gases into hydrocarbon reservoirs has

been widely applied as a successful EOR method which in

general is either miscible or immiscible with the original

hydrocarbon in place. In the second-stage screening of Gas

EOR methods, we decided to focus on miscible gas

flooding projects. Here, these methods are categorized

based on the injectant gas, as shown in Fig. 13, into three

sub-categories including miscible carbon dioxide injection

(Miscible CO2), miscible hydrocarbon injection (Miscible

HC) and miscible nitrogen injection (Miscible N2). The

performance of the ANN developed for classifying gas

EOR projects which structure is specified in Table 3 is

shown in Table 7. As shown in below table, in case of

miscible CO2 and miscible HC projects, the model suc-

cessfully predicts the correct category for the non-observed

data. In case of N2 injection projects, out of a total number

of ten projects, six were used for training, and the other

four projects were used for testing the model. Out of the

four projects in the test data, three of them were correctly

predicted, and only one of them was mistaken as miscible

CO2, leading to a relatively lower score in this category.

The total accuracy of the model in predicting the correct

category in gas EOR screening is 0.90.

3.2.3 Thermal EOR

According to recovery mechanism similarities and techni-

cal operations, for thermal projects gathered in this work,

two main sub-categories were considered including steam-

based and combustion as shown in Fig. 13. The perfor-

mance of the ANN developed for classifying thermal EOR

projects which structure is specified in Table 3 is shown in

Table 8. As shown in below table, out of 79 steam projects

and 22 combustion projects in the test data, respectively, 78

and 17 projects were correctly predicted, leading a total

accuracy of 0.94.

In summary, the results from all developed models in

the first and second screening stages, demonstrate the

ability of the proposed two-stage screening system in

predicting the suitable EOR technique for a candidate

reservoir, with a satisfactory accuracy up to 90% in all

parts. All developed models are embedded into an inte-

grated system which could be applied as a fast approach

toward selecting the most appropriate EOR method in the

primary screening phase.

It should be noted that the number of projects in the test

datasets in the second-stage screening is relatively low

which may raise doubt about the validation of the results.

This issue can be mitigated by using a cross-validation

technique to account for the sensitivity of model to the

selection of training and testing datasets and to obtain more

accurate results. We have performed this technique in our

previous study for the first-stage screening [15]. Here, we

show the result of the n-fold cross-validation for the sec-

ond-stage screening in Table 9. In this technique, five

different pairs of train and test data are selected randomly

out of the whole dataset in such way that there is no

overlapping in the test datasets in each run. The models are

then trained and tested with the selected data. This method

helps to mitigate any bias due to the selection of the test

Table 5 Classification results of the developed ANN model for classifying water-based methods with common input features

Train data Test data Polymer flooding ASP flooding Precision Recall F1-score Accuracy

Polymer flooding 72 23 17 6 0.71 0.74 0.72 0.74

ASP flooding 90 29 7 22 0.79 0.76 0.77 0.76

Total 162 52 – – 0.75

Confusion Matrix Classification Metrics
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and train sets and increases the reliability of the perfor-

mance of the models. The average of the accuracies of each

model suggests the reliability of the results and that the

trained model can perform well in distinguishing sub-cat-

egories in the second-stage screening.

Besides the efficiency and quickness of this approach in

primary EOR screening, it has also some potential limita-

tions. Here, we go through these limitations briefly and

leave the more details regarding each one to be referenced

to our previous study, one of the main focuses of which

was to identify and discuss the limitations and challenges

of application of machine learning techniques in EOR

screening [15].

• In this study, we have made an unrealistic assumption

that the problem of EOR screening can be considered as

a classification problem in ML content. This assump-

tion may arise some problems. For example, for a

specific reservoir, there might be more than one EOR

methods which can be successfully implemented.

However, with the provided data, there is only one

target class for each sample reservoir, and there will

remain the uncertainty regarding the other methods

which might had the potential to be even more

successful in that reservoir.

• Due to the limitation in the available data in the

literature, economic factors, although having a signif-

icant role in the success of an EOR project, do not have

any representative feature in the data used for training

the models, and it could be a hidden source of

uncertainty in our work.

• A major source of limitation in the advances EOR

screening, particularly, in the second-stage screening

Table 6 Classification results of the developed ANN model for classifying water-based methods with three additional input features

Train data Test data Polymer flooding ASP flooding Precision Recall F1-score Accuracy

Polymer flooding 72 23 23 0 0.92 1 0.96 1

ASP flooding 90 29 2 27 1 0.93 0.96 0.93

Total 162 52 – – 0.96

Confusion Matrix Classification Metrics

Table 7 Classification results of the developed ANN model for classifying gas EOR methods

Train data Test data Miscible CO2 Miscible HC Miscible N2 Precision Recall F1-score Accuracy

Miscible CO2 199 55 52 2 1 0.91 0.95 0.93 0.94

Miscible HC 88 29 4 24 1 0.92 0.83 0.87 0.83

Miscible N2 6 4 1 0 3 0.60 0.75 0.67 0.75

Total 293 88 – – – 0.90

Confusion Matrix Classification Metrics

Table 8 Classification results of the developed ANN model for classifying gas EOR methods

Train data Test data Steam-based Combustion Precision Recall F1-score Accuracy

Steam-based methods 269 79 78 1 0.94 0.99 0.96 0.99

Combustion methods 58 22 5 17 0.94 0.77 0.85 0.77

Avg/ total 327 101 – – 0.94

Confusion Matrix Classification Report

Table 9 Results of cross-validation method in the second-stage

screening

Model Set1 Set2 Set3 Set4 Set5 Average

Water-based EOR 0.96 0.94 0.93 0.95 0.93 0.942

Gas EOR 0.88 0.93 0.94 0.89 0.91 0.910

Thermal EOR 0.94 0.96 0.92 0.95 0.95 0.944
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introduced in this work, is the lack of sufficient data for

a generalizable learning. This issue caused the need to

ignore some methods with very low number of samples

from the modeling or to combine them with larger

classes.

• Assigning a single value as the average of reservoir

properties as the input features to the ML algorithm

may also be a further source of limitation. In many

reservoirs, due to the large size and severe heterogene-

ity, most of rock and fluid properties have large

variations.

• A serious problem which is common among all EOR

screening approaches is that a very limited amount of

information is available to be used for obtaining

screening rules, both from ML and other conventional

methods. Therefore, a great amount of crucial informa-

tion about the candidate reservoir influencing the result

of EOR screening are not considered in the screening

process.

• Unbalanced train data used for solving a classification

problem is another important issue which is more

highlighted in the present study and particularly in the

second stage. In such datasets, when the distribution of

the number of output classes varies significantly, like

what we have in the second-stage screening of gas EOR

methods, it will cause the model to be biased by the

larger classes and underperform in smaller classes.

3.3 Case study

To evaluate and demonstrate the applicability of the pro-

posed two-stage screening system, a number of candidate

reservoirs in Iran are considered here. The properties of

eleven of these reservoirs have been published in a study

conducted by Mashayekhizadeh et al. in 2014 in which

Table 10 General properties of the target candidate reservoir

Reservoir Lithology Porosity (fraction) Permeability (md) Depth (ft) API Oil viscosity (cp) Temperature (�F)

Res1 Carbonate 0.065 0.256–17.5 4998 30.2 1.28 141

Res2 Carbonate 0.205 0.70 9984 22.5 1.96 213

Res3 Carbonate 0.126 0.60 10,656 19.8 2.22 220

Res4 Carbonate 0.14 1.50 10,000 26 2.50 217

Res5 Carbonate 0.09 1.18 10,600 25.2 1.32 248

Res6 Carbonate 0.137 1.17 10,150 23.7 3.9 225

Res7 Carbonate 0.09 1.74 10,800 24.8 2.8 235

Res8 Sand 0.233 5.20 7031 27.5 1.46 178

Res9 Carbonate 0.134 0.30 12,401 30.2 0.41 234

Res10 Sand and Lime 0.18 3 7500 32.7 0.57 191

Res11 Carbonate 0.135 0.06 14,853 34.4 0.7 283

Res12 Carbonate 0.154 400 8885 25.2 0.65 200

Table 11 Screening results for

the target reservoir using the

proposed system

Reservoir First-stage screening result Second-stage screening result

Res1 Gas Injection EOR Miscible CO2 Injection

Res2 Gas Injection EOR Miscible CO2 Injection

Res3 Gas Injection EOR Miscible CO2 Injection

Res4 Gas Injection EOR Miscible CO2 Injection

Res5 Gas Injection EOR Miscible CO2 Injection

Res6 Gas Injection EOR Miscible CO2 Injection

Res7 Gas Injection EOR Miscible CO2 Injection

Res8 Gas Injection EOR Miscible CO2 Injection

Res9 Gas Injection EOR Miscible Hydrocarbon Injection

Res10 Gas Injection EOR Miscible Hydrocarbon Injection

Res11 Gas Injection EOR Miscible CO2 Injection

Res12 Gas Injection EOR Miscible Hydrocarbon Injection
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EOR screening process have been performed for the

mentioned reservoirs [40]. General properties of these

reservoirs are shown in Table 10. These properties as the

input features of a new candidate entered the first-stage

screening model which was successfully trained and tested

with the whole dataset. The model trained for the first-stage

screening, predicted gas injection EOR to be the most

suitable EOR category for all reservoirs. Then, the input

data entered the second stage of screening, and the model

previously trained for classifying gas injection projects

predicted the most suitable type of gas to be injected. It

should be noticed that in case of selecting water-based

EOR category in the first stage of selection, more input

features including FWS, Soi and DP coefficient of the

candidate reservoir would be required to proceed to the

second stage. As shown in Table 11, CO2 miscible injec-

tion is predicted to be the most suitable EOR technique for

most of the candidate reservoirs, and in three of them,

miscible hydrocarbon injection was selected. These pre-

dictions are in full agreement with the previous study of

EOR screening process for these reservoirs by Mashaye-

khizadeh et al. and demonstrate that the developed two-

stage screening system here can increase the efficiency and

decrease the time of EOR screening process, dramatically.

4 Conclusions

• A two-stage screening model has been developed in this

work which allows for a more accurate EOR selection

using ML models. One of the most important conclu-

sions of this work is that by breaking the problem of

EOR selection into two stages, the overall performance

of the model will be improved from two perspectives.

First, the two-stage structure allows for a more accurate

EOR selection since the model is less probable to be

biased by larger EOR classes, and second, it allows for

using additional input features for specific methods

which are not available for all types of EOR methods.

• Common reservoir properties as mentioned in previous

sections are used to distinguish the three major

categories in the first stage in which the trained model

performs very well with an average accuracy of around

90%. According to the output of the first stage, the

second stage of selection is performed via three

separate ANN models. In case of gas and thermal

EOR, the common reservoir features could also distin-

guish the main sub-categories with reasonable accura-

cies of 90% and 94%, respectively. However, these

features alone failed to classify chemical projects with

an acceptable accuracy. Our results showed that the

three additional and key features including FWS, Soi
and D–P Coeff made a dramatical improvement in

classifying chemical projects, raising the average

classification score from 75 to 96%. These results

prove another advantage of the two-screening model

(using additional input features for only one class of

EOR method).

• Besides the efficiency and quickness of this approach in

primary EOR screening, it has also some potential

limitations which are discussed in details in our

previous work [15]. However, another limitation of

ML approach is highlighted here which is the inability

of ML in ranking EOR methods based on their

suitability for a candidate reservoir. Although it may

be possible with some algorithmic techniques, however,

the corresponding order of EOR methods may not be

relied upon as a meaningful ranking.

• It is extremely important to note that the available data

for primary screening phase in early stages of a field

development plan is limited and is associated with a

large amount of uncertainty. Therefore, all proposed

tools for primary EOR screening using machine learn-

ing or the other approaches such as conventional

screening, as well as the proposed system in this work,

should only be used as an opening of the EOR roadmap.
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