
ORIGINAL ARTICLE

Automatic document classification via transformers for regulations
compliance management in large utility companies

Tolga Dimlioglu1 • Jing Wang1 • Devansh Bisla1 • Anna Choromanska1 • Simon Odie2 • Leon Bukhman2 •

Afolabi Olomola2 • James D. Wong2

Received: 14 September 2022 / Accepted: 28 March 2023 / Published online: 28 April 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
The operation of large utility companies such as Consolidated Edison Company of New York, Inc. (Con Edison) typically

rely on large quantities of regulation documents from external institutions which inform the company of upcoming or

ongoing policy changes or new requirements the company might need to comply with if deemed applicable. As a concrete

example, if a recent regulatory publication mentions that the timeframe for the Company to respond to a reported system

emergency in its service territory changes from within X time to within Y time—then the affected operating groups will be

notified, and internal Company operating procedures may need to be reviewed and updated accordingly to comply with the

new regulatory requirement. Each such regulation document needs to be reviewed manually by an expert to determine if

the document is relevant to the company and, if so, which department it is relevant to. In order to help enterprises improve

the efficiency of their operation, we propose an automatic document classification pipeline that determines whether a

document is important for the company or not, and if deemed important it forwards those documents to the departments

within the company for further review. Binary classification task of determining the importance of a document is done via

ensembling the Naive Bayes (NB), support vector machine (SVM), random forest (RF), and artificial neural network

(ANN) together for the final prediction, whereas the multi-label classification problem of identifying the relevant

departments for a document is executed by the transformer-based DocBERT model. We apply our pipeline to a large

corpus of tens of thousands of text data provided by Con Edison and achieve an accuracy score over 80%. Compared with

existing solutions for document classification which rely on a single classifier, our paper i) ensemble multiple classifiers for

better accuracy results and escaping from the problem of overfitting, ii) utilize pretrained transformer-based DocBERT

model to achieve ideal performance for multi-label classification task and iii) introduce a bi-level structure to improve the

performance of the whole pipeline where the binary classification module works as a rough filter before finally distributing

the text to corresponding departments through the multi-label classification module.

Keywords Document classification � Machine learning � BERT � Natural language processing

1 Introduction

With the rapid development of artificial intelligence (AI)

[1] in recent years, computers can automatically process

many tasks in industry. In the manufacturing industry

[2–4], companies use robots for automatic equipment

instead of human labor that frees employees from repetitive

and boring tasks. AI in medicine [5–7] also becomes a hot

research topic with a huge amount of breakthrough

achievements in multiple directions, e.g., medical robotics

[8], medical diagnosis [9, 10], medical statistics [11],

human biology [12], etc. The advance in AI technology

also changes the world of finance [13] by launching a hot

trend of quantitative research [13]. Many Fintech compa-

nies apply machine learning methodologies in trading

strategy decision [14] and high-frequency trading [15] to

earn more profit. When it comes to the utility industry

[16–19], people also prefer artificial intelligent technolo-

gies to minimize human intervention and save expenses.

This paper targets at a typical application scenario in the

utility industry. All utility companies face the same prob-

lem: how to solve the customer requirements accurately
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and quickly [20, 21]. Take Con Edison as an example, tons

of regulations are received every day from external regu-

lation bodies. To resolve these regulations properly, Con

Edison hires a large number of people to read the whole

regulation and then forward it to the relevant departments.

If the classification process could be completed automati-

cally or semi-automatically by AI, the company could not

only enhance the work efficiency and the accuracy of

classification, but also save expenses in training and hiring

staff (Fig. 1).

In this paper, we present an automatic document clas-

sification pipeline (shown in 1) via deep learning to solve

regulation classification task at Con Edison. The pipeline

consists of two parts: i) binary classification module aims

at separating the regulations important to Con Edison from

those that are not important to Con Edison and ii) multi-

label classification module can classify the regulation

important to Con Edison to specific departments within the

company. Con Edison provides a large corpus of thousands

of already processed regulation text data with two types of

labels: i) important versus not important to Con Edison for

binary classification task; ii) multiple labels demonstrating

the specific departments to which the regulation belongs.

For the multi-label classification task, the regulation might

not only belong to one specific department, but it can also

concern multiple departments within Con Edison. There-

fore, the second task in the pipeline should be a multi-label,

not multi-class classification task.

For the binary classification task, we utilize support

vector machine (SVM) [22], Naive Bayes (NB) [23], ran-

dom forest [24], and artificial neural network (ANN) [25]

and combine the four binary soft classifiers with soft vot-

ing. The accuracy of the binary classification module in the

pipeline reaches � 92%. For the multi-label classification

task, we utilize the DocBERT model (adding a fully con-

nected ANN network after the BERT model for classifi-

cation). Moreover, we apply the binary cross-entropy loss

(BCELoss) instead of the classical cross-entropy loss

(CELoss) since it is a multi-label not multi-class classifi-

cation task. The accuracy of the multi-label classification

module reaches � 80% under the top-3 accuracy metrics

defined in Sect. 4.

This paper is organized as follows: Section 2 reviews

the literature on binary classification, multi-label classifi-

cation, and natural language processing. Section 3

describes the details of the datasets that we use for analysis.

Section 4 defines the accuracy metrics utilized for the

evaluation of the models. Section 5 discusses the con-

struction of the automatic pipeline and its performance on

the corresponding datasets. Finally, Sect. 6 concludes the

contribution of our work.

2 Literature review

2.1 Binary classification

Binary classification is the process of classifying observa-

tions of a dataset into two groups based on a classification

rule. It is a classical topic with multiple practical scenarios,

e.g., medical testing [26], quality control in industry [27],

information retrieval [28, 29], etc. Many commonly used

machine learning techniques were introduced to solve

binary classification problems. The Naive Bayes (NB) [23]

classifier constructs the probability model based on the

Bayes’ theorem with strong independence assumptions

between the features. Decision tree (DT) [30] is a non-

parametric supervised learning algorithm that constructs a

classification/regression tree by identifying ways to split a

data set based on different conditions. Since a single

decision tree might create over-complex trees that do not

generalize well, an ensembling method, random forest (RF)

[24], constructs a multitude of decision trees during the

training process and then let them vote for the final results.

Some other improvements in RF, e.g., AdaBoost [31],

XGBoost [32], lightGBM [33], etc., became popular with

desirable performance on many machine learning tasks.

[22, 34] proposed the support vector machine (SVM) that

constructs a hyperplane with the largest separation, or

margin, between two classes. By introducing the kernel

trick [22] that nonlinearly maps the inputs into a very high-

dimensional space, SVM could also solve nonlinear clas-

sification problems. In 1958, psychologist Frank Rosenblatt

[35] borrowed the concept of the biological neural network

into computer science and proposed the first artificial

neural network (ANN). The fully connected neural network

is the simplest ANN where the connection between neurons

in a biological neural network is modeled as weights [25].

The neural network quickly sweeps the world after being

proposed due to its excellent performance in almost all

application cases [36, 37]. Recently, a large amount of

different types of neural networks have been proposed

based on the requirements of different tasks. TheFig. 1 Pipeline overview
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convolutional neural network (CNN) [38, 39] introduces

the shared-weight architecture of the convolution kernels

which slide along input features to reduce the number of

parameters in fully connected neural networks, which

achieve excellent performance in image processing task. In

order to deal with tasks involving time-series dataset, e.g.,

speech recognition [40], video recognition [41], text gen-

eration [42], etc., Recurrent neural network (RNN) [43]

that use previous output as inputs are purposed. To solve

the drawback of forgetting long-term memory in RNN, the

long short-term memory (LSTM) [44] introduces the gate

construction: input gate, output gate and forget gate to the

vanilla RNN to control whether to remember input of

current step. Gated recurrent unit (GRU) [45] simplifies the

structure of LSTM by decreasing the number of gates from

3 to 2 and achieves comparable performance in multiple

tasks.

2.2 Multi-label classification

In traditional multi-class classification [46] tasks, an

observation in the dataset only contains a single label from

a set of labels, and we can use cross-entropy [47] as

objective function. However, in multi-label classification

tasks, a single observation might have multiple labels from

a set of labels. The multi-label classification [48, 49] was

first motivated by text classification [50] and medical

diagnosis [48], where text documents contain more than

one theme, and patients are prone to suffer from more than

one disease. With the rapid development of technology,

multi-label classification becomes essential in many mod-

ern applications, e.g., protein function classification

[51, 52], music categorization [53–55], semantic scene

classification [56–58], etc. The methods for the multi-label

classification task could be classified into two groups: i)

problem transformation methods [59–61], ii) algorithm

adaptation methods [62, 63]. The problem transformation

methods aim at transferring the original multi-label prob-

lem into the combination of several multi-class classifica-

tion tasks. Regarding the algorithm adaptation methods,

people design algorithms that could be directly applied to

original multi-label task. For example, people change the

cross-entropy loss for multi-class task into binary cross-

entropy loss that is suitable for multi-label task [64].

However, traditional multi-label classification methods

encounter many obstacles when it comes to the extreme

large-scale multi-label classification problem with thou-

sands of labels, e.g., recommendation system [65–67],

natural language processing [68] and image processing

[69]. Many new techniques, e.g., one versus all (OvA)

classifiers [70–72], tree-based classifiers [66, 73], deep

learning-based classifiers [74–76], embedding-based clas-

sifiers [77, 78], are proposed in order to solve the extreme

large-scale multi-label classification task. However, our

task only has hundreds of labels, which is not an extreme

large-scale multi-label classification and can be solved by

conventional multi-label classification methods.

2.3 Natural language processing

Languages are the most important mental creation of

humans that distinguish us from animals [79, 80]. There are

more than 7,100 spoken languages that exist nowadays and

our connected world is filled with an abundant volume of

natural language text containing different content of

knowledge [81]. With the rapid advance in AI, scientists

are laying more and more emphasis on the topic of natural

language processing (NLP) [82–84] to enable AI to

understand texts efficiently and accurately similar to

humans.

The NLP technology is widely employed in many

applications, e.g., speech recognition [40], sentiment

analysis [85], document classification [86, 87], natural

language generation [88, 89], etc. An NLP system can be

separated into the following two processes: i) data pro-

cessing [90] ii) model construction [84]. Data processing

step [90] is aimed at mapping the text document into

vectors that are understandable to the computers. Many

techniques are proposed in order to vectorize long sen-

tences or text documents by learning word associations

from a large corpus of text, e.g., bag-of-words (BOW) [91],

continuous bag-of-words (CBOW) [92] and skip-gram

[92]. A large amount of deep learning models, e.g., con-

volutional neural networks (CNN) [38], recurrent neural

networks (RNN) [43], textCNN [93], BiLSTM [94, 95] and

attention mechanisms [96], are utilized in the model con-

struction for NLP tasks. Recently, the emergence of a lot of

powerful pre-trained models, e.g., CoVe [97], ELMo [98],

OpenAI generative pre-trained transformer (GPT) [99] and

bidirectional encoder representations from transformers

(BERT) [100], dramatically increases the performance of

deep learning models in multiple NLP tasks.

2.3.1 Transformer-based models

Transformer unit [101] was a milestone invention in NLP

history and brought NLP into a new era. The self-attention

mechanism proposed in transformer contains the bidirec-

tional information of the whole text, which outperforms

other sequential models like RNN, textCNN, and LSTM

that only consider one-directional information in many

tasks. The powerful BERT model constructed from the

transformer block by taking the encoder layers is widely

used in NLP tasks. RoBERTa [102] presents a replication

study of BERT pretraining [100] and achieves a more

powerful pretrained model by increase the training time
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and batch sizes; removing the next sentence prediction

objective; training on longer sequences; and dynamically

changing the masking pattern applied to the training data.

The decoding-enhanced BERT with disentangled attention

(DeBERTa) [103] further enhances BERT by introducing

the disentangled attention mechanism, incorporating

absolute positions in the decoding layer to predict the

masked tokens in model pre-training and using a new

virtual adversarial training method to finetune. There are

many BERT-based models in document classification.

DocBERT [37] inserts a fully connected layer to the last

hidden state vector of the BERT architecture. In the

RoBERT [104] model, the hidden state vectors and pos-

terior probabilities of the BERT model are stacked and then

fed into an LSTM layer. The output of this LSTM serves as

a document embedding. In ToBERT [104] model, hidden

state vectors and posterior probabilities from BERT model

are stacked but this time, they are fed into a transformer

block since transformers are known for capturing long-

distance relationships between the words in a sequence.

Hierarchical attention networks (HAN) [105] are designed

to capture two basic insights in the document structure. As

a result, it has two levels of the attention mechanism: word

level and sentence level. Words and sentences are encoded

with bidirectional GRU layers, summarizing the informa-

tion from both directions.

The text-to-text transfer transformer (T5) [106, 107] is a

comprehensive text-to-text model designed to address

various NLP tasks. Unlike other multi-task language

models that rely on task-specific architectural components

and loss functions, T5’s creators developed a unified

learning approach that treats every NLP challenge as a text-

to-text problem. This enables them to use a single, con-

sistent model, loss function, and hyperparameters to gen-

erate a unified, multi-task model. The ByT5 [108] model is

a modified version of T5 that can handle text in raw byte

format rather than tokens. In contrast, models such as

BERT need a separate tokenization process to divide

documents into sub-word vocabularies. This can result in

greater memory limitations because larger vocabularies

necessitate extensive embedding matrices with numerous

parameters. T5-based models could also be applied in the

text ranking [109] or document classification task

[110, 111] in recent works. The main difference for BERT-

based and T5-based models is that BERT only includes

encoders, while T5 contains both encoders and decoders

and perform better in natural language understanding

(NLG) task. However, document classification is the nat-

ural language understanding (NLU) task not the natural

language understanding (NLG) task. Therefore, focusing

on BERT-based models works well for our document

classification task. Moreover, T5 is a text-to-text genera-

tion model which require manually tuning the prompt

[112–114]. Therefore, we focus on BERT-based model for

our implementation of our work.

3 Data analysis

In this section, we provide details about the datasets pro-

vided by Con Edison. There are two dataset portions that

are granted to us at different stages of the project. The first

portion is provided to us for training and validation at the

beginning of the project, and the held-out dataset is pro-

vided at the later stages of the project and used for testing.

The dataset portions vary in terms their distributions which

is mainly because of the fact that held-out dataset contains

the most recent samples. Despite having different distri-

butions, they have the same structure with two compo-

nents, which are Regulations and Obligations, respectively.

The connection between these two components is estab-

lished with an ID key. That is, if the same ID key is

associated with both a regulation text and obligation text,

this implies that the text in the obligation component is the

highlighted, refined fragment from the corresponding text

in the regulation component.

3.1 Train and validation dataset

Here, we provide the details on the initially provided

dataset which we used for training and validation. As

mentioned, it has two components: Regulations and

Obligations.

3.1.1 Regulations

Regulations are greater in length and some are several

pages long documents including the laws or legislation put

forward by the regulator state or the federal government. In

this dataset, the regulations have two possible labels:

Applicable and Not Applicable. As the label names imply,

if a regulation label is Applicable, then it contains a law or

legislation that is applicable to at least one of Con Edison’s

departments. For the regulations with Not Applicable label,

it is vice versa. In total, there are 5570 different applicable

regulations and 2212 different not applicable ones in this

dataset.

3.1.2 Obligations

Since regulation texts are long, even in the applicable ones,

not every part of the regulation contains the vital point of

the announced law. In the Obligations dataset, only the

important sentences or parts from the regulations are pro-

vided. Thus, Obligations are much shorter in length,
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contain at most two paragraphs, and most of them are

formed by several sentences from a single paragraph.

Note that several obligations can be deduced from the

same regulation, since a regulation might contain important

information in its different paragraphs or sections. Besides,

a single obligation might concern more than one depart-

ment of Con Edison, which makes the task carried out on

the obligation dataset a multi-label classification task. Note

that the labels in this dataset are the department names,

anonymous here by digit numbers for confidentiality

purposes.

In total, there are 111 different department names or

labels, 5320 different obligation texts, and 7428 different

text-label pairs. As can be seen, this is a highly imbalanced

and small-sized dataset compared to the number of classes.

We decided to group the departments with less than or

equal to ten associated obligations into one label called

Others since it is not really feasible for the model to learn

the patterns with very few samples. By doing so, we are left

with 59 different department labels including Others label

which has 158 samples. The histogram of the dataset after

this grouping method is provided in Fig. 2.

3.2 Held-out test dataset

The held-out dataset has the same structure as the train and

validation dataset. This dataset contains 122 applicable and

1333 not applicable regulations. The obligations from the

applicable regulations have 176 department labels.

Although there are 27 different departments among the 176

department labels, six of them are grouped into the Others

label using the dictionary obtained while forming the his-

togram in Fig. 2 from the training set. After this procedure,

the histogram of the new set of obligations from the

archived dataset is provided in Fig. 3.

4 Evaluation metrics

In total, we evaluate the models with four different metrics:

accuracy (%), soft accuracy (%), Top-k accuracy (%), and

normalized discounted cumulative (nDCG) score. Except

for the conventional accuracy score, we introduce the

remaining three metrics for evaluating the performance of

experiments on the multi-label classification task.

4.1 Accuracy score (%)

Accuracy is one of the most interpretable evaluation met-

rics for most of the experiment results. It is simply obtained

by calculating the percentage of correctly predicted labels

with respect to the total size of the evaluation set. In the

case of evaluating the models for the multi-label classifi-

cation task, correct prediction is defined as the exact match

between the target vector and the model’s output layer after

applying the sigmoid activation function on each of its

neurons and then they are rounded to 0 or 1.

Fig. 2 Histogram of the labels in the obligation dataset (The actual department and section names are hidden for confidentiality)
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4.2 Soft accuracy score (%)

Soft accuracy score is more generous while evaluating the

performance in the multi-label classification task. Particu-

larly, contrary to the conventional accuracy score, in this

metric, the correct prediction is achieved when at least one

of the sigmoid activated and rounded output layer neurons

with value 1, is aligned with the target labels. In this way,

the evaluation of the model is realized in a more flexible

manner. Notice that this is again a percentage.

4.3 Top-k accuracy score (%)

Top-k accuracy score is a popular evaluation metric fre-

quently used by the ML community, especially in the

presence of too many target classes. In particular, if the

target class belongs to the list of top-k most likely classes

predicted by the model, the model gets the credit and this

prediction is counted as correct. In the multi-label setting,

if there is an overlap between the set of target classes and

the set of top-k most likely classes predicted by the model,

the prediction is counted as correct.

4.4 nDCG-k score

To better understand the normalized discounted cumulative

gain (nDCG) score, we also need to first explain what

discounted cumulative gain (DCG) score is. This is because

nDCG is the normalized version of DCG. DCG quantifies

the ranking success of the model prediction. Let y and ŷ be

the true label vector and the output of the classifier,

respectively. That is,

y ¼ ½y1; y2; :::; yL� 2 f0; 1gL

ŷ ¼ ½ŷ1; ŷ2; :::; ŷL� 2 RL

where L is the number of classes. Then, the DCG score is

defined as follows:

DCG-k ¼
X

l2rankkðŷÞ

yl
logðlþ 1Þ

DCG-k measures the accuracy based on the first k most

possible classes in prediction. The term logðlþ 1Þ on the

denominator controls the weights of each class. The higher

the probability of a class in the prediction is, the greater the

impact of the class will have on the final DCG score. Using

this definition of DCG score, we normalize DCG by its log

weights and formulate the nDCG score as:

nDCG-k ¼ DCG-k
Pminðk;kyk0Þ

l¼1
1

logðlþ1Þ

5 Pipeline

In this section, we provide details of our pipeline. Partic-

ularly, the pipeline consists of two different modules: the

binary classification module and the multi-label

Fig. 3 Histogram of the obligations per department in the held-out set
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classification module. Figure 4 shows the outline of our

pipeline including the modules and their components.

The binary classification module is responsible for

determining whether a given raw regulation text is appli-

cable to Con Edison or not. If it is not applicable, the

pipeline returns the result accordingly. If it is applicable,

the raw text is then sent to the multi-label classification

module. We would like to emphasize that the raw text

rather than the already processed version in the binary

classification module is sent to the multi-label module,

since the processing steps for these two modules are dif-

ferent from each other. After receiving the texts, the multi-

label classification module predicts the most probable

k departments that the case in the regulation belongs to.

Details of these modules are explained in Subsections 5.1

and 5.2.

5.1 Binary classification module

The binary classification module works as a rough filter to

separate the Regulation dataset into two parts: the docu-

ments that are Applicable to Con Edison and the documents

that are Not Applicable to Con Edison. The structure of the

binary classification module shown in Fig. 5 is constructed

as follows:

(1) Text processing: data cleaning and vectorize texts

via bag-of-words method.

(2) Binary soft classifiers: train four binary soft classi-

fiers: Naive Bayes (NB), support vector machine

(SVM), random forest (RF), artificial neural net-

works with two hidden layers (ANN2).

(3) Final prediction for binary classification: ensemble

binary soft classifiers by soft voting for the final

prediction.

5.1.1 Text processing

After the data cleaning process of removing punctuations,

eliminating numbers, and removing stopwords, the

remaining text document dataset contains in total of 30733

different words. From the histogram of words shown in

Fig. 6, 19108 words appear less than 10 times and 135

words appear more than 5000 times. On the one hand, the

words appearing too frequently are stopwords, for example,

‘‘company,’’ ‘‘following’’ and ‘‘state,’’ which will not help

with the prediction. On the other hand, the large volume of

rare words without sufficient information for training

drastically increases the computation cost at the same time.

Therefore, we remove rare words that appear less than 10

times and frequent words that appear more than 5000

times. We get a cleaned word dictionary with 11490

remaining words.

The next step is to transfer the text information to

vectors that can be mathematically processed by comput-

ers. We map the original text dataset into the vector space

with bag-of-words (BOW) [92] method. The BOW method

gives indexes to words in the cleaned word dictionary and

records their number of occurrences in the text. Figure 7

shows an example to illustrate the BOW method.

5.1.2 Binary soft classifiers

For the binary classification task, we introduce four clas-

sical and powerful machine learning classification meth-

ods: Naive Bayes (NB) [23], support vector machine

(SVM) [22, 34], random forest (RF) [24], and fully con-

nected artificial neural network with two hidden layers

(ANN2) [25]. NB classifier constructs the probability

model based on Bayes’ theorem with strong independence

Fig. 4 Detailed diagram of the pipeline
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assumptions between the features. The SVM classifier

separates two classes from the dataset by finding the best

hyperplane with maximum margins. RF classifier con-

structs a multitude of decision trees during the training

process, then lets them vote for the final results. For the

fully connected artificial neural network classifier, we

compare three network structures (Fig. 8): (i) ANN1(100)

is the fully connected neural network with one hidden layer

of 100 neurons; (i) ANN1(1000) is the fully connected

neural network with one hidden layer of 1000 neurons; (ii)

ANN2 is the fully connected neural network with two

hidden layers of 1000 and 100 neurons, respectively. We

perform grid search on the hyperparameters (see Table 1):

initial learning rate (lr0 ¼ ½0:01; 0:005; 0:001�), batch size

(bs ¼ ½16; 32; 128�), dropout (dp ¼ ½0:1; 0:3; 0:6�) and

weight decay (wd ¼ ½1e�4; 1e�5; 0�). Table 2 lists the best

two settings of the parameters for each neural network. We

discover that the fully connected neural network with two

hidden layers where the first hidden layer has 1000 neurons

and the second hidden layer has 100 neurons outperforms

other net structures by 0� 1%.

Therefore, we choose the ANN2 net structure as a soft

classifier under the fully connected neural network setting

and compare it with other soft classifiers: NB, SVM and

RF. Table 3 illustrates the training and validation accuracy

of four binary soft classifiers. We do not include the

comparison of the best test accuracy among all classifiers,

since there is no concept of epochs during the training

procedure of NB and RF. From Table 3, each soft classifier

reaches a high accuracy level of more than 85%, and

ANN2 outperforms others with an accuracy of more than

97% (Table 3).

5.1.3 Final prediction for binary classification

Based on the performance of four softer classifiers illus-

trated in Table 20, we design two strategies for achieving

the final prediction:

(1) Vanilla strategy: Utilize the single ANN2 classifier

which outperforms other classifiers.

Fig. 5 Structure of binary

classification module

Fig. 6 Histogram of words set for binary classification task

Fig. 7 Example of the bag-of-words method
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(2) Ensembling strategy: Ensemble all binary soft clas-

sifiers by soft voting. Soft voting is inspired by the

voting process of random forest method. We first let

each soft classifier predicts separately and then

choose the class selected by most classifiers.

Intuitively, strategy #2 might be a better choice because of

the following two reasons. Firstly, the test accuracy results

of binary soft classifiers (Table 3) are all above 85%, which

implies that even the worst NB classifier is a powerful

methodology for the binary classification task. Therefore,

including all the models in the final pipeline are more

likely to achieve better performance. Secondly, ensembling

multiple models into the final classifier could reduce vari-

ance and minimize the bias of models, and ultimately

decrease the chance of overfitting. An ideal model must be

able to generalize well among different datasets. However,

a single soft classifier only trains on a given dataset with a

fixed model structure. When it comes to a brand new

dataset with not exactly the same distribution as the orig-

inal dataset, the single soft classifier is quite likely to suffer

from the problem of overfitting. On the contrary, ensem-

bling multiple binary soft classifiers alleviates the risk of

focusing too much on a specific feature and achieves better

Fig. 8 Structures of three types

of fully connected artificial

neural networks: ANN1(100),

ANN1(1000) and ANN2 from

left to right

Table 1 Hyperparameter search grid for ANN models

Hyperparameter Search grid

Batch size 16, 32, 128

Learning rate 1e-2, 5e-3, 1e-3

Dropout 0.1, 0.3, 0.6

Weight decay 0, 1e-5, 1e-4

Table 2 Best two settings of the parameters with maximal test

accuracy after training for 200 epochs on ANN1(100), ANN1(1000)

and ANN2. We compute the validation accuracy after each epoch.

The final val. accu. is the test accuracy at the end of the training

process. The best val. accu. is the highest test accuracy during the

training process

Model Learning rate Batch size Dropout Weight decay Train accu. (%) Final val. accu. (%) Best val. accu. (%)

ANN1 (100) 0.005 128 0.6 1e�5 99.20 97:48 97.62

0.005 32 0.6 1e�5 99.08 97.41 97.55

ANN1 (1000) 0.005 16 0.3 0 99.44 97.21 97.41

0.001 16 0.6 1e�5 99.15 97.14 97.28

ANN2 0.001 32 0.3 1e�5 99:30 97:48 97:76

0.005 32 0.1 1e�5 99:30 97:48 97.69

Bold values refer to certain method is better than others

Table 3 Training accuracy and final validation accuracy of ANN2,

NB, SVM and RF

Model Train Accu. (%) Final Val. Accu. (%)

ANN2 99.30 97:48

NB 85.56 85.71

SVM 95.78 89.93

RF 99:40 95.65

Bold values refer to certain method is better than others
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generalization performance. Especially for the document

classification task for Con Edison, the data distribution

does not stay unchanged among different time periods.

Therefore, the generalization property of the model is of

vital importance to achieve idea performance for our task.

In order to verify our hypothesis that strategy #2 is

better, we design the following experiments to compare

two prediction strategies. Except for the original regulation

dataset we used for training and testing the binary soft

classifiers in Sect. 5.1.2, we use the held-out test dataset to

measure the generalization property of strategies on dif-

ferent datasets with different data distributions. The held-

out test dataset is another dataset provided by Con Edison

which is also the regulatory documents but from another

timeline. Therefore, the data distribution is a little different

from the original train and validation datasets, and it is a

good fit to assess the model’s robustness against the dis-

tribution shift.

For strategy #1, we simply apply the ANN2 classifier

trained in Sect. 5.1.2. For strategy #2, we utilize the soft

voting mechanism, which takes the average of probabilities

of all binary soft classifiers as the final prediction of the

whole binary classification module. Table 4 demonstrates

that strategy #2 indeed generalizes better than strategy #1,

and we choose strategy #2 for our final pipeline design.

Although strategy #1 performs slightly better than strategy

#2 on the original dataset used for training and validation,

it generalizes much worse on the held-out test dataset

compared with the ensembling method. Therefore, we

select the second ensembling strategy when forming the

final pipeline.

5.2 Multi-label classification module

The main role of the multi-label classification module of

the pipeline is to list the departments that are potentially

concerned by the given regulation. To do that we experi-

ment with several models and several different configura-

tions. First, naive ANN models are used as a baseline

which takes bag-of-words as features. Then, we experiment

with LSTM-based models [115], which are effective to

deal with sequential data such as time series or texts.

Finally, we run experiments with more sophisticated

BERT-based models in our experiments. BERT [116] is a

state-of-the-art language representation model that out-

performed its competitors, such as OpenAI GPT, in several

NLP tasks with great margins. During the experiments for

this module, we have used the obligation dataset. For the

experiments, 20% of the dataset is reserved for validation

and the remaining 80% for training.

5.2.1 Experiments with ANN models

For this model type, similar text processing techniques are

applied in the binary classification module, that is, drop-

ping numbers and punctuation, eliminating words based on

their frequency, and creating the feature vector using the

bag-of-words modeling. As a result of dropping the words

based on their frequency on the obligation dataset, we are

left with 8638 different words. Hence, the feature vector

obtained with BoW and the input size of the model is 8638.

In total, we have experimented with two different ANN

models varying in size:

(1) ANN1: ANN model with 1 hidden layer with 500

neurons

(2) ANN2: ANN model with 2 hidden layers with 1000

and 500 neurons, respectively.

Also, in both networks, hidden layers are followed by

ReLU activation functions. Table 5 shows the hyperpa-

rameter search grid used in the experiments.

Hence, there are 72 different training settings for each

model, and networks are trained in each setting for 300

epochs. Among all these settings, Table 7 provides the best

performing results of each model type with corresponding

configurations. Note that best-performing configurations

are selected based on the achieved performance in con-

ventional accuracy score on the validation set, as seen in

Table 6.

The results of the Top-k accuracy scores computed on

the validation set using the model configurations specified

above are provided in Table 7.

Similarly, the results of the nDCG-k scores computed on

the validation set using the model configurations specified

above are provided in Table 8.

Table 4 Accuracy of two strategies on the original and new datasets

Strategy Accuracy %

Original dataset Held-out test dataset

Vanilla strategy 99.02 80.89

Ensembling strategy 96.95 92.78

Bold values refer to certain method is better than others

Table 5 Hyperparameter search grid for ANN models

Hyperparameter Search grid

Learning rate 1e-3, 5e-4, 1e-4

PCA False, 0.7, 0.8, 0.9

Dropout 0.1, 0.3

Weight decay 0, 1e-5, 1e-4
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As it can be seen from Tables 6, 7, 8, although the

ANN2 model achieved higher soft and classical accuracy

scores, the ANN1 model reaches higher scores in terms of

all the top-k accuracy and nDCG-k scores for

k ¼ ½2; 3; 5; 7; 10�.

5.2.2 Experiments with LSTM-based models

Because BoW modeling only captures the information

about the presence of the words and their frequency, it

cannot incorporate the information about the context.

Hence, we turn our focus toward word embeddings and

models that can make use of word embeddings. Particu-

larly, we use LSTM models since they can facilitate long-

range dependencies better than RNN models due to their

internal gates [115]. Because of their superiority over

RNNs, the LSTMs are used as a solution to many NLP

tasks such as machine translation or document classifica-

tion [117].

We use a state-of-the-art LSTM-based classification

model proposed in [118] which comprises a 1-layered

BiLSTM network followed by a max-pooling layer on

concatenated hidden states and a feed-forward network.

The authors report that the proposed model achieves better

accuracy scores compared to other CNN-based and LSTM-

based models in text classification tasks when trained with

proper regularization, hence they refer to their model as

LSTMreg. In accordance with the paper itself, we use

dropout on hidden layers, embedding vectors, and weight

decay. For the word embeddings, we use pretrained

Word2Vec embeddings which capture the semantic word

similarities and estimate continuous vector representations

of words [119]. In Word2Vec, word embeddings are in 300

dimensional space.

The classifier part of the model is again selected from

the ANN1 and ANN2 models explained in 5.2.1. For

ANN1, the following hidden layer sizes are used in the

experiments: [100, 500, 1000]. And for ANN2, the fol-

lowing hidden layer size configurations are searched as part

of the hyperparameter tuning:

[(500, 100), (500, 500), (1000, 100), (1000, 500)]. For

both ANN1 and ANN2, the input layer size is determined

in the same way and it is twice the hidden state size of the

BiLSTM since the feature vector is obtained from max-

pooling of the concatenated hidden states in both direc-

tions. Notice that, the hidden state size of the LSTM model

is varied in the hyperparameter search. Hence, the input

size of the classifier takes the values [1024, 1536, 2048]

when the LSTM hidden state size is [512, 768, 1024]

respectively.

We use a sequence length of 512 for the LSTMreg model

and if a text contains less than 512 tokens we pad it with 0s

and, if it is longer than the sequence length we only take

the first 512 tokens to forward to the model. We experi-

ment with different hidden state sizes [512, 768, 1024],

dropout values [0.1, 0.3] and weight decay ½1e� 6; 1e� 5�
values. The LSTMreg model is trained for 200 epochs with

the Adam optimizer with a learning rate of 1e� 4 and a

batch size of 64.

In the tables below, we provide the details and results of

the best configuration that yields the smallest accuracy

score for both ANN1 and ANN2 classifiers on top of the

LSTMreg model.

As is shown in Tables 9, 10, 11, 12, 13, the LSTMreg

model with the ANN1 classifier outperforms the one with

the ANN2 classifier in terms of classical and soft accuracy

scores. It also achieves better Top-k accuracy and nDCG-

k scores.

5.2.3 Experiments with BERT-based models

Having seen the unsatisfactory accuracy scores obtained on

the validation set using the ANN and LSTM models, we

have also experimented with the models that use a more

Table 6 Best performing model

configurations for ANN models

with soft and conventional

accuracy scores

Model LR PCA DP WD Train

acc. (%)

Val. soft

acc. (%)

Val.

acc. (%)

Val. soft

acc. (%)

ANN1 1e-3 True, 0.8 0.3 1e-5 85.46 90.12 28.22 44.07

ANN2 5e-4 True, 0.9 0.3 1e-5 88.80 94.31 29.71 44.37

Table 7 Top-k accuracy scores obtained on the validation set for

ANN models

Model Top-2

acc. (%)

Top-3

acc. (%)

Top-5

acc. (%)

Top-7

acc. (%)

Top-10

acc. (%)

ANN1 74.10 80.32 86.28 89.26 92.43

ANN2 73.29 80.06 85.34 88.59 91.72

Table 8 nDCG-k scores obtained on the validation set for ANN

models

Model nDCG-2 nDCG-3 nDCG-5 nDCG-7 nDCG-10

ANN1 0.62 0.66 0.69 0.71 0.72

ANN2 0.60 0.63 0.67 0.68 0.69
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advanced model as a base, that is, the BERT model. The

reason why we are going in this direction is that the feature

vectors obtained with BoW modeling does not capture the

contextual information at all since it only depends on the

appearance of the words from the dictionary. BERT model

uses transformers as its core building block; hence, it can

also incorporate contextual information into the word

embeddings. That is, the word bank appearing in bank

account has a different representation than the one in river

bank. Besides, it features bidirectional self-attention layers,

meaning that it can obtain a better relation map in the

attention mechanism compared to the unidirectional ones.

[116]

Although the BERT model is trained on unlabeled

corpus data with masked language modeling and next

sentence prediction tasks, it is possible to make changes in

its output layers and then fine-tune it end-to-end to make

use of the BERT model’s contextual understanding in any

task. [116] Particularly, our task is to classify the depart-

ments to which the given regulatory case belongs, and this

is a document classification task. There are several avail-

able models created by making changes in the BERT

model’s output layer for this type of task. Particularly, for

our use case, this model is called DocBERT which is

proposed in [120]. As it is explained in the paper, this

Table 9 Best performing model configurations for LSTMreg models with soft and conventional accuracy scores

Model Hidden

Size(s)

LSTMreg

Hidden

DP WD Train

acc. (%)

Train soft

acc. (%)

Val. acc. (%) Val soft acc. (%)

LSTMreg ANN1 500 512 0.1 1e-6 77.77 87.25 31.02 50.19

LSTMreg ANN2 1000, 500 1024 0.3 1e-5 86.68 94.29 28.67 43.05

Table 10 Top-k accuracy scores

obtained on the validation set

for LSTMreg models

Top-2 acc. (%) Top-3 acc. (%) Top-5 acc. (%) Top-7 acc. (%) Top-10 acc. (%)

LSTMreg

ANN1

69.55 75.75 83.65 87.12 91.07

LSTMreg

ANN2

63.38 70.87 79.98 83.83 86.94

Table 11 nDCG-k scores

obtained on the validation set

for LSTMreg models

Model nDCG-2 nDCG-3 nDCG-5 nDCG-7 nDCG-10

LSTMreg

ANN1

0.64 0.67 0.70 0.71 0.73

LSTMreg ANN2 0.63 0.66 0.67 0.68 0.70

Table 12 Hyperparameter search grid for the experiments with

DocBERT model

Hyperparameter Search grid

ANN1 hidden layer size 100, 500, 1000

ANN2 hidden layer sizes (500, 500), (1000, 500)

ANN learning rate 1e-5, 1e-4

BERT learning rate 5e-7, 1e-6, 5e-6

Dropout probability 0.1, 0.3, 0.5

Weight decay 0, 1e-7

Table 13 Best performing model configurations for DocBERT models with soft and conventional accuracy scores

Model LRs Hidden size(s) DP WD Train

acc. (%)

Train soft

acc. (%)

Val.

acc. (%)

Val. soft

acc. (%)

DocBERT ANN1 5e-6, 1e-5 100 0.1 0 99.11 99.66 46.53 61.46

DocBERT ANN2 5e-7, 1e-4 500, 500 0.3 1e-7 94.05 97.93 42.10 59.63
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model is simply obtained by inserting a fully connected

layer to the BERT model’s first hidden state from its last

layer which corresponds to the [CLS] token at the output.

Note that for the classification task, insertion of the fully

connected layer to this specific place is suggested by the

authors of the BERT paper. [116]

For our experiments, we used two DocBERT models

which replace the fully connected layer explained in the

previous paragraph with ANN1 and ANN2 models. Recall

that details of these models are explained in Section 5.2.1.

The only change from the explained models is the input

size which is now 768 instead of 8638 since the BERT

model’s states are 768 dimensional vectors. In total, we

experimented with DocBERT models in four different

schemes:

• DocBERT with ANN1 classifier using Adam optimizer

• DocBERT with ANN2 classifier using Adam optimizer

• DocBERT with ANN1 classifier using Adagrad

optimizer

• DocBERT with ANN2 classifier using Adagrad

optimizer

Even though we run experiments with different hyperpa-

rameters in the listed schemes, we observe that the Ada-

grad optimizer does not converge. The motivation for using

the Adagrad optimizer is that we want to finetune the parts

of the BERT and classifier weights that are not updated that

frequently. And similarly, we prefer not to change the well-

updated parts that much. Although this is the main strength

of using the Adagrad optimizer, it drastically underper-

formed compared to the Adam optimizer. Thus, we do not

bother sharing the results obtained with the Adagrad opti-

mizer. In Table 12, we share the hyperparameter search

grid for the experiments with DocBERT models.

Then, in Table 13, we also share the highest accuracy

scores achieved in both schemes (DocBERT with ANN1

and ANN2) in addition to the hyperparameter selections

yielding these results. Again, the best-performing settings

are selected based on the performance of models on the

validation set. Finally, we also provide the results with

Top-k accuracy scores and nDCG scores in Table 14.

As is shown in Tables 13, 14, 15, the DocBERT model

with the ANN1 classifier outperforms the one with the

ANN2 classifier in terms of classical and soft accuracy

scores, whereas it obtains inferior results in Top-k accuracy

and nDCG-k scores.

5.2.4 Multilabel classification final remarks

In Table 16, we share the results of best-performing ANN,

LSTMreg and DocBERT models based on their conven-

tional accuracy scores and top-k accuracy scores on the

validation set.

As can be seen, the transformer-based BERT variant

DocBERT model is better than LSTMreg and ANN models

in terms of accuracy scores. DocBERT model attains

around 17% and 15% more accuracy than the best per-

forming ANN and LSTMreg models, respectively. The

accuracy metric essentially highlights the confidence of the

model in exactly predicting the ground truth labels which

indicates how much generalization capability the model

acquired in a certain manner. The superiority of DocBERT

is also present in the other metrics as well. This also

demonstrates the effectiveness of the transformers in han-

dling long-range dependencies and extracting semantic

information. Hence, we use the DocBERT model with the

ANN1 classifier in our multilabel classification module, as

part of our pipeline.

5.3 Pipeline results

After combining the binary and multi-label modules as it is

shown in Fig. 1, we obtain the pipeline for document

elimination and classification. Then, we evaluate the per-

formance of our pipeline on both the previous train þ val

set and the held-out test set (Table 17). Note that we only

report the classical accuracy for the binary classification

module and the top-k accuracy score for the multi-label

classification module since these are the most inter-

pretable ones. Regarding the top-k accuracy score, we only

report for k ¼ ½2; 3; 5� since these are selected as the most

Table 14 Top-k accuracy scores obtained on the validation set with

the same DocBERT models

Model Top-2

acc. (%)

Top-3

acc. (%)

Top-5

acc. (%)

Top-7

acc. (%)

Top-10

acc. (%)

DocBERT

ANN1

74.34 80.00 84.72 87.64 91.10

DocBERT

ANN2

75.21 81.23 88.32 90.52 93.14

Table 15 nDCG-k scores obtained on the validation set with the same

DocBERT models

Model nDCG-2 nDCG-3 nDCG-5 nDCG-7 nDCG-10

DocBERT

ANN1

0.65 0.68 0.71 0.73 0.74

DocBERT

ANN2

0.65 0.69 0.72 0.74 0.75
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reasonable k values by the Con Edison team at the opera-

tional level.

Although it might be insignificant to share the results on

the train ? validation set for the binary classification

module, we would like to emphasize the accuracy scores

achieved on the multi-label classification part and the

overall pipeline. This is mainly because the evaluation of

the pipeline and its components are carried out with the

regulations, meaning that the multi-label classification part

has not exactly seen this data but only some sections of its

text. The results show that there is not much deviation from

the results obtained on the validation portion of the obli-

gation dataset.

We also test this pipeline on the held-out test set.

Table 18 shows the pipeline results obtained on this

dataset.

Table 17 and Table 18 together illustrate that there is a

drop in the accuracy scores of the multi-label module and

the overall pipeline. It is mainly caused by a large number

of data samples with only Others as its associated label in

the new held-out test dataset. However, this is not the case

in the training set, which implies that there is a change in

the distribution of the new held-out dataset compared with

the previous one. We also assess the pipeline by ignoring

these samples and provide obtained results in Table 19.

There is a considerable increase in the performance of the

multi-label classification module since the distributions

between the train set and held-out set become closer to

each other. Overall, the pipeline achieves success in both

determining whether a regulation is applicable to Con

Edison or not and, finding the most related departments

that are concerned by the applicable regulations.

6 Conclusion

Our research proposes a deep learning-based automatic

document classification system that aims to efficiently

allocate text regulations to the relevant departments in Con

Edison. The system achieves high accuracy scores, with

over 90% accuracy for binary classification and over 80%

Top-3 accuracy for multi-task classification on the given

datasets. The pipeline can be used in various contexts

where document classification is required, but it has a

limitation in classifying long documents, as the DocBERT

model used for multi-label tasks can only process docu-

ments with fewer than 512 tokens. Currently, the system

only considers the last 512 tokens of a long document for

multi-label classification, which may not be suitable for

applications with much longer documents. To overcome

this issue, we plan to incorporate embedding or text

abstraction techniques in our pipeline for long document

processing in the future.

Table 16 Comparison of best performing multilabel classification

models

Acc. (%) Soft

acc. (%)

Top-2

acc. (%)

Top-3

acc. (%)

Top-5

acc. (%)

ANN 29.71 44.07 74.10 80.06 85.34

LSTMreg 31.02 50.19 69.55 75.75 83.65

DocBERT 46.53 61.46 74.34 80.00 84.72

Table 17 Result of the pipeline and its components on train ? vali-

dation set

Accuracy

k = 2 k = 3 k = 5

Binary module 96.95

Multi-label module 75.43 79.25 84.32

Pipeline 79.69 82.40 85.95

Table 18 Result of the pipeline and its components on the held-out

set

Accuracy

k = 2 k = 3 k = 5

Binary module 92.78

Multi-label module 50.00 54.91 60.66

Pipeline 76.91 77.32 77.80

Table 19 Result of the pipeline and its components on the new held-

out set without the samples that have only Others label

Accuracy

k = 2 k = 3 k = 5

Binary module 96.95

Multi-label module 62.89 69.07 76.29

Pipeline 94.10 94.61 95.21
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Appendix A Detailed Pipeline Figure

In the figure below, the detailed diagram for the pipeline is

provided. See Fig. 9.

Appendix B Binary classifier comparison
on different dataset

We provide the results for four soft classifiers not only with

train and validation dataset accuracy (shown in Table 20),

but also the held-out test dataset. Even though SVM per-

form better on the held-out test dataset, it could not out-

performs other classifiers on the original train and

validation dataset. Moreover, not a single soft classifier

could beat the final ensembling strategy on the held-out test

dataset provided in Section 5.1.3 with held-test accuracy

92%.
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60. Spolaôr N, Cherman EA, Monard MC, Lee HD (2013) A

comparison of multi-label feature selection methods using the

problem transformation approach. Electron Notes Theor Com-

put Sci 292:135–151

61. Read J (2008) A pruned problem transformation method for

multi-label classification. In: Proc 2008 New Zealand Computer

Science Research Student Conference (NZCSRS 2008), vol.

143150, p. 41

62. Prajapati P, Thakkar A, Ganatra A (2012) A survey and current

research challenges in multi-label classification methods. Int J

Soft Comput Eng (IJSCE) 2(1):248–252

63. Santos A, Canuto A, Neto AF (2011) A comparative analysis of

classification methods to multi-label tasks in different applica-

tion domains. Int. J. Comput. Inform. Syst. Indust. Manag. Appl

3:218–227

64. Ben-Baruch E, Ridnik T, Zamir N, Noy A, Friedman I, Protter

M, Zelnik-Manor L (2020) Asymmetric loss for multi-label

classification. arXiv preprint arXiv:2009.14119

65. Davidson J, Liebald B, Liu J, Nandy P, Van Vleet T, Gargi U,

Gupta S, He Y, Lambert M, Livingston B, et al (2010) The

youtube video recommendation system. In: Proceedings of the

Fourth ACM Conference on Recommender Systems,

pp. 293–296

66. Jain H, Prabhu Y, Varma M (2016) Extreme multi-label loss

functions for recommendation, tagging, ranking & other missing

label applications. In: Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, pp. 935–944

67. Kumar P, Thakur RS (2018) Recommendation system tech-

niques and related issues: a survey. Int J Inf Technol

10(4):495–501

68. Chalkidis I, Fergadiotis M, Kotitsas S, Malakasiotis P, Aletras

N, Androutsopoulos I (2020) An empirical study on large-scale

multi-label text classification including few and zero-shot labels.

arXiv preprint arXiv:2010.01653

69. Zhang Y, Wang Y, Liu X-Y, Mi S, Zhang M-L (2020) Large-

scale multi-label classification using unknown streaming ima-

ges. Pattern Recogn 99:107100

70. Zhang M-L, Li Y-K, Liu X-Y, Geng X (2018) Binary relevance

for multi-label learning: an overview. Front Comp Sci

12(2):191–202

71. Babbar R, Schölkopf B (2017) Dismec: Distributed sparse

machines for extreme multi-label classification. In: Proceedings

of the Tenth ACM International Conference on Web Search and

Data Mining, pp. 721–729

72. Babbar R, Schölkopf B (2019) Data scarcity, robustness and

extreme multi-label classification. Mach Learn

108(8):1329–1351

73. Prabhu Y, Varma M (2014) Fastxml: A fast, accurate and

stable tree-classifier for extreme multi-label learning. In: Pro-

ceedings of the 20th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pp. 263–272

74. Liu J, Chang W-C, Wu Y, Yang Y (2017) Deep learning for

extreme multi-label text classification. In: Proceedings of the

40th International ACM SIGIR Conference on Research and

Development in Information Retrieval, pp. 115–124

75. Zhang W, Yan J, Wang X, Zha H (2018) Deep extreme multi-

label learning. In: Proceedings of the 2018 ACM on Interna-

tional Conference on Multimedia Retrieval, pp. 100–107

76. You R, Zhang Z, Wang Z, Dai S, Mamitsuka H, Zhu S (2019)

Attentionxml: Label tree-based attention-aware deep model for

high-performance extreme multi-label text classification. Adv

Neural Inform Process Syst 32

77. Bhatia K, Jain H, Kar P, Varma M, Jain P (2015) Sparse local

embeddings for extreme multi-label classification. Adv Neural

Inform Process Syst 28

78. Jalan A, Kar P (2019) Accelerating extreme classification via

adaptive feature agglomeration. arXiv preprint arXiv:1905.

11769

79. Evans N, Levinson SC (2009) The myth of language universals:

language diversity and its importance for cognitive science.

Behav Brain Sci 32(5):429–448

80. Black M (2019) The importance of language. Cornell University

Press

81. Anderson SR (2010) How many languages are there in the

world. Linguistic Society of America

82. Nadkarni PM, Ohno-Machado L, Chapman WW (2011) Natural

language processing: an introduction. J Am Med Inform Assoc

18(5):544–551

83. Hirschberg J, Manning CD (2015) Advances in natural language

processing. Science 349(6245):261–266

84. Chowdhary K (2020) Natural language processing. Fundam

Artif Intell 603–649

85. Yadav A, Vishwakarma DK (2020) Sentiment analysis using

deep learning architectures: a review. Artif Intell Rev

53(6):4335–4385

86. Behera B, Kumaravelan G, Kumar P (2019) Performance eval-

uation of deep learning algorithms in biomedical document

classification. In: 2019 11th International Conference on

Advanced Computing (ICoAC), pp. 220–224. IEEE

87. Rahman S, Chakraborty P (2021) Bangla document classifica-

tion using deep recurrent neural network with bilstm. In: Pro-

ceedings of International Conference on Machine Intelligence

and Data Science Applications, pp. 507–519. Springer

88. Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy

O, Stoyanov V, Zettlemoyer L (2019) Bart: Denoising sequence-

to-sequence pre-training for natural language generation, trans-

lation, and comprehension. arXiv preprint arXiv:1910.13461

89. Hashimoto TB, Zhang H, Liang P (2019) Unifying human and

statistical evaluation for natural language generation. arXiv

preprint arXiv:1904.02792

90. Anandarajan M, Hill C, Nolan T (2019) Text preprocessing. In:

Practical Text Analytics, pp. 45–59. Springer, Cham

Neural Computing and Applications (2023) 35:17167–17185 17183

123

http://arxiv.org/abs/1707.04916
http://arxiv.org/abs/2009.14119
http://arxiv.org/abs/2010.01653
http://arxiv.org/abs/1905.11769
http://arxiv.org/abs/1905.11769
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1904.02792


91. Zhang Y, Jin R, Zhou Z-H (2010) Understanding bag-of-words

model: a statistical framework. Int J Mach Learn Cybern

1(1):43–52

92. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient esti-

mation of word representations in vector space. arXiv preprint

arXiv:1301.3781

93. Kim Y (2014) Convolutional neural networks for sentence

classification. In: Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP),

pp. 1746–1751. Association for Computational Linguistics,

Doha, Qatar. https://doi.org/10.3115/v1/D14-1181. https://aclan

thology.org/D14-1181

94. Graves A, Schmidhuber J (2005) Framewise phoneme classifi-

cation with bidirectional lstm and other neural network archi-

tectures. Neural Netw 18(5–6):602–610

95. Huang Z, Xu W, Yu K (2015) Bidirectional lstm-crf models for

sequence tagging. arXiv preprint arXiv:1508.01991

96. Hu D (2019) An introductory survey on attention mechanisms in

nlp problems. In: Proceedings of SAI Intelligent Systems Con-

ference, pp. 432–448 . Springer

97. McCann B, Bradbury J, Xiong, C., Socher, R (2017) Learned in

translation: Contextualized word vectors. Adv Neural Inform

Process Syst 30

98. Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K,

Zettlemoyer L (2018) Deep contextualized word representa-

tions. In: Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, Volume 1 (Long

Papers), pp. 2227–2237. Association for Computational Lin-

guistics, New Orleans, Louisiana. https://doi.org/10.18653/v1/

N18-1202. https://aclanthology.org/N18-1202

99. Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal

P, Neelakantan A, Shyam P, Sastry G, Askell A et al (2020)

Language models are few-shot learners. Adv Neural Inf Process

Syst 33:1877–1901

100. Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: Pre-

training of deep bidirectional transformers for language under-

standing. arXiv preprint arXiv:1810.04805

101. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez

AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need.

Adv Neural Inform Process Syst 30

102. Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis

M, Zettlemoyer L, Stoyanov V (2019) Roberta: A robustly

optimized bert pretraining approach. arXiv preprint arXiv:1907.

11692

103. He P, Liu X, Gao J, Chen W (2020) Deberta: Decoding-en-

hanced bert with disentangled attention. arXiv preprint arXiv:

2006.03654

104. Pappagari R, Zelasko P, Villalba J, Carmiel Y, Dehak N (2019)

Hierarchical transformers for long document classification. In:

2019 IEEE Automatic Speech Recognition and Understanding

Workshop (ASRU), pp. 838–844. IEEE

105. Yang Z, Yang D, Dyer C, He X, Smola A, Hovy E (2016)

Hierarchical attention networks for document classification. In:

Proceedings of the 2016 Conference of the North American

Chapter of the Association for Computational Linguistics:

Human Language Technologies, pp. 1480–1489

106. Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M,

Zhou Y, Li W, Liu PJ (2020) Exploring the limits of transfer

learning with a unified text-to-text transformer. J Mach Learn

Res 21(1):5485–5551

107. Roberts A, Chung HW, Levskaya A, Mishra G, Bradbury J,

Andor D, Narang S, Lester B, Gaffney C, Mohiuddin A et al

(2022) Scaling up models and data with t5x and seqio. arXiv

preprint arXiv:2203.1718913

108. Xue L, Barua A, Constant N, Al-Rfou R, Narang S, Kale M,

Roberts A, Raffel C (2022) Byt5: towards a token-free future

with pre-trained byte-to-byte models. Trans Assoc Compu

Linguist 10:291–306

109. Zhuang H, Qin Z, Jagerman R, Hui K, Ma J, Lu J, Ni J, Wang X,

Bendersky M (2022) Rankt5: Fine-tuning t5 for text ranking

with ranking losses. arXiv preprint arXiv:2210.10634

110. Yu C, Shen Y, Mao Y (2022) Constrained sequence-to-tree

generation for hierarchical text classification. In: Proceedings of

the 45th International ACM SIGIR Conference on Research and

Development in Information Retrieval, pp. 1865–1869

111. Chen X, Xu J, Wang A (2020) Label representations in mod-

eling classification as text generation. In: Proceedings of the 1st

Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics and the 10th International Joint

Conference on Natural Language Processing: Student Research

Workshop, pp. 160–164. Association for Computational Lin-

guistics, Suzhou, China . https://aclanthology.org/2020.aacl-srw.

23

112. Qin C, Joty S. Lfpt5: A unified framework for lifelong few-shot

language learning based on prompt tuning of t5. In: International

Conference on Learning Representations

113. Lester B, Al-Rfou R, Constant N (2021) The power of scale for

parameter-efficient prompt tuning. In: Proceedings of the 2021

Conference on Empirical Methods in Natural Language Pro-

cessing, pp. 3045–3059

114. He Y, Zheng S, Tay Y, Gupta J, Du Y, Aribandi V, Zhao Z, Li

Y, Chen Z, Metzler D, et al (2022)Hyperprompt: Prompt-based

task-conditioning of transformers. In: International Conference

on Machine Learning, pp. 8678–8690. PMLR

115. Hochreiter S, Schmidhuber J (1997) Long short-term memory.

Neural Comput 9(8):1735–1780

116. Devlin J, Chang M, Lee K, Toutanova K (2018) BERT: pre-

training of deep bidirectional transformers for language under-

standing. CoRR abs/1810.04805arxiv:1810.04805

117. Smagulova K, James A (2019) A survey on lstm memristive

neural network architectures and applications. Eur Phys J Spec

Top. https://doi.org/10.1140/epjst/e2019-900046-x

118. Adhikari A, Ram A, Tang R, Lin J (2019) Rethinking complex

neural network architectures for document classification. In:

Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short

Papers), pp. 4046–4051. Association for Computational Lin-

guistics, Minneapolis, Minnesota. https://doi.org/10.18653/v1/

N19-1408.https://aclanthology.org/N19-1408

119. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient esti-

mation of word representations in vector space. arXiv preprint

arXiv:1301.3781

120. Adhikari A, Ram A, Tang R, Lin J (2019) Docbert: BERT for

document classification. CoRR abs/1904.08398arxiv:1904.

08398

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

17184 Neural Computing and Applications (2023) 35:17167–17185

123

http://arxiv.org/abs/1301.3781
https://doi.org/10.3115/v1/D14-1181
https://aclanthology.org/D14-1181
https://aclanthology.org/D14-1181
http://arxiv.org/abs/1508.01991
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://aclanthology.org/N18-1202
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/2203.17189
http://arxiv.org/abs/2210.10634
https://aclanthology.org/2020.aacl-srw.23
https://aclanthology.org/2020.aacl-srw.23
https://doi.org/10.1140/epjst/e2019-900046-x
https://doi.org/10.18653/v1/N19-1408.
https://aclanthology.org/N19-1408
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1904.08398
http://arxiv.org/abs/1904.08398


Authors and Affiliations

Tolga Dimlioglu1 • Jing Wang1 • Devansh Bisla1 • Anna Choromanska1 • Simon Odie2 • Leon Bukhman2 •

Afolabi Olomola2 • James D. Wong2

& Jing Wang

jw5665@nyu.edu

Tolga Dimlioglu

td2249@nyu.edu

Devansh Bisla

bisla@nyu.edu

Anna Choromanska

ac5455@nyu.edu

Simon Odie

ODIES@coned.com

Leon Bukhman

BukhmanL@coned.com

Afolabi Olomola

OLOMOLAA@coned.com

James D. Wong

WONGJA@coned.com

1 Department of Electrical and Computer Engineering, New

York University, 5 Metro Tech, Brooklyn, NY 11201, USA

2 Research and Development Department, et al., Consolidated

Edison Company of New York Inc. (Con Edison), 4 Irving

Place, New York, NY 10003, USA

Neural Computing and Applications (2023) 35:17167–17185 17185

123

http://orcid.org/0000-0003-3779-0301

	Automatic document classification via transformers for regulations compliance management in large utility companies
	Abstract
	Introduction
	Literature review
	Binary classification
	Multi-label classification
	Natural language processing
	Transformer-based models


	Data analysis
	Train and validation dataset
	Regulations
	Obligations

	Held-out test dataset

	Evaluation metrics
	Accuracy score (%)
	Soft accuracy score (%)
	Top-k accuracy score (%)
	nDCG-k score

	Pipeline
	Binary classification module
	Text processing
	Binary soft classifiers
	Final prediction for binary classification

	Multi-label classification module
	Experiments with ANN models
	Experiments with LSTM-based models
	Experiments with BERT-based models
	Multilabel classification final remarks

	Pipeline results

	Conclusion
	Appendix A Detailed Pipeline Figure
	Appendix B Binary classifier comparison on different dataset
	Data availability
	References




