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Abstract
Sketch semantic segmentation presents great challenges, since sketches have simpler appearances and more levels of

abstraction than natural images. To overcome these challenges, we propose a sketch semantic segmentation method.

Concretely, we treat a sketch as a 2D point set and exploit the structures of strokes and the spatial position relationship

among 2D points to develop a novel local feature aggregation module. The novel local feature aggregation module encodes

informative local features, which are highly useful to analyze semantics. And we define ‘‘stroke distance’’ to balance the

two-dimensional spatial distributions of sketches and the internal structures of strokes. Simultaneously, we design a

segment-level self-attention module to establish and enhance the relationship between segments by encoding the contents

and positions of segment features. Further, based on the above two modules, we construct a similar encoder–decoder

structure with two sub-branches, which retains the features of the significant points and integrates the features of several

intermediate stages by utilizing a global multi-scale mechanism. Finally, the two outputs of the two sub-branches are fused

to obtain the final sketch semantic segmentation result. Extensive experiments on SPG and SketchSeg-150K show that our

method achieves state-of-the-art results.

Keywords Sketch semantic segmentation � Novel local feature aggregation � Segment-level self-attention �
Encoder–decoder structure � Global multi-scale mechanism

1 Introduction

Freehand sketching is one of the most intuitive and con-

venient communication ways, which has been popular

since ancient times. In recent years, people has given rise to

the creations of sketches by this way, with the popularity of

touch-screen devices (e.g. tablets and smartphones) and the

emergence of drawing programs. Obviously different from

natural images, sketches are composed of several strokes

drawn by humans instead of being captured by cameras.

Accordingly, the contents of sketches have the sparsity and

present multiple levels of abstraction and different drawing

styles. At present, the studies related to sketches mainly

include sketch recognition [1–3], sketch-based image

retrieval [4–6], sketch-based 3D object retrieval [7, 8],

sketch semantic segmentation [9, 10], sketch caption [11]

and sketch synthesis [12, 13]. Among them, sketch

semantic segmentation is the understanding for a sketch

from the fine-grained perspective and part perspective,

which is of great help to analyze the content of the sketch
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and plays an important role in the realization of other

sketch tasks. Sketch semantic segmentation facilitates the

discovery of the abstract drawing mechanism and the

development of human vision perceptron. Besides, sketch

semantic segmentation can automatically and efficiently

label part or whole semantics to provide users with a

friendly human-computer interaction manner in the com-

puter-aided design system [14, 15]. As a preprocessing

step, sketch semantic segmentation can also assist users to

accomplish fine-grained retrieval and to improve the per-

formance of sketch tasks. Figure 1 shows the application of

sketch semantic segmentation to fine-grained image or 3D

retrieval.

Early sketch semantic segmentation mainly depends on

hand-crafted features and traditional complicated models

such as radial basis functions [16], graph models [17] and

conditional random field (CRF) [18]. These methods han-

dle with large varieties in the appearances of sketches

difficultly, with the limited representative power and high

computational cost. Consequently, researchers begin to

introduce deep neural network into sketch semantic seg-

mentation task. According to the specific formats of sketch

inputs, these methods are divided into three categories

including sequence-based methods, image-based methods

and point-based methods. The sequence-based methods

[19–21] regard a sketch as a stroke sequence to encode the

sketch based on a sequence model such as a recurrent

neural network (RNN). The image-based methods [22, 23]

directly transform a sketch semantic segmentation issue

into an image semantic segmentation issue, which is solved

by establishing convolution neural network (CNN)

combined with sketch characteristics. This kind of methods

treat a sketch as a static image, so they discard stroke

information. The point-based methods [10, 24, 25] regard a

sketch as a set of points and generate a point-wise feature

map for semantic segmentation by continuously aggregat-

ing local features and establishing an encoder–decoder

structure based on these features. For convenience, we call

the component that can continuously aggregate local fea-

tures as a local feature aggregation module. Obviously, the

local feature aggregation module is significant to solve the

sketch semantic segmentation issue. However, the common

local feature aggregation modules perceive the surrounding

regions of the sampling points based on Euclidean distance,

which ignores the internal structures of strokes and the

continuity of strokes. Therefore, we design a novel local

feature aggregation (NLFA) module to perceive the sur-

rounding points by defining ‘‘stroke distance’’. In addition,

most common local feature aggregation modules lose the

relative position information when searching the sur-

rounding points of the sampling points, which obviously

violates the important idea of extracting local features by

CNN. Accordingly, we capture the relative position infor-

mation and stroke information to strengthen the related

semantics. Compared with the common local feature

aggregation modules, the encoded information in the pro-

posed module has richer contents, which are obviously

helpful to understand semantics.

Generally, the relationship between segments can

describe a sketch partly. However, common sketch

semantic segmentation methods pay little attention to the

relationship between segments. Thus, we design a segment-

Fig. 1 The applications of sketch semantic segmentation. Humans

can retrieve some images and 3D objects according to the labeling

details or parts. One possible solution is that we use sketch semantic

segmentation method to obtain the important concerned semantics

and then improve the ranking of images with the concerned semantics

in the retrieval results
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level self-attention (SLSA) module based on the idea of

multi-head self-attention by encoding the contents and

positions of segment features. The SLSA module can dis-

cover the relationship between segments automatically for

capturing the internal structure of a sketch.

Further, we propose a sketch semantic segmentation

method using the NLFA module and the SLSA module.

Specifically, the method is based on a similar encoder–

decoder structure with two sub-branches named point-level

sub-branch and segment-level sub-branch. In the encoding

part, the NLFA module is exploited to extract informative

local features. In the decoding part, a global multi-scale

mechanism is exploited to aggregate the local features and

several intermediate-stage features as global features.

What’s more, we only perform a dimension reduction

operation to label each point in the point-level sub-branch

while we establish and enhance the segment-level rela-

tionship in the segment-level sub-branch. Then, the point-

level sub-branch and the segment-level sub-branch con-

sume global features to generate two sketch semantic

segmentation maps. Finally, the two maps are fused to

obtain the final segmentation result.

In short, the main contributions of this paper could be

summarized as the following threefold. (1) We develop a

NLFA module to capture local features of the sampling

points adequately. Compared with existing local feature

aggregation modules, it is a unique local module that fully

considers the position information of the sampling points

and the internal structures of strokes. (2) We design a

SLSA module to establish and enhance the relationship

between segments. Both the local and global position

information of each segment are encoded as the position

embedding vectors to describe the internal structures of

sketches more precisely. (3) We construct a similar enco-

der–decoder structure with two sub-branches and propose a

sketch semantic segmentation method based on the struc-

ture. The proposed method realizes a global multi-scale

mechanism for the first time, which fully integrates the

sketch features of several intermediate stages. Most

importantly, the proposed method labels the semantics of

each point from a point-level perspective and a segment-

level perspective simultaneously, which is rarely involved

in the previous sketch semantic segmentation methods.

The rest of this article is organized as follows: The

related work is discussed in Sect. 2. The proposed sketch

semantic segmentation method is described in Sect. 3;

Sect. 4 states the experimental operations and results;

Sect. 5 summarizes the full texts and future prospects.

All the significant abbreviations and the corresponding

full names used in this work are listed in Table 1.

2 Related work

Sketch semantic segmentation is essentially to classify

each point of a sketch. Labeling each point as different

semantics brings benefits to many applications such as

sketch-based image retrieval [4–6], sketch caption [11] and

sketch scene segmentation [9]. Many researchers focus on

this research. Sun et al. [17] propose a novel sketch seg-

mentation method by using the low-level perception based

on the proximity and the high-level knowledge based on

the past experience. Huang et al. [26] develop a data-driven

approach by designing a mixed integer programming and

using 3D template models. Schneider et al. [18] utilize a

heuristic method to establish the graph structures of dif-

ferent strokes and calculate a semantic labeling map based

on CRF.

At present, most scholars study sketch semantic seg-

mentation based on deep learning. Wu et al. [19] transform

the sketch semantic segmentation issue into a sequence-to-

sequence generation issue and convert the sequence of

strokes into the corresponding semantic labels based on

RNN. Li et al. [22] design an hourglass-shaped CNN

combined with the post-processing steps of multi-label

graph cuts to improve the segmentation results. Among the

deep learning methods, the point-based methods are

becoming more and more popular because of their low

computational cost and high segmentation accuracy. Wang

et al. [24] directly take the sampling points as the input and

propose a multi-column point convolutional neural net-

work. The network uses multiple columns with different

convolution kernel sizes to better capture the sketch

structure. Based on graph convolution neural network,

Yang et al. [10] obtain a semantic segmentation map by

constructing a static graph convolution unit, a dynamic

graph convolution unit and a mix pooling module. Our

method is a sketch semantic segmentation method with

points as the input using NLFA and SLSA. Compared with

the above point-based methods, the proposed method can

Table 1 The abbreviations and the corresponding full names

Abbreviation Full name

NLFA Novel local feature aggregation

SLSA Segment-level self-attention

CRF Conditional random field

RNN Recurrent neural network

CNN Convolution neural network

MLP Multi-layer perceptron

FPS Farthest point sampling

FLOPs Floating point of operations

Neural Computing and Applications (2023) 35:15295–15313 15297

123



achieve more abundant sketch features and take into

account the two-dimensional spatial distributions of sket-

ches and the internal structures of strokes.

Sketch semantic segmentation methods are closely

related to image semantic segmentation methods and partly

follow the development of image semantic segmentation

methods. At present, most of image semantic segmentation

methods are based on deep neural network. Long et al. [27]

transfer a classification network into an end-to-end full

convolution network to generate a pixel-wise output for

semantic segmentation. Vijay et al. [28] propose a deep

convolution encoder–decoder network SegNet. The inno-

vation of SegNet is that the decoder uses pooling indices to

deal with nonlinear up-sampling operations. Chen et al.

[29] develop a DeepLab system by using an atrous algo-

rithm and a fully connected CRF to solve two technical

problems of image labeling including signal down-sam-

pling and spatial invariance. Afterward, they also develop

some variants of DeepLab including deeplabv2 [30],

deeplabv3 [31] and deeplabv3? [32]. Ronneberger et al.

[33] design a more elegant u-shaped framework U-Net for

biomedical image segmentation. The framework captures

the context by a contracting path and realizes precise

localization with a symmetric extending path. Similar to

the DeepLab system, some scholars improve U-Net and

propose attention U-Net [34], U-Net?? [35] and R2U-Net

[36]. Zhang et al. [37] investigate a densely connected

neural architecture search framework, which can directly

search the optimal structure to represent the multi-scale

visual information over a large-scale target dataset.

Although the above methods have achieved the impressive

performance in the field of image semantic segmentation,

for the task of sketch semantic segmentation, these meth-

ods generally have the disadvantages of more parameters

and higher computational cost. Moreover, for the sparsity

of sketches, a large number of blank spaces can be ignored

[24], so it is not effective to directly generalize image

semantic segmentation methods to sketch field.

3 Methodology

3.1 Overview of the proposed method

Given the sampling points of a sketch, sketch semantic

segmentation aims to classify these sampling points so that

the points of the same type correspond to the same

semantic part of the sketch. To accomplish this task, we

propose a sketch semantic segmentation method using a

NLFA module and a SLSA module. Figure 2 shows the

pipeline of the proposed method with a similar encoder–

decoder structure. A sketch is converted into a point set

using the farthest point sampling method. The encoding

part is used to extract deep features of the point set, and the

decoding part generates a semantic segmentation map

according to these features. Specifically, the NLFA module

determines the surrounding regions of the sampling points

using Euclidean distance or ‘‘stroke distance’’ randomly, so

that the proposed method can better adapt to the two-di-

mensional spatial distributions of sketches and the internal

structures of strokes. Then, the NLFA module extracts rich

local features such as absolute position information, rela-

tive position information and stroke information, which

give better play to the performance of point-based modal-

ity. In general, the encoding part is composed of four

NLFA modules which correspond to the first four stages of

the similar encoder–decoder structure while the decoding

part is composed of five stages. The outputs of four inter-

mediate stages are concatenated to feed into two different

sub-branches for the final semantic segmentation result.

There are two loss functions at the ends of the sub-branches

totally, which are combined together in the training pro-

cess. The joint loss is expressed in Eq. (1).

L ¼ Lpoint�level þ Lsegment�level ð1Þ

Lpoint�level is a cross-entropy loss for learning point-level

semantics at the point-level sub-branch. The inputs of the

loss are a predicted semantic segmentation map and the

ground-truth semantic segmentation map with [B, N, C]

dimension, where B is batch size, N is the number of

sampling points, and C is the number of semantic labels.

Lpoint�level is expressed in Eq. (2).

Lpoint�level ¼ �
XB

i¼1

XN

j¼1

XC

k¼1

yi;j;k logðbyi;j;kÞ ð2Þ

where yi;j is a one-hot vector. yi;j;k is equal to 1 when the

label of yi;j is k while all other elements of yi;j are 0.

Lsegment�level is also a cross-entropy loss to learn the

semantics of each segment. Its input is the output of the

SLSA module to enhance and learn the relationship

between segments. Similar to the point-level loss,

Lsegment�level is defined in Eq. (3).

Lsegment�level ¼ �
XB

i¼1

XS

j¼1

XC

k¼1

yi;j;k logðbyi;j;kÞ ð3Þ

where S represents the number of segments. From the

above discussion, it can be seen that the proposed method

is mainly realized by a NLFA module, a SLSA module and

a similar encoder–decoder structure based on the two

modules. We will detail these two modules and the struc-

ture in the following texts.

15298 Neural Computing and Applications (2023) 35:15295–15313

123



3.2 Novel local feature aggregation module

Local feature aggregation module is an important compo-

nent of a sketch semantic segmentation method with points

as the input. The internal process of NLFA module is

shown in Fig. 3. For convenience, we ignore the parameter

batch size B. It can be seen from Fig. 3 that the input point

pi uses a perception procedure P to perceive the sur-

rounding regions of pi using different dilated rates r. Based

on the position relationship between the surrounding points

and the input point pi, a feature calculation procedure C is

used to encode the sketch features with wealthy informa-

tion. Finally, the encoding procedure is completed by

multi-layer perceptron and max-pooling operation. Thus, a

NLFA module mainly includes a region perception

procedure P and a feature calculation procedure C. The

NLFA module acts on all center points and encodes local

features by acquiring several neighboring points around the

center points.

3.2.1 Region perception procedure

The region perception procedure plays a crucial role when

the sampling points perceive their surrounding regions in a

local feature aggregation module. The common region

perception procedure based on Euclidean distance com-

bined with K-nearest neighbor algorithm is shown in

Fig. 4a.

In Fig. 4a, pi(xi, yi) is a center point, and pij(xij, yij)

represents any surrounding point of pi; then, the

Fig. 2 The pipeline of the propose method. The green rectangles are

the encoded features, and the orange rectangles are the decoded

features. The NLFA module indicates a novel local feature aggrega-

tion module, and the SLSA module indicates a segment-level self-

attention module. MLP is a multi-layer perception, and the dotted

lines are concatenation operations. PL output is a point-level sketch

semantic segmentation map, and SL output is a segment-level sketch

semantic segmentation map. FPS is the farthest point sampling

method

Fig. 3 The internal process of encoding sketch features by a NLFA

module. P represents a perception procedure for points, which

perceives the surrounding points of the sampling point pi by using

Euclidean distance or ‘‘stroke distance’’ combined with the K-nearest
neighbor algorithm. C represents a feature calculation procedure,

which is utilized to collect and calculate distance information, angle

information, stroke information, etc. MLP stands for a multi-layer

perceptron. MP stands for a max-pooling operation. � is a concate-

nation operation. r is a dilated rate to realize a multi-scale technology,

where r is set to 0 and 1. N � indicates that the process in the red

dotted box is performed N times due to N points
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surrounding region Pik={pi1, pi2,..., pik} of pi is calculated

by Eq. (4).

Pik ¼ argmin
pi1;pi2;:::;pik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xijÞ2 þ ðyi � yijÞ2

q
ð4Þ

where argmin represents gaining the k points corresponding

to the k shortest distances. Although the surrounding

regions obtained by the above perception procedure con-

form to the two-dimensional spatial distributions of sket-

ches, it ignores the stroke structures of sketches. Therefore,

we propose to obtain the surrounding regions based on

‘‘stroke distance’’ combined with the K-nearest neighbor

algorithm. Specifically, ‘‘stroke distance’’ is defined in

Eq. (5).

Pik ¼ argmin
pi1;pi2;:::;pik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xijÞ2 þ ðyi � yijÞ2

q
; si ¼ sij

m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xijÞ2 þ ðyi � yijÞ2

q
; si 6¼ sij

8
><

>:

ð5Þ

where pi(xi, yi) is a center point, pij(xij, yij) is any point

around pi, si and sij represent the two strokes corresponding

to pi and pij, m is a scaling factor and m satisfies Eq. (6).

m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xijÞ2 þ ðyi � yijÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ h2

p
ð6Þ

where w and h are the width and height of the sketch.

Equations (5) and (6) indicate that the ‘‘stroke distance’’ is

equal to the traditional Euclidean distance when pi and pij
belong to the same stroke while the ‘‘stroke distance’’ is

increased evidently when they do not belong to the same

stroke. In other words, the NLFA module can perceive the

surrounding regions along the direction of a stroke, which

makes our method consider the continuity of strokes and is

conducive to perceive the stroke structure. The proposed

perception procedure is shown in Fig. 4b. The NLFA

module randomly selects either one of these two perception

procedures, which leads to taking into account the two-

dimensional spatial distributions and the continuity of

strokes simultaneously.

To enlarge the perception region of each sampling point,

we introduce multi-scale technology based on the idea of

dilated convolution [38]. Assuming that any point pi in the

NLFA module has several perception regions with different

dilated rates r, the perception region with r can be

expressed as { pij j pij 2 Pik�ðrþ1Þ, j % (r?1) ==0 }, that is,

the perception region evenly obtains the first k points

closest to the sampling point with the step of r?1. The

realization of the above multi-scale perception regions is

only suitable for testing, but the perception regions with

different dilated rates r are more effective to obtain k sur-

rounding points by a random selecting method during

training. Figure 5 describes the perception regions using

the common selecting method and the random selecting

method.

In Fig. 5a, {pi1, pi5, pi9} are the selected points and the

perception region is within the orange dotted line roughly.

In Fig. 5b, three points are randomly selected from {pi1,

pi2,..., pi9} and the perception region can cover the entire

region within the purple dotted line roughly after multiple

iterations.

Fig. 4 The comparison between the common region perception

procedure and the proposed region perception procedure. The black

and red points are the sampling points, and the dotted lines are the

perception regions. a shows a perception region using the common

procedure, while b shows a perception region using the proposed

procedure, where k = 4. The common procedure perceives the

surrounding region according to the two-dimensional spatial distri-

bution around the center point. The proposed procedure perceives the

surrounding region along the corresponding stroke of the center point
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3.2.2 Feature calculation procedure

Feature calculation procedure is employed to handle with

all kinds of sketch information. The common feature cal-

culation procedures mainly collect the coordinates of

points and the sketch features of the intermediate stages

[24, 25]. However, these collected contents are not suffi-

cient for a sketch, which greatly hinders the performance of

sketch semantic segmentation. Obviously, the feature cal-

culation procedure essentially plays the same role as the

convolution kernel of CNN. However, due to the dis-

creteness of the sampling points, the common feature cal-

culation procedures discard some crucial elements when

searching and determining the surrounding points. The

distance information between the sampling points and their

surrounding points, and the angle information are implic-

itly encoded using a traditional convolution kernel. Fig-

ure 6 illustrates the encoded contents. Thus, the feature

calculation procedure of the NLFA module should encode

the distance information and the angle information to

ensure the integrity of the sketch features. Assuming that

the absolute coordinate of the sampling point pi is (xi, yi),

and the absolute coordinate of its any surrounding point pij
is (xij, yij). The distance distij between the sampling point pi
and pij can be expressed in Eq. (7).

distij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xijÞ2 þ ðyi � yijÞ2

q
ð7Þ

Similarly, the angle information of pi and pij is calculated

by Eq. (8).

hij ¼ arctan
yij � yi
xij � xi

� �
ð8Þ

In Eqs. (7) and (8), the coordinates of all points are in the

Cartesian coordinate system. The proposed feature calcu-

lation procedure ensures that the sketch features do not

ignore the crucial context information, which is conductive

to learn the complex geometric patterns. Further, the

detailed feature calculation procedure of the NLFA module

is expressed in Eq. (9).

Fij ¼ dfMfpi � ðpij � piÞ � fi � ðfij � fiÞ � distij � hij � sijgg
ð9Þ

Fig. 5 The perception regions using different selecting methods. pi is
a center point, {pi1; pi2; :::; pin} is the n points closest to pi. For ease of
understanding, n, k, r are set to 9, 3, 3 in order. a shows a perception

region using the common selecting method. b shows a perception

region using the random selecting method. The perception region in

b is much larger than the perception region in a

Fig. 6 The implicitly encoded contents using a traditional convolu-

tion kernel. The orange region is a traditional convolution kernel of

3�3 size, and {w1;w2; :::;w9} are the weights of the kernel. The green

region is a region of 5�5 size. It can be clearly observed that the

distances between the center point pi and {pi1; pi2; :::; pi8} are {1,
ffiffiffi
2

p
,

1,
ffiffiffi
2

p
, 1,

ffiffiffi
2

p
, 1,

ffiffiffi
2

p
}, and the angles between pi and {pi1; pi2; :::; pi8}

are { 0�, 45�,..., 135� }
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where fi and fij represent the intermediate-stage features, sij
represents the stroke information, � is a concatenation

operation, M is a multi-layer perceptron, and d indicates

the ReLU activation function. From Eq. (9), it can be

concluded that the NLFA module spans rich context

information. Compared with the common local feature

aggregation modules, we supplement our module with the

more informative contexts, involving the intermediate-

stage features after normalization, distance information,

angle information and stroke information according to the

encoding idea of convolutional kernel, the basic properties

of point format data, and the stroke structure of a sketch.

And we define ‘‘stroke distance’’, which enables the

obtained local regions to extend along the stroke directions

and better perceive the stroke structures.

3.3 Segment-level self-attention module

Supposing the inputs of the SLSA module are the sketch

features with [B, N, D] dimension, where B is batch size, N

represents the number of the sampling points and D indi-

cates the number of channels. We divide several points on

the same stroke into one segment. Each sketch is divided

into S segments, the initial feature dimension of each

segment is [B, S, D �N/S]. The new segment features with

the dimension [B, S, D0] can be computed by feeding the

initial segment features into a multi-layer perceptron. We

aim to learn the relationship between segments for

describing the internal structure of a sketch. As we all

know, multi-head self-attention mechanism can be applied

to calculate the relationship between any two objects and is

widely utilized in the fields of natural language processing

and computer vision. The impressive success of multi-head

self-attention mechanism is originated from the correlation

between any two objects and the long dependence between

them. The multi-head self-attention mechanism makes

neural networks pay attention to the characteristics of

multiple subspaces at the same time. Inspired by the above

observations, based on the idea of multi-head self-atten-

tion, we design a SLSA module to learn and strengthen the

internal structure of a sketch through taking into account

segment features and sketch characteristics. The specific

calculation method is shown in Fig. 7.

In Fig. 7, given the segment features fs[S, D
0], the query

vector vq[H, D
00/H, S] and the key vector vk[H, D

00/H, S] are

obtained by Eqs. (10) and (11).

vq ¼T ðMðfsÞÞ ð10Þ

vk ¼T ðMðfsÞÞ ð11Þ

where M stands for a multi-layer perception, its output

dimension is D’’, and T stands for matrix deformation.

Both vq and vk have H subspaces. Simultaneously, the

position information of segments is processed by Eqs. (12)

and (13).

estroke ¼T ðSðpstroke; dstrokeÞÞ ð12Þ

esketch ¼T ðSðpsketch; dsketchÞÞ ð13Þ

where S is a query procedure of the related embedding

dictionary. pstroke and psketch are two one-hot vectors, which

represent the position of one segment in the corresponding

stroke and that in the corresponding sketch, respectively.

The embedding dictionaries dstroke and dsketch are queried

according to pstroke and psketch, then a deformation operation

is performed on the query results to obtain the position

embedding vectors estroke and esketch. The position infor-

mation of a segment in the corresponding stroke pstroke is

local relative to the position information of the stroke in the

corresponding sketch psketch. Thus, the existence of pstroke
and psketch enables the relationship between segments to

capture the local position information in the corresponding

stroke and the global position information in the corre-

sponding sketch, which makes the relationship more

accurate. Furthermore, we need to encode the position

features and content features of segments, respectively.

The relevant equations are expressed in Eqs. (14) and (15).

fp ¼ðestroke þ esketchÞ � vq ð14Þ

fc ¼ T ðvqÞ � vk ð15Þ

where � represents a matrix multiplication, and ? is an

element-wise addition. Finally, the calculation process of

the SLSA module is expressed in Eq. (16).

f 0s ¼ T ðvv � softmaxðfp þ fcÞÞ ð16Þ

where f 0s represents segment features after using the SLSA

module. The SLSA module can focus on sketch features of

multiple subspaces and calculate the correlation of any two

segments through matrix operations and softmax function

for establishing the relationship between segments. Then,

the relationship is further enhanced by capturing crucial

local and global position information of segments, which is

better for learning the internal structure of a sketch more

precisely. The SLSA module provides a basis for sketch

semantic segmentation from a segment perspective.

3.4 Similar encoder–decoder structure

The proposed method is mainly realized by constructing a

similar encoder–decoder structure. The structure has two

significant characteristics. (1) It is a similar encoder–de-

coder structure rather than a real encoder–decoder struc-

ture. (2) It employs a global multi-scale mechanism, that is,
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sketch features of several intermediate stages are aggre-

gated to generate the final semantic segmentation map.

3.4.1 Similar encoder–decoder structure

Figure 2 illustrates this similar encoder–decoder structure,

which is composed of nine stages. The first four stages are

the encoding stages using the NLFA module, and the last

five stages are the decoding stages using nonlinear trans-

formation primarily. Compared with the common encoder–

decoder structure, our structure does not perform the down-

sampling and up-sampling operations on the sampling

points. The number of the sampling points remains

unchanged, which retains the features of the significant

points and further ensures the performance of the proposed

method. Similar to the common encoder–decoder structure,

the number of feature channels in all stages changes from

increasing to decreasing, which illustrates that we enrich

deep features at the front stages and then label each point

after decoding according to the deep features.

3.4.2 Global multi-scale mechanism

The NLFA modules of the encoding stages realize a multi-

scale mechanism based on the idea of dilated convolution.

However, the multi-scale mechanism is limited to local

regions, and the global context information of different

stages is ignored in the process of encoding and decoding

features. From the global perspective, the lack of long

dependence will lead to the feature differences of points

from the same category. Consequently, we establish a

global multi-scale mechanism to aggregate the outputs of

four intermediate stages using skip connections. The four

intermediate stages contain the last encoding stage and the

front three decoding stages, and the details are shown in

Fig. 2. It can be observed from Fig. 2 that the features used

to generate the final semantic segmentation map come from

the features of four stages with different depths, which can

describe multi-scale and global semantic information to

enhance the capability for semantic analysis.

4 Experiments

4.1 Experimental settings

4.1.1 Dataset

We evaluate the proposed method on two widely used

benchmarks named SPG [20] and SketchSeg-150K [21].

The sketches in SPG and SketchSeg-150K are created by

unprofessional painters, which presents the practical sig-

nificance. SPG dataset has a total of 16,000 sketches

spanning 20 categories. SketchSeg-150K dataset has

150,000 sketches spanning 20 categories. Compared with

SPG dataset, SketchSeg-150K has fewer semantic labels

for each category.

4.1.2 Evaluation metrics

At present, almost all sketch semantic segmentation

methods use P-metric and C-metric [26] as the standard-

ized metrics. P-metric is a point-based metric that

describes the proportion of the correctly marked points in

sketches. C-metric is a component-based metric that

describes the proportion of the correctly marked strokes in

sketches. The two evaluation metrics are complementary

and focus on strokes with different lengths.

Fig. 7 The internal process of

the SLSA module. For

simplicity, we discard the

parameter batch size B. MLP

stands for a multi-layer

perceptron, and Fs stands for a

softmax function. T is a matrix

deformation. dsketch and dstroke
represent the embedding

dictionaries
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4.1.3 Implementation details

As shown in Fig. 2, the model of the proposed method is

mainly composed of four encoding stages and five decod-

ing stages. In the encoding stages, there are four NLFA

modules which utilize K-nearest neighbor algorithm and

multi-layer perceptron. In the K-nearest neighbor algo-

rithm, K is equal to 32. In the decoding stages, there are

four multi-layer perceptrons and two sub-branches. The

parameters of the above multi-layer perceptrons are listed

in Table 2 where the two numbers in each bracket repre-

sent the input dimension and the output dimension.

Our method is implemented by Pytorch framework. We

employ Adam algorithm to train the model of the proposed

method for 100 epochs where the initial learning rate is

0.001 and the learning rate is updated to 0.65 times of the

original learning rate every 10 epochs. The batch size is 20,

every 2 points are divided into a segment on SPG, and

every 4 points are divided into a segment on SketchSeg-

150K. We compare the proposed method with the baseline

methods on a server configured with GTX 1080 GPU and

32 G memory.

4.2 Comparative results and analysis

4.2.1 Segmentation accuracy and analysis

To evaluate the effectiveness of the proposed method, we

conduct extensive experiments to compare the proposed

method with the existing representative baseline methods.

The baseline methods mainly fall into three categories. (1)

The sequence-based methods include SPGSeg [20] and

SketchSegNet? [21]. (2) The image-based methods

include FastSeg [22] and U-Net [34]. (3) The point-based

methods include SketchGNN [10] and PointMLP [39].

U-Net and PointMLP are an image semantic segmentation

method and a point cloud semantic segmentation method,

respectively. Given their adaptability to sketch semantic

segmentation, they are added to the comparative experi-

ment. The original SketchGNN is trained for each category

separately. For fairness, we use sketches with all categories

to train SketchGNN together, which is same as other

baseline methods in the comparative experiment. The

experimental results of all the methods on SPG are shown

in Table 3. As can be observed, the proposed method

achieves the average accuracy of 90.6% in P-metric, and

the average accuracy of 86.6% in C-metric, which out-

performs other baseline methods. Specifically, the pro-

posed method exceeds the second best PointMLP by 3.8%

in P-metric and 4.8% in C-metric, respectively. In addition

to the average accuracy, Table 3 also shows the segmen-

tation accuracy of each category. It can be observed that

the proposed method can achieve the highest accuracy in

almost all categories, which shows the high applicability to

most categories of sketches. Besides, the proposed method

has great advantages in the categories of alarm clock, ant,

backpack, calculator crab and ice cream.

The experimental results of the baseline methods on

SketchSeg-150K are shown in Table 4. It should be noted

that the segmentation accuracy of SPGSeg is not shown in

Table 4 because we did not find the original experimental

results and its source code. As listed in Table 4, the pro-

posed method obtains the average accuracy of 96.3% in P-

metric and the average accuracy of 95.0% in C-metric,

which outperforms all baseline methods. In terms of the

average accuracy, the proposed method exceeds the second

best FastSeg by 1.3% in P-metric, and 3.0% in C-metric,

respectively. Compared with other baseline methods, the

performance of the proposed method in C-metric is obvi-

ously superior to that in P-metric. This superiority is

mainly rooted in the fact that the integration of strokes and

the internal structures of sketches are adequately consid-

ered in the NLFA module and the SLSA module, respec-

tively. From the above discussion, it can be concluded that

the proposed method has great advantages no matter in P-

metric or C-metric, which fully verifies the effectiveness.

4.2.2 Parameter size and calculation complexity

The parameter size and calculation complexity are also the

important indicators to reflect the advantage and disad-

vantage of a method. The parameter sizes and calculation

complexity (FLOPs) using different semantic segmentation

methods are shown in Table 5. According to Table 5, the

Table 2 The parameters of all

multi-layer perceptrons in the

proposed method

The encoding part The decoding part

The first layer The second layer The first layer The second layer

The first MLP [7, 32] [32, 32] [384, 256] [256, 256]

The second MLP [135, 64] [64, 64] [384, 256] [256, 256]

The third MLP [263, 64] [64, 64] [320, 128] [128, 128]

The forth MLP [263, 128] [128, 128] [896, 128] [128, 128]
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proposed method has a parameter size of 0.7 M, and its

computational complexity is about 0.3 G in FLOPs, which

fully demonstrates that the proposed method has the

advantages of the high average accuracy, low calculation

complexity and small parameter size. The sketch applica-

tions mainly occur on portable devices such as mobile

phones and tablets. The parameter size less than 1 M is

very friendly to be applied on the devices.

4.3 Qualitative results and analysis

We will display intuitively some visual semantic segmen-

tation results in the qualitative experiment. Three open

source methods (U-Net, PointMLP, SketchGNN) and the

proposed method are taken part in the experiment. The

specific segmentation results are shown in Fig. 8. Com-

pared with other methods, the semantic segmentation

results of our method are closer to the level of humans in

most cases. Results of the traditional image semantic seg-

mentation method U-Net are unsatisfactory, because stroke

information is not considered in the encoding process.

PointMLP ignores the relationship between segments,

resulting in the inferior performance. The original

SketchGNN is trained for each category. Thus, SketchGNN

loses desired results in this qualitative experiment. Our

method captures rich sketch information and then deter-

mines the semantic segmentation results of sketches from a

point-level perspective and a segment-level perspective,

which brings the great performance improvement.

4.4 Ablation analysis

The proposed method mainly involves two crucial modules

named a NLFA module and a SLSA module. Thus, we

evaluate the impact of the NLFA module and the SLSA

module on sketch semantic segmentation results. Both SPG

and SketchSeg-150K are important semantic segmentation

datasets. There are 3–7 labels per category in SPG, while

2–4 labels per category in SketchSeg-150K. Therefore, the

evaluation of the proposed method on SPG is representa-

tive and presents more challenges. In ablation analysis, we

conduct relevant experiments on SPG dataset.

4.4.1 The study of the novel local feature aggregation
module

The NLFA module encodes a large number of useful

information related to sketch characteristics. Theoretically,

Table 3 Semantic segmentation accuracy (%) on SPG dataset in P-metric (P) and C-metric (C)

SPGSeg SketchSegNet? FastSeg U-Net SketchGNN PointMLP Our method

Category P C P C P C P C P C P C P C

Airplane 82.9 70.9 75.0 68.0 85.3 75.2 77.5 67.3 81.6 75.7 82.1 76.2 86.4 81.5

Clock 84.8 81.0 66.0 64.0 84.6 72.3 80.2 72.3 85.9 84.6 86.6 82.6 90.3 86.3

Ambulance 80.7 68.1 71.0 69.0 85.8 75.3 81.1 75.6 88.8 83.3 83.0 78.5 87.2 81.9

Ant 66.4 56.6 72.0 70.0 68.9 66.4 69.9 66.8 77.3 75.9 75.7 70.3 85.1 80.8

Apple 89.9 71.8 88.0 82.0 91.4 82.3 75.9 63.3 89.2 81.4 88.4 71.1 92.7 87.0

Backpack 75.2 63.7 62.0 60.0 73.3 59.8 65.5 44.1 73.8 64.7 72.7 63.1 82.3 73.3

Basket 84.8 83.2 73.0 75.0 86.6 82.2 82.1 71.8 79.5 82.8 83.5 80.3 87.9 85.5

Butterfly 89.0 83.6 86.0 78.0 92.7 79.3 87.5 79.9 93.5 89.6 91.2 85.8 95.2 91.9

Cactus 77.5 72.3 83.0 80.0 73.3 68.6 81.0 77.8 83.0 82.8 84.8 80.5 89.9 86.1

Calculator 91.1 89.9 91.0 92.0 97.4 93.0 89.3 86.8 91.4 89.7 94.1 93.0 97.8 96.7

Campfire 92.3 91.4 83.0 78.0 95.6 92.9 82.5 75.0 90.8 84.6 89.7 86.7 94.7 91.7

Candle 88.3 71.8 81.0 74.0 90.8 80.1 89.5 86.5 96.9 94.3 94.1 86.0 96.4 93.9

Coffee cup 92.0 87.2 72.0 72.0 90.9 87.0 82.2 75.1 88.7 86.5 93.3 92.0 92.2 89.1

Crab 77.9 70.5 77.0 70.0 75.9 55.4 83.0 77.3 83.7 80.1 84.6 77.0 88.6 83.1

Duck 86.9 75.4 74.0 69.0 88.9 75.1 81.7 77.5 92.2 87.9 91.8 90.2 90.2 85.8

Face 88.0 80.1 75.0 66.0 88.1 80.4 81.9 78.0 90.3 84.2 89.1 86.2 89.9 87.0

Ice cream 85.4 79.3 80.0 75.0 87.5 80.1 83.3 79.7 84.0 81.9 85.7 81.7 93.4 90.8

Pig 81.9 75.4 70.0 69.0 81.1 73.9 85.1 81.6 82.6 77.1 83.7 82.7 88.2 83.5

Pineapple 89.8 90.2 77.0 75.0 91.9 82.3 79.0 68.9 82.9 82.5 89.4 84.3 92.1 87.2

Suitcase 92.7 90.7 75.0 69.0 94.8 86.7 76.0 68.0 94.1 90.8 92.6 89.4 91.9 88.7

Average 84.9 77.6 77.0 73.0 86.2 77.4 80.7 73.7 86.5 83.0 86.8 81.8 90.6 86.6

Bold values indicate the highest accuracy in P-metric or C-metric
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there are three kinds of information that are important

factors for the proposed method to achieve high segmen-

tation accuracy, including distance information, angle

information and stroke information. In order to evaluate the

important impact of these information on the performance,

we build three kinds of local feature aggregation modules

for the proposed method. Besides, to verify the benefits of

‘‘stroke distance’’, we also build two kinds of local feature

aggregation modules. Five methods using different local

feature aggregation modules are as follows:

(1) NLFA w/o distance This method is based on the local

feature aggregation module that encodes all infor-

mation in Eq. (9) except the distances between the

sampling points and the surrounding points.

(2) NLFA w/o angle This method is based on the local

feature aggregation module that encodes all

information in Eq. (9) except the angles between

the sampling points and the surrounding points.

(3) NLFA w/o stroke This method is based on the local

feature aggregation module that encodes all infor-

mation in Eq. (9) except the corresponding stroke

ID.

(4) NLFA w/o SD This method is based on the local

feature aggregation module that encodes all infor-

mation in Eq. (9) and only utilizes Euclidean

distance.

(5) NLFA The proposed method is based on the local

feature aggregation module that encodes all infor-

mation in Eq. (9).

The above methods will use Euclidean distance or ‘‘stroke

distance’’ randomly unless noted otherwise. Table 6 shows

semantic segmentation results of these five methods on

SPG.

Table 4 Semantic segmentation

accuracy (%) on SketchSeg-

150K dataset in P-metric

(P) and C-metric (C)

SketchSegNet? FastSeg U-Net SketchGNN PointMLP Our method

Category P C P C P C P C P C P C

Angel 89.0 86.0 98.0 96.0 94.8 91.9 82.5 82.7 94.6 93.4 98.4 97.4

Bird 98.0 97.0 82.0 70.0 86.5 64.7 74.1 59.3 88.6 78.4 98.3 97.7

Bowtie 99.0 100.0 100.0 100.0 98.3 99.3 99.6 98.9 98.8 99.9 100.0 100.0

Butterfly 95.0 95.0 98.0 96.0 93.3 88.5 43.5 39.2 96.5 94.4 99.8 99.7

Candle 83.0 69.0 96.0 78.0 58.4 53.0 69.2 53.5 75.0 69.6 85.9 79.8

Cup 77.0 74.0 91.0 92.0 84.1 82.0 95.3 94.6 89.9 89.4 95.4 94.6

Door 99.0 99.0 100.0 100.0 97.6 90.4 99.6 99.2 99.9 99.9 100.0 100.0

Dumbbell 99.0 99.0 98.0 98.0 98.8 97.4 99.0 98.4 98.7 99.3 99.8 99.8

Envelope 100.0 99.0 100.0 100.0 89.7 56.4 91.1 92.3 99.1 100.0 100.0 100.0

Face 94.0 91.0 98.0 95.0 95.0 72.8 98.4 94.4 98.2 94.7 99.4 98.3

Ice 72.0 69.0 100.0 100.0 81.6 81.0 99.0 98.4 94.2 95.2 98.3 98.8

Lamp 95.0 94.0 78.0 78.0 79.8 72.8 55.1 46.9 85.9 79.8 95.2 93.2

Lighter 99.0 98.0 99.0 96.0 89.0 76.7 77.4 64.6 96.2 91.5 99.6 99.6

Marker 61.0 55.0 90.0 80.0 54.5 39.6 51.6 55.2 55.8 49.6 80.4 71.9

Mushroom 70.0 66.0 98.0 94.0 79.4 64.0 91.3 90.8 92.9 89.2 93.3 91.1

Pear 99.0 98.0 97.0 94.0 96.9 87.7 22.2 39.2 99.1 98.3 100.0 100.0

Plane 86.0 85.0 100.0 99.0 90.4 82.4 98.1 97.7 93.4 91.0 99.2 99.1

Spoon 85.0 81.0 80.0 79.0 67.3 45.3 46.1 49.4 79.8 68.0 86.4 84.3

Traffic 96.0 96.0 89.0 93.0 74.7 76.0 49.8 74.5 90.9 90.6 96.6 96.7

Van 87.0 84.0 99.0 99.0 91.5 75.3 94.8 97.1 94.3 91.8 98.8 98.4

Average 89.0 87.0 95.0 92.0 85.5 75.0 78.8 78.0 91.2 88.4 96.3 95.0

Bold values indicate the highest accuracy in P-metric or C-metric

Table 5 The parameter sizes

and computational complexity

using different semantic

segmentation methods

SPGSeg FastSeg U-Net SketchGNN PointMLP Our method

Parameters (M) 23.4 40.9 17.3 0.4 16.8 0.7

FLOPs (M) – – 40522.7 43.6 5413.6 321.56
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As demonstrated in Table 6, distance information, angle

information and stroke information improve the average

accuracy of the proposed method by 0.6%, 0.9% and 4.3%

in P-metric, respectively, while they improve the average

accuracy by 0.8%, 1.5% and 6.1% in C-metric, respec-

tively. It can be concluded that these three kinds of infor-

mation are of great help to enhance the performance, and

stroke information plays the most important role in the

sketch semantic segmentation task. Stroke information

represents the internal structure of a sketch partly, which

has a great impact on semantic analysis, so the perfor-

mance gap between with and without stroke information

can be as high as 6.1% in C-metric. In addition, according

to Table 6, ‘‘stroke distance’’ improves the average accu-

racy by 0.9% in P-metric, and 1.3% in C-metric, respec-

tively. Results illustrate that the NLFA module based on

‘‘stroke distance’’ is more effective for the performance

enhancement.

Fig. 8 Some visual sketch semantic segmentation results. Different colors represent different semantics
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4.4.2 The study of the segment-level self-attention module

The SLSA module is combined with a cross-entropy loss

Lsegment�level to establish and strengthen the relationship

between segments, so as to improve the understanding for

sketch semantics. In order to evaluate the importance of the

proposed module, we will test the proposed method with-

out and with the SLSA module, respectively. Table 7

shows the semantic segmentation results on SPG dataset.

As shown in Table 7, the SLSA module can enhance the

performance of sketch semantic segmentation. The reason

for this result is that the SLSA module establishes the

segment-to-segment relationship and provides a new seg-

ment-level perspective to label each point in a sketch. In

Table 7, the SLSA module improves the average accuracy

by 1.2% in P-metric, and 1.8% in C-metric, respectively.

The positive effect of the SLSA module in C-metric is

better than that in P-metric slightly.

4.4.3 The impact of the number of points in each segment
on the performance

The number of points in each segment can affect the per-

formance of the proposed method. Therefore, we study the

cases that each segment contains 2, 4, 8, 16 and 32 points,

respectively. Figure 9 shows the average accuracy using 2,

4, 8, 16 and 32 points on SPG and SketchSeg-150K. It can

be observed that the impact of the number of points is

limited when the number of points is between 2 and 16, but

the average accuracy will decline sharply when the number

of points reaches 32. This result illustrates that more points

in each segment cannot obtain the better performance. The

reason for this result is that the points from different

strokes will divide into the same segment when each seg-

ment contains too many points, which has an adverse effect

on establishing the relationship between segments. In fact,

the segments composed of 2 points on SPG can obtain the

highest average accuracy of 90.6% in P-metric and 86.6%

in C-metric, respectively, while the segments composed of

4 points on SketchSeg-150K can obtain the highest average

accuracy of 96.3% in P-metric and 95.0% in C-metric,

respectively.

4.4.4 The impact of the number of sampling points
on the performance

The number of sampling points is an important hyper-pa-

rameter, which can directly affect the final segmentation

result. Theoretically, the reasonable number of sampling

points can retain the crucial details of a sketch and keep

Table 6 Semantic segmentation

accuracy (%) of the five

methods on SPG dataset in P-
metric (P) and C-metric (C)

NLFA w/o distance NLFA w/o angle NLFA w/o stroke NLFA w/o SD NLFA

Category P C P C P C P C P C

Airplane 86.3 80.1 88.3 82.7 82.2 74.1 83.7 78.0 86.4 81.5

Clock 88.1 81.5 89.4 83.7 87.8 81.7 87.2 81.8 90.3 86.3

Ambulance 86.3 80.3 86.5 81.2 82.2 76.1 85.0 78.0 87.2 81.9

Ant 83.7 79.8 85.8 80.6 76.1 68.5 82.9 76.8 85.1 80.8

Apple 91.7 85.8 90.6 81.6 88.5 77.1 92.3 84.6 92.7 87.0

Backpack 84.0 75.7 78.5 69.5 72.0 57.4 81.0 70.7 82.3 73.3

Basket 85.9 81.8 85.0 80.6 79.4 71.1 86.7 83.5 87.9 85.5

Butterfly 94.9 92.5 94.5 91.8 91.1 86.8 94.7 91.6 95.2 91.9

Cactus 90.3 87.2 90.8 87.6 85.5 78.9 90.2 87.1 89.9 86.1

Calculator 97.4 96.7 96.9 95.2 94.2 92.9 97.2 96.1 97.8 96.7

Campfire 94.1 92.1 93.8 91.4 88.4 83.6 94.8 93.2 94.7 91.7

Candle 95.9 93.7 95.9 93.3 95.5 93.2 95.4 92.9 96.4 93.9

Coffee cup 90.9 88.2 92.2 88.3 90.1 87.6 91.8 88.9 92.2 89.1

Crab 87.8 82.3 88.6 83.4 84.0 79.0 89.7 83.9 88.6 83.1

Duck 89.0 84.4 90.2 86.5 89.4 86.2 89.4 85.2 90.2 85.8

Face 90.5 87.5 89.0 84.5 89.3 85.2 89.3 84.7 89.9 87.0

Ice cream 93.5 91.2 92.9 90.3 87.1 81.9 92.4 90.4 93.4 90.8

Pig 88.0 84.1 86.4 82.8 85.1 82.1 88.2 85.5 88.2 83.5

Pineapple 90.4 83.5 88.9 81.3 88.0 80.8 91.7 85.8 92.1 87.2

Suitcase 92.5 88.8 89.5 85.4 90.4 86.9 91.5 88.0 91.9 88.7

Average 90.0 85.8 89.7 85.1 86.3 80.5 89.7 85.3 90.6 86.6

Bold values indicate the highest accuracy in P-metric or C-metric
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low computational complexity. Based on this principle, we

choose 256 sampling points. Table 8 shows the impact of

the number of sampling points on the segmentation accu-

racy. Generally speaking, within a certain range, the

greater N value is set, the more points can be captured by

the receptive field, so the proposed method presents the

higher segmentation accuracy. This is the reason why the

performance of sketch semantic segmentation will

gradually improve as N increases in Table 8 when N is less

than 512. When N=512, due to the excessive number of

points, the region obtained under the fixed receptive field is

relatively small compared with the whole sketch, so the

captured information tends to be local and the global per-

ception is unsatisfactory. Due to the lack of global per-

ception, the performance of sketch semantic segmentation

is degraded. In fact, when we increase the receptive field

and set the K value to 48, P-metric and C-metric is 90.5%

and 86.9%, respectively, which is basically the same as the

performance using N ¼ 256. Therefore, we do not continue

to increase the number of N points, because too large

N value will lead to a decrease in computing efficiency and

segmentation accuracy simultaneously.

4.5 A simple application

Sketch semantic segmentation is the understanding about

sketch semantics. Therefore, theoretically, sketch semantic

segmentation can improve the performance of sketch

recognition. In this section, we show the application of

sketch semantic segmentation to the sketch recognition

task. The sketch recognition network we used is Sketch-a-

Net [40], which is representative and widely used in the

sketch field. The sketch recognition method combined with

the proposed sketch semantic segmentation method can be

divided into four stages. (1) In the training phase, Sketch-a-

Net is used to train on the SPG dataset [20] to obtain a

Table 7 Semantic segmentation accuracy (%) without and with the

SLSA module on SPG dataset in P-metric (P) and C-metric (C)

Without SLSA module With SLSA module

Category P C P C

Airplane 84.4 77.1 86.4 81.5

Alarm clock 89.2 85.7 90.3 86.3

Ambulance 86.2 81.0 87.2 81.9

Ant 80.6 76.1 85.1 80.8

Apple 92.0 85.0 92.7 87.0

Backpack 81.6 70.3 82.3 73.3

Basket 84.7 80.4 87.9 85.5

Butterfly 94.4 90.9 95.2 91.9

Cactus 90.7 87.7 89.9 86.1

Calculator 97.5 96.5 97.8 96.7

Campfire 93.7 90.4 94.7 91.7

Candle 97.0 95.6 96.4 93.9

Coffee cup 92.4 89.4 92.2 89.1

Crab 86.5 79.7 88.6 83.1

Duck 90.0 85.5 90.2 85.8

Face 89.3 85.4 89.9 87.0

Ice cream 92.6 88.6 93.4 90.8

Pig 86.1 82.7 88.2 83.5

Pineapple 91.0 84.1 92.1 87.2

Suitcase 88.3 84.0 91.9 88.7

Average 89.4 84.8 90.6 86.6

Bold values indicate the highest accuracy in P-metric or C-metric

Fig. 9 The impact of the number of points in each segment on the average accuracy. The horizontal axes represent the number of points, and the

vertical axes represent the average accuracy (%). a is the average accuracy on SPG, and b is the average accuracy on SketchSeg-150K

Table 8 The impact of the number of sampling points on the seg-

mentation accuracy (%)

N = 64 N = 128 N = 256 N = 512

P-metric 88.6 89.8 90.6 89.2

C-metric 84.0 85.4 86.6 84.8
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standard sketch recognition model. (2) In the segmentation

stage, the proposed sketch semantic segmentation method

is used to obtain the semantic parts of the input sketch.

Certainly, the noise semantics will be removed. (3) The

stage of reassigning values for the neurons in the last fully

connected layer. Each neuron corresponds to a sketch class,

and we take the neuron with the largest score. If the sketch

class corresponding to the neuron does not contain any

segmented semantic part, the score of the neuron will be

reduced to the lowest score. Repeat step (3) until the

neuron with the largest score contains a segmented

semantic part. (4) In the prediction phase, a sketch class is

obtained through the neuron with the largest score in the

last fully connected layer. We show the recognition accu-

racy of Sketch-a-Net and Sketch-a-Net combined with the

proposed sketch semantic segmentation method (Sketch-a-

Net ? SG) in Table 9. It can be seen from Table 9 that the

performance of Sketch-a-Net is significantly improved.

Specifically, the recognition accuracy is improved by 8.4%.

In fact, the performance improvement comes from the

revision of predicted sketch classes by sketch semantics.

The original Sketch-a-Net does not check the semantics of

the candidate sketch classes, while Sketch-a-Net ? SG

automatically eliminates the sketch classes with incorrect

semantics, thus avoiding unnecessary errors. Although

Sketch-a-Net ? SG is more complex than the original

Sketch-a-Net, it can achieve significant performance

improvement. Figure 10 shows the qualitative results of

Sketch-a-Net and Sketch-a-Net ? SG. In Fig. 10, the first

line shows the wrong results of Sketch-a-Net, while the

second line shows the wrong results of Sketch-a-Net ? SG.

Obviously, compared with Sketch-a-Net, the wrong results

of Sketch-a-Net ? SG is easier to understand because it is

difficult for humans to recognize sketches of the second

line.

5 Discussion

In this paper, we propose a sketch semantic segmentation

method using novel local feature aggregation and segment-

level self-attention, which has great advantages in seg-

mentation accuracy, parameter size and computational

complexity. The proposed method captures the internal

structures of sketches by encoding informative point-level

features, perceiving the stroke structures, and building the

relationship between segments, thus obtaining the state-of-

the-art semantic segmentation accuracy. The input of the

proposed method is a point set and a segment set. The MLP

for processing these data is much less than the convolu-

tional neural network for processing images in terms of

parameter size and computational complexity. This

advantage is more conducive to the application of the

proposed method to portable devices. Besides, the pro-

posed method aims at tackling sketch semantic segmenta-

tion task. Although it cannot directly be used for sketch

instance-level or sketch scene segmentation tasks, it can be

extended for sketch instance-level or sketch scene seg-

mentation tasks by adding a post-processing step based on

clustering algorithm or metric learning [41]. Simultane-

ously, our approach exists some limitations. (1) We divide

n points into a segment. The value of n is determined by a

verification set, and some segments may not conform to the

stroke structure. (2) The proposed method still has unsat-

isfactory segmentation results on some sketches as shown

Table 9 Comparison of the accuracy (%) of two sketch recognition

methods

Method name Accuracy (%)

Sketch-a-Net 85.7

Sketch-a-Net ? SG 94.1

Fig. 10 The qualitative results of Sketch-a-Net and Sketch-a-Net ? SG. The sketches of columns 1 to 7 are as follows: airplane, alarm clock,

ambulance, backpack, basket, butterfly and duck, respectively
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in Fig. 11, including sketches with special angles, sketches

with large differences in appearance from the same cate-

gory. We deem that the above issues can be solved by

better representations [42] and GAN-based methods [43].

6 Conclusion

We propose a sketch semantic segmentation method, which

is realized by a NLFA module, a SLSA module and a

similar encoder–decoder structure based on these two

modules. The NLFA module uses Euclidean distance or

‘‘stroke distance’’ randomly when the sampling points

search the surrounding regions, which makes the percep-

tion regions conform to the two-dimensional spatial dis-

tributions and the stroke structures of sketches. And the

NLFA module encodes rich information such as distance

information, angle information and stroke information,

which enhances the semantic discrimination ability of

sketch features. Simultaneously, the SLSA module is

designed to enhance the relationship between segments and

to learn the internal structures of sketches. Finally, the

similar encoder–decoder structure integrates the global

features of several intermediate stages to enrich semantic

contents. Extensive experiments show that the proposed

method achieves state-of-the-art performance in both P-

metric and C-metric. In the future, we will explore the

unsupervised sketch semantic segmentation method, which

is more in line with the actual application when a sketch

lacks a large number of semantic labels.
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